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Bounded quantification

Definition (Bounded Quantification)
A form of (universal or existential) quantifier which quantifies over
subtypes of a given type.

_(X ≤ B).M

Bounded quantification is a desirable concept in the design of type
theories and programming languages.

- Structural subtyping: Σ(x : A ).P (x) ≤ A

- Record types: {name : String, age : Nat} ≤ {name : String}
- Type Conversions:

f : Float → Float, x : Int16, Int16 ≤c Float ⊢ f (x) = f (c (x)) : Float

But certain choices of subtyping rules can cause problems.

- Benjamin Pierce showed that F≤ had undecidable subtyping and
undecidable type checking [Pie92; CP94]
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What is a power type?

Cardelli introduced the notion of power types for subsumptive subtyping -
the universe of subtypes of a given type [Car88].

A ≤ B as shorthand for A : Power(B)

_(X ≤ A ).M def
= _(X : Power(A )).M

- Cardelli was interested in programming language design

- His proposed type theory included an impredicative universe of all
types

- Great for programming, problematic for nice metatheory
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Metatheory of power types

- Aspinall reformulated Cardelli’s ideas on power types into a
predicative typed lambda calculus _Power [Asp00].

- Aspinall developed a ‘rough type’-checking algorithm, and proved the
system was strongly normalising...

- ...but was unable to prove a inversion lemma/generation principle.

- The metatheory of subtyping has an inherent difficulty: transitivity
[AC96; Com04; Hut09].

Γ ⊢A ≤ B Γ ⊢B ≤ C

Γ ⊢A ≤ C
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What is subtyping?

What is a subtype? For types A and B, what does it mean for A to be a
subtype of B?

Definition (Subsumptive Subtyping)
If A is a subtype of B, then any object of type A is also an object of type B.

Γ ⊢ a : A Γ ⊢A ≤ B

Γ ⊢ a : B
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Subsumptive subtyping

Advantages:

- Extremely simple

- Closely linked to set-theoretic intuition

- Good for programming languages

Disadvantages:

- Canonicity of objects fails [Luo12]

- Unclear if extending the type theory with new subtyping rules is
conservative

- Questions of decidable subtyping, type checking, minimal types
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What is subtyping?

Definition (Coercive Subtyping)
Intuition: If A is a subtype of B, then whenever we require an object of
type B, it is sufficient to provide an object of type A .

Γ ⊢ a : A Γ ⊢ f : Π(x : B).C Γ ⊢A ≤c B

Γ ⊢ f (a) : C [c (a)/x]

Γ ⊢ a : A Γ ⊢ f : Π(x : B).C Γ ⊢A ≤c B

Γ ⊢ f (a) = f (c (a)) : C [c (a)/x]
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Coercive subtyping

Advantages:

Well-behaved metatheory; adding any coherent subtyping rule is a
conservative extension [LSX13]

Canonicity of objects is preserved

Ideal for logical type theories and proof assistants

Disadvantages:

More complex compared to subsumptive subtyping

Need two-step reduction - first insert coercions, then perform
standard reduction

Checking the coherency of subtyping rules is non-trivial

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



9/28

Coercive subtyping

Advantages:

Well-behaved metatheory; adding any coherent subtyping rule is a
conservative extension [LSX13]

Canonicity of objects is preserved

Ideal for logical type theories and proof assistants

Disadvantages:

More complex compared to subsumptive subtyping

Need two-step reduction - first insert coercions, then perform
standard reduction

Checking the coherency of subtyping rules is non-trivial

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



10/28

Unifying Theory of dependent Types

- Zhaohui Luo’s UTT is a well-studied type theory with nice
metatheoretical properties [Luo94; Gog94]

- UTT’s extension with coercive subtyping (UTT[C]) has been proven
to be conservative [Luo97; LSX13].

Harry Maclean and Zhaohui Luo introduced subtype universes -
predicative universes of subtypes for coercive subtyping - formulated as an
extension of UTT[C] [ML21].

A ≤c B ⊢ a : U(B) where T(a) = A

This extended type theory UTT[C]U embeds back into UTT[C].
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Subtype Universes

However, they only proved that UTT[C]U were strongly normalising when
the set of subtyping relations were ‘nice’.

1) Subtyping relations can’t use subtype universes.

