Inductive Data Types: Well-ordering Types Revisited

Healfdene Goguen Zhaohui Luo
LFCS, Dept. of Computer Science, Edinburgh Univ.

Abstract

We consider Martin-Lof’s well-ordering type constructor in the context of an
impredicative type theory. We show that the well-ordering types can represent
various inductive types faithfully in the presence of the filling-up equality rules or
n-rules. We also discuss various properties of the filling-up rules.

1 Introduction

Type theory is on the edge of two disciplines, constructive logic and computer science.
Logicians see type theory as interesting because it offers a foundation for constructive
mathematics and its formalization. For computer scientists, type theory promises to
provide a uniform framework for programs, proofs, specifications, and their development.
From each perspective, incorporating a general mechanism for inductively defined data
types into type theory is an important next step.

Various type-theoretic approaches to inductive data types have been considered in
the literature, both in Martin-Lo6f’s predicative type theories (e.g., [ML84, Acz86, Dyb88,
Dyb91, Bac88, Men88]) and in impredicative type theories (e.g., [BB85, Men87, CPM90),
Ore90]). In this paper, we consider well-ordering types (W-types), introduced by Martin-
Lo6f in his extensional type theory [ML84], in the context of an impredicative type theory
where the notions of logical proposition and data type are distinguished.

Well-ordering types in Martin-Lof’s extensional type theory can be used to represent
various inductive data types (see, for example, [Dyb88]), due to the strong equality type
I(A,a,b) with the following elimination rule

F'kp:I(A a,b)
F'Fa=0b:A4A

This type imposes a strong (or full) extensionality which allows us to assert a judgemental
equality using the induction principle. However, there is a known problem in using W-
types to represent inductive types in an intensional type theory (for example, Martin-
Lof’s intensional type theory [NPS90]): the W-representations of inductive types do not
give the expected induction principle, because there is ‘junk’ in the representations (see
chapter 15 of [NPS90] and explanations in section 2.2). In other words, W-types may
not be used in an intensional type theory to represent inductive data types faithfully —
some extensionality is required.

A basic observation in this paper is that, for W-types to represent inductive types
faithfully, it is sufficient (and necessary) to have the filling-up equality rules (or n-rules)
for the type constructors used in the W-type constructions. Although weaker than the

strong equality which leads to strong extensionality, the filling-up rules provide sufficient
uniqueness conditions (perhaps called weak extensionality) so that the representations
of inductive types by W-types are faithful. Based on this observation, we consider
incorporating W-types into the Extended Calculus of Constructions [Luo90a] and show
that a large class of inductive data types can be faithfully represented by W-types with
the help of filling-up rules.

Filling-up equality rules are not viewed as computational (or definitional). Their
introduction may have certain side-effects: in particular, some meta-theoretic properties
for intensional type theories may be invalid. We discuss several aspects of this and hope
that such an attempt at reconsidering well-ordering types leads to a better understanding
of inductive data types.

1.1 Motivations and related work

The general motivation for considering inductive data types lies in the idea of develop-
ing type theory as a uniform language for modular development of programs, proofs and
specifications. The particular approach we have taken in developing type theories for
this is based on the idea that, even in type theory, there should be a distinction between
the notions of logical formula and data type. This idea has been reflected in the devel-
opment of the Extended Calculus of Constructions (ECC) [Luo90a], where higher-order
logical propositions reside in the impredicative universe (c.f., the calculus of construc-
tions [CHS88]), while the data types (or sets) reside in the predicative universes. As in
Martin-Lof’s type theory, the predicative universes are supposed to be open in the sense
that new types or type constructors (for example, inductive data types) may be added
to the predicative world when they are needed. However, the impredicative world of
logical propositions is viewed as relatively closed, in the sense that the ways in which
logical propositions are formed are not supposed to be further extended. This view has
some theoretical and pragmatic consequences. For example, since the logical universe is
relatively closed, there is a proper notion of predicate (as propositional function) in the
theory which is used in developing an approach to program specification and develop-
ment [BM91, Luo91b] and a notion of mathematical theory in the application of abstract
reasoning [Luo91a, Pol90]. On the other hand, since data types (sets) reside in predica-
tive universes, the embedded logic is a conservative extension of higher-order predicate
logic [Luo90b], and we are able to introduce type constructors like the strong sum (large
Y-types), which is important in abstract and modular development of programs and
proofs.

It is obvious that, for a type theory like ECC to be useful in real applications such
as program and proof development, we need to consider various concrete data types as
types in the predicative universes (c.f., similar research for Martin-Lof’s type theory,
for example, [ML84, Acz86, Dyb88, Dyb91]). Pollack’s Lego proof development system
allows users to introduce new inductive data types in a style similar to ALF [ACN90],
which conforms with Martin-L6f’s philosophical openness as explained above. However,
it is necessary in applications to have a general mechanism in the theory which provides
a large class of inductive data types.'

!We note that although the impredicative representation of data types (see [BB85]) is available in
an impredicative type system like ECC, the representations are too weak.

Such studies of general mechanisms for inductive data types in the context of im-
predicative type theory have been considered recently in the literature. Coquand and
Mohring [CPM90] have introduced a general schematic notion of inductive types and
studied its model theory by considering an intermediate system which is essentially an
extension of ECC by a fix-point type constructor. They have also used certain filling-up
rules for the system. Ore [Ore90] has also considered extending ECC by a fix-point
type constructor to incorporate inductive data types and given a realizability model for
the resulting system. The proof-theoretic properties, such as strong normalization and
confluence, of such systems are still under research.

