
Some Algorithmic and Proof-Theoretical

Aspects of Coercive Subtyping

Alex Jones, Zhaohui Luo and Sergei Soloviev

Computer Science Department, Durham University

South Road, Durham DH1 3LE, U.K.

E-mail: A.P.Jones, Zhaohui.Luo, Sergei.Soloviev @durham.ac.uk

Abstract. Coercive subtyping o�ers a conceptually simple but powerful

framework to understand subtyping and subset relationships in type the-

ory. In this paper we study some of its proof-theoretic and computational

properties.

1 Introduction

Coercive subtyping, as �rst introduced in [Luo96], o�ers a conceptually simple

but powerful framework to understand subtyping and subset relationships in

type theories with sophisticated type structures such as dependent types, induc-

tive types, and type universes. A basic idea behind coercive subtyping is that

subtyping provides a powerful mechanism for notational abbreviation in type

theory. If A is a subtype of B given by a speci�ed coercion function, an object

of type A can be regarded as an object of type B, that is, its image via the

coercion function, and hence objects of a subtype can be used as abbreviations

for objects of a supertype.

With coercive subtyping, this abbreviational mechanism is formally treated

at the level of the logical framework { the meta-level language used to specify

type theories. Given two kinds (meta-level types) K and K

0

, where K is a

(proper) subkind of K

0

and a functional operation f whose source kind is K

0

,

one can apply f to any object a of kind K as well as those of kind K

0

. The

meaning of such an application is that f(a) is de�nitionally equal to f(c(a)),

where c is the coercion between K and K

0

.

This simple extension of the logical framework (and hence of the speci�ed

type theories such as Martin-L�of's type theory [NPS90] and the type theory

UTT [Luo94,Gog94]), provides a surprisingly powerful mechanism that facili-

tates useful ways of reasoning about subsets of objects, helps proof reuse and

modularisation, and gives a proper treatment of the subtyping relation between

type universes (see [Luo96] for details). These provide the basis for more e�-

cient subset and substructure reasoning and proof reuse (cf. [Jon95,Bai93]). For

instance, if we de�ne the type of groups as a subset of the type of monoids, then

any proof to do with monoids can then be automatically applied to groups. Such

a mechanism has been implemented by Bailey in LEGO [Bai96] and Saibi in Coq

[Sai97] to support proof reuse and notational abbreviation. Similar mechanisms

can be used for development of program speci�cation and veri�cation proofs

(c.f., [Luo93]).

In this paper, we study some of the basic proof-theoretic and computational

properties of coercive subtyping. The formal system we consider, as presented

in Section 2, is essentially the same as that in [Luo96] except for one major

change: we use subkinding judgements with explicitly associated coercion terms,

of the form K <

c

K

0

. We also restrict the basic coercions to be closed terms

between closed types (as considered in [Luo96]). The presentation of a more

general framework of coercive subtyping can be found in [Luo97], which uses

subkinding judgements with explicit coercion terms and also allows more general

basic subtyping rules such as those for parameterised inductive types.

In section 3 we prove several important meta-theoretic results, including sub-

stitution elimination, uniqueness of coercions, presupposition theorems, transi-

tivity elimination, and some results about the relationship between the original

type theory and its extension with coercive subtyping. There are at least two

important aspects of this meta-theoretic development that deserve attention.

One is that we study the meta-theory of the resulting type system with judge-

mental equality directly, without considering a meta-level notion of conversion.

1

Actually, as discussed in the paper, to prove various elimination results requires

a careful treatment of the rules in LF by �rst considering elimination results of

their weaker versions.

Another meta-theoretic development reported here is to show that, for the

system considered in this paper, the extension with coercive subtyping is con-

servative over the original type theory. This can be seen as a justi�cation of

the claim that coercive subtyping is essentially an abbreviational mechanism

[Luo96]. Furthermore, we expect that further development along this line will

allow us to transfer the meta-theoretic results for the original type theory to its

extension with coercive subtyping.

In section 4 we present a type-checking algorithm for coercive subtyping

and prove its soundness using some of the meta-theoretic results of section 3.

This is a part of our ongoing e�ort to study the computational behaviour of

type theory with coercive subtyping and di�erent computational strategies for

e�cient implementation.

Discussions on future research topics can be found in the Conclusion.

2 Coercive subtyping: the formal system

The basic system on which the formal systems considered here are based is

the logical framework LF, a typed version of Martin-L�of's logical framework

[NPS90]. The formulation of LF and a detailed discussion on how to use LF in

1

The work by Healfdene Goguen on typed operational semantics (TOS) [Gog94] may

be regarded as an indirect development of the meta-theory of LF and UTT, where

for example, substitution elimination results are obtained by proving the soundness

of TOS wrt the system with substitution rules and the completeness of TOS wrt the

system without substitution rules.

specifying type theories (with formal de�nitions and examples) can be found in

Chapter 9 of [Luo94]. Here it is enough to say, that a judgement in a type theory

T, speci�ed in LF is derivable if it is derivable in the extension of LF by the

constants and computation rules specifying the type theory.

The extension of any type theory T (speci�ed in LF) with coercive subtyp-

ing is de�ned with respect to a set C of triples (a subtype, a supertype and a

coercion term, representing an embedding of a subtype into its supertype). One

of our main goals is to investigate the general meta-theoretic properties of this

subtyping extension (we shall denote it by T[C]) and its relationship with the

original type theory T, since many of them can be studied independently from

the underlying type theory

2

. Let us notice that the systems we are going to

consider are ordered by inclusion as follows: LF � T � T [C]:

2.1 Judgement forms

Besides context validity, we have the following basic judgements forms in the

language:

{ K:kind asserts that K is a kind.

{ k:K asserts that K is the principal kind of k.

{ K = K

0

asserts that K and K

0

are equal kinds.

{ k = k

0

:K asserts that k and k

0

are equal objects with principal kind K.

{ A <

c

B:Type asserts that A is a proper subtype of B with coercion c.

{ K <

c

K

0

asserts that K is a proper subkind of K

0

with coercion c.

The above are the judgement forms included in our formal presentation. With

these judgement forms we can de�ne other judgement forms, for example:

{ K < K

0

(K is a proper subkind of K

0

) stands for `K <

c

K

0

for some c'.

{ K � K

0

(K is a subkind of K

0

) stands for `K = K

0

or K <

c

K

0

for some c'.

{ k :: K (k is of kind K) stands for `k:K or k:K

0

for some K

0

such that

K

0

<

c

K for some c'.

{ k = k

0

:: K (k and k

0

are equal objects of kind K) stands for `k = k

0

:K or

k = k

0

:K

0

for some K

0

such that K

0

<

c

K for some c'.

2.2 The logical framework LF

The logical framework LF is presented as in [Luo94]. We shall denote by �

syntactic equality (up to �-conversion, i.e., renaming of bound variables.) Here,

we only list the inference rules of LF.

Contexts and assumptions

(1:1)

<>` valid

(1:2)

� ` K:kind x 62 FV (�)

�; x:K ` valid

(1:3)

�; x:K;�

0

` valid

�; x:K;�

0

` x:K

2

Types on meta-level are called kinds, and one may say that in this paper we are

mostly studying properties of subkinding.

