
Under consideration of Math. Struct. in Comp. Science

Structural subtyping for inductive types
with functorial equality rules∗

Zhaohui Luo and Robin Adams

Department of Computer Science

Royal Holloway, University of London

Egham, Surrey TW20 0EX, U.K.

Email: zhaohui@cs.rhul.ac.uk

Received 27 February 2006; Revised 21 December 2006

Abstract

Subtyping for inductive types in dependent type theories is studied in the framework of

coercive subtyping. General structural subtyping rules for parameterised inductive types

are formulated based on the notion of inductive schemata. Certain extensional equality

rules play an important role in proving some of the crucial properties of the type system

with these subtyping rules. In particular, it is shown that the structural subtyping rules

are coherent and that transitivity is admissible in the presence of the functorial rules of

computational equality.

1. Introduction

Coercive subtyping [Luo97, Luo99] is a general framework for subtyping and abbreviation
in dependent type theories. In particular, it incorporates subtyping for inductive types.
In this paper, structural subtyping for inductive types is studied in the framework of
coercive subtyping.

Inductive types in dependent type theories have a rich structure and include many
interesting types such as the types of natural numbers, lists, trees, ordinals, depen-
dent pairs, etc. In general, inductive types can be considered as generated by inductive
schemata [Dyb91, PM93, Luo94] and this gives us a clear guide as to how to consider
natural subtyping rules for the inductive types.

The idea of deriving the general structural subtyping rules from the inductive schemata
was first considered in [Luo97] and the subtyping rules for typical inductive types were
given in [Luo99]. However, from the PhD work of Y. Luo [Luo05], it has become clear

∗ This work is partially supported by the following research grants: UK EPSRC grant GR/R84092,
Leverhulme Trust grant F/07 537/AA and EU TYPES grant 510996.

2

that, in an intensional type theory, the structural subtyping rules for some of the induc-
tive types are not compatible with the notion of transitivity (sometimes called ‘strong
transitivity’) as given by the following rule in coercive subtyping:

(Trans)
A <c B B <c′ C

A <c′◦c C

which says that the composition c′ ◦ c of two coercions, c : (A)B and c′ : (B)C as
functional operations, is also a coercion. In particular, in an intensional type theory,
the above transitivity rule is not admissible in the presence of the structural subtyping
rules for many inductive types, although it is admissible for some [LL01]. For example,
consider the type of lists, List(A), parameterised by an element type A. Its subtyping
rule is

A <c B

List(A) <map(c) List(B)

where map(c) : (List(A))List(B) is the usual map-operation on lists defined by induction.
With such a subtyping rule, the above rule (Trans) of transitivity is not admissible in
an intensional type theory: when A <c B and B <c′ C, the following two functional
operations from List(A) to List(C) are not computationally equal (although they are
extensionally equal):
• map(c′ ◦ c), obtainable as a coercion by first applying the transitivity rule (Trans)

and then the above subtyping rule for lists, and
• map(c′) ◦map(c), obtainable as a coercion by first applying the above subtyping rule

for lists (twice) and then the transitivity rule (Trans).

And therefore, if one added the transitivity rule (Trans), there would be more than one
coercion between two types – coherence would fail.

With the motivation to deal with the above problem, a notion of ‘weak transitivity’
has been proposed and studied [LL05, Luo05, LLS02]. Unlike the above strong notion of
transitivity, weak transitivity only requires that there be a coercion that is extensionally
equal to the composition and does not require that the composition itself be a coercion.
Weak transitivity is admissible for intensional type theories with structural subtyping for
a large class of inductive types including that of lists. However, it turns out that this is
not the case for some inductive types that have certain form of dependency between their
parameters. Such inductive types include, for example, Σ-types of dependent pairs and
Π-types of dependent functions. A notion of WT-schema has been developed to capture
such a dependency of parameters, or more precisely, the inductive types generated by the
WT-schemata exclude exactly those types that cause problems for the admissibility of
weak transitivity. The structural subtyping rules for inductive types generated by WT-
schemata are formulated and weak transitivity is proved to be admissible in intensional
type theories with structural subtyping for such inductive types. (See [LL05] for more
details.)

From this, it is fair to say that the introduction of the notion of weak transitivity has
not solved the above problem completely – for the types uncovered by WT-schemata, we
still cannot introduce their structural subtyping rules in an adequate way for transitivity

3

to be admissible. In this paper, we consider another approach: instead of introducing a
weaker notion of transitivity, we consider stronger equality rules. For instance, somehow
by brute force, we consider map(c′) ◦ map(c) and map(c′ ◦ c) as judgementally equal.
In other words, we extend the underlying type theory by certain extensional rules for
the computational equality. These equality rules express the functorial laws and will be
called χ-rules in this paper†. We shall show that, in the presence of the χ-rules, the
transitivity rule (Trans) is admissible for the type system with structural subtyping of
all of the inductive types.

As we are considering inductive types generated by any inductive schema (rather than
just those from the subclass generated by the WT-schemata [LL05]), a more general
formulation of the subtyping rules is called for that takes care of the dependency between
parameters for some of the inductive types such as Σ-types and Π-types. The new
formulation inserts coercions in correct positions of the premises of the subtyping rules.
It is also based on this formulation that the χ-rules are formulated and that the results
such as those of coherence and admissibility of transitivity are proved.

During the proofs of the properties of the structural subtyping rules, we use a simple
but important property that the inductive type constructors are injective. For instance,
for types of lists, if List(A) = List(B), then A = B. It has not been shown whether
this holds for a type theory with extensional rules such as the χ-rules, as its meta-
theoretic properties such as Church-Rosser are largely unknown. A direct proof of this
injectivity result in the logical framework LF [Luo94], based on which coercive subtyping
is formulated, would require us to analyse difficult cases involving λ-abstractions. To
avoid this difficulty, we prove injectivity in the lambda-free logical framework TF [Acz01,
Ada04] and then lift it to LF by using the fact that LF is a conservative extension of TF.

In contrast to an earlier proof of a more restricted result in [LL01], the proof of transi-
tivity elimination is done directly by induction on derivations, but to prove the admissi-
bility of a more general rule. This has overcome a difficulty in the earlier research effort
and avoided the use of a special measure developed in [Che98].

In Section 2, we briefly introduce the logical frameworks LF and TF, the notion of in-
ductive types as generated by inductive schemata, and the framework of coercive subtyp-
ing. The formulations of the structural subtyping rules and the corresponding functorial
equality rules are given in Section 3. Section 4 shows that LF is a conservative extension
of TF and proves the injectivity result. Proofs of the properties such as coherence and
admissibility of transitivity are given in Section 5. Future work and related work are
discussed in the Conclusion.

2. Logical frameworks, inductive types and coercive subtyping

In this section, we give a brief introduction to the logical frameworks LF and TF, induc-
tive types and coercive subtyping, partly for background and notational conventions.

† The name comes from the related work [BSC05], where such equality rules are considered in a simply-
typed λ-calculus with inductive types.

4

2.1. The logical frameworks LF and TF

We shall introduce logical frameworks LF and TF, with more details for the latter as it is
regarded as less known. Technically, in this paper, the logical framework TF is only used
in the proof of the injectivity result in Section 4. A reader may not need to understand
its formal details unless one wants to understand the proofs in Section 4.

2.1.1. The logical framework LF LF [Luo94] is a dependent type system that can be used
to specify type theories such as Martin-Löf’s type theory [NPS90] and UTT [Luo94]. It
is a typed version of Martin-Löf’s logical framework (see Chapter 19 of [NPS90] for a
presentation of the latter).‡

The presentation of LF and discussions on how it should be used in specifying type
theories can be found in Chapter 9 of [Luo94] or Section 2 of [Luo99]. The inference rules
of LF are given in Figure 1 which include the general rules about contexts, equality and
substitution, and the rules about the following kinds:
• Type – the kind representing the conceptual universe of types;
• El(A) – the kind of objects of type A; and
• (x:K)K ′ – the kind representing the dependent product with functional operations

f (such as the abstraction [x:K]k′) as objects which can be applied to objects k of
kind K to form application f(k) or simply fk.

Functional operations of kind (x:K)K ′ are equal if they are βη-equal. A kind is small if
it is of the form El(A) or (x:K)K ′ such that K and K ′ are small. (Put in another way,
a kind is small if it does not contain Type.)

LF and the type theories specified in LF satisfy many nice properties. The following is
a proposition that we shall use in this paper, the proof of which can be found in [Ada04].

Theorem 2.1. (Subject Reduction for β-reduction) Let T be a type theory speci-
fied in LF. If Γ ` k : K is derivable in T and k →∗

β k′, then Γ ` k = k′ : K is derivable
in T . 2

Notations We shall adopt the following notational conventions.
• We often omit El to write A for El(A) and may write (K1)K2 for (x:K1)K2 when x

does not occur free in K2.
• Equality signs: We shall use M ≡ N for syntactic equality between terms, meaning

that M and N are the same terms up to α-conversion, and use M = N for definitional
or computational equality between terms.

• Substitution: We sometimes use M [x] to indicate that variable x may occur free in M

and subsequently write M [N] for the substitution [N/x]M , when no confusion may
occur.

• Functional composition: g ◦ f =df [x:K1]g(f(x)) : (K1)K3, where f : (K1)K2 and
g : (K2)K3 and x does not occur free in f or g.

‡ The difference between the logical frameworks considered in this paper and the Edinburgh LF [HHP87,
HHP93] is that the former LFs are intended to be used to specify computation rules and hence type
theories, while the latter is not.

5

Contexts and assumptions

〈〉 valid

Γ ` K kind x /∈ FV (Γ)

Γ, x:K valid

Γ, x:K, Γ′ valid

Γ, x:K, Γ′ ` x : K

General equality rules

Γ ` K kind

Γ ` K = K

Γ ` K = K′

Γ ` K′ = K

Γ ` K = K′ Γ ` K′ = K′′

Γ ` K = K′′

Γ ` k : K

Γ ` k = k : K

Γ ` k = k′ : K

Γ ` k′ = k : K

Γ ` k = k′ : K Γ ` k′ = k′′ : K

Γ ` k = k′′ : K

Equality typing rules

Γ ` k : K Γ ` K = K′

Γ ` k : K′
Γ ` k = k′ : K Γ ` K = K′

Γ ` k = k′ : K′

Substitution rules
Γ, x:K, Γ′ valid Γ ` k : K

Γ, [k/x]Γ′ valid

Γ, x:K, Γ′ ` K′ kind Γ ` k : K

Γ, [k/x]Γ′ ` [k/x]K′ kind

Γ, x:K, Γ ` K′ kind Γ ` k = k′ : K

Γ, [k/x]Γ′ ` [k/x]K′ = [k′/x]K′

Γ, x:K, Γ′ ` k′ : K′ Γ ` k : K

Γ, [k/x]Γ′ ` [k/x]k′ : [k/x]K′
Γ, x:K, Γ′ ` k′ : K′ Γ ` k1 = k2 : K

Γ, [k1/x]Γ′ ` [k1/x]k′ = [k2/x]k′ : [k1/x]K′

Γ, x:K, Γ′ ` K′ = K′′ Γ ` k : K

Γ, [k/x]Γ′ ` [k/x]K′ = [k/x]K′′
Γ, x:K, Γ′ ` k′ = k′′ : K′ Γ ` k : K

Γ, [k/x]Γ′ ` [k/x]k′ = [k/x]k′′ : [k/x]K′

The kind Type

Γ valid

Γ ` Type kind

Γ ` A : Type

Γ ` El(A) kind

Γ ` A = B : Type

Γ ` El(A) = El(B)

Dependent product kinds

Γ ` K kind Γ, x:K ` K′ kind

Γ ` (x:K)K′ kind

Γ ` K1 = K2 Γ, x:K1 ` K′
1 = K′

2

Γ ` (x:K1)K′
1 = (x:K2)K′

2

Γ, x:K ` k : K′

Γ ` [x:K]k : (x:K)K′
Γ ` K1 = K2 Γ, x:K1 ` k1 = k2 : K

Γ ` [x:K1]k1 = [x:K2]k2 : (x:K1)K

Γ ` f : (x:K)K′ Γ ` k : K

Γ ` f(k) : [k/x]K′
Γ ` f = f ′ : (x:K)K′ Γ ` k1 = k2 : K

Γ ` f(k1) = f ′(k2) : [k1/x]K′

Γ, x:K ` k′ : K′ Γ ` k : K

Γ ` ([x:K]k′)(k) = [k/x]k′ : [k/x]K′
Γ ` f : (x:K)K′ x /∈ FV (f)

Γ ` [x:K]f(x) = f : (x:K)K′

Fig. 1. Inference rules of LF

6

We shall also use some notations about sequences and their operations.

• We shall use ā to represent a sequence; for instance, ā ≡ a1, ..., an or ā ≡ 〈a1, ..., an〉.
• Let ā ≡ a1, ..., an, b̄ ≡ b1, ..., bn and Ā ≡ A1, A2[x1], ..., An[x1, ..., xn−1].

– We write ā :: Ā for the sequence a1 : A1, a2 : A2[a1], ..., an : An[a1, ..., an−1].
– We write Γ ` ā :: Ā for the sequence of judgements Γ ` a1 : A1, Γ ` a2 : A2[a1],

..., Γ ` an : An[a1, ..., an−1].
– We write Γ ` ā = b̄ :: Ā for the sequence of judgements Γ ` a1 = b1 : A1,

Γ ` a2 = b2 : A2[a1], ..., Γ ` an = bn : An[a1, ..., an−1].

• Let x̄ be a sequence of variables.

– x̄ ∈ M means that some of the variables in x̄ occur in M .
– x̄ 6∈ M means that none of the variables in x̄ occur in M .