In this line of research, the well-ordering type seems to be a natural alternative to
consider as a general mechanism for inductive data types. W-types are simple, and using
them has some advantages. The W-type is introduced by a single type constructor which
does not need extra meta-level notions, such as that of strictly positive operator, for its
introduction. It conforms to the general pattern of types in Martin-Lof type theory.
Furthermore, its rules and the n-rules are readily understood, since their meaning is
intuitively clear. Another point is that the introduction of W-types conforms with the
intuitive idea of predicative types in type theory being developed in non-circular stages
(c.f., [ML84]) — we first have certain type constructors (e.g., II, ¥ and W) and then use
the reflection principle to introduce the names of these types into (predicative) universes.
In contrast, the meta-theoretic notions of strictly positive operator is needed for the
introduction of a least fix-point type constructor, and type universes are used in the
works cited above to introduce fix-point types.

In section 2, we discuss the well-ordering type and the filling-up rules and their use
in the representation of data types. We discuss in section 3 the expressiveness of W-
types in representing inductive types by relating them to certain least fix-point types. In
section 4, we consider well-ordering types with explicit least elements. We discuss some
properties of the filling-up rules in the final section.

2 Well-ordering Types and Filling-up Rules

Appendix A presents an intensional type system [7T7', which is essentially the system
ECC extended by the empty type, the unit type and disjoint sums?. In this section
and section 3, we consider introducing W -types and filling-up rules into this system. We
adopt the conventions as described in Appendix A when presenting rules below and also
use the following notational abbreviations.

Notations As usual, when z ¢ FV(B), we may write A — B for [Iz:A.B and A x B for
Yz:A.B. We also write fa,...a, or f(ai,...,a,) for app(app(...app(f,a,),...,an_1),a,),
we omit the pairing operator, and we write A\z:A.b to abbreviate A[Ilz:A.B]xz.b when
making the domain of a function explicit.

We use o to denote the following composition operator of functions: for f of type
Nz X, .. Iz, X,.Y with z; ,...,z;, € FV(Y) and g of type Iz, : X, ..Iz; :X; Iy:Y.Z,

go f =gt Axy.. Az, gz, ..oz, (f(2g, .., 2,))
which is of type Ilz,:X,...Ilz,: X,,. [f(z1,....,2,)/y]Z.

2The type systems considered in this paper are subsystems of that in [Luo91lc], where the second
author discusses how subtyping between universes as in ECC may be introduced.

'k Atype I',z:AF B type A=A T'e:A-rB=DB'

formation I'F Wz:A.B type T+Waz:AB=Waz:A B
'ka:A ThFa=d:A
introduction Ptb:[a/z]B— Wz:A.B I'tb="V:[a/z]B - Wz:A.B
It sup(Wz:A.B](a,b) : Wz:A.B T+ sup(a,b) = sup(a’,b’) : Wa:A.B
It f:Iz:Ally:(B — Wa:A.B). (Ilv:B.[yv/z]C) — [sup(z,y)/z]C
elimination : . Tz .
T'FEw[llz:(Wz:A.B).C|(f) : Iz:(Wx:A.B).C

TF f=f :Tz:Ally:(B — Wx:A.B). (Hv:B.[yv/z]C) — [sup(z,y)/2]C
'+ Ew(f) = Ew(f): z:(Wa:A.B).C
'ta:A T'Fb:[a/z]B— Wx:A.B T',z2Wz:A.B+ C type
'k f:z:Ally:(B — Wa:A.B). (Ilv:B.[yv/z]C) — [sup(z,y)/z]C
I+ Ew (f)(sup(a,b)) = f(a, b, Ew (f) 0 b) : [sup(a, b)/2]C

computation

Figure 1: Rules for W-types.

2.1 Martin-Lof’s well-ordering types

Martin-Lof [ML84] introduces a type constructor W which is based on well-founded trees,
whose rules are given in Figure 1. The formation rule for the W-type depends upon
two types. The first of these types we think of as specifying the constructors for our new
type. The second corresponds to a branching or selector type for each constructor. Given
these intuitions, we can view the sup constructor as representing, for each constructor
in the inductive type, the least upper bound of the elements indexed by a function from
the branching type into the well-ordering. This could also be seen as creating a new
node in a tree by giving a function which returns all the subnodes of this new node. The
elimination rule states that if any property holding for all subnodes of a node implies
that it holds for that node, then the property holds for all elements of the well-ordering.

The induction principle holds for the well-ordering types because in general some of
the branching types are the empty type, giving a trivial set of predecessors. If our theory
does not include the empty type, none of the W-types has an inhabitant, because there
are no least elements with which to provide a basis.

2.2 A problem of faithful representation

First, let us explain the problem of faithful representation by considering the simple
example of the natural numbers (c.f., [NPS90]). Its W-type representation is

N —df WCCANBN y

where Ay = 1 + 1 and By(z)? is defined such that By(i(a)) = 0 and By (j(b)) = 1*.
The canonical natural numbers are defined as

0 =q4¢ sup(i(*), Eg) and succ(n) =4 sup(j(x), E1(n)) .