General equality rules

(2:1)

� ` K:kind

� ` K = K

(2:2)

� ` K = K

0

� ` K

0

= K

(2:3)

� ` K = K

0

� ` K

0

= K

00

� ` K = K

00

(2:4)

� ` k:K

� ` k = k:K

(2:5)

� ` k = k

0

:K

� ` k

0

= k:K

(2:6)

� ` k = k

0

:K � ` k

0

= k

00

:K

� ` k = k

00

:K

Equality typing rules

(3:1)

� ` k:K � ` K = K

0

� ` k:K

0

(3:2)

� ` k = k

0

:K � ` K = K

0

� ` k = k

0

:K

0

The kind Type

(4:1)

� ` valid

� ` Type:kind

(4:2)

� ` A:Type

� ` El(A):kind

(4:3)

� ` A = B:Type

� ` El(A) = El(B)

Rules for dependent product kinds and ��-equalities

(5:1)

�; x:K ` K

0

:kind

� ` (x:K)K

0

:kind

(5:2)

� ` K

1

= K

2

�; x:K

1

` K

0

1

= K

0

2

� ` (x:K

1

)K

0

1

= (x:K

2

)K

0

2

(5:3)

�; x:K ` k:K

0

� ` [x:K]k:(x:K)K

0

(5:4)

� ` K

1

= K

2

�; x:K

1

` k

1

= k

2

:K

� ` [x:K

1

]k

1

= [x:K

2

]k

2

:(x:K

1

)K

(5:5)

� ` f :(x:K)K

0

� ` k:K

� ` f(k):[k=x]K

0

(5:6)

� ` f = f

0

:(x:K)K

0

� ` k

1

= k

2

:K

� ` f(k

1

) = f

0

(k

2

):[k

1

=x]K

0

(5:7)

�; x:K ` k

0

:K

0

� ` k:K

� ` ([x:K]k

0

)k = [k=x]k

0

:[k=x]K

0

(5:8)

� ` f :(x:K)K

0

x 62 FV (�)

� ` [x:K]f(x) = f :(x:K)K

0

We shall call EL-kinds the kinds of the form El(A), and product-kinds the

kinds of the form (x:K)K

0

. A standard notational convention is that if in the

kind (x:K)K

0

the variable x does not occur freely in K

0

, we may write (K)K

0

.

The substitution rules below are separated into two groups, since their formal

behaviours are quite di�erent (see section 3).

Simple substitutions

(6:1)

�; x:K;�

0

` valid � ` k:K

�; [k=x]�

0

` valid

(6:2)

�; x:K;�

0

` K

0

:kind � ` k:K

�; [k=x]�

0

` [k=x]K

0

:kind

(6:3)

�; x:K;�

0

` k

0

:K

0

� ` k:K

�; [k=x]�

0

` [k=x]k

0

:[k=x]K

0

(6:4)

�; x:K;�

0

` K

0

= K

00

� ` k:K

�; [k=x]�

0

` [k=x]K

0

= [k=x]K

00

(6:5)

�; x:K;�

0

` k

0

= k

00

:K

0

� ` k:K

�; [k=x]�

0

` [k=x]k

0

= [k=x]k

00

:K

0

Equality substitutions

(6:6)

�; x:K;�

0

` K

0

:kind � ` k

1

= k

2

:K

�; [k

1

=x]�

0

` [k

1

=x]K

0

= [k

2

=x]K

0

(6:7)

�; x:K;�

0

` k

0

:K

0

� ` k

1

= k

2

:K

�; [k=x]�

0

` [k

1

=x]k

0

= [k

1

=x]k

0

:[k=x]K

0

2.3 Coercive subtyping and subkinding

Let T be any type theory speci�ed in LF (without subtyping and subkinding),

as described in [Luo94]. We consider two new judgement forms:

{ � ` A <

c

B:Type asserts that A is a proper subtype of B with coercion c.

{ � ` K <

c

K

0

asserts that K is a proper subkind of K

0

with coercion c.

The label c will be called a coercion term. It will be proved that, for any derivable

judgement � ` K <

c

K

0

, � ` c:(K)K

0

is derivable.

Subtyping We �rst consider an intermediate system T [C]

0

, which spells out

how subtyping relations are set up. T [C]

0

is obtained from T by adding the

subtyping judgement form � ` A <

c

B:Type and the following rules:

{ Basic subtyping rules.

{ Transitivity rules for subtyping.

{ Substitution rule for subtyping.

In this paper, the basic subtyping rules correspond to a set C of basic coercions:

(ST:1)

� ` A:Type � ` B:Type � ` c:(El(A))El(B) (A; c;B) 2 C

� ` A<

c

B:Type

;

where A, c, and B do not contain free variables. For a more general framework

allowing more general basic subtyping rules, see [Luo97].

Transitivity rules

(ST:2)

� ` A <

c

B:Type � ` A = A

0

:Type

� ` A

0

<

c

B:Type

(ST:3)

� ` A <

c

B:Type � ` B = B

0

:Type

� ` A <

c

B

0

:Type

(ST:4)

� ` A <

c

1

B:Type � ` B <

c

2

C:Type

� ` A <

[x:El(A)]c

2

(c

1

(x))

C:Type

Substitution rule for subtyping

(ST:5)

�; x:K;�

0

` A <

c

B:Type � ` k:K

�; [k=x

0

]�

0

` [k=x]A <

[k=x]c

[k=x]B:Type

Coherence conditions The following lemma is obvious, because the extension

above has no means to obtain a judgement which is not of subtyping form from

a subtyping judgement.

Lemma 1. T [C]

0

is a conservative extension of T. That is, if J is not of the

form A <

c

B:Type, then � ` J is derivable in T if and only if � ` J is derivable

in T [C]

0

.

De�nition 2. (coherence conditions) We say that C is coherent if T [C]

0

has the

following properties:

1. � 6` A <

c

A:Type for any � , A and c.

2. If � ` A <

c

B:Type and � ` A <

c

0

B:Type, then � ` c = c

0

:(El(A))El(B).

In this paper, we assume that C is coherent.

Subkinding A further intermediate system T [C]

0K

is obtained by adding the

new subkinding judgement form � ` K <

c

K

0

, and the following inference rules

(SK:1� 8).

The basic subkinding rule

(SK:1)

� ` A <

c

B:Type

� ` El(A)<

c

El(B)

;

Subkinding for dependent products kinds

(SK:2)

� ` K

0

1

<

c

1

K

1

�; x

0

:K

0

1

` [c

1

(x

0

)=x]K

2

= K

0

2

�; x:K

1

` K

2

:kind

� ` (x:K

1

)K

2

<

c

(x

0

:K

0

1

)K

0

2

;

where c = [f :(x:K

1

)K

2

][x

0

:K

0

1

]f(c

1

(x

0

)) ;

(SK:3)

� ` K

0

1

= K

1

�; x:K

0

1

` K

2

<

c

2

K

0

2

�; x:K

1

` K

2

:kind

� ` (x:K

1

)K

2

<

c

(x:K

0

1

)K

0

2

;

where c = [f :(x:K

1

)K

2

][x:K

0

1

]c

2

(f(x));

(SK:4)

� ` K

0

1

<

c

1

K

1

�; x

0

:K

0

1

` [c

1

(x

0

)=x]K

2

<

c

2

K

0

2

�; x:K

1

` K

2

:kind

� ` (x:K

1

)K

2

<

c

(x

0

:K

0

1

)K

0

2

;

where c = [f :(x:K

1

)K

2

][x

0

:K

0

1

]c

2

(f(c

1

(x

0

))) .