• We shall use ˆ for concatenation of sequences and :: for the operations attaching an
element both to the head and to the tail of a sequence. 2

2.1.2. The lambda-free framework TF The logical framework TF (TF stands for ‘Type
Framework’) was first conceived by Aczel [Acz01] and its theory was developed in [Ada04].
It follows from the general results proven in [Ada04] that LF can be considered a con-
servative extension of TF, a key property that allows us to lift the injectivity result from
TF to LF in Section 4.

TF is lambda-free in the sense that the entities such as lambda-abstractions and Π-
kinds are not first-class, nor is β-reduction. Its syntax is organised by arities, which are
defined by the grammar

α:: = (α, . . . , α),

with the arity () in the base case (also denoted by 0), the arity of terms and types in
a specified object type theory. The intuition behind arities is that an object of arity
α = (α1, . . . , αn), an α-ary object, is a function that takes n arguments — namely an
α1-ary object, . . . , and an αn-ary object — and returns a term or type of the object
theory, the type theory specified in TF.

Objects in TF are in normal form in the traditional sense. In general they have the
form [x̄]zM̄ , where z is either a variable or a constant. These are exactly the lambda
terms that are in β-normal and η-long form. More formally, every variable or constant is
associated with an arity and the α-ary objects for each arity α can be defined inductively
as follows:

• If z is a variable or constant of arity (α1, . . . , αn), and Mi is an αi-ary object, then
zM1...Mn is a 0-ary object.

• If N is a (β1, ..., βn)-ary object and x an α-ary variable, then [x]N is an (α, β1, ..., βn)-
ary object.

Kinds and contexts are assigned arities as well (e.g., Type and El(A) are the only kinds
assigned arity 0). Arities are respected in forming kinds and contexts. For instance, in
any entry x:K in a context, x and K must have the same arity.

7

Notation We shall write zη for the η-long form of a variable or constant z. More for-
mally, if z is an (α1, . . . , αn)-ary variable or constant, then zη ≡ [y1, . . . , yn]z(y1)η...(yn)η,
where each yi is a fresh αi-ary variable. 2

Instantiation and employment are crucial notions in TF that correspond to those of
substitution and application, respectively. In TF, the result of a substitution [M/x]N is
in general not an object and the application MN is not an object, either. The intention
is that the instantiation {M/x}N is the β-normal and η-long form of [M/x]N and that
the employment M{N} the β-normal and η-long form of MN .

Definition 2.2. (instantiation and employment) The following two operations

• (Instantiation) {M/x}N , resulting in a β-ary object by instantiating x with M in
N , for any α-ary object M , α-ary variable x and β-ary object N , and
• (Employment) M{N}, resulting in a (β1, ..., βn)-ary object by employing M on N ,
for any (α, β1, ..., βn)-ary object M and α-ary object N ,

are defined by mutual induction on the arity α and the structure of N , as follows:

{M/x}zN1 · · ·Nn ≡ z({M/x}N1) · · · ({M/x}Nn) (z 6≡ x)

{M/x}xN1 · · ·Nn ≡ M{{M/x}N1} · · · {{M/x}Nn}
{M/x}[y]N ≡ [y]{M/x}N
([x]M){N} ≡ {N/x}M

We extend the operation of instantiation to kinds in the obvious manner. 2

There are only three primitive judgement forms in TF, where M and N are 0-ary
objects and T is a 0-ary kind (i.e., T is either Type or of the form El(A)):

Γ valid, Γ ` M : T, Γ ` M = N : T.

Note that the above condition on the arities of M , N and T justifies our assertion that
the objects of higher arity are not first-class entities in TF. The judgements themselves
only deal directly with the terms and types of the specified theory. The objects of higher
arity can only occur in contexts or within an object of arity 0.

Having given the forms of primitive judgements, we can now introduce some defined
judgement forms, each of which denotes a sequence of primitive judgements. The defined
judgements help us in presenting and discussing the TF system. Some examples, to be
used later in the paper, are as follows.

• Judgement Γ ` K kind can be defined by considering the following two cases:

– K ≡ (x̄ :: K̄)Type. Then Γ ` K kind stands for Γ, x̄ :: K̄ valid.
– K ≡ (x̄ :: K̄)El(A). Then Γ ` K kind stands for Γ, x̄ :: K̄ ` A : Type.

• Judgement Γ ` [x̄]M : (x̄:K̄)T is defined to be the judgement Γ, x̄:K̄ ` M : T .
• Judgement Γ ` M̄ :: K̄ is defined to be the following sequence of judgements:

Γ ` M1 : K1, Γ ` M2 : {M1/x1}K2, ..., Γ ` Mn : {M1/x1, ..., Mn−1/xn−1}Kn−1.

A judgement form Γ ` M̄ = N̄ : K̄ can be defined similarly.

8

Contexts

〈〉 valid

Γ ` K kind x /∈ FV (Γ)

Γ, x:K valid

Variables and constants (z : (ȳ::K̄)T is either in Γ or declared)

Γ ` M̄ :: K̄

Γ ` zM̄ : {M̄/ȳ}T (CA)
Γ ` M̄ = N̄ :: K̄

Γ ` zM̄ = zN̄ : {M̄/ȳ}T
General equality rules

(R)
Γ ` M : T

Γ ` M = M : T
(S)

Γ ` M = N : T

Γ ` N = M : T
(T)

Γ ` M = N : T Γ ` N = P : T

Γ ` M = P : T

Γ ` M : El(A) Γ ` A = B : Type

Γ ` M : El(B)

Γ ` M = N : El(A) Γ ` A = B : Type

Γ ` M = N : El(B)

Fig. 2. Inference rules of TF

The inference rules of TF are given in Figure 2, where T , M , N and P are all of arity
0. Note that the number of rules is rather small, mainly due to the fact that TF only
deals with terms in β-normal and η-long form.

Some of the basic properties of TF are given in the following proposition, whose proofs
can be found in [Ada04].

Proposition 2.3. (properties of TF)

1 (Basic properties of instantiation)

(a) For any object M , we have {xη/x}M ≡ M .
(b) If y is not free in M , then {M/x}{N/y}P ≡ {{M/x}N/y}{M/x}P .
(c) For any object M of arity (α, β1, ..., βn), we have [x](M{xη}) ≡ M , where x has

arity α.
(d) For any object M , we have {M/x}xη ≡ M .
(e) {M/x}(N{P}) ≡ ({M/x}N){{M/x}P}.
2 (Context validity) Any derivation of Γ1, x:K, Γ2 ` J has a subderivation of Γ1 `
K kind.
3 (Weakening) If Γ ` J , Γ ⊆ ∆ and ∆ valid, then ∆ ` J .
4 (Instantiation) If Γ, x:K, ∆ ` J and Γ ` M :K, then Γ, {M/x}∆ ` {M/x}J .
5 (Functionality) If Γ, x:K, ∆ ` P :K ′ and Γ ` M = N :K, then Γ, {M/x}∆ `
{M/x}P = {N/x}P :{M/x}K ′.
6 (Equation validity)

(a) If Γ ` M = N :K then Γ ` M :K and Γ ` N :K.
(b) If Γ ` K = K ′ then Γ ` K kind and Γ ` K ′ kind.

7 (Context conversion) If Γ, x:K, ∆ ` J and Γ ` K = K ′ then Γ, x:K ′, ∆ ` J .
8 (Kind validity) If Γ ` M :K or Γ ` M = N :K, then Γ ` K kind. 2

9

As in LF, type theories can be specified in TF by declaring a number of constants and
computation rules. The declaration of a constant, where T is of arity 0,

c : (x̄ :: K̄)T

has the effect of adding the following two rules:

Γ ` M̄ :: K̄

Γ ` cM̄ : {M̄/x̄}T
Γ ` M̄ = N̄ :: K̄

Γ ` cM̄ = cN̄ : {M̄/x̄}T
The declaration of a computation rule of the form

k = k′ : T for x̄ : K̄,

where k, k′ and T are all of arity 0, has the effect of adding the following rule:

Γ ` M̄ :: K̄

Γ ` {M̄/x̄}k = {M̄/x̄}k′ : {M̄/x̄}T

Remark The above way of declaring type theories in TF is similar to that to declare type
theories in LF (c.f., Section 9.1.2 of [Luo94]). The restriction to disallow declarations
of computation rules between objects of higher arities conforms with that imposed in
[Luo99] for LF, that is, there should not be declarations of equalities between objects of
a dependent product kind. 2

2.2. Inductive types

Inductive types are generated by inductive schemata [Dyb91, PM93, Luo94] and can be
parameterised. A brief introduction is given here; for more details, see, for example,
Chapter 9 of [Luo94].

Intuitively, an inductive type is introduced by specifying its constructors (or intro-
duction operators) and their kinds. The values (or canonical objects) of the inductive
types are generated by these constructors. For instance, one can introduce the inductive
type of lists of natural numbers, List(N), by giving its constructors nil(N) and cons(N),
which are of kinds List(N) and (n:N)(l:List(N))List(N), respectively. The values of
List(N) are either the empty list nil(N) or of the form cons(N, n, l).

Formally, the types of these constructors are given by inductive schemata, as defined
in the following definition.

Definition 2.4. (strictly positive operator and inductive schema) Let Γ be a valid
context and X a type variable such that X does not occur free in Γ.

• A strictly positive operator Φ in Γ with respect to X is of one of the following forms:

1 Φ ≡ X, or
2 Φ ≡ (x:K)Φ0, where K is a small kind in Γ, and Φ0 is a strictly positive operator

in Γ, x:K w.r.t. X.

• An inductive schema Θ in Γ with respect to X is of one of the following forms:

1 Θ ≡ X, or

10

2 Θ ≡ (x:K)Θ0, where K is a small kind in Γ, and Θ0 is an inductive schema in
Γ, x:K w.r.t. X, or

3 Θ ≡ (Φ)Θ0, where Φ is a strictly positive operator in Γ w.r.t. X, and Θ0 is an
inductive schema in Γ w.r.t. X.

In this paper, unless stated otherwise, all of the strictly positive operators and inductive
schemata are with respect to X. 2

Remark Note that strictly positive operators are special cases of inductive schemata.
Also, the above notions of strictly positive operator and inductive schema can also be
defined by the BNF notation as follows, where K stands for any small kind in which X

does not occur free:

Φ :: = X | (x:K)Φ

Θ :: = X | (x:K)Θ | (Φ)Θ

A strictly positive operator (or an inductive schema) in the context Γ w.r.t. X is then a
kind in Γ, X:Type that is generated by the above grammar. 2

In a valid context, any finite sequence of inductive schemata generates an inductive
type, with its introduction, elimination and computation rules. In this paper, we shall
consider inductive types T parameterised by a sequence of variables Ȳ such that Ȳ :: P̄

and generated by a sequence of schemata Θ̄ ≡ 〈Θ1, ..., Θm〉 (m ∈ ω) in Ȳ :: P̄ . For
example, the parameterised inductive type of lists List(A), is parameterised by type A

and generated by the schemata X and (A)(X)X.

Notation For any strictly positive operator Φ and inductive schema Θ w.r.t. X, param-
eterised by Ȳ , we use Φ[Ā, B] and Θ[Ā, B] to stand for the substitutions [Ā/Ȳ , B/X]Φ
and [Ā/Ȳ , B/X]Θ, respectively. To generalise this notation further, if X does not occur
free in K[Ȳ], K[Ā, B] is just K[Ā]. 2

In LF, the parameterised inductive type T can be introduced by declaring the following
constant expressions

• T for the type constructor of the parameterised inductive type,
• ιj (j = 1, ..., m) for the constructors (or introduction operators), and
• ET for the elimination operator,

together with the associated computation rules. In the paragraphs below, we spell out
in more details how these constants and the computation rules should be declared.

The constant T is declared as

T : (Ȳ :: P̄)Type

For the example List, we have

List : (A:Type)Type.

11

The constructors for T are declared as

ιj : (Ȳ :: P̄)Θj [Ȳ , T (Ȳ)] (j = 1, ..., m).

Note that each constructor corresponds to an inductive schema. For the example List,
the constructors are:

nil : (A:Type)List(A)

cons : (A:Type)(a:A)(l:List(A))List(A)

The elimination operator ET expresses an induction principle that, if a property is
true for every value of the inductive type, it is true for every object of the type. It is
declared as:

ET : (Ȳ :: P̄)

(C : (T (Ȳ))Type)

(f1 : Θ◦1[T (Ȳ), C, ι1(Ȳ)]) ... (fm : Θ◦m[T (Ȳ), C, ιm(Ȳ)])

(z : T (Ȳ))C(z)

where C represents the predicate (property) over T (Ȳ) (called the motive in [MM04]),
fj (j = 1, ..., m) are the methods, each corresponding to a constructor, and the kind of
each method depends on the corresponding schema, defined as follows.

Definition 2.5. Let Θ ≡ (x̄ :: M̄)X be an inductive schema w.r.t. X, parameterised
by Ȳ , and 〈Φi1 , ..., Φik

〉 the subsequence of M̄ that consists of all of the strictly positive
operators in M̄ . Then, for A : Type, C : (A)Type and z : Θ[Ȳ , A],

Θ◦[A, C, z] =df (x̄ :: M̄ [Ȳ , A])

(Φ◦i1 [A,C, xi1]) ... (Φ◦ik
[A,C, xik

])

C(z(x̄))

Note that, in the special case when Θ is a strictly positive operator Φ (i.e., when X does
not occur free in M̄), Φ◦[A,C, z] ≡ (x̄ :: M̄)C(z(x̄)). 2

For the example List, the elimination operator is

EList : (A : Type)

(C : (List(A))Type)

(fnil : C(nil(A))) (fcons : (a:A)(l:List(A))(C(l))C(cons(A, a, l)))

(z : List(A)) C(z)

where its two methods (fnil and fcons) have kinds C(nil(A)) and (a:A)(l:List(A))(C(l))
C(cons(A, a, l)), respectively.