Unfortunately, in an intensional type theory, the canonical natural numbers are not the
only objects of type N. For example, there is no way to show that

sup(i(x),\z:0.0) =0,

3For readability, we shall write B(a) for [a/x]B, where z : A Btype.
“Formally, By (z) = To(E4 (E1(0), E1(1))(z)), where @ is the name of the empty type and 1 is the
name of the unit type.

because Az:).0 and Ej are not computationally equal. The W-representation of the
natural numbers is faithful only if we identify such extra objects with the canonical ones
so that the intended elimination rule is derivable. In fact, if we consider rules (filling-up
rules) like (Fy): f = Ey, where f is a function with domain (), and (Fy): f = E;{(f (%)),
where f is a function with domain 1, then we can derive the expected elimination rule,
since the elimination operator can be defined as

recy(c, f) =as Ew(f') ,

where [/ = E, (E;(AyAz.c),E; (AyAz.f(y(x),2(x)))). recy(c, f) satisfies the following
rule:
LN Ctype 'Fe:C(0) T'F f:IIn:N. C(n) = C(suce(n))
I'Frecy(c, f) : lIn:N.C(n)

and the equalities recy(c, f)(0) = ¢ and recy(c, f)(suce(n)) = f(n,recy(c, f)(n)) hold.
To see that recy(c, f) has the correct type, we have to check that the function f’ above
has type Ilz:Ayx.D(x), where

D(z) =y:By(z) — N.(Ilv:By (z).C(yv) — C(sup(z,y)) -
This is the case since we have

1. E;(A\yAz.c) is of type ITz":1. D(i(z")), since AyAz.c is of type

My:0 — N. (Mv:0.C(yv)) — C(0)
= My = N. (Tv:0.C(yv)) — C(sup(i(x),Ey))
Ty — N (TTo:.C(yv) — C(sup(i(+),))
= Hy:By(i(x)) = N. (Iv:By(i(x)).C(yv)) = C(sup(i(+),y))
= D(i(x))
2. E;(A\yAz.f(y(x), z(x))) is of type ITy":1. D(j(y')), since AyAz.f(y(x), z(x)) is of type
IMy:1 — N. (TTv:1.C(yv)) — C(succ(y(x)))
= Iy:1 — N. (Tv:1.C(yv)) — C(sup(j(*), E1(y(*))))
T Iy - N ([Te:l.0(yv)) — C(sup(§(*),y)
)

y:By (j(*)) = N. (ITv:By (j(*)).C(yv)
D(j(x)) -

2.3 Filling-up equality rules

From the above example, we can see that the key problem with faithful representation
via W-types is the lack of the filling-up rules. The reason that W-types can be used to
represent inductive data types faithfully in Martin-Lof’s extensional type theory is that
the filling-up rules are derivable using the elimination rule for the strong equality.

The filling-up rules for the type constructors in [T are given in Figure 2. Note

(Fp) Tk f=Ey:z0.C

(F1) 'k f=E1(f(x)): 1z:1.C

inl =4r Ax.i(x), inr =4 A\y.j(y)
(Fo) | TFf=E,(foinl, foinr): lz:A+ B.C

pair =qr A\x\y.p(z,y)

(Fx) 'k f =Es(fopair) : z:(Zx:A.B).C
z & FV(f)
() TFf=z.fz: UzAB

Figure 2: The filling-up equality rules.

that there is a general form of the filling-up rules, except (7)°: informally, for a type
constructor K with introduction operators ¢y, ...,¢, and elimination operator Ey, the
filling-up rule for K is of the form

f = EK(fOCb...,fOCn)

where f is a function whose domain is a K-type.

The filling-up rules assert a uniqueness condition for the elimination operator of the
corresponding type constructor. It is interesting to note that they are equivalent to the
corresponding n-rules for types with one constructor (uniqueness of the object * in the
unit type, surjective pairing for X-types). For example, in any context with v:¥z:A.B(z),

v =p(mv,m)

where m; =4 Ex(AzAy.z) and 7 =4 Ex(AxAy.y), follows because v = (Az.z)v)
Es(AeAy.p(z,y)lv = Bs(Aedy. (e.p(m 2, m2))p(@,y))v = (Ae.p(miz, m2))v = pmiv, mv).
For types with other than one constructor, the commuting conversions (see [GLT90]) fol-

low from the filling-up rules.

We call the system described in Appendix A extended by W-types and the filling-up
rules in figure 2 ITT, + W (a subsystem of that described in [Luo9lc]). Note that we
have tried to use the minimum number of filling-up rules necessary for the representation
of inductive data types: we have not included such rules for propositions or the W-types.
We remark that I'T"T, + W is model-theoretically consistent, as the realizability models
as described in [CPM90, Ore90] show: in particular, the filling-up equality rules are valid
in the w—Set realizability model.

Another important remark is that, in the intensional system ITT without the filling-
up rules, all of the filling-up equalities except (F}) for the empty type hold for closed
terms. In fact, the corresponding logical propositions, of the form

VI(Iz:K.C)VE:K. fk=cuy Ex(foci,...,foc,)k

5This is because, in our presentation, II-types are also used as a meta-level mechanism playing a role
similar to that of a logical framework. If we used a meta-language instead, there is a filling-up rule for
II of the above form.

where =) is Leibniz equality, are provable using the logical induction principle as
expressed by the elimination rules®. It follows by an equality reflection result (c.f.,
[Luo90a]) that the filling-up equality holds for closed terms. The situation is similar for
the weak equality in Martin-Lof’s intensional type theory. However, this is not the case
for the filling-up rule for the empty type, which we discuss further in section 4.

2.4 More examples of inductive data types
We consider several other examples to demonstrate the use of the well-ordering type and
its interaction with the filling-up rules.
Examples
e The type of lists over the natural numbers:
List(N) =4 Wx:AList(N)-BList(N))

Where AList(N) =1 + N and BLzst(N)(i(u)) = @ and BLwt(N)(j(n)) = 1. The
canonical lists are defined as

nil = sup(i(x), By) and cons(n, 1) =g sup(i(n), B (1))
and the elimination operator as, for ¢ : C(nil) and f : IIn:NIIi:List(N). C(I) —
C(cons(n,l)),