2) Subtyping relations can’t use propositions.

3) A type cannot inhabit a universe smaller than the universes its
subtypes inhabit.

Does this matter?
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Subtype Universes

Example
For a given type B, consider the type of pointed subtypes of B given by

Σ(x : U(B)).𝜎1(x)

Intuitively, this should be a subtype of B. Define

f def
= _(p : Σ(x : U(B)).𝜎1(x)).𝜎2(𝜋1(p)) (𝜋2(p))

Then
Σ(x : U(B)).𝜎1(x) ≤f B

is a coherent subtyping relation (in the sense of [LSX13]).

However, this subtyping relation contains a subtype universe U(B) on the
LHS, and so we can’t use this relation in Maclean and Luo’s system.
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Generalising Subtype Universes

We consider a base type theory 𝜏 with an impredicative universe of
propositions, inductive type constructors, Π types and Σ types, and
coercive subtyping given by a collection of coherent subtyping rules C.

Key idea: Objects of a subtype universe should also hold information
about the coercion.

Γ ⊢B type

Γ ⊢U(B) type
Γ ⊢A ≤c B

Γ ⊢⟨A , c⟩ : U(B)

Γ ⊢B type Γ ⊢ t : U(B)
Γ ⊢𝜎1(t) type

Γ ⊢B type Γ ⊢⟨A , c⟩ : U(B)
Γ ⊢𝜎1(⟨A , c⟩) = A

Γ ⊢B type Γ ⊢ t : U(B)
Γ ⊢𝜎2(t) : 𝜎1(t) → B

Γ ⊢B type Γ ⊢⟨A , c⟩ : U(B)
Γ ⊢𝜎2(⟨A , c⟩) = c : A → B
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Generalising Subtype Universes

We consider a base type theory 𝜏 with an impredicative universe of
propositions, inductive type constructors, Π types and Σ types, and
coercive subtyping given by a collection of coherent subtyping rules C.
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Generalising Subtype Universes

Example (Subtype Universes on the RHS)
We define a type family of ordinals

O (n) def
= Σ(x : N).(x < n)

and add in the subtyping rule allowing us to take any object of one of these
types as a natural number.

n : N ⊢O (n) ≤𝜋1 N

However, we may also want to interpret a natural number as one of these
ordinal types. So we also introduce the subtyping relation

N ≤_(n:N) .⟨O (n) , 𝜋1 ⟩ U(N)

This is a coherent subtyping relation (in the sense of [LSX13]).
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Monotonic Subtyping

Definition (Level of a Type)
For a given context Γ, define LΓ such that

- LΓ (1),LΓ (Prop),LΓ (N), ... = 0

- LΓ (Π(x : A ).B),LΓ (Σ(x : A ).B), ... = max
x:A

{LΓ (A ),LΓ (B [x])}

- LΓ (U(B)) = LΓ (B) + 1

Definition (Monotonicity)
A subtyping judgement A ≤ B is monotonic if LΓ (A ) ≤ LΓ (B).
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Metatheory for monotonic subtyping

We start by analysing the case where the collection of subtyping rules C is
entirely monotonic.

We construct an embedding 𝛿 : 𝜏 → UTT[C] defined inductively over
terms of 𝜏.

𝛿(U(B)) def
= Σ(X : TypeLΓ (B ) ).(X → 𝛿(B))

𝛿(⟨A , c⟩) def
= (nLΓ (B ) (𝛿(A )), 𝛿(c))
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Metatheory for monotonic subtyping

Lemma
If Γ ⊢A type, then there exists some term n in UTT[𝛿(C)] such that the
following hold:

- 𝛿(Γ) ⊢ 𝛿(A ) : Type

- 𝛿(Γ) ⊢ n : TypeLΓ (A )
- TLΓ (A ) (n) = 𝛿(A )

Lemma
The rules of 𝜏 under translation via 𝛿 are admissible in UTT[𝛿(C)].

Proof.
Arduous. □
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Metatheory for monotonic subtyping

Theorem (Logical Consistency for Monotonic Subtyping)
𝜏 is logically consistent, i.e. there is no Γ such that Γ ⊢ p : ∀(P : Prop).P

Theorem (Strong Normalisation for Monotonic Subtyping)
𝜏 is strongly normalising, i.e. if Γ ⊢M : A then every possible sequence of
reductions of M is finite.