Computation rules When the elimination operator is applied to a value constructed
by a constructor, the corresponding method gives the meaning of that application. This
is specified by the computation rules. Formally, for the parameterised inductive type T ,
we have m computation rules, each corresponding to a constructor (or inductive schema).

12

For Θj ≡ (x̄ :: M̄)X (j = 1, ..., m) with 〈Φi1 , ..., Φik
〉 being the subsequence of M̄ that

consists of all of the strictly positive operators, the jth computation rule is

ET (Ȳ , C, f̄ , ιj(Ȳ , x̄)) = fj(x̄, Φ]
i1

[T (Ȳ), C, ET (Ȳ , C, f̄), xi1],

...,

Φ]
ik

[T (Ȳ), C, ET (Ȳ , C, f̄), xik
])

: C(ιj(Ȳ , x̄))

where f̄ ≡ f1, ..., fm are the methods and the operation Φ] is defined as follows.

Definition 2.6. Let Φ ≡ (x̄ :: K̄)X be a strictly positive operator w.r.t. X. Then,

Φ][A,C, f, z] =df [x̄:K̄]f(z(x̄)),

where A : Type, C : (A)Type, f : (x:A)C(x) and z : Φ[A]. Note that Φ][A,C, f, z] is of
kind Φ◦[A,C, z] and, when m = 0, Φ][A,C, f, z] ≡ f(z). 2

For the example List, we have two computation rules:

EList(A,C, c, f, nil(A)) = c : C(nil(A))

EList(A,C, c, f, cons(A, a, l)) = f(a, l, EList(A,C, c, f, l)) : C(cons(A, a, l))

We conclude this introduction to inductive types by giving several further examples.

Example 2.7. Here are several examples of (parameterised) inductive types.

• The type of natural numbers N is generated by the schemata X and (X)X, with
constructors 0 : N and succ : (N)N .
• The type of dependent functions Π(A,B), parameterised by A : Type and B :
(A)Type, is generated by the schema ((x:A)B(x))X, with constructor λ.
• The type of dependent pairs Σ(A,B), parameterised by A : Type and B : (A)Type,
is generated by the schema (x:A)(B(x))X, with constructor pair.
• The disjoint union Union(A,B) (or A+B in the usual notation), parameterised by
A, B : Type, is generated by the schemata (A)X and (B)X, with constructors inl

and inr. 2

2.3. Coercive subtyping

Coercive subtyping, as introduced in [Luo97, Luo99], is a framework for subtyping and
abbreviation in dependent type theories. The formal presentation of the framework is
given below after an introduction to its basic idea and an overview of previous work.

Basic idea In coercive subtyping, a type is a subtype of another type if there is a unique
coercion between them, represented by the judgement

A <c B : Type

where c has kind (A)B. Coercions are special functional operations (e.g., declared by a
user). If c is a coercion from A to B, then a function f from B to C can be applied to
any object a of A and the application f(a) is definitionally (or computationally) equal

13

to f(c(a)). Intuitively, one may take f as a context which requires an object of B; then
the argument a in the context f stands for its image of the coercion, c(a).

The above simple idea, which was studied in the literature for simple type systems
(see, for instance, [Mit91, Mit83]), becomes very powerful when formulated in the log-
ical framework and used in the context of dependent type theories. The framework of
coercive subtyping covers a variety of subtyping relations including those represented
by coercions between parameterised inductive types [Luo99] and dependent coercions
[LS99]. For example, see [Luo99, Bai99, CL01, LC98] for details of some of these de-
velopment and applications of coercive subtyping. Important meta-theoretic results of
coercive subtyping have been studied, including those on conservativity [SL02] and on
transitivity elimination for subkinding [SL02] and subtyping [Luo05, LL05, LL01]. Coer-
cion mechanisms have been implemented in the proof development systems Coq [Coq04],
Lego [LP92] and Plastic [CL01] by Säıbi [Säı97], Bailey [Bai99] and Callaghan [CL01],
respectively.

Systems with coercive subtyping Formally, a system of coercive subtyping T [R],
with a set R of basic subtyping rules, is an extension of a type theory T specified in the
logical framework LF. It can be presented in two stages:

• first consider the system T [R]0, an extension of T with subtyping judgements of the
form Γ ` A <c B : Type, and

• then the system T [R], an extension of T [R]0, with subkinding judgements of the form
Γ ` K <c K ′.

The rules for subkinding include, for example, the following coercive definition rule:

Γ ` f : (x:K)K ′ Γ ` a : K0 Γ ` K0 <c K

Γ ` f(a) = f(c(a)) : [c(a)/x]K ′

This paper is mainly about subtyping rules and their properties in T [R]0, so the treatment
of the kind level is omitted (see, for example, [Luo99] for more details.)

Notation In this paper, as we are not going to talk about subkinding judgements, we
shall often write Γ ` A <c B for the subtyping judgement Γ ` A <c B : Type. 2

T [R]0 is the extension of T with the following congruence rule

(Cong)
Γ ` A <c B Γ ` A = A′ : Type Γ ` B = B′ : Type Γ ` c = c′ : (A)B

Γ ` A′ <c′ B′

and a set R of ‘basic subtyping rules’ whose conclusions are subtyping judgements of the
form Γ ` A <c B. Examples of such rules include those of structural subtyping rules for
parameterised inductive types to be considered in this paper.

The set R of basic subtyping rules is required to be coherent in the sense that coercions
between any two types must be unique. Put in another way, the subtyping rules are
coherent if the following rule is admissible in T [R]0:

14

Γ ` A <c B Γ ` A <c′ B

Γ ` c = c′ : (A)B

For example, if we consider subtyping rules for inductive types, we want to show that
those subtyping rules are coherent in the above sense. Furthermore, given a set of
subtyping rules, we’d like to prove that transitivity is admissible, i.e., the following rule
is admissible:

Γ ` A <c B Γ ` B <c′ C

Γ ` A <c′◦c C

Well-defined coercions We are going to prove, for example, admissibility results of the
subtyping rules for inductive types, when there are other coercions already existing in

the system. We assume that those coercions (possibly generated by some other rules) are
coherent and have good admissibility properties, that is, they form a set of well-defined
coercions [LL01], as defined below.

Definition 2.8. (well-defined coercions) Let C be a set of subtyping judgements of
the form Γ ` A <c B. If C satisfies the following conditions, we say that C is a well-defined
set of subtyping judgements, or briefly called Well-Defined Coercions (WDC).

1 (Coherence)

(a) Γ ` A <c B ∈ C implies that Γ ` A : Type, Γ ` B : Type and Γ ` c : (A)B.
(b) Γ ` A <c A 6∈ C for any Γ, A and c.
(c) Γ ` A <c1 B ∈ C and Γ ` A <c2 B ∈ C imply that Γ ` c1 = c2 : (A)B.

2 (Weakening) If Γ ` A <c B ∈ C, Γ ⊆ Γ′ and Γ′ is valid, then Γ′ ` A <c B ∈ C.
3 (Substitution) Γ, x:K, Γ′ ` A <c B ∈ C implies that Γ, [k/x]Γ′ ` [k/x]A <[k/x]c

[k/x]B ∈ C, for any k such that Γ ` k : K.
4 (Transitivity) If Γ ` A <c B ∈ C and Γ ` B <c′ C ∈ C, then Γ ` A <c′◦c C ∈ C. 2

In this paper, we consider the system of coercive subtyping in which the set R of the
subtyping rules contains the following rule, where C is a WDC:

(C) Γ ` A <c B ∈ C
Γ ` A <c B

3. Structural subtyping rules and functorial equality rules

In this section, we give a formulation of the structural subtyping rules for parameterised
inductive types generated by inductive schemata and the corresponding χ-rules describing
the functorial laws for computational equality.

Given a parameterised inductive type T , parameterised by n parameters Ȳ :: P̄ (n ∈ ω)
and generated by m schemata Θ̄ ≡ Θ1, ..., Θm (m ∈ ω) in Ȳ :: P̄ , we consider the following
form of structural subtyping rules of T :

(∗) premises(c̄)
Γ ` T (Ā) <mapT T (B̄)

15

where Ā ≡ A1, ..., An, B̄ ≡ B1, ..., Bn and c̄ ≡ c1, ..., ck are fresh and distinct schematic
letters. Ā :: P̄ and B̄ :: P̄ correspond to the parameters of T , c̄ are the coercions assumed
in the premises, and mapT is the coercion specified by the rule, mapping canonical objects
of T (Ā) to the corresponding canonical objects of T (B̄).

For example, for the type of lists, List(Y), parameterised by the type parameter Y

and generated by the schemata X and (Y)(X)X, its structural subtyping rule is

Γ ` A : Type Γ ` B : Type Γ ` A <c B

Γ ` List(A) <mapList
List(B)

where the coercion mapList takes the canonical objects nil(A) to nil(B) and cons(A, a, l)
to cons(B, c(a),mapList(l)), respectively.

As another example, the type of dependent pairs Σ(A,B), parameterised by A : Type

and B : (A)Type, is generated by the schema (x:A)(B(x))X. One of its three structural
subtyping rules is, where we omit the judgements for well-typedness:

Γ ` A <c1 A′ Γ, x:A ` B(x) <c2[x] B′(c1(x))
Γ ` Σ(A,B) <mapΣ

Σ(A′, B′)

where mapΣ maps pair(A,B, a, b) to pair(A′, B′, c1(a), c2[a](b)). Note that, in this exam-
ple for Σ-types, there is a dependency between parameters (the parameter B is dependent
on the objects of A) which leads to the occurrence of c1 in the second premise of the rule.
(Such cases are excluded by the WT-schemata and therefore not covered in [LL05]). It
is because of such dependencies between parameters that a more general formulation of
the subtyping rules, which inserts coercions in correct positions, is called for.

The following subsections are arranged as follows:

• Section 3.1 defines the ‘components’ that form the premises of the structural subtyp-
ing rules, declaring that certain operations are coercions between types;

• Section 3.2 defines the mapping functor given the premises, the coercion from T (Ā)
to T (B̄);

• Section 3.3 describes the structural subtyping rules;

and finally, after defining the mapping functor, the composition of the mapping functors
can be defined; so

• Section 3.4 defines the functorial equality rules (χ-rules) for the parameterised induc-
tive types.

3.1. Components in premises

Given a parameterised inductive type T , we intend to show how to construct the struc-
tural subtyping rules of the form (∗) (see above). More concretely, we want to construct
the premises that assume certain coercions between appropriate types and, given these
coercions, the mapping functor mapT from T (Ā) to T (B̄), the coercion in the conclusion.

To this end, we introduce the definition of the components of a parameterised inductive
type, each of which is a quadruple

(Γ; A; B; c)

16

consisting of a context, two types and a schematic letter c. The quadruple is intended
to denote that one of the premises in each of the structural subtyping rules shall be

Γ ` A <c B or Γ ` A = B : Type.

For example, the components for the Σ-types constitute the sequence

(Γ; A; A′; c1), (Γ, x:A; B(x); B′(c1(x)); c2),

which correspond to the two premises of the subtyping rules for Σ-types as presented
above.

The definition of the notion of component is better given in two stages, first defining
it for small kinds and then for inductive schemata and parameterised inductive types.

Definition 3.1. (components of small kinds) Let K[x̄] be a small kind in (Γ, x̄::P̄),
Γ ` ā :: P̄ and Γ ` b̄ :: P̄ . We shall define a sequence of quadruples, the components of
K (w.r.t. x̄, ā and b̄):

CΓ(K; x̄; ā; b̄) = 〈(Γ1; A1;B1; c1), . . . , (Γn;An;Bn; cn)〉
where each Ai and Bi is a type in context Γi and ci is a schematic letter. We shall
simultaneously define an object cK , the ‘schematic coercion’ corresponding to K such
that Γ ` cK : (K[ā])K[b̄] if Γi ` ci : (Ai)Bi (i = 1, ..., n).

The definitions are made by simultaneous induction on the structure of K:

• If x̄ /∈ K, then

CΓ(K; x̄; ā; b̄) =df 〈〉
cK =df idK

where idK ≡ [x:K]x is the identity on K.
• If K ≡ El(A[x̄]) with x̄ ∈ A, then:

CΓ(K; x̄; ā; b̄) =df 〈(Γ; A[ā];A[b̄]; c)〉
cK =df c

where c is a fresh schematic letter (and, for different occurrences of A, the schematic
letters are different.§)
• If K ≡ K[x̄] ≡ (y:K1[x̄])K2 with x̄ ∈ K, then:

CΓ(K; x̄; ā; b̄) =df





CΓ(K2; x̄; ā; b̄) if x̄ 6∈ K1 and y 6∈ K2

CΓ,y:K1(K2; x̄; ā; b̄) if x̄ 6∈ K1 and y ∈ K2

CΓ(K1; x̄; b̄; ā)ˆCΓ(K2; x̄; ā; b̄) if x̄ ∈ K1 and y 6∈ K2

CΓ(K1; x̄; b̄; ā)
ˆCΓ,x′:K1[b̄](K2; x̄::y; ā::cK1(x

′); b̄::x′) if x̄ ∈ K1 and y ∈ K2

§ Strictly speaking, it is not enough for us to adopt the notion cK . We abuse the notation with the
understanding that different schematic letters are associated with different occurrences of a type and
different cK are associated with different occurrences of a kind.

17

and cK =df [f :K[ā]][x′:K1[b̄]]cK2(f(cK1(x
′))). (Recall that, as defined in the first case

above, cK1 ≡ idK1 if x̄ 6∈ K1.) 2

Example 3.2. The following examples, where N is the constant type of natural numbers
(see Example 2.7), illustrate the above definition.

• In the following three examples, x̄ ≡ Y , ā ≡ A and b̄ ≡ B.