TecList(N)(Ca f) =at Bw (E(Eq(AyAz.c), AnAyAz.f(n,y(*), 2(*))))

which is of type Il:List(N).C(l) (we need the filling-up rules for the empty type
and the unit type to verify this) and satisfies the equalities recy,qn(c, f)(nil) = c

and TecList(N) (07 f)(cons(n, l)) = f(n7 l: recList(N) (07 f)(l))
e We can similarly define binary trees as
BT(N) =df Wx:ABT(N)-BBT(N))

where Appny = 14+ N and Bpr(y)(z) is defined so that Bgpy(i(z)) = 0 and
Bprny(i(n)) =1+ 1. We only remark that to have the expected elimination rule
for binary trees , the filling-up rules for the empty type, the unit type, and disjoint
sum are required.

e As alast example, we define the type of expressions in a simple language. Consider
the following simple grammar:

ex=v|n|le + e|letv =cineend .
This can be defined using the well-ordering type as, for any type Id (of identifiers),
ECUPT(Id) —df W:U:AEzpr(Id)'BEzpr(Id))

where Agupra) = (Id + N) + (1 + Id), Bpapray(i(a)) = 0 and Bgep,a)(§(b) =
1+ 1. Once again, to check that the expected elimination rule is well-typed, we
need the filling-up rules for the empty type, the unit type, and disjoint sum.

5Subject to the above footnote, if IT is formulated by a meta-language with a strong elimination rule,
the logical proposition corresponding to 7 is also provable.

7

Parameterized inductive data types can also be defined by means of universes. For
example, for any universe U, we can define

listy =qr Aa:U. wz:(1 ® a).E, (E{(0),E;(1))(x)

Then, we have Ty (listy(a)) = List(Ty(a)), for a : U.

3 The Expressiveness of Well-ordering Types

Dybjer [Dyb88] has shown that W-types in Martin-Lo6f’s extensional type theory can be
used to represent a large class of inductive data types. In this section, we prove a similar
result to show that the well-ordering types with the filling-up rules are strong enough
to represent all types expressible as a least fix-point type of the form pX.®(X), where
®(X) is a strictly positive operator built from constant types and X by x, + and —.

The proof of the result is essentially based on the lemma 3.2 below, which shows that
certain types are isomorphic to each other in the following sense.

Definition 3.1 Let A and B be types. A is isomorphic to B, notation A =2 B, if there
exist terms f:A — B and g:B — A such that go f = id, and fog =idg, where id, and
idg are the identity functions over A and B.

Lemma 3.2 The following isomorphisms hold:
1.120)—= A

A=1—- A

A= Ax1

AZ1x A

r:AXYy:B(z).C(r,y) = Ef:(Ilz:A.B(z)) llx:A.C(z, fr)

S v o e

Mz:Aly:B(z).C(x,y) 2 z:(Xx:A.B(x)).C(m, 2, 7 2)

=

Yx:ALB(2,) + Xx9:Ay.By() = Xx: Ay + Ay.B(x) where B(i(z,)) = Bi(x;) and
B(j(x2)) = Ba(2)

8. Yx1:A.Bi(1) X Xx9:A5.By(15) = Ba: Ay X Ay.B(x) where B(xy,x,) = By(z,) +
By ()

9 A-C=2B—-C,ifA=2B

Proof We show cases (1) and (5). The others are similar. For case (1), let f =4 E; (Eg)
and g =4 Av:) — A.x. Then we have

(F1)

Av.(Av.x)(fv) = Aex = Ey(idy*x) =" idy
A0-(Eq1 (Eg))% = W.Ep = idy 4

gof
fog

For case (5), let

[=a M:(Iz:AXy:B(z).C(x,y)).p(m ov,m 0v)
g =a \:(Zf:(Ix:A.B(x))Mz:A.C(x, fx)) e:A.p((mv)z, (Tv)x)

Then

gof = XvAr.p(m (vr),m(vr)) = AwAz.vT = ide:A.Zy:B(x).C(x,y)

f °g = Av'p(ﬂ-lva 7T2U) = ide:(Hz:A.B(z))Hm:A.C(z,fa:))

We now show how to represent the least fix-point of a strictly positive operator in
ITT,+W. Thus, we assume a definition for strictly positive operators ®(X') constructed
with constant types and X by —, X, 4+, as well as the functorial extension of such
operators. For each such ®(X) we shall define the type pX.®(X) as a W-type such that
we can define the introduction and elimination operators satisfying the following rules:

Mz ®(pX.(X))
['Fintrog(x) : pX.®(X)

Lz pX.®(X)F Ctype Tt w:lz:®(Sv:(uX.®(X)).C(v)).Clintrog ((P(m,))z))
I'Frecy(u) : Mo:(pX.®(X)).C(x)
I zpuX (X)) F Ctype T z:puX.®(X) Tk w: z:®(Bv:(uX.2(X)).C(v)).C(introg ((P(m))x))
recg(u)(introg(x)) = u((®(Az.p(z,recey (u)(2))))x) : Clintrog(z))
We refer the reader to [CPM90, Ore90] for further details on u-types.
Our method for defining these least fix-points will be to exhibit an Ag and Bg such

that there is a natural isomorphism ®(X) = Yx:Ag.(Bg(x) — X). We shall then be
able to use this isomorphism to define uX.®(X) as Wxz:A5.Bs.

Theorem 3.3 For any strictly positive operator ®(X), there exist Ag and Bg such that,
letting Fo(X) =4 Y0:Ag.(Bs(x) — X), there is a natural isomorphism ¢x : ®(X) =
Fp(X). Thus, the following diagram commutes for any f: X = Y:

B(X) X Fy(X)

o(f) Fy(f)

oY) e Fp(Y)

Proof We can define Ay and By by induction on the structure of ®(X) as follows:
[] @(X) = KI Aq) =df K and Bq,(il?) =df @
[] @(X) =X: A(p =df 1 and Bq,(x) =df 1.

[] @(X) = Ql(X) + QQ(X) Aq> =df Aq>1 + Aq>2 and deﬁne Bq> Such that B@(i(ﬁﬂl)) =
By, (71) and Bg(j(22)) = Bs, (72).