Transitivity rules for subkinding

(SK:5)

� ` K

1

<

c

K

2

� ` K

2

= K

0

2

� ` K

0

1

<

c

0
K

0

2

(SK:6)

� ` K

1

<

c

K

2

� ` K

1

= K

0

1

� ` K

0

1

<

c

0
K

0

2

(SK:7)

� ` K <

c

1

K

0

� ` K

0

<

c

2

K

00

� ` K <

[x:K]c

2

(c

1

(x))

K

00

Substitution rule for subkinding

(SK:8)

�; x:K;�

0

` K

1

<

c

K

2

� ` k:K

�; [k=x]�

0

` [k=x]K

1

<

[k=x]c

[k=x]K

2

Lemma 3. T [C]

0K

is a conservative extension of T and T [C]

0

.

Because T [C]

0K

is conservative extension of T [C]

0

, coherence conditions hold

also in T [C]

0K

.

Coercive rules The extension of T with coercive subtyping, the system T [C],

is obtained from T [C]

0K

by adding the following rules, which establish the es-

sential connection between the original system T and its subtyping/subkinding

extension.

New rules for application

(CA:1)

� ` f :(x:K)K

0

� ` k:K

0

� ` K

0

<

c

K

� ` f(k):[c(k)=x]K

0

(CA:2)

� ` f = f

0

:(x:K)K

0

� ` k

1

= k

2

:K

0

� ` K

0

<

c

K

� ` f(k

1

) = f

0

(k

2

):[c(k

1

)=x]K

0

Coercive de�nition rule

(CD)

� ` f :(x:K)K

0

� ` k

0

:K

0

� ` K

0

<

c

K

� ` f(k

0

) = f(c(k

0

)):[c(k

0

)=x]K

0

Note that, unlike T [C]

0

, it is not at all obvious that T [C] is a conservative

extension of T, because now there are means to derive judgements of other

forms using subtyping/subkinding judgements. See subsection 3.5 for further

discussions.

3 Basic Meta-Theoretical Properties

A relatively large calculus, like our T[C], contains many groups of rules, inter-

acting in a complex and not always obvious way. To make it a really e�cient

instrument for the development of the meta-theory, it is necessary to investigate

�rst its basic properties. This includes several results which may be considered

as forms of (partial) cut-elimination. Take, for example, elimination of the sub-

stitution rules and the transitivity rules for subkinding. Such results will be very

helpful in the part, corresponding to the typechecking algorithm.

Another important question is that of \presupposed" judgements and their

derivations (one of the characteristic features of dependent type theories). For

example, the derivability of a judgement

x

1

:Q

1

; :::; x

n

:Q

n

` K

1

= K

2

presupposes conceptually the derivability of judgements

x

1

:Q

1

; :::; x

i�1

:Q

i�1

` Q

i

:kind x

1

:Q

1

; :::; x

i

:Q

i

` valid(i � n)

and x

1

:Q

1

; :::; x

n

:Q

n

` K

j

:kind(j = 1; 2). If instead of K

1

= K

2

we take

k

1

= k

2

:K, presupposed judgements will include x

1

:Q

1

; :::; x

n

:Q

n

` K:kind and

x

1

:Q

1

; :::; x

n

:Q

n

` k

j

:K(j = 1; 2). Subkinding K

1

<

c

K

2

presupposes in addi-

tion the derivability of x

1

:Q

1

; :::; x

n

:Q

n

` c:(K

1

)K

2

etc. But how may a complex

judgement be \split", how do the derivations of the \presupposed" judgements

correspond to the main derivation?

Neither the elimination problem nor the \splitting" of complex judgements

admit straightforward solutions.

As an illustration of the possible di�culties, let us consider several examples.

They will also give us a better understanding of the order in which the lemmas

leading to the main results are organised.

Let us try, for example, to eliminate equality substitutions using some sort

of induction on derivations. Consider the inference

(6:7)

(3:2)

�; x:K;�

0

` k:K

00

�; x:K;�

0

` K

00

= K

0

�; x:K;�

0

` k:K

0

� ` k

1

= k

2

:K

�; [k

1

=x]�

0

` [k

1

=x]k = [k

2

=x]k:[k

1

=x]K

0

It seems natural to apply substitution and the inductive hypothesis to the left

premise of 3.2. The result is �; [k

1

=x]�

0

` [k

1

=x]k = [k

2

=x]k:[k

1

=x]K

0

.

To replace the kind [k

1

=x]K

00

by [k

1

=x]K

0

one may derive the judgement

�; [k

1

=x]�

0

` [k

1

=x]K

00

= [k

1

=x]K

0

by simple substitution from �

0

` K

00

= K

0

.

But to obtain the premise � ` k

1

:K for this substitution we need to \split"

� ` k

1

= k

2

:K.

Meanwhile, \splitting" itself poses problems. To prove it, again by some in-

duction on derivations, new substitutions could be necessary, as in case of a

derivation, ending by

(5:6)

� ` f = f

0

:(x:K)K

0

� ` k

1

= k

2

:K

� ` f(k

1

) = f

0

(k

2

):[k

1

=x]K

0

(By \splitting" premises and using application without equality 5.5 one obtains

for the right part only � ` f

0

(k

2

):[k

2

=x]K whereas the kind should be [k

1

=x]K.)

In other cases one may even need a rule which is not included in the formulation

of the system.

Consider, for example, a derivation ending with

�; x:K

1

` K

0

1

= K

0

2

� ` K

1

= K

2

� ` (x:K

1

)K

0

1

= (x:K

2

)K

0

2

(5:2)

By the inductive hypothesis applied to the left premise, one obtains �; x:K

1

` K

0

1

and �; x:K

1

` K

0

2

. From the �rst judgement one has, by 5.1, � ` (x:K

1

)K

0

1

, as

required. But 5.1 applied to the second will give � ` (x:K

1

)K

0

2

. The kind K

1

should be changed to K

2

�rst. To save the situation, one apparently needs the

rule

�; x:K;�

0

` J � ` K

1

= K

2

�; x:K

0

; �

0

` J

:

We solve these problems by considering �rst some weaker, less problematic

rules, proving, with their help, a variant of the \split-theorem" and only then

passing to the rules that present the main di�culties.

3.1 Some basic lemmas

The next three lemmas hold for T[C] and any of its subsystems and are proved

by straightforward induction on the length of derivation.

Lemma 4. (a) If a judgement of the form � ` K:kind is derivable, then K is

either an El-kind, product-kind or the kind Type. (b) If � ` K = K

0

is derivable,

then both K;K

0

are either El-kinds or product-kinds or else the kind Type. (c)If

� ` K <

c

K

0

is derivable, then both K;K

0

are either El-kinds or product-kinds.

Lemma 5. If � ` J , then FV (J) � FV (�)

Lemma 6. If �; x:A ` valid, then x =2 FV (�).

3.2 Elimination results

Let T[C]

�

(T [C]

�

0

; T [C]

�

0K

) be the system obtained from T[C](T [C]

0

; T [C]

0K

re-

spectively) by removing

{ the substitution rules in LF(rules 6.1-6.7);

{ the substitution rules for subtyping and subkinding (rules ST.5, SK.8).

We shall show, that every derivation in T[C]may be transformed into a T[C]

�

-

derivation of the same judgement.