– K ≡ El(Y). CΓ(K; x̄; ā; b̄) = 〈(Γ; A; B; c)〉.
– K ≡ (N)Y . CΓ(K; x̄; ā; b̄) = CΓ(Y ; x̄; ā; b̄) = 〈(Γ; A; B; c)〉.
– K ≡ (y:N)Y (y). CΓ(K; x̄; ā; b̄) = CΓ,y:N (Y (y); x̄; ā; b̄) = 〈(Γ, y:N ; A(y); B(y); c)〉.
• In the following two examples, x̄ ≡ Y1, Y2, ā ≡ A1, A2 and b̄ ≡ B1, B2.

– K ≡ (Y1)Y2.

CΓ(K; x̄; ā; b̄) = CΓ(Y1; x̄; b̄; ā)ˆCΓ(Y2; x̄; ā; b̄)

= 〈(Γ; B1; A1; c1), (Γ; A2; B2; c2)〉.
– K ≡ (y:Y1)Y2(y).

CΓ(K; x̄; ā; b̄) = CΓ(Y1; x̄; b̄; ā)ˆCΓ,x′:B1(Y2(y); x̄::y; ā::cY1(x
′); b̄::x′)

= 〈(Γ; B1; A1; c1), (Γ, x′:B1; A2(c1(x′)); B2(x′); c2)〉.
Definition 3.3. (components of schemata) Let Θ be an inductive schema in Γ, x̄ :: P̄ ,
Γ ` ā :: P̄ and Γ ` b̄ :: P̄ . We define CΓ(Θ; x̄; ā; b̄), the components of Θ (w.r.t. x̄, ā and
b̄), by induction on the structure of Θ.

• Θ ≡ X. CΓ(Θ; x̄; ā; b̄) =df 〈〉.
• Θ ≡ (y:K[x̄])Θ0.

CΓ(Θ; x̄; ā; b̄) =df





CΓ(Θ0; x̄; ā; b̄) if x̄ 6∈ K and y 6∈ Θ0

CΓ,y:K(Θ0; x̄; ā; b̄) if x̄ 6∈ K and y ∈ Θ0

CΓ(K; x̄; ā; b̄)ˆCΓ(Θ0; x̄; ā; b̄) if x̄ ∈ K and y 6∈ Θ0

CΓ(K; x̄; ā; b̄)
ˆCΓ,x′:K[ā](Θ0; x̄::y; ā::x′; b̄::cK(x′)) if x̄ ∈ K and y ∈ Θ0

.

• Θ ≡ (Φ)Θ0. CΓ(Θ; x̄; ā; b̄) =df CΓ(Φ; x̄; b̄; ā)ˆCΓ(Θ0; x̄; ā; b̄). 2

Example 3.4. The following examples illustrate the above definition.

•Θ ≡ (N)X.

CΓ(Θ; x̄; ā; b̄) = CΓ(X; x̄; ā; b̄) = 〈〉.
•Θ ≡ (y:N)(V ect(y))X, where V ect : (N)Type is the inductive family of vectors (lists
of fixed lengths) of natural numbers.

CΓ(Θ; x̄; ā; b̄) = CΓ,y:N ((V ect(y))X; x̄; ā; b̄) = CΓ,y:N (X; x̄; ā; b̄) = 〈〉.
•Θ ≡ (Y)(X)X, where Y : Type is a parameter. This is one of the schemata that
generate the types of lists parameterised by Y (see Section 2.2).

CΓ(Θ; Y ; A; B) = CΓ(Y ; Y ;A; B)ˆCΓ((X)X; Y ; A; B) = 〈(Γ; A; B; c)〉

18

•Θ ≡ (y:A)(B(y))X, where A : Type and B : (A)Type are parameters. This is the
schema that generates Σ-types.

CΓ(Θ; 〈A,B〉; 〈A1, B1〉; 〈A2, B2〉)
= CΓ(A; 〈A,B〉; 〈A1, B1〉; 〈A2, B2〉)

ˆCΓ,x′:A1((B(y))X; 〈A,B, y〉; 〈A1, B1, x
′〉; 〈A2, B2, cA(x′)〉)

= 〈(Γ; A1; A2; c1), (Γ, x′:A1; B1(x′); B2(c1(x′)); c2)〉.
•Θ ≡ ((Y)X)X, where Y : Type is a parameter.

CΓ(Θ;Y ;A; B) = CΓ((Y)X;Y ; B; A)ˆCΓ(X;Y ; A;B) = 〈(Γ; B; A; c)〉. 2

The components of a parameterised inductive type constitute the sequence that is the
concatenation of those of the generating schemata.

Definition 3.5. (components of parameterised inductive types) Let T be a pa-
rameterised inductive type, parameterised by Ȳ :: P̄ and generated by Θ̄ ≡ Θ1, ..., Θm,
and Γ ` Ā :: P̄ and Γ ` B̄ :: P̄ . Then, the components of T (wrt Ā and B̄) constitute
the sequence defined as:

CΓ(T ; Ā; B̄) =df CΓ(Θ1; Ȳ ; Ā; B̄)ˆ · · · ˆCΓ(Θm; Ȳ ; Ā; B̄).

2

Example 3.6. We give the sequences of components of the parameterised inductive types
List(A) (Section 2.2) and those in Example 2.7.

• N has no parameters. Therefore, CΓ(N ; 〈〉; 〈〉) = 〈〉.
• CΓ(List; A; B) = 〈(Γ; A; B; c)〉.
• CΓ(Π; A1, B1; A2, B2) = 〈(Γ; A2; A1; c1), (Γ, y:A2; B1(c1(y)); B2(y); c2)〉.
• CΓ(Σ; A1, B1;A2, B2) = 〈(Γ;A1;A2; c1), (Γ, y:A1; B1(y); B2(c1(y)); c2)〉.
• CΓ(Union; A1, A2; B1, B2) = 〈(Γ; A1; B1; c1), (Γ; A2; B2; c2)〉. 2

Remark Parameterised inductive types may have redundant parameters that, for exam-
ple, do not occur in the generating schemata. For instance, List′ might be parameterised
by Y : Type and (the redundant parameter) foo : K and generated by the same schemata
X and (Y)(X)X. As long as K is not empty (say with object k), List′(A, k) behaves
the same as List(A) and their components are the same. 2

3.2. Mapping functor

Having defined the components (of the premises of the subtyping rules), we are now ready
to show how the mapping functor (the coercions in the conclusions of the subtyping rules)
can be constructed from the components.

We shall give a formal definition first, followed by examples to explain. We assume, in
the following definitions, that T is a parameterised inductive type

• with parameters Ȳ : P̄ ,
• generated by Θ̄ ≡ Θ1, ..., Θm, and

19

• with constructors ῑ ≡ ι1, ..., ιm.

Definition 3.7. (methods) Let T be a parameterised inductive type parameterised by
Ȳ :: P̄ , Γ ` Ā :: P̄ and Γ ` B̄ :: P̄ . The method MΓ[Θ] that corresponds to an generating
schema of T , is defined below, with the help of an intermediate notion mΓ[Φ] for strictly
positive operators Φ.

• Let Φ[x̄,X] be a strictly positive operator in context Γ, x̄ :: K̄, and let Γ ` ā :: K̄

and Γ ` b̄ :: K̄. For any T : Type and f : Φ[ā, T], define mΓ[Φ](f) of kind Φ[b̄, T] as
follows:

– Φ ≡ X. Then, mΓ[Φ](f) =df f .
– Φ ≡ (x:K[Ȳ])Φ0. Then mΓ[Φ](f) =df [x:K[b̄]]mΓ,x:K[b̄][Φ0](f(cK(x))), where cK

is defined with respect to CΓ(K; x̄; b̄; ā).

• Let Θ ≡ (x̄::M̄)X be a generating inductive schema of T , ι : (Ȳ :: P̄)Θ[Ȳ , T (Ȳ)]
the associated constructor and 〈Φi1 , . . . Φik

〉 the subsequence of M̄ that consists of
all the strictly positive operators of M̄ . For any g : Θ[B̄, T (B̄)], define MΓ[Θ](g) of
kind [Ā/Ȳ](Θ◦[T (Ȳ), [z:T (Ȳ)]T (B̄), ι(Ȳ)] as follows:

MΓ[Θ](g) =df [x̄ :: M̄ [Ā, T (Ā)]]

[x′i1 : Φi1 [Ā, T (B̄)]]...[x′ik
: Φik

[Ā, T (B̄)]]

g(k1, . . . , kn)

where n is the length of M̄ and for i = 1, . . . , n,

ki ≡
{

cMi(xi) if Mi is a small kind
mΓi [Φi](x′i) if Mi is a strictly positive operator.

where the context Γi is defined as follows:

Γ1 ≡ Γ

Γi+1 ≡
{

Γi, xi:Mi[Ā, T (Ā)] if xi occurs free in one of Mi+1, . . . ,Mn

Γi otherwise.

In the case where Mi is a small kind, cMi is defined with respect to the components

CΓi(Mi; Ȳ , xj1 , . . . , xjr ; Ā, xj1 , . . . , xjr ; B̄, kj1 , . . . , kjr)

where Γi ≡ Γ, xj1 :Mj1 [Ā, T (Ā)], . . . , xjr :Mjr [Ā, T (Ā)]. 2

Definition 3.8. (mapping functor) Suppose that Γ ` Ā :: P̄ , Γ ` B̄ :: P̄ , and

CΓ(T ; Ā; B̄) = 〈(Γ1; T1; T ′1; c1), ..., (Γn; Tn; T ′n; cn)〉,
where Γi ≡ Γ,∆i (i = 1, ..., n). Let d̄ = 〈d1, ..., dn〉 be the sequence of di ≡ [∆i]ci

(i = 1, ..., n). The mapping functor of kind (T (Ā))T (B̄) is defined as:

mapT [Ā, B̄, d̄] =df ET (Ā, [z:T (Ā)]T (B̄), MΓ[Θ1](ι1(B̄)), ..., MΓ[Θm](ιm(B̄))),

where MΓ[Θj](ιj(B̄)) (j = 1, ..., m) are the methods defined in Definition 3.7. 2

Example 3.9. For the examples of types considered in Examples 2.7 and 3.6, the map-
ping functors are:

20

• For the constant type N , there is no parameter. The mapping functor is

mapN [] =df EN ([x:N]N, 0, [x, y:N]succ(y))

which is extensionally equal to the identity function on N .
• For the types of lists,

mapList[A,B, c]

=df EList(A, [l:List(A)]List(B),

nil(B), [x:A][l:List(A)][l′:List(B)]cons(B, c(x), l′)).

• For the Π-types,

mapΠ[A1, B1, A2, B2, c1, [x2:A2]c2]

=df EΠ(A1, B1, [f :Π(A1, B1)]Π(A2, B2),

[f :(x:A1)B1(x)]λ(A2, B2, [x2:A2]c2(f(c1(x2))))).

• For the Σ-types,

mapΣ[A1, B1, A2, B2, c1, [x1:A1]c2]

=df EΣ(A1, B1, [f :Σ(A1, B1)]Σ(A2, B2),

[x1:A1][y:B1(x1)]pair(A2, B2, c1(x1), c2(y))).

• For the union types,

mapUnion[A1, A2, B1, B2, c1, c2]

=df EUnion(A1, B1, [x:A1 + A2]B1 + B2,

[x:A1]inl(B1, B2, c1(x)), [y:A2]inr(B1, B2, c2(y))).

2

3.3. Structural subtyping rules

We are now ready to specify the structural subtyping rules (∗). Let

CΓ(T ; Ā; B̄) = 〈(Γ1; T1; T ′1; c1), . . . , (Γn; Tn; T ′n; cn)〉,
where Γi ≡ Γ,∆i (i = 1, ..., n), and d̄ = 〈d1, ..., dn〉 the sequence of di ≡ [∆i]ci. One of
the subtyping rules for T can be written down immediately:

Γ ` Ā :: P̄ Γ ` B̄ :: P̄

Γ1 ` T1 <c1 T ′1 · · · Γn ` Tn <cn T ′n
Γ ` T (Ā) <mapT [Ā,B̄,d̄] T (B̄)

The others are formed from this by performing the following on some, but not all, of the
premises:

• Change the premise Γi ` Ti <ci T ′i to Γi ` Ti = T ′i : Type; and
• Replace ci with idTi ≡ [x:Ti]x wherever it occurs in the rest of the rule.

21

When a parameterised inductive type has k components, there are 2k − 1 structural
subtyping rules for T .

Example 3.10. For Π-types (see Examples 2.7, 3.6 and 3.9), the structural subtyping
rules are (we omit the well-typedness judgements in the premises):

Γ ` A2 <c1 A1 Γ, x2:A2 ` B1(c1(x2)) <c2 B2(x2)
Γ ` Π(A1, B1) <map1

Π
Π(A2, B2)

Γ ` A2 = A1 : Type Γ, x2:A2 ` B1(idA2(x2)) <c2 B2(x2)
Γ ` Π(A1, B1) <map2

Π
Π(A2, B2)

Γ ` A2 <c1 A1 Γ, x2:A2 ` B1(c1(x2)) = B2(x2) : Type

Γ ` Π(A1, B1) <map3
Π

Π(A2, B2)

The mapping operations in the above rules are:

map1
Π ≡ mapΠ[A1, B1, A2, B2, c1, [x2:A2]c2]

≡ EΠ(A1, B1, [f :Π(A1, B1)]Π(A2, B2),

[f :(x:A1)B1(x)] λ(A2, B2, [x2:A2]c2(f(c1(x2)))))

map2
Π ≡ mapΠ[A1, B1, A2, B2, idA2 , [x2:A2]c2]

≡ EΠ(A1, B1, [f :Π(A1, B1)]Π(A2, B2),

[f :(x:A1)B1(x)] λ(A2, B2, [x2:A2]c2(f(idA2(x2)))))

map3
Π ≡ mapΠ[A1, B1, A2, B2, c1, [x2:A2]idB1(c1(x2))]

≡ EΠ(A1, B1, [f :Π(A1, B1)]Π(A2, B2),

[f :(x:A1)B1(x)] λ(A2, B2, [x2:A2]idB1(c1(x2))(f(c1(x2)))))

where map1
Π ≡ mapΠ[A1, B1, A2, B2, c1, [x2:A2]c2] is as given in Example 3.9 and map2

Π

and map3
Π are obtained from map1

Π by replacing (not substituting) c1 with idA2 and c2

with idB1(c1(x2)), respectively. 2

Remark (Non-applicable rules) As mentioned above, there are 2k−1 rules if T has k

components. Some of these rules may be non-applicable. For example, if T is generated
by the schemata one of which is ((Y)Y)X, where Y : Type is the only parameter. Then,
one of the rules is (we omit the well-typedness judgements):

Γ ` A <c B Γ ` B <d A

Γ ` T (A) <mapT T (B)

Since the premises are contradictory (and never satisfied), the above rule can never be
applied.