[J @(X) = él(X) X QQ(X) Aq, =df A@l X Aq>2 and Bq,(l'l,xg) =4t Bq>1 (x1)+B<I>2 (Iz)

9

¢ O(X)=K = &(X): Ay =t K — Ag, and Be(f) =a Yy:K.Bg, (fy).

Then, we can show the isomorphism and naturality by the same induction principle,
using lemma 3.2.

An immediate consequence of the naturality is that

O(f) = ¢y o (Fs(f)) o px (1)

where ¢3! is the inverse of ¢y. Also, by definition of the functorial extension of Fy(X),

Fy(f) = Ap-p(mip, Av.f((m2p)v)) Fo(X) = Fy(Y) (2)

We can now define pX.®(X) to be Wx:Agy.Bg, for each strictly positive operator
®(X). We define the introduction and elimination operators for uX.®(X) as

introg(x) =4 sup(m(P(x)), ma(d(x)))
reco(u) =4 Ew(AaXbAp.u(é™ (p(a, ho.p(bo,pv)))))

The definition of introg follows from the terms verifying isomorphisms (6) and (9) in
lemma 3.2. The definition of recg follows from the term verifying the isomorphism

My:(Sa:Ag . (By(x) = (B2:(Wa:dg.By).C(2)))).Clsup (m (Fa(m1))y), w2 ((Fa (m1))y)))
& Mx:Ag Ily:(By(z) = Wa:Ag.By).(Ilv: By (z).C(yv)) — C(sup(z,y))

applied to u o ¢!, which is well-typed by the definition of intros and naturality.
Hence,

rece(u)(introg (z))

Eyy (AaAbAp.u(6~" (p(a, Av.p(bv, pv)))))

=l (m (B(), WD (o ($()))0), ((rec (o
(&~ (P(m1(8()), dv.(Az.p (2, rece (u) (2))) (2
= u(@ " (Fo(Az.p(z,recs (u)(2))))(6(2)))

= u((®(Az.p(z, rece (u)(2))))z)

)

I

)
)

= Uu

where the last two lines use the equalities (2) and (1). This justifies our definition of
u-types by W-types.

We note that W-types can also be modelled easily using the least fix-point operator
by Wz:A.B =4 puX.(X2:A.(B(xr) = X)). The introduction and elimination rules can
be defined in this direction simply by using the isomorphisms of lemma 3.2.

4 Well-ordering Types with Bottom Objects

4.1 A problem with the empty type

We have pointed out that the filling-up rule for the empty type does not correspond to
an inductively provable logical proposition, that is, Vf:(I1z:0.C(x)).f =nz.0.c(x) Eg is not
provable in the intensional system I7TT. In fact, with this rule, there is a typable closed

10

term which is not strongly normalizable under the usual S-reduction. For example, in
the context z:(), any two objects a and b of the same type are equal, since

a= (Az:0.a)(z) = Ey(2) = A2:0.b)(2) = b .

Therefore, for an arbitrary type A, the names of types A and A — A are equal in
the context z:0, so we can show z:) F A = A — A, from which it is easy to see that
FAz:0.(A\x.2z)(Az.2z) :) — A is derivable’.

We do not know whether type-checking and conversion for the system with filling-up
rules are decidable. However, the above problem with the empty type and the fact that
its filling-up rule does not hold for closed terms in I7T7T" suggest considering a formulation
which does not include the filling-up rule for the empty type.

4.2 W-types with bottom objects

Instead of using the empty type to introduce bottom objects for a well-ordering type,
we can introduce them explicitly. The rules for the W-types with a bottom object are
similar to the original formulation, except that we have introduction rules

'Fa:ATFb:[a/z]B— Wz:AB
I'F L[Wz:A.B]: Wx:A.B I' - sup[Wz:A.B](a,b) : Wz:A.B
elimination rule
I'Fe:[L/z]C Tk f:1z:Ally:(B — Wa:A.B). (ITv:B.[yv/z]C) — [sup(z,y)/z]C
I'FEyw[lz:(Waz:A.B).Cl(c, f) : llz:(Wx:A.B).C

and computation rules
I zWe:ABFC type I'Fc:[L/2]C
L'k f:z:Ally:(B — Wa:A.B). (v:B.[yv/2]C) — [sup(zx,y)/z]|C
T Bu (o,))(1) = c: [L/2]0

'Fa:A TFb:[a/z]B - Wx:AB T,z2Wx:ABFC type I'c: [L/z]C
I'F f:e:Ally:(B - Wx:A.B). (Ilv:B.[yv/z]C) — [sup(z,y)/z]C
I Ew(c, f)(sup(a,b)) = f(a,b,Ew(c, f) 0 b) : [sup(a, b)/z]C
We shall call the system obtained from IT7T with W-types as formulated above and
without the empty type ITT, + W,. We now show some examples of inductive data
types in this system.

Examples We simply give the definitions and leave the reader to check that the corre-
sponding elimination and computation rules are derivable.

e The type of natural numbers:
N =df Wax:1.1

with 0 =4 L, suce(n) =4 sup(*,E;(n)), and for ¢ : C(0) and f : [In:N.C(n) —
C(succ(n)), reey(c, f) =ar Ew(c, E1(AyAz.f(y*,2%))). To check that recy(c, f)
has the expected type, the filling-up rule (F}) is used.

"This is Martin-Lof’s example showing that his extensional type theory is not strongly normalizing.
In fact, as we show here, the key reason is that the filling-up rule for the empty type is derivable from
the strong equality type.