Temporarily we need a system with even more restricted rules, where some

subtyping and subkinding rules have more premises than usual. We take

(ST:2

0

)

� ` A <

c

B:Type � ` A = A

0

:Type � ` A

0

:Type

� ` A

0

<

c

B:Type

(= �right)

instead of ST.2. We add in a similar way the premise � ` B

0

:Type to ST.3, the

premise �; x

0

:K

0

1

` K

0

2

:kind to SK.2-4 (product-introductions for subkinding),

the premises � ` K

0

2

:kind, � ` K

0

1

:kind and � ` c

0

:(K)K

0

to SK:5(= �right)

and SK:6(= �left).

Let us call this system T [C]

=

. The following lemma holds for T[C]

�

as well as

T [C]

=

and is proved by straightforward induction on the size (number of rules)

of the derivation.

Lemma 7. a)Every derivation of �

1

; �

2

` J contains a sub-derivation of �

1

`

valid in the same system. b)Every derivation of �

1

; x:K;�

2

` J contains a sub-

derivation of �

1

` K:kind in the same system. c) Every derivation of � `

(x:K

1

)K

2

contains a sub-derivation of �; x:K

1

` K

2

.

Lemma 8. There are algorithms that transform every derivation of a judgement

of the form � ` A <

c

B:Type (of the form � ` K <

c

K

0

) in T [C]

=

into

derivations of � ` A:Type; � ` B:Type; � ` c:(El(A))El(B) (respectively

derivations of � ` K:kind; � ` K

0

:kind; � ` c:(K)K

0

) in the same calculus.

Proof. Straightforward induction (the presence of the extra premise is essen-

tial for it). 2

Lemma 9. (weakening) There is an algorithm that transforms every derivation

in T [C]

=

extended by the following weakening rule:

�

1

; �

2

` J �

1

; �

3

` valid

�

1

; �

3

; �

2

` J

(wkn)

(where FV (�

2

) \ FV (�

3

) = ;) into a T [C]

=

-derivation of the same judgement.

Proof. First we consider the case of a derivation containing exactly one wkn

at the end, and prove the lemma by induction on the size of the derivation of its

left premise. Then the proof is completed by trivial induction on the number of

wkn rules (topmost are eliminated �rst). 2

Lemma 10. (Elimination of simple substitutions.) There is an algorithm that

transforms every derivation in T [C]

=

[f6:1� 6:5g into a derivation in T [C]

=

.

Proof is essentially similar to the proof of lemma 9, though contains more

cases. 2

Lemma 11. (Elimination of retypings.) There is an algorithm that transforms

every derivation in T [C]

=

extended by the following rule

�; x:K;�

0

` J � ` K = K

0

� ` K

0

:kind

�; x:K

0

; �

0

` J

(J stands for any form of judgement) into a derivation in T [C]

=

.

Proof as above. 2

In the following lemma we consider \weak" equality substitutions:

(6:6

0

)

�; x:K;�

0

` K

0

:kind � ` k

1

= k

2

:K � ` k

1

:K � ` k

2

:K

�; [k

1

=x]�

0

` [k

1

=x]K

0

= [k

2

=x]K

0

(6:7

0

)

�; x:K;�

0

` k

0

:K

0

� ` k

1

= k

2

:K � ` k

1

:K � ` k

2

:K

�; [k=x]�

0

` [k

1

=x]k

0

= [k

1

=x]k

0

:[k=x]K

0

Lemma 12. There is an algorithm that transforms every derivation in T [C]

=

[

f6:6

0

; 6:7

0

g into a derivation in T [C]

=

Proof as above; in each case when \splitting" would be necessary for ordinary

6.6., 6.7 the extra premises are used. 2

3.3 The \Split-theorem" and its consequences

Theorem 13. (Split-theorem) In T [C]

=

there are algorithms that transform ev-

ery derivation of

1. � ` K

1

= K

2

into a derivation of � ` K

1

:kind and of � ` K

2

:kind;

2. � ` k

1

= k

2

:K into a derivation of � ` k

1

:K and � ` k

2

:K;

3. � ` �:K into a derivation of � ` K:kind (� denotes here term or term

equality);

Proof By simultaneous induction on the size of the main derivation, using

elimination lemmas 9, 10, 11, 12 and lemma 8. To illustrate why only weak

formulations of the rules are enough, let's consider statement 1). Assume that

the derivation ends with

�; x:K

1

` K

0

1

= K

0

2

� ` K

1

= K

2

� ` (x:K

1

)K

0

1

= (x:K

2

)K

0

2

(5:2)

By applying the inductive hypothesis to the left premise we obtain �; x:K

1

` K

0

1

and �; x:K

1

` K

0

2

. From the �rst judgement we have by 5.1 � ` (x:K

1

)K

0

1

, as

required. We apply the inductive hypothesis to the second premise of 5.2 and

obtain a derivation of � ` K

2

(this is why only \retyping" with three premises

is needed.) Now

(5:1)

�; x:K

1

` K

0

2

� ` K

1

= K

2

� ` K

2

�; x:K

2

` K

0

2

� ` (x:K

2

)K

0

2

The weak \retyping" may be eliminated by lemma 11. In other cases weakenings,

substitutions and equality substitutions may appear, but the inductive hypoth-

esis always allows us to derive extra premises and use appropriate lemmas. 2.

Remark 14. The following rule

�; x:K;�

0

` J � ` K = K

0

�; x:K

0

; �

0

` J

is admissible. We shall call it \context-retyping".

The following lemma clari�es the relationship between T[C]

�

and T [C]

=

.

Lemma 15. There is an algorithm that transforms every derivation in T[C]

�

into

a derivation of the same judgement in T [C]

=

, and an inverse algorithm from

T [C]

=

-derivations to T[C]

�

-derivation.

Proof. Theorem 13 is used to obtain the extra premises with their derivations

in the algorithm that transforms T[C]

�

-derivations into T [C]

=

-derivations. The

inverse algorithm cuts o� the extra premises. 2

Theorem 16. There are algorithms that transform every derivation in T[C]into

a derivation of the same judgement in T [C]

=

and T[C]

�

.

Proof is similar to the proof of the previous lemma, using in addition to the

\split-theorem" (which provides extra premises) the elimination lemmas. It also

uses previous lemma. 2

Note, that the reduction above does not change coercion terms at all. Thus,

lemma 4 holds for the whole T[C].

The following lemmas are easy consequences of results above. They hold in

T[C]and its subsystems T [C]

�

and T [C]

=

.

Lemma 17. (a)If � ` (x

1

:K

1

)Q, then � ` K

1

:kind and �; x

1

:K

1

` Q:kind:

(b)If � ` (x

1

:K

1

)Q = (x

1

:K

0

1

)Q

0

then � ` K

1

= K

0

1

�; x

1

:K

1

` Q = Q

0

:

Lemma 18. If � ` [x:A]k:(x:A

0

)K, then �; x:A ` k:K and � ` A = A

0

:kind.

Lemma 19. The coercion terms are unique up to equality in T[C]. If � `

K <

c

1

K

0

, � ` K <

c

2

K

0

derivable in T[C], then � ` c

1

= c

2

:(K)K

0

.

Proof. We may assume that the derivations belong to T[C]

�

. By lemma 8,

� ` K, � ` K

0

. The two judgements are used to derive �; x:K ` valid, �; x:K `

x:K and � ` [y:K

0

]y:(K

0

)K

0

(we assume x; y fresh). Now we add x:K to � in

� ` K <

c

i

K

0

, � ` [y:K

0

]y:(K

0

)K

0

by wkn and apply the coercive de�nition

rule CD to obtain �; x:K ` [y:K

0

]y(c

i

(x)) = ([y:K

0

]y)x:K

0

. Using the �-rule we

derive �; x:K ` c

i

(x) = ([y:K

0

]y)x:K

0

, and, by the symmetry and transitivity of

=, �; x:K ` c

1

(x) = c

2

(x):K

0

. From this, � ` [x:K]c

1

(x) = [x:K]c

2

(x):(K)K

0

.