As another example, consider the inductive type BooList parameterised by Y : Type

and generated by the schemata X, (Y)(X)X and (Y)(X)X (two repeated schemata).
This would give the following rules

A <c B A <d B

BooList(A) < BooList(B)
A <c B A = B

BooList(A) < BooList(B)
A = B A <d B

BooList(A) < BooList(B)

22

where the mapping coercions in the conclusions are omitted. The first of the above rules
is applicable only when c = d and the other two are non-applicable. 2

3.4. χ-rules: functorial laws of equality

The functorial laws express that the mapping functor is distributive with respect to
the composition of ‘morphisms’. In the simplest case, a morphism is just a functional
operation and the distributivity concerned is about the composition of two functional op-
erations (c.f., the example for List in the introduction). In the general case, a morphism
is a sequence of objects that correspond to the schematic letters of the components of
the generating schemata.

Definition 3.11. (morphisms) Let T be an inductive type parameterised by Ȳ :: P̄ ,
Γ ` Ā :: P̄ and Γ ` B̄ :: P̄ . Suppose that the following sequence of components

〈(Γ1, T1, T
′
1, c1), ..., (Γn, Tn, T ′n, cn)〉,

where Γi ≡ Γ, x̄i:K̄i, is one of the following:
1 CΓ(K; x̄; Ā; B̄), where K is a small kind,
2 CΓ(Θ; x̄; Ā; B̄), where Θ is an inductive schema, or
3 CΓ(T ; Ā; B̄).

Then, a sequence k̄ ≡ k1, ..., kn is called a
1 K-morphism (from Ā to B̄ wrt x̄), notation Γ ` k̄ : Ā →x̄

K B̄
2 Θ-morphism (from Ā to B̄ wrt x̄), notation Γ ` k̄ : Ā →x̄

Θ B̄, or
3 T -morphism (from Ā to B̄), notation Γ ` k̄ : Ā →T B̄,

respectively, if the judgements obtained by replacing ci by ki(x̄i) from the judgements
Γ, x̄i:K̄i ` ci : (Ti)T ′i (i = 1, ..., n) are all derivable. 2

The following example explains the above definition, in particular, the process of re-
placement.

Example 3.12. Consider the parameterised inductive type (of triples) Σ3, parameterised
by A : Type, B : (A)Type and C : (x:A)(B(x))Type and generated by the schema
(x : A)(y : B(x))(z : C(x, y))X. Its components are

CΓ(Σ3;A1, B1, C1; A2, B2, C2) = 〈 (Γ; A1; A2; c),

(Γ, x:A1; B1(x); B2(c(x)); d),

(Γ, x:A1, y:B1(x); C1(x, y); C2(c(x), d(y)); e) 〉
In this case, 〈f, g, h〉 is a Σ3-morphism from 〈A1, B1, C1〉 to 〈A2, B2, C2〉 if the following
judgements are derivable:

Γ ` f : (A1)A2,

Γ, x:A1 ` g(x) : (B1(x))B2(f(x))

Γ, x:A1, y:B1(x) ` h(x, y) : (C1(x, y))C2(f(x), g(x, y))

For example, the last judgement above is obtained from

Γ, x:A1, y:B1(x) ` e : (C1(x, y))C2(c(x), d(y))

23

by replacing c with f , d with g(x) and e with h(x, y), respectively. 2

Notation In the following, we shall adopt the following notations about sequences, where
ā = 〈a1, ..., an〉 and b̄ = 〈b1, ..., bn〉.
• [x:K]ā = 〈[x:K]a1, ..., [x:K]an〉.
• ā(b̄) = 〈a1(b1), ..., an(bn)〉. In the special case when b1 = ... = bn = b, we write ā(b)

for ā(b̄). 2

Definition 3.13. (composition of morphisms) Let T be an inductive type parame-
terised by Ȳ :: P̄ and Ā, B̄, C̄ :: P̄ .
• (Composition of K-morphisms) Let K be a small kind, Γ ` k̄ : Ā →x̄

K B̄ and
Γ ` l̄ : B̄ →x̄

K C̄. We define the K-morphism l̄ • k̄ so that Γ ` l̄ • k̄ : Ā →x̄
K C̄ by

induction on the structure of K.
– K ≡ El(D[x̄]).

l̄ • k̄ =df

{ 〈〉 if x̄ 6∈ D (and hence k̄ = l̄ = 〈〉)
d′ ◦ d if x̄ ∈ D (and hence k̄ = 〈d〉 and l̄ = 〈d′〉)

where Γ ` d : (D[Ā)D[B̄] and Γ ` d′ : (D[B̄])D[C̄].
– K ≡ (y:K1[x̄])K2.

l̄ • k̄ =df





l̄ • k̄ if x̄ 6∈ K1 and y 6∈ K2 (1)
[y:K1]l̄(y) • k̄(y) if x̄ 6∈ K1 and y ∈ K2 (2)
(k̄1 • l̄1)ˆ(l̄2 • k̄2) if x̄ ∈ K1 and y 6∈ K2 (3)
(k̄1 • l̄1)ˆ[z:K1[C̄]]l̄2(z) • k̄2(l̄1(z)) if x̄ ∈ K1 and y ∈ K2 (4)

where, in the four different cases above, we have

(1) Γ ` k̄ : Ā →x̄
K2

B̄ and Γ ` l̄ : B̄ →x̄
K2

C̄.

(2) Γ, y:K1 ` k̄(y) : Ā →x̄
K2

B̄ and Γ, y:K1 ` l̄(y) : B̄ →x̄
K2

C̄.

(3) k̄ = k̄1ˆ k̄2 and l̄ = l̄1ˆ l̄2 such that Γ ` k̄1 : B̄ →x̄
K1

Ā, Γ ` l̄1 : C̄ →x̄
K1

B̄,
Γ ` k̄2 : Ā →x̄

K2
B̄, and Γ ` l̄2 : B̄ →x̄

K2
C̄.

(4) k̄ = k̄1ˆ k̄2 and l̄ = l̄1ˆ l̄2 such that Γ ` k̄1 : B̄ →x̄
K1

Ā, Γ ` l̄1 : C̄ →x̄
K1

B̄,
Γ, y:K1[B̄] ` k̄2(y) : Ā::[k̄1/c̄]cK1(y) →x̄::y

K2
B̄::y, and Γ, z:K1[C̄] ` l̄2(z) :

B̄::[l̄1/c̄]cK1(z) →x̄::z
K2

C̄::z, where c̄ are the schematic letters introduced in the
components of K1.

• (Composition of Θ-morphisms) Let Θ be an inductive schema. Suppose Γ ` k̄ :
Ā →x̄

Θ B̄ and Γ ` l̄ : B̄ →x̄
Θ C̄. We define the Θ-morphism l̄ • k̄ so that Γ ` l̄ • k̄ :

Ā →x̄
Θ C̄ by induction on the structure of Θ.

– Θ ≡ X. Then, k̄ = l̄ = 〈〉 and we define l̄ • k̄ =df 〈〉.
– Θ ≡ (y:K[x̄])Θ0.

l̄ • k̄ =





l̄ • k̄ if x̄ 6∈ K and y 6∈ Θ0 (1)
[y:K]l̄(y) • k̄(y) if x̄ 6∈ K and y ∈ Θ0 (2)
(l̄1 • k̄1)ˆ(l̄2 • k̄2) if x̄ ∈ K and y 6∈ Θ0 (3)
(l̄1 • k̄1)ˆ[x:K[Ā]]l̄2(k̄1(x)) • k̄2(x) if x̄ ∈ K and y ∈ Θ0 (4)

where, in the four different cases above, we have

24

(1) Γ ` k̄ : Ā →x̄
Θ0

B̄ and Γ ` l̄ : B̄ →x̄
Θ0

C̄.

(2) Γ, y:K ` k̄(y) : Ā →x̄
Θ0

B̄ and Γ, y:K ` l̄(y) : B̄ →x̄
Θ0

C̄.

(3) k̄ = k̄1ˆ k̄2 and l̄ = l̄1ˆ l̄2 such that Γ ` k̄1 : Ā →x̄
K B̄, Γ ` l̄1 : B̄ →x̄

K C̄,
Γ ` k̄2 : Ā →x̄

Θ0
B̄, and Γ ` l̄2 : B̄ →x̄

Θ0
C̄.

(4) k̄ = k̄1ˆ k̄2 and l̄ = l̄1ˆ l̄2 such that Γ ` k̄1 : Ā →x̄
K B̄, Γ ` l̄1 : B̄ →x̄

K

C̄, Γ, x:K[Ā] ` k̄2(x) : Ā::x →x̄::x
Θ0

B̄::[k̄1/c̄]cK(x), and Γ, y:K[B̄] ` l̄2(y) :
B̄::y →x̄::y

Θ0
C̄::[l̄1/c̄]cK(y), where c̄ are the schematic letters introduced in the

components of K.

– Θ ≡ (Φ)Θ0. Then k̄ = k̄1ˆ k̄2 and l̄ = l̄1ˆ l̄2 such that Γ ` k̄1 : B̄ →x̄
Φ Ā,

Γ ` l̄1 : C̄ →x̄
Φ B̄, Γ ` k̄2 : Ā →x̄

Θ0
B̄, and Γ ` l̄2 : B̄ →x̄

Θ0
C̄. We define

l • k =df (k̄1 • l̄1)ˆ(l̄2 • k̄2) .

• (Composition of T -morphisms) Suppose Γ ` k̄ : Ā →T B̄ and Γ ` l̄ : B̄ →T C̄.
We have that k̄ = k̄1ˆ · · · ˆ k̄m and l̄ = l̄1ˆ · · · ˆ ¯lm such that Γ ` k̄i : Ā →Ȳ

Θi
B̄ and

Γ ` l̄i : B̄ →Ȳ
Θi

C̄. We define the T -morphism l̄ • k̄ so that Γ ` l̄ • k̄ : Ā →T C̄ as
follows:

l̄ • k̄ =df (l̄1 • k̄1)ˆ · · · ˆ(l̄n • k̄n) .

2

Example 3.14. Here are some examples of morphisms.

• For the parameterised inductive types List, generated by schemata X and (Y)(X)X.
The List-morphisms are just functional operations f : (A)B and g : (B)C, and their
composition is just g ◦ f .
• Let Ā ≡ A1, A2, B̄ ≡ B1, B2 and C̄ = C1, C2.

– For the Π-types, generated by schema ((x:Y1)Y2(x))X, the morphisms Γ ` k̄ :
Ā →Π B̄ and Γ ` l̄ : B̄ →Π C̄ are pairs 〈k1, k2〉 and 〈l1, l2〉, respectively. Their
composition yields l̄ • k̄ = 〈k1 ◦ l1, [z:C1]l2(z) ◦ k2(l1(z))〉.

– For the Σ-types, generated by the schema (x:Y1)(Y2(x))X, the morphisms Γ ` k̄ :
Ā →Σ B̄ and Γ ` l̄ : B̄ →Σ C̄ are pairs 〈k1, k2〉 and 〈l1, l2〉, respectively. Their
composition yields l̄ • k̄ = 〈l1 ◦ k1, [x:A1]l2(k1(x)) ◦ k2(x)〉. 2

χ-rules

With the composition operation, we can now describe the following χ-rule corresponding
to the composition of morphisms.

(χ)
Γ ` k̄ : Ā →T B̄ Γ ` l̄ : B̄ →T C̄ Γ ` a : T (Ā)

Γ ` mapT [Ā, C̄, l̄ • k̄](a) = mapT [B̄, C̄, l̄]
(
mapT [Ā, B̄, k̄](a)

)
: T (C̄)

The simplest example is to consider the parameterised inductive types List. The above
χ-rule gives, for l : List(A),

mapList[A,C, c′ ◦ c](l) = mapList[B,C, c′] (mapList[A,B, c](l)) ,

which yields the equality mapList[A,C, c′ ◦ c] = mapList[B, C, c′] ◦mapList[A,B, c]. (See

25

the introduction for an explanation.) For the other cases such as Π-types and Σ-types,
one can easily write them down from Example 3.14.

We can also define the identity morphisms

IdT [Ā] : T (Ā) →T T (Ā)

and similarly we can write down the χ-rule corresponding to the identity morphism
declaring that mapT [Ā, Ā, IdT [Ā]](a) = a : T (Ā) for a : T (Ā). There is a categorical
structure here: for T parameterised by Ȳ :: P̄ , there is a category whose objects are the
sequences Ā :: P̄ and whose arrows are the T -morphisms, with the identity given by the
identity morphisms and the composition given by Definition 3.13. In such a categorical
structure, the mapping that maps the object Ā to T (Ā) and the arrow k̄ to mapT [Ā, B̄, k̄]
becomes a functor in the presence of the χ-rules (for identity and composition), which
correspond to the functorial laws of computational equality for such a mapping.