11

e The type of binary trees:
BT(N) =g Wz:N.1+1

with empty =4 L, node(n,t,t") =4 sup(n,E, (E,(t),E,(t"))), and if e : C(empty)
and f : Hn.NHt,t’.BT()-(C(t)) = (C(t')) = C(node(n,t,t')), define recgrn)(e, f)
(

as By (e, \eAyAp.f (z,y(i(x)), y(§(+)), p(i()), p(§(*)))). Showing recpry) to be
well-typed requires the filling-up rules for the unit type and disjoint sum.

We may also introduce more than one bottom object, for example, indexed by an
arbitrary type, to get a more general formulation of the W-types with bottom objects.
This allows us to represent types of the form uX.®(X), where ®(X) = K + ®'(X) and
there is an occurrence of X in each disjoint subterm of ®'(X). This is less of a restriction
than that for least fix-points in [Dyb88]. With this definition of W-types, our example
of expressions can be represented in a similar manner to that above.

4.3 Data types vs. logical propositions

Note that the problem of the empty type is caused by its filling-up rule. In ITT, + W,
we have removed the empty type from the theory. We feel this is justified because in
our type theory the notions of logical formula and data type (set) are distinguished.
Therefore, unlike in Martin-Lof’s type theory where the empty type plays the roles of
the empty set and the logical constant false, in our theory it is viewed only as a set: the
logical constant false is defined as VP:Prop.P. Without its filling-up rule, the empty type
as a set can be approximated by the types IIX:Type;. T;(X). Thus, the roles that the
empty type plays in Martin-Lo6f’s type theory are shared by the types IIX:T'ype,;. T;(X)
and the proposition VP:Prop.P.

The relationship between the strong equality in Martin-Lof’s extensional type theory
and filling-up rules is further shown through Streicher’s observation [Str91] concern-
ing the filling-up rule for the weak equality Id in Martin-L6f’s intensional type theory
[NPS90]. The filling-up rule for Id 4 is, for f of type Iz, y:Allz:Id 4(x,y).C(z,y, 2),

f= JA()‘:E'f(l":x:TA(:E)))

where r, and J, are the introduction and elimination operators for 1d,, respectively.
Streicher’s observation is that, with the above rule, the weak equality becomes strongly
extensional, in the sense that the following rule is derivable:

I'tFq:Idy(a,b)
F'Fa=b:A

y, and given T' F ¢ : Id,(a,b),

This is because, letting f(x,y, 2) f (x,y,z
(a JaQAz. fo(@,z,r(2)))(a,b,q) =

we have, a:fl(aab7Q) :JA()‘xfl(())
f2(a7 bv q) =b.

We have a similar situation for the Leibniz equality over propositions definable in
our theory (in fact, in the pure calculus of constructions). In this case, the filling-up rule
for Leibniz equality implies that if two proofs are Leibniz equal in an arbitrary context,
then they are convertible.

2) =
b,9)

12

5 Further Discussion of the Filling-up Rules

In this paper, we consider the filling-up rules as a technical tool to allow the well-
ordering types to represent inductive types faithfully. One of the main concerns for us is
the decidability of systems with these rules: in particular for I7T7T, + W, which does not
have the empty type. The filling-up rules give rise to several meta-theoretic difficulties.

The study of properties such as Church-Rosser and strong normalization is made
more difficult. First, it is not clear which direction of reduction for the filling-up rules
is preferable. If we take the ‘usual’ orientation, the system is not Church-Rosser (even
for well-typed terms), as the example concerning the unit type in [LS86] shows. In fact,
the problem is not limited to the unit type. The reduction rule E,(f oinl, f oinr) f
(with inl and inr defined as in figure 2) for disjoint union together with the usual S-rule
is not Church-Rosser for well-typed terms: consider the term E(f oinl, f o inr) with
f = Az.c, where c is a normal form.

There are two possible directions to explore. One is that we take the ‘unusual’ (but
more natural) orientation to define the reduction relation, with certain constraints so that
there is a notion of long normal form, for example, [Jay90]. Another possible approach
is to consider other notions of reduction, for example based on work in term rewriting,
e.g., [CCI1]. These are left as future research topics.

We may also consider a filling-up rule for the W-types, which has the form f =
Eyy (fosup) (or f = Ey (f(L), fosup) for W-types with a bottom object), with sup =4
AaAbAp.sup(a,b). It is unclear to us how such rules would change the theory and its
meta-properties. With either of the filling-up rules for W-types, the inductive types
defined as W-types would also have their corresponding filling-up rules derivable. For
example, for the type of natural numbers, the following would hold:

f =reex(f(0), f osucc') : lz:N.C(z)

where succ’ = AxAy.suce(x). This seems to relate to the B6hm and Berarducci’s notion
of program equivalence in their consideration of representation of data types in the
second-order A-calculus [BB85].

Acknowledgements We would like to thank Thierry Coquand and Per Martin-Lof
for their comments on this work and Thorsten Altenkirch, Rod Burstall, Peter Dybjer,
Martin Hofmann, James McKinna, Randy Pollack and Thomas Streicher for interesting
discussions. We would also like to thank two anonymous referees who read the paper
carefully and suggested improvements.

References

[ACN90] L. Augustsson, Th. Coquand, and B. Nordstrom. A short description of an-
other logical framework. In G. Huet and G. Plotkin, editors, Preliminary Proc
of Logical Frameworks, 1990.

[Acz86] P. Aczel. The type theoretic interpretation of constructive set theory: inductive
definitions. In Logic, Methodology and Philosophy of Science VII, 1986.

[Bac88] R. Backhouse. On the meaning and construction of the rules in Martin-Lof’s
theory of types. In A. Avron et al, editor, Workshop on General Logic. LFCS

13

[BBS5]

[BM91]

[CCO1]

[CHSS]

[CPMO90]

[Dyb8&8]

[Dyb91]

[GLT90]

[Jay90]
[LSS6]

[Luo90al

[Luo90b]

[Luo91al

[Luo91b]

Report Series, ECS-LFCS-88-52, Dept. of Computer Science, University of
Edinburgh, 1988.