With help of the �-rule we obtain � ` c

1

= c

2

:(K)K

0

. 2

Theorem 20. If � ` k:K and � ` k:K

0

are derivable in T[C], then � ` K =

K

0

:kind in T[C].

Proof. We may assume that both derivations belong to T[C]

�

. The proof is

by induction on the sum of sizes of derivations using the previous lemma. 2

Remark 21. The proofs of all lemmas and theorems above (except lemma 19)

go through without essential changes if we replace T[C]and T[C]

�

by T [C]

0

and

T [C]

�

0

, T [C]

0K

and T [C]

�

0K

respectively. (We have only to drop some cases.)

Lemma 19 will still be true (with T-equality instead of T[C]-equality), but

its proof has to be changed (see below).

The proof of lemma 19 shows the power of the coercive rules more so than

anything about the nature of T[C]-equality and its relationship to the equality

in T. This provides additional motivation to consider the conservativity issue.

3.4 Elimination of transitivity of subkinding

To prove the following lemmas, we introduce a rank of kinds in such a way,

that rank(El(k)) = 0, rank((x:K

1

)K

2

) = max(rank(K

1

); rank(K

2

)) + 1, and

rank([k=x]K) = rank(k) (the last property holds, because substitution into

kinds will always fall in scope of some El). The lemmas are proved by induction

on rank.

Lemma 22. There is an algorithm that transforms every derivation d of a sub-

kinding judgement � ` K <

c

K

0

in T[C](T [C]

0K

), where d has exactly one appli-

cation of one of =-left (SK:5), =-right (SK:6) into a derivation d

0

of the same

judgement in T[C](T [C]

0K

) which does not contain transitivity rules at all.

Lemma 23. There is an algorithm that transforms every derivation d of a sub-

kinding judgement � ` K <

c

K

0

in T[C](T [C]

0K

), where d has exactly one appli-

cation of SK:7 at the end, into a derivation d

0

of the judgement � ` K <

c

0

K

0

,

and � ` c = c

0

:(K)K

0

in T[C](in T).

Theorem 24. (Elimination of transitivity for subkinding in T [C]

0K

.) a)There

is an algorithm that transforms every derivation of the judgement � ` K <

c

K

0

in T [C]

0K

into a derivation of the judgement � ` K <

c

0

K

0

in the same calculus,

not containing the rules SK:5� 7, and such that � ` c

0

= c:(K)K

0

in T.

b)If � ` K <

c

K

0

and � ` K <

c

0

K

0

in T [C]

0K

, then � ` c

0

= c:(u:K)K

0

in

T.

Proof.a) It is enough to consider the derivations in T [C]

�

0K

. We use induction

on the number of transitivity rules, using previous lemmas.

b) If � ` K <

c

K

0

and � ` K <

c

0

K

0

are derived without transitivity, the

statement follows (by induction on derivations) from coherence conditions. But

every coercion term , by a), is T-equal to the term corresponding to some deriva-

tion without transitivity. 2

The situation in T[C]is complicated by the presence of coercive application

and de�nition rules. Note, that uniqueness of coercion terms (up to T [C]-equality)

is already proved (lemma 19).

Theorem 25. (Elimination of transitivity for subkinding in T [C].) There is an

algorithm that transforms every T [C]-derivation of the judgement � ` J , where

J does not have subkinding form, into a derivation of the same judgement, and

also every derivation of � ` K <

c

K

0

into a derivation of the judgement � `

K <

c

0

K

0

, not containing the rules SK:5 � 7, and such that � ` c

0

= c:(K)K

0

in T[C].

Proof.Wemay consider derivations in T[C]

�

. The proof proceeds by induction

on the number of judgements in the derivation, whose sub-derivation contains

at least one application of transitivity rules SK:5 � 7. We consider the last

rule in the derivation and apply inductive hypothesis to its premises. If this

last rule was itself transitivity, we use afterwards lemma 22 or 23. Of the rest,

only the coercive rules CA.1, CA.2, CD present some di�culties. The inductive

hypothesis guarantees only that the premise � ` K <

c

K

0

will be replaced by

� ` K <

c

0

K

0

with � ` c

0

= c:(K)K

0

. To have in the conclusion a judgement

which is identical to the original one, we derive appropriate equality between

kinds and use 3.1. In case of CD we have to derive also equality between terms

and use 2.6. 2

3.5 Results about coercion completion

The safety of coercions as an abbreviational mechanism relies strongly on the

possibility to insert in some uniform way all the coercions which were omit-

ted (when CA.1, CA.2 and CD were applied). Presumably, a derivation in the

underlying type theory T should be obtained.

Consider an inference of, say, coercive application rule CA:1.

� ` f :(x:K)K

0

� ` k:K

0

� ` K

0

<

c

K

� ` f(k):[c(k)=x]K

0

Assume that there exist some T-derivations of the premises � ` f :(x:K)K

0

and

� ` k:K

0

, and a T [C]

0K

-derivation of � ` K

0

<

c

K. From the T [C]

0K

-derivation

of � ` K

0

<

c

K we obtain by lemma 4 a T-derivation of � ` c:(K

0

)K. Now

we obtain a T-derivation of the judgement � ` f(c(k)):[c(k)=x]K

0

(using the

LF-rules) as follows:

� ` f :(x:K)K

0

� ` c:(K

0

)K � ` k:K

0

� ` c(k):K

(5:1)

� ` f(c(k)):[c(k)=x]K

0

(5:1):

The coercive equality application rule and coercive de�nition rule may be mod-

i�ed in the same way.

This construction suggests an idea of how to de�ne a transformation� on the

whole derivation. We should begin at the top, and move to the bottom replacing

subkinding judgements in the premises of the coercive rules CA.1, CA.2 and CD

by the derivations of their coercion terms, and modifying the rules accordingly.

The intended result is a T-derivation of the judgement forms which are present in

T, and a derivation in its conservative extensions T [C]

0

or T [C]

0K

for subtyping

and subkinding judgements respectively.

This idea will work correctly only if we can guarantee that the premises of all

rules will be matching (at least, up to equality in T). Note, that even the identical

kinds or terms may be modi�ed in di�erent ways in di�erent derivations, since

di�erent coercion terms may be inserted.

For example, if we consider the ordinary application rule

� ` f :(x:K

1

)K

2

� ` k:K

1

� ` f(k):[k=x]K

2

;

and assume that some T[C]-derivations of its premises, say, d

1

; d

2

became the

derivations �(d

1

); �(d

2

) in T of �

0

` f

0

:(x:K

0

1

)K

0

2

and �

00

` k

00

:K

00

1

respectively,

then the corresponding kinds in �

0

and �

00

should be equal in T, and the same

for K

0

1

and K

00

1

. If they are T-equal, we insert the appropriate instances of the

equality rules 3.1, 3.2, of the admissible rule 3.3, and then use the same rule as

in the main derivation.