In this paper, only the rule (χ) corresponding to composition is included in our system
(and used in proving that transitivity is admissible for the structural subtyping rules
in Section 5), not that corresponding to the identity morphisms. The reason is that
we consider the proper subtyping relation A <c B rather than the relation A ≤c B.
If the latter were used to formulate our system (and hence identity operations would
be coercions; see [LS99]), the χ-rule corresponding to the identity morphisms would be
needed.

Remark Some researchers may be reluctant to add extensional equality rules to an
intensional type theory or might even consider it as problematic (for example, out of
philosophical considerations). We are not taking a view against this. Besides their use
in considering subtyping, another ‘justification’ for introducing the χ-rules is that they
make the mapping functors into true functors in the sense of category theory. 2

4. Injectivity of inductive type constructors

In this section, we shall prove that the type constructors of parameterised inductive
types are injective with respect to computational equality. More precisely, for any pa-
rameterised inductive type T with parameters Ȳ :: P̄ , the following rule is admissible:

(injectivity)
Γ ` T (Ā) = T (B̄) : Type

Γ ` Ā = B̄ :: P̄

under certain restrictions on computation rules. This injectivity result will be used in
the proofs of the properties of the subtyping rules in the next section.

4.1. Injectivity: an informal discussion

The above injectivity result looks easy to prove, but it is not. The injectivity rule is
admissible in a type theory such as the intensional type theory where the Church-Rosser
property holds. (The Church-Rosser property implies the injectivity result.) However,

26

this is unknown for a type theory with the extensional χ-rules: its meta-theoretic prop-
erties such as Church-Rosser have not been proven. As the injectivity result is used
essentially in our proofs in the next section, a proof of injectivity is called for.¶

Intuitively, injectivity holds, even with the χ-rules, because the only way to compute
within T (Ā) is to compute within one of the terms of Ā. However, the proof is compli-
cated by the fact that βη-equalities hold in the logical framework LF. An attempt to prove
it directly in LF has failed: it would use a result like Church-Rosser for βη-reduction,
which does not hold in general for type theories specified in LF.‖

We could try to prove injectivity for an individual type theory (say, UTT extended
with the χ-rules) by attempting to prove Church-Rosser for its reduction relation. This
property is, however, difficult to prove for a reduction relation that includes χ-reduction;
and, besides, we prefer to establish general results for type theories specified in LF.
We shall prove that injectivity holds for every type theory that can be specified in LF,
provided it involves no computation rules between types.

The tool we use for this purpose is the lambda-free logical framework TF (see a brief
introduction in Section 2.1.2) [Acz01, Ada04]. This is a logical framework that involves
no computation at the logical framework level. Every βη-equivalence class of objects in
LF corresponds to a unique term in TF. In TF, it is therefore true that the only way to
compute with T (Ā) is to compute within one of the arguments Ā. Injectivity is therefore
much easier to prove in TF. From the fact that LF is a conservative extension of TF, we
conclude that injectivity holds in LF too.

Below in this section, we assume that, in declaring the type theory under consideration,
no computation rules between types have been declared. That is, for every declared
computation rule

k = k′ : T for ki : Ki (i = 1, . . . , n)

T is of the form El(A). (Recall that it is already stipulated that one cannot declare
equalities between objects of dependent product kinds [Luo99].) This restriction excludes
type universes as their formulation would introduce computational equalities between
types. However, such type theories do include Martin-Löf’s type theory without type
universes or UTT without type universes. In particular, the computation rules for the
parameterised inductive types in Section 2.2 and the χ-rules in Section 3.4 are all allowed.

4.2. Conservativity of LF over TF

LF is a conservative extension over TF. In the following, we describe two translations:

NF : LF → TF

¶ Thanks to Conor McBride who has pointed out to us that a direct proof of injectivity is possible.
Although the proof as presented here is indirect (through TF) and more complicated, because of
the λ-terms and the associated β-equality in LF, it is his idea to consider a proof of injectivity by
introducing in an inductive proof a notion more general than derivability.

‖ To see this is the case, suppose that A and B are computationally equal but not βη-equal (e.g.,
A ≡ V ect(2 + 2) and B ≡ V ect(4).) Then, the term [x:A]([x:B]x)(x) β-reduces to [x:A]x and η-
reduces to [x:B]x, which have no common βη-reduct.

27

lift : TF → LF

and prove their properties, from which the conservativity result follows.

4.2.1. Translation NF from LF to TF This translation consists of reducing each object
of LF to its β-normal and η-long form (erasing kind labels as we go). This process shall
be guided by the arities of TF (see Section 2.1.2), which shall tell us in particular how
far to η-expand each variable and constant.

We begin by assigning an arity Ar (K) to each kind K of LF as follows:

Ar (Type) ≡ Ar (El(A)) ≡ 0

Ar ((x:K)K ′) ≡ (α, β1, ..., βn)

where Ar (K) = α and Ar (K ′) = (β1, ..., βn). Furthermore, we assume that TF and LF
use the same sets of variables and constants; in particular, every variable and constant
has an associated arity, and that

• whenever a variable declaration x:K appears (in a context, λ-object or Π-kind), then
the variable x has arity Ar (K);

• whenever a constant declaration c:K is made, then the constant c has arity Ar (K).

Note that the equality rules for λ-objects and Π-kinds do not cause any problems for
this convention, as it is easy to see that, whenever Γ ` K = K ′ is derivable, then
Ar (K) ≡ Ar (K ′).

Definition 4.1. (translation NF) NF is defined as follows:

• For every object M of LF, the corresponding object NF(M) of TF is defined as

NF(M) =df





zη if M ≡ z, with z a variable or constant
[x]NF(k) if M ≡ [x:K]k
NF(k1){NF(k2)} if M ≡ k1(k2)

• For every kind K of LF, the corresponding kind NF(K) of TF is defined as

NF(K) =df





Type if K ≡ Type

El(NF(A)) if K ≡ El(A)
(x : NF(K1))NF(K2) if K ≡ (x:K1)K2

The definition of NF is extended to contexts and judgements as usual. 2

Suppose we have specified a type theory T in LF, by declaring constants and compu-
tation rules. Then there is a set of declarations we can make in TF that yield ‘the same’
type theory as T :

• For every constant declaration c : K made in LF, declare c : NF(K) in TF.
• For every computation rule declared in LF:

k1 = k2 : T for x̄ : J̄ ,

declare in TF the computation rule

NF(k1) = NF(k2) : NF(T) for x̄ : NF(J̄).

28

We shall refer to this TF type theory as the normalised form of the LF type theory T .
The translation NF is not defined on every expression of the raw syntax; for example,

NF(k1(k2)) is only defined if NF(k1) and NF(k2) have appropriate arities. However, it is
defined on every typable object, and is a sound translation from LF to TF, as shown by
the theorem below, which is proven using the following lemma that concerns with how
substitution behaves under the translation.

Lemma 4.2. If NF(k) and NF(k′) are defined, and NF(k) has the same arity as x, then
NF([k/x]k′) is defined and NF([k/x]k′) ≡ {NF(k)/x}NF(k′).

Proof. By structural induction, using Proposition 2.3(1) when k ≡ x or k ≡ k1k2. 2

Theorem 4.3. (soundness of NF) Suppose we have declared a type theory T in LF,
and its normalised form in TF is T0. If the judgement J is derivable in T , then NF(J)
is well-defined and derivable in T0.

Proof. By induction on the derivation of J and using the properties in Proposition 2.3.
We only consider one case here for illustration, where the last rule of the derivation is

Γ ` f : (x:K)K ′ Γ ` k : K

Γ ` f(k) : [k/x]K ′

The induction hypothesis gives the following judgements in T0:

NF(Γ) ` NF(f) : (x:NF(K))NF(K ′) (#)

NF(Γ) ` NF(k) : NF(K)

We note that NF(f) must therefore have the same arity as (x:NF(K))NF(K ′), and so
have the form [x]N0. Therefore, NF(f(k)) is well-defined and is the object {NF(k)/x}N0.
The judgement (#) above is

NF(Γ), x:NF(K) ` N0 : NF(K ′)

and so Proposition 2.3(4) gives

NF(Γ) ` {NF(k)/x}N0 : {NF(k)/x}NF(K ′)

which, by Lemma 4.2, is what was required. 2

4.2.2. Translation lift from TF to LF This translation lifts entities in TF to LF and
consists of little more than inferring the kind labels in the λ-abstractions in LF. To do
so for an object M , we need to know the context in which we are working (to provide
the expected kinds). Furthermore, we need to know the kinds of the possible arguments
of an object and this information shall be given by a context of the same arity as that
of the object.

Definition 4.4. (translation lift) The translation lift from TF to LF is defined as fol-
lows by simultaneous induction.

• For any contexts Γ and ∆ and any object M , where ∆ and M have the same arity
(with intention that, in TF, Γ ` M : (∆)T for some T), the corresponding LF object
lift∆Γ (M) is defined as:

29

– If M ≡ zP1...Pn, where z : (ȳ:Γ̄)T , with Γi ≡ (∆i)Ti (i = 1, ..., n), is either a
variable in Γ or a declared constant, then

lift〈〉Γ (M) =df z(lift∆1
Γ (P1) , ..., lift∆n

Γ (Pn)).

– If M ≡ [x]M0, then liftx:K,∆
Γ (M) =df [x:liftΓ(K)]lift∆Γ,x:K (M0).

• For any kind K and context Γ in TF, the corresponding LF kind liftΓ(K) is defined
as:

liftΓ(M) =df





Type if M ≡ Type

El(lift〈〉Γ (A)) if M ≡ El(A)
(x:liftΓ(K))liftΓ,x:K(K ′) if M ≡ (x:K)K ′

The lifting operation is extended to contexts as

lift(〈〉) ≡ 〈〉
lift(Γ, x:K) ≡ lift(Γ), x:liftΓ(K)

and to judgements as

lift(Γ valid) ≡ lift(Γ) valid

lift(Γ ` M : K) ≡ lift(Γ) ` lift〈〉Γ (M) : liftΓ(K)

lift(Γ ` M = N : K) ≡ lift(Γ) ` lift〈〉Γ (M) = lift〈〉Γ (N) : liftΓ(K)

2

The soundness of the lifting operation is shown by the theorem below, which is proved
using the following lemma concerning about how substitution behaves under the trans-
lation.

Lemma 4.5. Let M be an object, K a kind, x a variable and ∆ a context, all of the
same arity α. Then,

1 [lift∆Γ (M) /x]liftΘΓ,x:(∆)T (N) →∗
β lift{M/x}Θ

Γ ({M/x}N).
2 [lift∆Γ (M) /x]liftΓ,x:(∆)T (K) →∗

β liftΓ({M/x}K).

Proof. By simultaneous induction on α and the structures of N and K. 2

Theorem 4.6. (soundness of lift) Suppose we have declared a type theory T in LF,
and its normalised form in TF is T0. If the judgement J is derivable in T0, then lift(J)
is derivable in T .

Proof. By induction on derivations, making repeated use of Lemma 4.5 and Theo-
rem 2.1. 2

4.2.3. Conservativity of LF over TF The following theorem establishes the conservativ-
ity result. More specifically, it shows that, up to judgemental equality, the translation
from TF to LF (lift) is a left inverse of that from LF to TF (NF).

Theorem 4.7. (conservativity of LF over TF) Assume that type theory T has been
declared in LF.

1 If Γ ` k : K in T , then NF(K) is defined and has the form NF(K) ≡ (∆)T , and
furthermore, lift∆NF(Γ) (NF(k)) is defined and Γ ` k = lift∆NF(Γ) (NF(k)) : K in T .

30

2 If Γ ` K kind in T , then liftNF(Γ)(NF(K)) is defined and Γ ` K = liftNF(Γ)(NF(K))
in T .

Proof. Both parts are proven by induction on the derivation of the premise. We deal
with one case here – assuming that the following rule is the last in the derivation:

Γ ` f : (x:K)K ′ Γ ` k : K

Γ ` f(k) : [k/x]K ′

Let NF(K) ≡ (∆)T and NF(K ′) ≡ (∆′)T ′. Then, by Lemma 4.2, NF([k/x]K ′) ≡
({NF(k)/x}∆′){NF(k)/x}T ′. By the induction hypothesis, we have

Γ ` f = liftx:NF(K),∆′

NF(Γ) (NF(f)) : (x:K)K ′

Γ ` k = lift∆NF(Γ) (NF(k)) : K

and so

Γ ` f(k) = liftx:NF(K),∆′

NF(Γ) (NF(f)) (lift∆NF(Γ) (NF(k))) : [k/x]K ′.

The result will follow by Subject Reduction (Theorem 2.1) if we can show

liftx:NF(K),∆′

NF(Γ) (NF(f)) lift∆NF(Γ) (NF(k)) →∗
β lift{NF(k)/x}∆′

NF(Γ) (NF(f){NF(k)}) .

To prove the above, we shall prove more generally that

liftx:(∆)K,∆′

Γ (M) lift∆Γ (N) →∗
β lift{N/x}∆′

Γ (M{N})
Let M ≡ [x]M0. Then

liftx:(∆)K,∆′

Γ ([x]M0) lift∆Γ (N) ≡ ([x:liftΓ((∆)K)]lift∆
′

Γ,x:(∆)K (M0))lift∆Γ (N)

→β [lift∆Γ (N) /x]lift∆
′

Γ,x:(∆)K (M0)

→∗
β lift{N/x}∆′

Γ ({N/x}M0) (Lemma 4.5)

≡ lift{N/x}∆′
Γ (M{N})

This completes the proof. 2

Remark It is also true that NF is a left inverse of lift up to syntactic identity (i.e.,
NF(lift∆Γ (M)) ≡ M). But we shall not need this fact here. 2

4.3. Proof of Injectivity

We shall prove that the injectivity property holds in TF, then use the conservativity
result above to deduce that the corresponding property holds in LF.