C. Bohm and A. Berarducci. Automatic synthesis of typed A-programs on
term algebras. Theoretical Computer Science, 39, 1985.

R. Burstall and J. McKinna. Deliverables: an approach to program develop-
ment in the calculus of constructions. LFCS report ECS-LFCS-91-133, Dept
of Computer Science, 1991.

P.-L. Curien and R. Di Cosmo. A confluent reduction for the A-calculus with
surjective pairing and terminal object. In Proc. ICALP’91, 1991.

Th. Coquand and G. Huet. The calculus of constructions. Information and
Computation, 76(2/3), 1988.

Th. Coquand and Ch. Paulin-Mohring. Inductively defined types. Lecture
Notes in Computer Science, 417, 1990.

P. Dybjer. Inductively defined sets in Martin-Lof’s set theory. In A. Avron
et al, editor, Workshop on General Logic. LFCS Report Series, ECS-LFCS-88-
52, Dept. of Computer Science, University of Edinburgh, 1988.

P. Dybjer. Inductive sets and families in Martin-Lo6f’s type theory and their set-
theoretic semantics. In G. Huet and G. Plotkin, editors, Logical Frameworks.
Cambridge University Press, 1991.

J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge Univer-
sity Press, 1990.

B. Jay. personal communication, 1990.

J. Lambek and P.J. Scott. Introduction to Higher-Order Categorical Logic,
volume VII of Cambridge Studies in Advanced Mathematics. Cambridge Uni-
versity Press, 1986.

Z. Luo. An Extended Calculus of Constructions. PhD thesis, University of
Edinburgh, 1990. Also as Report CST-65-90/ECS-LFCS-90-118, Department
of Computer Science, University of Edinburgh.

7. Luo. A problem of adequacy: conservativity of calculus of constructions
over higher-order logic. Technical report, LFCS report series ECS-LFCS-90-
121, Department of Computer Science, University of Edinburgh, 1990.

Z. Luo. A higher-order calculus and theory abstraction. Information and
Computation, 90(1):107-137, 1991.

Z. Luo. Program specification and data refinement in type theory. Proc. of
the Fourth Inter. Joint Conf. on the Theory and Practice of Software Devel-
opment (TAPSOFT), 1991. Also as LFCS report ECS-LFCS-91-131, Dept. of
Computer Science, Edinburgh University.

14

[Luo91c]

[Men87]

[Men88]

[ML84]
[NPS90]

[Ore90]

[Pol90]

[Str91]

7. Luo. A unifying theory of dependent types I. Technical report, LECS report
series ECS-LFCS-91-154, 1991.

N. Mendler. Recursive types and type constraints in second-order lambda
calculus. In Proceedings of POPL, 1987.

N. Mendler. Recursive Definition in Type Theory. PhD thesis, Cornell Uni-
versity, 1988.

P. Martin-Lof. Intuitionistic Type Theory. Bibliopolis, 1984.

B. Nordstrom, K. Petersson, and J. Smith. Programming in Martin-Léf’s Type
Theory: an introduction. Oxford University Press, 1990.

C.-E. Ore. The extended calculus of constructions (ECC) with inductive types.
To appear in Information and Computation, 1990.

R. Pollack. The Tarski fixpoint theorem. communication on TYPES e-mail
network, 1990.

T. Streicher. private communication, 1991.

15

A Inference rules of an intensional type theory

In this appendix, we present an intensional type theory, named I7T7T, which is the core
of the type systems considered in this paper. There are five forms of judgements:

I'valid TI'Atype I'FA=B TI'ta:A Tra=5b:A

Derivation and derivability of judgements are defined as usual, but in order to simplify
the presentation, we adopt the following conventions.

1. To derive I' - A type, T valid must have been derived.

2. Toderive ' A=B, ' A type and I' - B type must have been derived.
3. Toderive ' Fa: A, T'F A type must have been derived.

4. Toderive 'Fa=b:A, I'Fa:Aand ' b: A must have been derived.

We shall also often omit the type information in terms, e.g., to write Az.b for A\[Vz:A.B]x.b.
In equality rules, the premises concerning the omitted type information are also omitted.
For example, the introduction equality rule in A.3.1 abbreviates the following one:

THA=A T,00AFB=B T.a:AFb=1V:B
[= MIlz:A.Ble.b = A\[[lz:A".B'lx.b' : lx:A.B

A.1 General rules

A.1.1 contexts and assumptions

'+ Atype z¢& FV(T)
vali ,r:A vali , AT Fax
lid I, z:A valid DAl Fz: A

Note that, according to our conventions, to use the last rule to derive ', z: A, T" -z : A,
we must have derived I', z:A,T" valid and I, z:A, TV - A type. We do not comment on
such conventions any more below.