We say that the transformation� is de�ned for a derivation d if the construc-

tion outlined above can be performed on the whole of d. In order to use technical

results, obtained above, we de�ne it on the class of derivations, including sub-

stitutions, the rules wkn, context� retyping and the rules with extra premises

(they may be eliminated later from the resulting derivation). If a derivation

does not contain coercive rules then � is the identity and the derivation is not

changed. In principle, how a judgement is modi�ed depends on its derivation

and if we have two derivations of the same judgement, then applying � we may

obtain two T-derivations of two di�erent judgements.

We have a proof-sketch of the following results. (The technical details still

have yet to be checked.)

Lemma 26. Let d be a derivation. Assume that one of the lemmas 9, 10, 11, 12

or 8 holds. Let d

0

be obtained from d by the algorithm described in that lemma.

If � is de�ned for d then it is de�ned for d

0

and the �nal judgements of �(d)

and �(d

0

) are equal in T component-wise (i.e., they have the same form, their

contexts have equal length, the kinds of corresponding variables are T -equal and

so on).

Lemma 27. Let d be a derivation of some judgement of the form � ` J . Let

� ` J

0

be one of its presupposed judgements as described in theorem 13, and d

0

be

its derivation, obtained by the corresponding algorithm. If � is de�ned for d then

it is de�ned for d

0

. If �

d

(� ` J) is the �nal judgement of �(d), then the �nal

judgement of �(d

0

) is T -equal component-wise to the corresponding presupposed

judgement of �

d

(� ` J).

Lemma 28. Let d be a derivation. Assume that theorem 16 holds. Let d

0

be

obtained from d by the algorithm described in that theorem. If � is de�ned for d

then it is de�ned for d

0

and the �nal judgements of �(d) and �(d

0

) are equal in

T component-wise.

Theorem 29. The transformation � is de�ned for all derivations in T[C]and if

d; d

0

are derivations of the same judgement � ` J , then the judgements �

d

(� `

J) and �

0

d

(� ` J) are T-equal.

Corollary 30. If � ` K = K

0

in T[C], and � ` K:kind, � ` K

0

:kind in T,

then � ` K = K

0

:kind is derivable in T.

Proof. Applying � to the derivation d of � ` K = K

0

:kind in T[C]and to the

corresponding derivations d

0

; d

00

of the presupposed judgements � ` K:kind and

� ` K

0

:kind, we obtain the T-derivations of �

d

(� ` K = K

0

:kind), �

0

d

(� `

K:kind) and �

00

d

(� ` K

0

). By lemma 27, the corresponding parts of these judge-

ments are T -equal. Let d

0

; d

0

0

be some derivations of � ` K:kind; � ` K

0

:kind.

�

d

0

(� ` K:kind) � � ` K:kind; �

d

0

0

(� ` K

0

:kind) � � ` K

0

:kind

Applying theorem 29 to d

0

; d

0

, d

00

; d

0

0

respectively, and putting together all T -

equalities, we see, that � ` K = K

0

in T. 2

4 A type-checking algorithm and its soundness proof

In this section, we present a type-checking algorithm, which is based on Co-

quand's algorithm described in [Coq91] but uses the notion of typed reduction,

and prove its soundness using the meta-results in section 3.

4.1 The notion of typed reduction

The intended notion of computation for the extended type theory T[C] is the no-

tion of typed reduction, which is is the reexive and transitive closure generated

from the following rules and the computation rules for the original type theory

T.

� ` K

1

� K

2

�; x:K

1

` K

0

1

� K

0

2

� ` (x:K

1

)K

0

1

� (x:K

2

)K

0

2

(�

�

)

� ` K

1

� K

2

�; x:K

1

` k

1

� k

2

: K

� ` [x:K

1

]k

1

� [x:K

2

]k

2

: (x:K

1

)K

(�

�

)

�; x:K ` k

0

: K

0

� ` k : K

� ` ([x:K]k

0

)(k) � [k=x]k

0

: [k=x]K

0

(�

�

)

� ` f : (x:K)K

0

x 62 FV (f)

� ` [x:K]f(x)� f : (x:K)K

0

� ` f � f

0

:(x:K)K

0

� ` k

1

� k

2

:K

0

� ` K

0

<

c

K

� ` f(k

1

) � f

0

(k

2

):[c(k

1

)=x]K

0

� ` f :(x:K)K

0

� ` k

0

:K

0

� ` K

0

<

c

K

� ` f(k

0

) � f(c(k

0

)):[c(k

0

)=x]K

0

(�

c

)

Note that typed reduction is restricted by principal kinding requirements, in

contrast to the usual untyped reduction. For instance, if � ` K

1

<

c

K

2

, then

with untyped reduction, we have

[x:K

1

]([y:K

2

]y)(x) �

�

[x:K

1

]x

[x:K

1

]([y:K

2

]y)(x) �

�

[y:K

2

]y

Hence, there are two di�erent normal forms. With a typed reduction strategy,

neither of the above reductions can be made. For the �rst, x would have to

have kind K

2

and for the second the target of [y:K

2

]y would have to be K

1

. In

fact, with the typed reduction strategy the above reduction steps would not be

admissible, but what we can do is the following:

[x:K

1

]([y:K

2

]y)(x) �

c

[x:K

1

]([y:K

2

]y)(c(x))

�

�

[x:K

1

]c(x)

�

�

c

4.2 Type-checking

In type-checkers such as LEGO ([LP92]) and Coq ([H

+

96]) type-checking is

based upon the methods described in [Hue89]. The main thrust here is placed on

a conversion algorithm as it is the most tricky part of type-checking. Conversion

in these systems is tested by reducing both terms to a head normal form and then

by recursively checking the structure of both head normal forms. It is important

to note here that this method gives us a reduction strategy (outward reductions

are performed �rst) and that both reduction and conversion are untyped. This

then gives us a rather e�cient method of type-checking.

Our algorithm is based on Coquand's algorithm described in [Coq91] which

deals with ��-conversion. The method of checking whether two terms are con-

vertible here is to reduce both to an unkinded �-weak head-normal form (whnf).

The structures of the whnfs are then compared and if the terms are of the form

�x:M and N , then M and N:x are tested, thus checking for �-conversion.

In the presence of coercive subtyping, an unkinded algorithm leads away from

uniqueness of normal forms as demonstrated in the example above and thus our

algorithm is partially kinded. Kinding information is always checked before an

attempt at either �, � or c-conversion and also when we want to return a weak

head-normal form (whnf) of an arbitrary term. Kinds are not checked when

we are dealing with the conversion of two terms and recursively checking their

syntactic structure. Any less kinding makes the proof of soundness very di�cult

and any more kinding makes the proof of completeness more di�cult. The proof

of completeness is still an open problem

The structure of the algorithm The algorithm is divided mainly into the

nine separate functions listed below, given that C is the graph of coercions and

� is the current context:

{ valid

C

(�) is the predicate that checks to see if � is a valid context,

{ whnf

C

�

(k) computes the �; c-weak head-normal form of k,

{ conv

C

�

(k

1

; k

2

) checks whether k

1

and k

2

are equal objects of some kind K or

of kind itself.

{ kcheck

C

�

(k;K) checks whether k is an object of kind K in � .

{ kinfer

C

�

(k) computes a kind of k,

{ iskind

C

�

(K) returns true i� kinfer

C

�

(K) � kind.

{ subkind

C

�

(K;K

0

) checks to see if K is a proper subkind of K

0

with some

coercion c.

{ coercion

C

�

(K;K

0

) computes the coercion above coercion c if the subkinding

predicate holds. Its behaviour is unde�ned otherwise.