Theorem 4.8. (injectivity in TF) Assume we have declared a type theory in TF that
involves no computation rules between types and that includes the constant declaration

T : (Ȳ :: P̄)Type.

If Γ ` T (Ā) = N : Type or Γ ` N = T (Ā) : Type, then N ≡ T (B̄) for some terms B̄

such that Γ ` Ā = B̄ :: P̄ .

31

Proof. By induction on derivations of the premise in TF. We have the following cases.

• For Rule (CA) of ‘constant application’ (in Figure 2):

Γ ` Ā = B̄ :: P̄

Γ ` T (Ā) = T (B̄) : Type

it is immediate from the induction hypothesis.
• For the reflexivity rule (R):

Γ ` T (Ā) : Type

Γ ` T (Ā) = T (Ā) : Type

Inverting the premise, we have Γ ` Ā :: P̄ for some P̄ , and hence Γ ` Ā = Ā :: P̄ by
(R).
• For the symmetry rule (S), it is immediate.
• For the transitivity rule (T):

Γ ` T (Ā) = M : Type Γ ` M = N : Type

Γ ` T (Ā) = N : Type

By induction hypothesis, M ≡ T (B̄) and N ≡ T (C̄) such that Γ ` Ā = B̄ :: P̄ and
Γ ` B̄ = C̄ :: P̄ . Therefore, Γ ` Ā = C̄ :: P̄ by (T). 2

Remark The restriction that there is no computation rule declared between types is
important for the above proof to go through. If otherwise, we would have to consider
a case where there are declared equalities between types and the proof would not go
through as stated. For instance, if one declared an equation

List(N) = List(Unit) : Type

where Unit is the unit type with one object, obviously we could not prove that N =
Unit : Type. Having said this, however, we believe that, in the more restricted cases
such as introduction of universes, the injectivity theorem is still true. 2

Finally, the following corollary shows that the inductive type constructors are injective.

Corollary 4.9. (injectivity in LF) Assume we have declared a type theory T in LF
that includes no computation rules between types and that includes the declarations for
a parameterised inductive type T , parameterised by Ȳ : P̄ , as in Section 2.2. Then, if
Γ ` T (Ā) = T (B̄) : Type, then Γ ` Ā = B̄ :: P̄ .

Proof. Declare in TF the normalised form of T ; in particular, we make the declaration

T : (Ȳ :: NF(P̄))Type.

Let us use `TF for the judgements in TF thus extended, and `LF for the judgements in
LF with T declared. Then we have

Γ `LF T (Ā) = T (B̄) : Type

=⇒ NF(Γ) `TF T (NF(Ā)) = T (NF(B̄)) : Type (Theorem 4.3)

32

=⇒ NF(Γ) `TF NF(Ā) = NF(B̄) :: NF(P̄) (Theorem 4.8)

=⇒ lift(NF(Γ)) `LF liftNF(P̄)
NF(Γ)

(
NF(Ā)

)
= liftNF(P̄)

NF(Γ)

(
NF(B̄)

)
:: liftNF(Γ)(NF(P̄))

(Theorem 4.6)

By Theorem 4.7, we have

`LF Γ = lift(NF(Γ))

Γ `LF P̄ = liftNF(Γ)(NF(P̄))

Γ `LF Ā = liftNF(P̄)
NF(Γ)

(
NF(Ā)

)
:: P̄

Γ `LF B̄ = liftNF(P̄)
NF(Γ)

(
NF(B̄)

)
:: P̄

Therefore, we have Γ `LF Ā = B̄ :: P̄ . 2

Remark It may seem that the use of TF above is nothing more than a technical trick
necessary to prove the injectivity of inductive type constructors. However, we believe
that lambda-free logical frameworks such as TF are more than that: they are a powerful
tool for proving results about logical frameworks. Proving the conservativity of LF over
TF is a one-time-only cost. We expect many results to be easier to prove in TF than in
LF; the results can then be lifted to LF in the manner of the proof of Corollary 4.9. 2

5. Meta-theoretic properties of structural subtyping

In this section, we show that, for type theory T (such as Martin-Löf’s type theory
or UTT) without universes, the structural subtyping rules for parameterised inductive
types, as defined in Section 3.3, are coherent and satisfy the property that transitivity is
admissible in the presence of the functorial χ-rules for computational equality.

In the following, we shall make the following assumptions and use the corresponding
notational conventions.

• C denotes a WDC (set of well-defined judgements of coercions), representing ‘the
existing derivable subtyping judgements’.

• PIT denotes an arbitrary set of parameterised inductive types such that:

– if Γ ` A <c B ∈ C, then neither A nor B is computationally equal to a T -type for
T ∈ PIT.

• RPIT denotes the set of subtyping rules consisting of the (C)-rule (at the end of
Section 2.3) and the structural subtyping rules for the parameterised inductive types
in PIT (as given in Section 3.3).

• CPIT denotes the set of subtyping judgements derivable in Tχ[RPIT]0, where Tχ is the
type theory T extended with the χ-rules, while T is a type theory specified in LF
without equality declarations between types (see Section 4.1 for discussions on this
last restriction.)

What we shall show in the following subsection is that CPIT is also a WDC, that is,
being extended by the subtyping rules for the parameterised inductive types in PIT, the

33

resulting type theory still has the good properties and, in particular, it is coherent and
satisfies the property of transitivity elimination.

Considering PIT to be an arbitrary set has important practical consequences with
regard to the ‘stepwise enlargement’ of the set of coercive judgements. See Section 5.2
below for further discussions.

5.1. Coherence, admissibility of transitivity and other properties

In this subsection, we present the lemmas and theorems that show that CPIT is a WDC.
First, it is not difficult to prove the following lemma.

Lemma 5.1.

1 Γ ` A <c B ∈ CPIT implies that Γ ` A : Type, Γ ` B : Type and Γ ` c : (A)B.
2 Γ ` A <c A 6∈ CPIT for any Γ, A and c.
3 If Γ ` A <c B ∈ CPIT, Γ′ valid, and Γ ⊆ Γ′, then Γ′ ` A <c B ∈ CPIT.

Proof. By induction on derivations. We only note that, in proving the second clause,
we need to prove a slightly more general statement: if Γ ` A <c B ∈ CPIT then Γ 6`
A = B : Type, and use the injectivity result (Corollary 4.9). For example, for the
non-applicable rule

Γ ` A <c B Γ ` B <d A

Γ ` T (A) <mapT T (B)

as considered in the remark at the end of Section 3.3, we use the injectivity result to
show that T (A) = T (B) would imply that A = B, which is impossible by the induction
hypothesis. 2

The following theorem shows that the coherence property still holds after the addition
of the structural subtyping rules for the parameterised inductive types in PIT.

Theorem 5.2. (coherence) The following rule is admissible in Tχ[RPIT]0:

Γ ` A <c B Γ ` A <c′ B

Γ ` c = c′ : (A)B

Proof. We prove that the following slightly more general rule is admissible in Tχ[RPIT]0:

Γ ` A <c B Γ ` A′ <c′ B′ Γ ` A = A′ : Type Γ ` B = B′ : Type

Γ ` c = c′ : (A)B

Let J and J ′ be Γ ` A <c B and Γ ` A′ <c′ B′, respectively. Then, there are two
possibilities:

• J and J ′ are both in C (the original WDC);
• For some T ∈ PIT and some Ā, B̄, Ā′ and B̄′,

Γ ` A = T (Ā) : Type, Γ ` B = T (B̄) : Type,

Γ ` A′ = T (Ā′) : Type, Γ ` B′ = T (B̄′) : Type.

34

The former case is trivial (by the assumption that C is a WDC) and we prove the latter
by induction on derivations. In the latter case, the derivations of J and J ′ must be of
the following forms, respectively:

Derivation of J :
J1, ..., Jn

Γ`T (Ā)<dT (B̄)
(applications of congruence)

Γ`A<cB

Derivation of J ′:
J ′1, ..., J ′

n′
Γ`T (Ā′)<d′T (B̄′)

(applications of congruence)
Γ`A′<c′B′

where we have Γ ` c = d : (A)B and Γ ` c′ = d′ : (A′)B′.
As Γ ` A = A′ : Type and Γ ` B = B′ : Type, we have Γ ` T (Ā) = T (Ā′) : Type and

Γ ` T (B̄) = T (B̄′) : Type. By the injectivity result (Corollary 4.9), Γ ` Ā = Ā′ : P̄ and
Γ ` B̄ = B̄′ : P̄ , where P̄ are the types of parameters of T .

Now, consider Ji and J ′i for the case that they are both subtyping judgements:

Ji ≡ Γi ` Si <ci Ti and J ′i ≡ Γ′i ` S′i <c′
i
T ′i

and assume that we already have Γj ` cj = c′j : (Sj)Tj (j = 1, ..., i − 1). From the
formation of the premises of the structural subtyping rule for T , we have Γi = Γ′i,
Γi ` Si = S′i : Type and Γi ` Ti = T ′i : Type. Therefore, by induction hypothesis,
Γi ` ci = c′i : (Si)Ti.

From the above, we have by the definition of d (from ci) and d′ (from c′i), Γ ` d = d′ :
(T (Ā))T (B̄). Therefore, Γ ` c = c′ : (A)B. 2

Remark From the above proof, one can see that the above theorem is also true for
T [RPIT], the type system without the χ-rules. 2

The following lemma shows that the extension of the system maintains the property
of substitution.

Lemma 5.3. (substitution) If Γ, x:K, Γ′[x] ` A[x] <c[x] B[x] ∈ CPIT and Γ ` k : K,
then Γ,Γ′[k] ` A[k] <c[k] B[k] ∈ CPIT.

Proof. By induction on derivations, using the fact that, for ∆ ≡ Γ, x:K, Γ′[x] and
∆k ≡ Γ, Γ′[k], if Γ ` k : K and C∆(T ; Ā[x]; B̄[x]) = 〈(∆,∆i[x]; Ti[x]; T ′i [x]; ci)〉i=1,...,n,
then C∆k

(T ; Ā[k]; B̄[k]) = 〈(∆k, ∆i[k]; Ti[k]; T ′i [k]; ci)〉i=1,...,n. 2

The following theorem shows that transitivity is admissible in the presence of the
χ-rules. The proof is different from that of an earlier result for Π-types and Σ-types
[LL01] in that it proves the admissibility of a more general rule directly by induction on
derivations. This has overcome a difficulty in the earlier research effort and avoided the
use of a special complexity measure [Che98].

35

Theorem 5.4. (admissibility of transitivity) The following rule is admissible in
Tχ[RPIT]0:

Γ ` A <c B Γ ` B <c′ C

Γ ` A <c′◦c C

Proof. We prove a more general case, showing that the following rule is admissible in
Tχ[RPIT]0:

(ST)

Γ, x̄:K̄ ` A[x̄] <c[x̄] B[x̄] Γ, ȳ:K̄ ′ ` B′[ȳ] <c′[ȳ] C[ȳ]
Γ,∆ ` M̄ : K̄ Γ,∆ ` N̄ : K̄ ′ Γ, ∆ ` B[M̄] = B′[N̄] : Type

Γ,∆ ` A[M̄] <c′[N̄]◦c[M̄] C[N̄]

We obtain the admissibility of the rule in the theorem by taking B ≡ B′ and ∆, x̄ and
ȳ as empty (and therefore so are K̄, K̄ ′, M̄ and N̄ .)

Let J ≡ Γ, x̄:K̄ ` A <c B and J ′ ≡ Γ, ȳ:K̄ ′ ` B′ <c′ C. The proof proceeds by
induction on (the sum of the lengths of) the derivations of J and J ′. In the base case, J

and J ′ are both in the original WDC C and hence the conclusion of the rule is derivable
by the definition of WDC and the congruence rule.

In the step case, either J and J ′ are both in C, in which case it is trivial (as above), or
J and J ′ must be derived by congruence from judgements of the form Γ ` T (...) < T (...)
for some parameterised inductive type T ∈ PIT. I.e., in the latter case, the derivations
of J and J ′ are of the following forms:

Derivation of J :
J1, ..., Jn

Γ,x̄:K̄`T (Ā[x̄])<mapT [Ā,B̄,d̄[x̄]]T (B̄[x̄])
(applications of congruence)

Γ,x̄:K̄`A[x̄]<c[x̄]B[x̄]

Derivation of J ′:
J ′1, ..., J ′n

Γ,ȳ:K̄ ′`T (B̄′[ȳ])<mapT [B̄′,C̄,d̄′[ȳ]]T (C̄[ȳ])

(applications of congruence)
Γ,ȳ:K̄ ′`B′[ȳ]<c′[ȳ]C[ȳ]

and we have in (Γ, x̄:K̄): A = T (Ā), B = T (B̄), and c = mapT [Ā, B̄, d̄]; and in (Γ, ȳ:K̄ ′):
B′ = T (B̄′), C = T (C̄) and c′ = mapT [B̄′, C̄, d̄′].

Since Γ, ∆ ` B[M̄] = B′[N̄] : Type, we have Γ, ∆ ` T (B̄[M̄]) = T (B̄′[N̄]) : Type.
Therefore, by injectivity (Corollary 4.9), Γ,∆ ` B̄[M̄] = B̄′[N̄]. Because of this and by
induction hypothesis, we can apply (ST) to the judgements J1, . . . , Jn and J ′1, . . . , J ′n.
Therefore, we can derive, with a subtyping rule for T , the judgement

Γ, ∆ ` T (Ā[M̄]) <mapT [Ā[M̄],C̄[N̄],d̄′[N̄]•d̄[M̄]] T (C̄[N̄]).