A.1.2 general equality rules

'rA=1RB ''-rA=B I'B=C
I'FA=A '-B=A 'r-A=0C
I'Fa=0b:A I'Fra=b:A T'kFb=c: A
I'Fa=a:A I'Eb=a:A I'Fa=c: A
A.1.3 equality typing
'ra:ATHA=B 'ra=d:ATHA=DB
I'+a:B 'ra=d:B

16

A.2 The impredicative universe

'+ Atype T',z:A+F P: Prop

'FA=A T,2:A-P=P :Prop

I' - Prop type

I'+Vz:A.P : Prop

I'EVax:A.P =Vz:A'.P' . Prop

formation

' P: Prop
'+ Prf(P) type

I'-P=P :Prop
I'+ Prf(P) = Prf(P’)

introduction

T,z:Atp: Prf(P)
't AVz:A.Plz.p: Prf(Vz:A.P)

[,o:AFp=p : Prf(P)
'+ Az.p = Az.p’ : Prf(Vz:A.P)

Pt-p:Prf(Vz:A.P) THa: A

TFp=p :Prf(Va:AP) TFa=ad : A

elimination '+ App[Vz:A.P|(p,a) : Prf([a/z]|P) '+ App(p,a) = App(p’,d’) : Prf([a/x]P)
] T e:Abp:Prf(P) Tha: A
computation '+ App(Az.p,a) = [a/z]p : Prf([a/x]P)

A.3 Type constructors

A.3.1 product types

. '+ Atype T,z:AF B type THFA=A Tz:A-rB=B
formation [+ [z:A.B type Tk z:A.B = A B’
'] I,z:A-b: B ILo:AFb=1b:B
introduction T F A[lz:A.Blz.b : Tlz:A.B I'FAz.b=Az.b : lz:A.B
- I'Ff:MeAB 'Fa: A THf=f :MnAB 'Fa=d : A
climination T+ app(llz:A.B](f,a) : [a/a]B T app(f,a) = app(/,a) : [a/z]B
) INNz:AFb:B I'Fa: A
computation '+ app(Az.b,a) = [a/z]b: [a/z]|B
A.3.2 strong sum
. TH A type I',z:AF B type TFA=A" T,2:A+-rB=B
formation T F 2z:A.B type I'+FYz:A.B=3xx:A"B
)) T'ta:A T'Fb:[a/z]B TFa=d :ATkFb="b:[a/z]B
introduction T+ p[2a:A.Bl(a,b) : Sz:A.B TF p(a,b) =p(a,b): Sz:A.B
o Tk f:Ix:Ally:B.[p(z,y)/z]C I+ f=f :Hz:Ally:B.[p(z,y)/2]C
elimination 't Ex(Iz:(22:A.B).C|(f) : Hz:(2z:A.B).C '+ Ex(f) = Ex(f) : Hz:(2x:A.B).C
) 'ta:A T'kb:la/z]B T,z:32:A.BF C type T't f:Ilz:Ally:B.[p(z,y)/z]C
computation T'FEx(f)(p(e,b) = f(a,b) : [p(a,b)/2]C

17

A.3.3 the empty type
formation elimination
'+ 0 type [+ Ey[llz:0.C] : z:0.C
A.3.4 the unit type
formation m
introduction TF+:1

elimination

T'kec:[x/z]C
'+ Eq[I1z:1.C](c) : 1z:1.C

IFe=c:[x/z]C

I'+E1(c) = E1(¢) : Iz:1.C

computation

T,z:1+ C type T'Fc: [x/z]C

Ei(c)(x) = c: [%/z]C

A.3.5 disjoint sum

TrFA=A"T+HB=D5

) I'- A type I' - B type
formation T+ A+ B type r'rA+B=A"+F
)) I'Fa:A T'Fa=d:A
introduction I'Fi[A+B](a): A+ B I'i(a)=i(a): A+ B
I'+b:B T'Fb=b:B
TFj[A+B](b): A+ B THjb)=jb):A+B
It f:Iz:Ali(z)/2]C Tk f=f:lz:Ali(z)/z]C
elimination Ut g:Ty:B.[j(y)/Z]C Ltg=g :My:Bli(y)/]C
'+ E4[lIz:A+ B.C|(f,g) : 1z:A+ B.C I'FE. (f,9)=E.(f,¢) :lzA+ B.C
) T'ta:A T,z2:A+ BFC type 't f:1Ix:Alfi(z)/2]C T+ g:y:B.[j(y)/2]C
computation T E(f,9)((a) = /(a) : [i(a)/2]C
'Fb:B I'z:A+ BF C type T'F f:IIx:Ali(z)/2]C T F g:y:B.[j(y)/z]C
CEEL(f,9)0(0) =g(®) : [(b)/z]C

18

A.4 Predicative universes

We introduce predicative universes T'ype; (i € w), whose formation rules are:

't a: Type,; 'ka=ad:Type;
'+ Type; type '+ T;(a) type 'k Ti(a) = T;(a)

The following are the introduction and reflection rules, where ®/¢; stand for IT/7; and
Y /o; (and W/w;, when the system is extended with WW-types), respectively.

0 TF0: Typeo TF To(@) =0
1 T+ 1: Typeo Tk To(l) =1
I'ta:Type; I'Eb:Type; I'ta:Type; I'Fb: Type;
+ TFa;b: Type; T+ Ti(a @®; b) = Ts(a) + T;(b)
I'ka:Type; T,2:Ti(a)kFb: Type; I'ka:Type; T,2:Ti(a)Fb: Type;
@ I'F ¢iz:a.b: Type; T+ Ti(¢ix:a.b) = ®x:T;(a). T;(b)
Type; T+ type; : Typeit+1 '+ Tyiy1(type;) = Type;
I'ta: Type; I'ta:Type;
Ti I+ ti+1(a) : Typei+1 I+ Ti+1(ti+1(a)) = Tz(a)
Prop T+ prop : Typeo I' - To(prop) = Prop
I'P: Prop I'-P: Prop
Prf TF to(P) : Typeo T F To(to(P)) = Pri(P)
F'ta=ad :Type, THb=0":Type, F'Fa=ad :Type; T,x:T;(a) Fb=1":Type,
F'Fa®;b=a @,; b : Type; I'F ¢;z:a.b = ¢pyx:a’ b : Type,
C'ta=ad :Type, '-P =P :Prop
CFtii(a) =t () Typeipq L'k to(P) =to(P) : Typeg

19