In the rest of this section we give more detailed description of the main

functions used in the algorithm. It is to be understood that for each part of the

algorithm the cases are to be tried sequentially until a suitable case is found. If

no such case is found, then the algorithm returns either false or failure.

Substitution Substitution is taken as a syntactic operation on terms.

Adding new free variables

1.

valid

C

(hi)

2.

valid

C

(�) iskind

C

�

(A) x =2 FV (�)

valid

C

(�; x:A)

Note that in everything to follow it is assumed that all contexts are valid.

Weak Head-Normal Form

1.

whnf

C

�

(f) � [x:A]f

0

kinfer

C

�

(f) � (x:A)B

kinfer

C

�

(k) � K conv

C

�

(A;K)

whnf

C

�;x:A

([k=x]f

0

) � k

0

whnf

C

�

(f(k)) � k

0

2.

kinfer

C

�

(f) � (x:A)B kinfer

C

�

(k) � K

subkind

C

�

(K;A) coercion

C

�

(K;A) � c

whnf

C

�

(f(c(k))) � k

0

whnf

C

�

(f(k)) � k

0

3.

kinfer

C

�

(k) � K

whnf

C

�

(k) � k

Note that the above case is only tried if the �rst two fail. This means that

it covers every other possible case such as product kinds and the constant type.

The premise of the above case means that only well-typed terms have a whnf.

Thus, in particular, kind does not have a whnf.

Conversion Note that the conversion relation is de�ned so that it is obviously

symmetric.

1.

whnf

C

�

(m) � Type whnf

C

�

(n) � Type

conv

C

�

(m;n)

2.

whnf

C

�

(m) � x whnf

C

�

(n) � x

conv

C

�

(m;n)

3.

whnf

C

�

(m) � El(A) whnf

C

�

(n) � El(B)

conv

C

�

(A;B)

conv

C

�

(m;n)

4.

whnf

C

�

(m) � (x:A)B whnf

C

�

(n) � (x:A

0

)B

0

conv

C

�;x:A

(B;B

0

) conv

C

�;x:A

0

(B;B

0

)

conv

C

�

(A;A

0

)

conv

C

�

(m;n)

5.

whnf

C

�

(m) � [x:A]k whnf

C

�

(n) � [x:A

0

]k

0

conv

C

�;x:A

(k; k

0

) conv

C

�;x:A

0

(k; k

0

)

conv

C

�

(A;A

0

)

conv

C

�

(m;n)

6.

whnf

C

�

(m) � f(k) whnf

C

�

(n) � f

0

(k

0

)

kinfer

C

�

(f) � (x:A)B kcheck

C

�

(f

0

; (x:A)B)

kcheck

C

�

(k;A) kcheck

C

�

(k

0

; A)

conv

C

�

(f; f

0

) conv

C

�

(k; k

0

)

conv

C

�

(m;n)

7.

whnf

C

�

(m) � [x:A]k whnf

C

�

(n) � n

0

kinfer

C

�

(m) � (x:A)K kcheck

C

�

(n; (x:A)K)

conv

C

�;x:A

(k; n

0

(x))

conv

C

�

(m;n)

8.

whnf

C

�

(m) � m

0

whnf

C

�

(n) � [x:A]k

kinfer

C

�

(n) � (x:A)K kcheck

C

�

(m; (x:A)K)

conv

C

�;x:A

(k;m

0

(x))

conv

C

�

(m;n)

Kind checking

1.

kinfer

C

�

(k) � K

0

iskind

C

�

(K)

conv

C

�

(K;K

0

)

kcheck

C

�

(k;K)

if K 6� kind,

2.

iskind

C

�

(K)

kcheck

C

�

(K;kind)

Kind Inference

1.

valid

C

(�)

kinfer

C

�

(x) � � (x)

2.

kinfer

C

�;x:A

(k) � B

kinfer

C

�

([x:A]k) � (x:A)B

3.

iskind

C

�;x:A

(B)

kinfer

C

�

((x:A)B) � kind

4.

kinfer

C

�

(f) � (x:A)B kinfer

C

�

(k) � K

conv

C

�

(K;A)

kinfer

C

�

(f(k)) � [k=x]B

5.

kinfer

C

�

(f) � (x:A)B kinfer

C

�

(k) � K

subkind

C

�

(K;A) coercion

C

�

(K;A) � c

kinfer

C

�

(f(k)) � [c(k)=x]B

6. kinfer

C

�

(Type) � kind

7.

kinfer

C

�

(A) � Type

kinfer

C

�

(El(A)) � kind

Checking for Kinds

1.

kinfer

C

�

(K) � kind

iskind

C

�

(K)

The subkinding relation

1.

kcheck

C

�

(A;Type) kcheck

C

�

(B;Type)

kcheck

C

�

(c; (x:El(A))El(B)) (A; c;B) 2 C

�

subkind

C

�

(El(A); El(B))

coercion

C

�

(El(A); El(B)) � c

2.

iskind

C

�;x:K

1

(K

2

) subkind

C

�

(K

0

1

;K

1

)

subkind

C

�;x:K

1

([x=K

2

];K

0

2

) coercion

C

�

(K

0

1

;K

1

) � c

1

coercion

C

�;x:K

1

(K

2

;K

0

2

) � c

2

subkind

C

�

((x:K

1

)K

2

; (x:K

0

1

)K

0

2

)

coercion

C

�

((x:K

1

)K

2

; (x:K

0

1

)K

0

2

) � [f :(x:K

1

)K

2

][x:K

0

1

]c

2

(f(c

1

(x)))

3.

iskind

C

�;x:K

1

(K

2

) subkind

C

�

(K

0

1

;K

1

)

conv

C

�;x:K

1

([x=K

2

];K

0

2

) coercion

C

�

(K

0

1

;K

1

) � c

1

subkind

C

�

((x:K

1

)K

2

; (x:K

0

1

)K

0

2

)

coercion

C

�

((x:K

1

)K

2

; (x:K

0

1

)K

0

2

) � [f :(x:K

1

)K

2

][x:K

0

1

]f(c

1

(x))

4.

iskind

C

�

(K

2

) conv

C

�

(K

0

1

;K

1

)

subkind

C

�;x:K

1

(K

2

;K

0

2

) coercion

C

�;x:K

1

(K

2

;K

0

2

) � c

2

subkind

C

�

((x:K

1

)K

2

; (x:K

0

1

)K

0

2

)

coercion

C

�

((x:K

1

)K

2

; (x:K

0

1

)K

0

2

) � [f :(x:K

1

)K

2

][x:K

0

1

]c

2

(f(x))

4.3 Soundness of the algorithm

The algorithm presented above is sound.

Theorem 31. The following hold:

1. If valid

C

(�), then � ` valid,

2. If � ` k:K and whnf

C

�

(k) � k

0

, then � ` k = k

0

:K,

3. If � ` k:K, � ` k

0

:K and conv

C

�

(k; k

0

), then � ` k = k

0

:K,

4. If kcheck

C

�

(k;K), then � ` k:K,

5. If kinfer

C

�

(k) � K, then � ` k:K,

6. If iskind

C

�

(K), then � ` K:kind,

7. If subkind

C

�

(K;K

0

) and coercion

C

�

(K;K

0

) � c, then � ` K <

c

K

0

.

Proof : The proof is by induction on derivations of the algorithm. Only the

more complex cases are described below.