By congruence and the rule (χ), we have

Γ, ∆ ` T (Ā[M̄]) <mapT [B̄′[N̄],C̄[N̄],d̄′[N̄]] ◦ mapT [Ā[M̄],B̄[M̄],d̄[M̄]] T (C̄[N̄])

Then, by congruence, Γ, ∆ ` A[M̄] <c′[N̄] ◦ c[M̄] C[N̄]. 2

36

Example 5.5. This example uses Π-types to illustrate the above proof. Assume that
the derivations of the subtyping judgements J and J ′ are obtained from

(∗1) Γ, x̄:K̄ ` A2[x̄] <c1[x̄] A1[x̄] (∗2) Γ, x̄:K̄, x2:A2 ` B1[x̄](c1(x2)) <c2[x̄,x2] B2[x̄](x2)
Γ, x̄:K̄ ` Π(A1, B1) <mapΠ

Π(A2, B2)

(∗3) Γ, ȳ:K̄ ′ ` A3[ȳ] <c′1[ȳ] A′2[ȳ] (∗4) Γ, ȳ:K̄ ′, x3:A3 ` B′
2[ȳ](c′1(x3)) <c′2[ȳ,x3] B3[ȳ](x3)

Γ, ȳ:K̄ ′ ` Π(A′2, B
′
2) <map′Π

Π(A3, B3)

and, for some M̄0 :: K̄ and N̄0 :: K̄ ′, [M̄0/x̄]Π(A2, B2) = [N̄0/ȳ]Π(A′2, B
′
2). Therefore,

by injectivity, A2[M̄0] = A′2[N̄0] and B2[M̄0] = B′
2[N̄0].

Applying the induction hypothesis to (∗1) and (∗3), we obtain, in Γ,

A3[N̄0] <c′1[N̄0] A′2[N̄0] = A2[M̄0] <c1[M̄0] A1[M̄0],

which yields

Γ ` A3[N̄0] <c1[M̄0] ◦ c′1[N̄0] A1[M̄0]. (1)

Applying the induction hypothesis to (∗2) and (∗4), by taking M̄ ≡ M̄0::c′1(x3) and
N̄ ≡ N̄0::x3, we obtain, in Γ, x3:A3,

[M̄0/x̄, c′1[N̄0](x3)/x2]B1(c1(x2)) ≡ [M̄0/x̄]B1(c1(c′1[N̄0](x3)))

<c2[M̄0,c′1[N̄0](x3)] [M̄0/x̄, c′1[N̄0](x3)/x2]B2(x2) ≡ [M̄0/x̄]B2(c′1[N̄0](x3))

= [N̄0/ȳ, x3/x3]B′
2(c

′
1(x3)) ≡ [N̄0/ȳ]B′

2(c
′
1(x3))

<c′2[N̄0,x3] [N̄0/ȳ, x3/x3]B3(x3) ≡ [N̄0/ȳ]B3(x3)

which yields

Γ, x3:A3 ` B1[M̄0](c1[M̄0](c′1[N̄0](x3))) <c′2[N̄0,x3] ◦ c2[M̄0,c′1[N̄0](x3)] B3[N̄0](x3). (2)

Then, a Π-subtyping rule can be applied to obtain, from (1) and (2),

Γ ` Π(A1[M̄0], B1[M̄0]) <map0
Π

Π(A3[N̄0], B3[N̄0])

where

map0
Π ≡ mapΠ

[
A1[M̄0], B1[M̄0], A3[N̄0], B3[N̄0], d̄′[N̄0] • d̄[M̄0]

]

with

d̄[M̄0] ≡ 〈c1[M̄0], [x3:A3]c2

[
M̄0, c

′
1[N̄0](x3)

]〉
d̄′[N̄0] ≡ 〈c′1[N̄0], [x3:A3]c′2

[
N̄0, x3

]〉
d̄′[N̄0] • d̄[M̄0] ≡ 〈c1[M̄0] ◦ c′1[N̄0], [x3:A3] c′2

[
N̄0, x3

] ◦ c2

[
M̄0, c

′
1[N̄0](x3)

]〉
Then the appropriate χ-rule can be applied to obtain

Γ ` Π(A1[M̄0], B1[M̄0]) <mapΠ[d̄[M̄0]] ◦ mapΠ[d̄′[N̄0]] Π(A3[N̄0], B3[N̄0]).

where we have omitted the sequences of type arguments of the map-operations. 2

The above theorems and lemmas have shown that CPIT, the set of derivable subtyping
judgements in Tχ[RPIT]0, is a set of well-defined judgements of coercions.

37

Corollary 5.6. CPIT is a WDC.

Proof. By Lemma 5.1, Theorem 5.2, Lemma 5.3 and Theorem 5.4. 2

5.2. Stepwise development

We give some remarks concerning the above choice of considering PIT to be an arbitrary
set of parameterised inductive types. First of all, because PIT is an arbitrary set, it does
not have to contain all of the inductive types; for example, it does not have to contain the
types such as Nat and Even, the types of natural numbers and even numbers. Therefore
in the original WDC C, one may have the subtyping judgements such as Even < Nat

(the type of even numbers is a subtype of that of natural numbers; see [Luo99] for more
detailed discussions of such subtyping relations in coercive subtyping.)

Secondly, as we mentioned earlier, we want to consider ‘stepwise development’ in prac-
tice, that is, assuming that the existing rules generate well-behaved coercion judgements,
an extension will result in a well-behaved system as well. More precisely, in our context,
we want to consider stepwise extensions by the structural subtyping rules of parame-
terised inductive types. However, we have not considered ‘rule extension’ directly be-
cause of the following difficulty. For example, if we extend the system first by List and
then by Σ (i.e., the subtyping judgements generated by List is in the WDC C when we
add Σ) and if Σ(A,B) < Σ(A′, B′) because of the newly added subtyping rules for Σ,
then we would not have List(Σ(A, B)) < List(Σ(A′, B′)) derivable as we would have
expected.

A solution to the above problem is to consider extensions of C by the subtyping rules
of the parameterised inductive types in an arbitrary set PIT. For the above example of
List and Σ, if both List and Σ are in PIT, it does not matter which is added first to the
system. Therefore, the results obtained in this section allow one to add step by step the
structural subtyping rules for those parameterised inductive types that are of interest in
one’s application.

Remark The above point of stepwise development has been a guiding idea in the de-
velopment of this work and related earlier work as well. It is a bit unfortunate that the
point was not made clearly in [LL05, Luo05].

6. Conclusion and future work

We have studied structural subtyping for general inductive types in the framework of co-
ercive subtyping and showed that the extension with structural subtyping rules of param-
eterised inductive types preserves the good meta-theoretic properties such as coherence
and transitivity elimination in the presence of the functorial χ-rules for computational
equality.

When a type theory has some extensional equality rules such as the functorial χ-rules,
it is in general unknown whether the usual good properties enjoyed by an intensional
type theory would still be satisfied: Church-Rosser, subject reduction and strong nor-
malisation. Future work includes the study of the meta-theoretic properties of a type

38

theory with the χ-reduction rules. We conjecture that, when an intensional type the-
ory is extended with the χ-rules, the resulting calculus should have these properties. A
promising approach is to work with a λ-free logical framework such as TF which may
provide useful means in such studies. However, it remains to be seen how research in
this direction would go.

The proof of the injectivity result as presented in this paper has the restriction that
there is no declaration of computational equalities between types in the type theory under
consideration. This has excluded type universes. However, we believe that the proof can
be extended to include universes, although further research is called for. Also, a direct
proof in LF, rather than going through TF, should be possible, although we have so far
failed to obtain such a proof.

Soloviev et al [BSC05] has investigated the notion of χ-reduction in a non-dependently
typed theory with inductive types. This is why we have called the functorial equality rules
‘χ-rules’. As to related work on coercive subtyping, we should mention that, before the
study of coercive subtyping, the notion of coercion was studied in the literature for simple
type systems (see, for example, [Mit91, Mit83]). As one of the early works on subtyping
and dependent types, Aspinall and Compagnoni [AC96, AC01] have studied subtyping
for dependent types in the Edinburgh Logical Framework. The early development of
the framework of coercive subtyping is closely related to Aczel’s idea of type-checking
methods in classes with overloading [Acz94] and the work on giving coercion semantics
to lambda calculi with subtyping by Breazu-Tannen et al [BCGS91]. Barthe and his col-
leagues have studied constructor subtyping and its possible applications in proof systems
[BF99, BvR00]. Among other research work on coercive subtyping, Y. Luo’s PhD work
has extensively studied structural subtyping for inductive types, especially the notion of
weak transitivity [Luo05, LL05].

Subtyping for inductive types in proof assistants is expected to be useful in practice.
It would be interesting to see the structural subtyping rules for parameterised inductive
types be implemented and used in proof assistants that support coercive subtyping.

Acknowledgement The authors are very grateful to the referees and Paul Callaghan
for their very useful comments on earlier versions of the paper that have helped a lot in
its improvement.

REFERENCES

[AC96] D. Aspinall and A. Compagnoni. Subtyping dependent types. In Proc. 11st Ann. Symp.

on Logic in Computer Science, New Jersey, USA, 1996.

[AC01] D. Aspinall and A. Compagnoni. Subtyping dependent types. Theoretical Computer

Science, 266, 2001.

[Acz94] P. Aczel. Simple overloading for type theories. Draft, 1994.

[Acz01] P. Aczel. Yet another logical framework. Notes (private communication), 2001.

[Ada04] R. Adams. A Modular Hierarchy of Logical Frameworks. PhD thesis, University of

Manchester, 2004.

[Bai99] A. Bailey. The Machine-checked Literate Formalisation of Algebra in Type Theory. PhD

thesis, University of Manchester, 1999.

39

[BCGS91] V. Breazu-Tannen, T. Coquand, C. Gunter, and A. Scedrov. Inheritance and explicit

coercion. Information and Computation, 93, 1991.

[BF99] G. Barthe and M.J. Frade. Constructor subtyping. Proceedings of ESOP’99, LNCS 1576,

1999.

[BSC05] F. Barral, S. Soloviev, and D. Chemouil. Inductive type schemas as functors. Talk given

in Second International Workshop on Isomorphisms of Types. Toulouse, France, October 2005.

[BvR00] G. Barthe and F. van Raamsdonk. Constructor subtyping in the calculus of inductive

constructions. Proceedings of FOSSACS’00, LNCS 1784, 2000.

[Che98] G. Chen. Subtyping, Type Conversion and Transitivity Elimination. PhD thesis, Uni-

versity of Paris VII, 1998.

[CL01] P. Callaghan and Z. Luo. An implementation of LF with coercive subtyping and universes.

Journal of Automated Reasoning, 27(1):3–27, 2001.

[Coq04] The Coq Development Team, INRIA. The Coq Proof Assistant Reference Manual (Ver-

sion 8.0), 2004.

[Dyb91] P. Dybjer. Inductive sets and families in Martin-Löf’s type theory and their set-theoretic

semantics. In G. Huet and G. Plotkin, editors, Logical Frameworks. Cambridge University

Press, 1991.

[HHP87] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Proc. 2nd Ann.

Symp. on Logic in Computer Science. IEEE, 1987.

[HHP93] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal of the

Association for Computing Machinery, 40(1):143–184, 1993.

[LC98] Z. Luo and P. Callaghan. Coercive subtyping and lexical semantics (extended abstract).

Logical Aspects of Computational Linguistics (LACL’98), 1998.

[LL01] Y. Luo and Z. Luo. Coherence and transitivity in coercive subtyping. Proc. of the 8th

Inter. Conf. on Logic for Programming, Artificial Intelligence and Reasoning (LPAR’01),

Havana, Cuba. LNAI 2250, 2001.

[LL05] Z. Luo and Y. Luo. Transitivity in coercive subtyping. Information and Computation,

197:122–144, 2005.

[LLS02] Y. Luo, Z. Luo, and S. Soloviev. Weak transitivity in coercive subtyping. In H. Geuvers

and F. Wiedijk, editors, Types for Proofs and Programs, volume 2646 of LNCS, pages 220–239.

Springer-Verlag, 2002.

[LP92] Z. Luo and R. Pollack. LEGO Proof Development System: User’s Manual. LFCS Report

ECS-LFCS-92-211, Department of Computer Science, University of Edinburgh, 1992.

[LS99] Z. Luo and S. Soloviev. Dependent coercions. The 8th Inter. Conf. on Category Theory and

Computer Science (CTCS’99), Edinburgh, Scotland. Electronic Notes in Theoretical Computer

Science, 29, 1999.

[Luo94] Z. Luo. Computation and Reasoning: A Type Theory for Computer Science. Oxford

University Press, 1994.

[Luo97] Z. Luo. Coercive subtyping in type theory. Proc. of CSL’96, the 1996 Annual Conference

of the European Association for Computer Science Logic, Utrecht. LNCS 1258, 1997.

[Luo99] Z. Luo. Coercive subtyping. Journal of Logic and Computation, 9(1):105–130, 1999.

[Luo05] Y. Luo. Coherence and Transitivity in Coercive Subtyping. PhD thesis, University of

Durham, 2005.

[Mit83] J. C. Mitchell. Coercion and type inference. In Proc. of Tenth Annual Symposium on

Principles of Programming Languages (POPL), 1983.

[Mit91] J. C. Mitchell. Type inference with simple subtypes. Journal of Functional Programming,

1(2):245–286, 1991.

40

[MM04] C. McBride and J. McKinna. The view from the left. Journal of Functional Program-

ming, 14(1), 2004.

[NPS90] B. Nordström, K. Petersson, and J. Smith. Programming in Martin-Löf’s Type Theory:

An Introduction. Oxford University Press, 1990.

[PM93] C. Paulin-Mohring. Inductive definitions in the system Coq: rules and properties. Pro-

ceedings of the Inter. Conf. on Typed Lambda Calculi and Applications (TLCA’93), LNCS

664, 1993.

[Säı97] A. Säıbi. Typing algorithm in type theory with inheritance. Proc of POPL’97, 1997.

[SL02] S. Soloviev and Z. Luo. Coercion completion and conservativity in coercive subtyping.

Annals of Pure and Applied Logic, 113(1-3):297–322, 2002.