(whnf.1) Assume � ` f(k):K

�

. Also assume:

whnf

C

�

(f) � [x:A]f

0

kinfer

C

�

(f) � (x:A)B

kinfer

C

�

(k) � K conv

C

�

(A;K)

whnf

C

�

([k=x]f

0

) � k

0

By the I.H. we get both � ` k:K and � ` f :(x:A)B and so, by Theorem 13,

� ` (x:A)B:kind and then, by Lemma 17, � ` A:kind. Therefore, we can

use the I.H. to get:

� ` f = f :[x:A

0

]f

0

:(x:A)B � ` A = K:kind

We can then use the Split Lemma to show � ` [x:A]f

0

:(x:A)B and so

Lemma 18 gives us �; x:A ` f

0

:B. Then the I.H. gives us:

�; x:A ` [k=x]f

0

= k

0

:[k=x]B

and the result soon follows using the (�)-rule.

(conv.5) This result follows if we use the admissible rule

� ` K = K

0

:kind �; x:K ` J

�; x:K

0

` J

(conv.7) This rule follows similarly, using the I.H, the (�)-rule and Theorem 20.

Corollary 32. The following are also true.

1. If kcheck

C

�

(k;K) and whnf

C

�

(k) � k

0

, then � ` k = k

0

:K,

2. If kcheck

C

�

(k;K), kcheck

C

�

(k

0

;K) and conv

C

�

(k; k

0

), then � ` k = k

0

:K,

Proof: Immediate, using Theorem 31.

5 Conclusion and related work

Reported here is the development of some basic but important meta-theoretic

properties of the framework with coercive subtyping and a sound type-checking

algorithm for coercive subtyping. The presentation of the framework in this

paper also allows us to showmore clearly what sort of connection there is between

subtyping and coherence problems. Such a connection for subtyping in the second

order lambda-calculus (system F) was investigated in [LMS95,LMS], where the

importance of cut-elimination (ie, elimination of transitivity) is shown to be of

particular importance. This is also the case in our work reported here.

Traditional meta-theoretic studies on dependent type theories have mostly

been considered for type systems with an underlying conversion relation (e.g., the

presentation of Pure Type Systems) rather than those with equality judgements

(e.g., the presentation of Martin-L�of's type theory and that used for coercive

subtyping in this paper). The relationship between these two kinds of presen-

tations of type theories has been a subtle and di�cult problem. Coquand in

[Coq91] deals with this problem and Goguen in his PhD thesis [Gog94] has de-

veloped a theory of typed operational semantics for the meta-theory of type

theory. The approach in this paper is to develop the meta-theory of coercive

subtyping by studying the system with judgemental equality directly and try, as

far as we can, to separate the meta-theory of the LF with subtyping (at the kind

level) from that of the underlying type theory. This is reected in our treatment

and presentation of the meta-theoretic results in this paper. For example, the

existence of the coercion insertion map (Theorem 29) is an important factor that

allows important computational properties of the extended system to be studied

independently from the underlying type theory. In other words, many results

can take the form that `if the underlying type theory T has properties that ...,

then T[C] has the property that ...'. The results in this paper has laid down a

basis for such a development.

The type-checking algorithm presented here uses the notion of typed reduc-

tion, rather than the untyped reduction. We have explained why this is the case

by considering an example in Section 4.1. However, this example also suggests

that there is a possibility to study more e�cient reduction strategies for coercive

subtyping. Notice that the following three judgements can be derived:

� ` [x:K

1

]([y:K

2

]y)(x):(K

1

)K

2

� ` [x:K

1

]x:(K

1

)K

1

� ` [y:K

2

]y:(K

2

)K

2

Now � ` (K

1

)K

1

<

c

A (K

1

)K

2

and � ` (K

2

)K

2

<

c

B (K

1

)K

2

where

c

A

� [f :(x:K

1

)A][x:K

1

]c(f(x))

c

B

� [f :(x:K

2

)B][x:K

1

]f(c(x)):

It can then be shown that c

A

([x:K

1

]x) and c

B

([y:K

2

]y) are convertible. We hope

that some generalisation of this example will lead to a strategy that requires a

lot less typing. The consideration of the fully typed algorithm in this paper is

a necessary step towards further study of, for example, more e�cient reduction

strategies.

A lot of work has been presented already on subtyping. People such as

Cardelli ([Car88,Car89]) and Aspinall and Compagnoni ([AC96]) present systems

with subtyping that do not use coercions. Bailey [Bai96] and Saibi [Sai97] have

already implemented coercive subtyping into current proof assistant programs

as notational abbreviations. Our approach should lead to better understanding

of such implementations and possibly better implementation of type-checking

algorithms.

References

[AC96] D. Aspinall and A. Compagnoni. Subtyping dependent types. Proc. of

LICS96, 1996.

[Bai93] Anthony Bailey. Representing algebra in LEGO. Master's thesis, Department

of Computer Science, University of Edinburgh, 1993.

[Bai96] A. Bailey. Lego with implicit coercions. 1996. Draft.

[Car88] L. Cardelli. Type-checking dependent types and subtypes. Lecture Notes in

Computer Science, 306, 1988.

[Car89] L. Cardelli. Typeful programming. Lecture notes for the IFIP State of the

Art Seminar on Formal Description of Programming Concepts, Rio de Janeiro,

Brazil, 1989.

[Coq91] Th. Coquand. An algorithm for testing conversion in Type Theory. In G. Huet

and G. Plotkin, editors, Logical Frameworks. Cambridge University Press,

1991.

[Gog94] H. Goguen. A Typed Operational Semantics for Type Theory. PhD thesis,

University of Edinburgh, 1994.

[H

+

96] G. Huet et al. The Coq Proof Assistant Reference Manual. INRIA-

Rocquencourt, February 1996.

[Hue89] G�erard Huet. The constructive engine. In R. Narasimhan, editor, A Per-

spective in Theoretical Computer Science. World Scienti�c Publishing, 1989.

Commemorative Volume for Gift Siromoney.

[Jon95] Alex Jones. The formalization of linear algebra in LEGO: The decidable

dependency theorem. Master's thesis, Department of Mathematics, University

of Manchester, 1995.

[LMS] Giuseppe Longo, Kathleen Milsted, and Sergei Soloviev. Coherence and tran-

sitivity of subtyping as entailment. To appear in Journal of Logic and Com-

putation.

[LMS95] G. Longo, K. Milsted, and S. Soloviev. A logic of subtyping. In Proc. of

LICS'95, 1995.

[LP92] Zhaohui Luo and Robert Pollack. LEGO proof development system: User's

manual. Technical Report LFCS Report ECS-LFCS-92-211, Department of

Computer Science, University of Edinburgh, 1992.

[Luo93] Z. Luo. Program speci�cation and data re�nement in type theory. Mathemat-

ical Structures in Computer Science, 3(3), 1993.

[Luo94] Z. Luo. Computation and Reasoning: A Type Theory for Computer Science.

Oxford University Press, 1994.

[Luo96] Z. Luo. Coercive subtyping in type theory. Proc. of CSL'96, the 1996 Annual

Conference of the European Association for Computer Science Logic, Utrecht.

LNCS 1258, 1996.

[Luo97] Z Luo. Coercive suptyping. Draft submitted for publication, 1997.

[NPS90] B. Nordstr�om, K. Petersson, and J. Smith. Programming in Martin-L�of's

Type Theory: An Introduction. Oxford University Press, 1990.

[Sai97] A. Saibi. Typing algorithm in type theory with inheritance. Proc of POPL'97,

1997.