Remark (Decidability of Typing and Subtyping)
As 𝛿 is injective, we can type-check any given term M in 𝜏 by
type-checking 𝛿(M) in UTT[𝛿(C)].
Likewise, we can decide if Γ ⊢A ≤ B by looking at a term t which is
typable if and only if A ≤ B is derivable, e.g. _(f : B → N)._(a : A ).f (a)
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Metatheory for nonmonotonic subtyping

How should we go about nonmonotonic subtyping?

Our first idea: We should be able to insert coercions to ‘reduce’ a system
with a nonmonotonic subtyping relation to one without that relation.

In systems without subtype universes, extending with new subtyping rules
is conservative.

Traditional proofs for coercive subtyping formalise the two-step reduction -
insert coercions, then reduce as normal.
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Metatheory for nonmonotonic subtyping

Every subtype universe U(B) contains the term ⟨B , id⟩.

Solution idea: Modify the reduction method to also send each
⟨A , c⟩ : U(B) to ⟨B , idB⟩ : U(B).

- Terms depending on types, e.g. f : Π(x : U(B)).M
✓ OK because f (⟨B , idB⟩) is defined

- Types depending on terms, e.g. Σ(x : U).(x = ⟨A , c⟩)
Uhh...
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Metatheory for k -monotonic subtyping

What if we only look at subtyping relations where there is a bound on how
‘problematic’ it is?

Definition (k -Monotonicity)
A subtyping rule Γ ⊢A ≤ B is k-monotonic if ∀Γ,LΓ (B) − LΓ (A ) ≥ −k .

Moreover, a set of subtyping rules C is k -monotonic if every rule R ∈ C is
k -monotonic.

Remark
A subtyping rule is monotonic iff it is 0-monotonic.
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Metatheory for k -monotonic subtyping

Example
For a given type B, recall the type of pointed subtypes of B

Σ(x : U(B)).𝜎1(x) ≤f B .

Note that ∀Γ,

LΓ (B) − LΓ (Σ(x : U(B)).𝜎1(x)) = min(−1,−LΓ (𝜎1(x)))

and so as long as we choose the subtype relations involving B on the RHS
sensibly, we can have some k such that this subtyping relation is
k -monotonic.
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Metatheory for k -monotonic subtyping

We modify our embedding 𝛿 : 𝜏 → UTT[C] to be correct when C is
k -monotonic.

𝛿(U(B)) def
= Σ(X : Typek+LΓ (B ) ).(X → 𝛿(B))

𝛿(⟨A , c⟩) def
= (nk+LΓ (B ) (𝛿(A )), 𝛿(c))

Theorem (Logical Consistency for k -monotonic Subtyping)
𝜏 is logically consistent, i.e. there is no Γ such that Γ ⊢ p : ∀(P : Prop).P

Theorem (Strong Normalisation for k -monotonic Subtyping)
𝜏 is strongly normalising, i.e. if Γ ⊢M : A then every possible sequence of
reductions of M is finite.
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Conclusion

Summary:

- Generalised subtype universes to be able to express new subtyping
relations

- Strong normalisation and logical consistency for monotonic and
k -monotonic subtyping

- Decidability of type-checking, minimal types, and the subtype relation

Open questions/future work:

- Results for non-monotonic subtyping?

- What does subtyping mean between propositions?

- Formalisation of subtype universes in a proof assistant?

Thank you for listening!

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



24/28

Conclusion

Summary:

- Generalised subtype universes to be able to express new subtyping
relations

- Strong normalisation and logical consistency for monotonic and
k -monotonic subtyping

- Decidability of type-checking, minimal types, and the subtype relation

Open questions/future work:

- Results for non-monotonic subtyping?

- What does subtyping mean between propositions?

- Formalisation of subtype universes in a proof assistant?

Thank you for listening!

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



24/28

Conclusion

Summary:

- Generalised subtype universes to be able to express new subtyping
relations

- Strong normalisation and logical consistency for monotonic and
k -monotonic subtyping

- Decidability of type-checking, minimal types, and the subtype relation

Open questions/future work:

- Results for non-monotonic subtyping?

- What does subtyping mean between propositions?

- Formalisation of subtype universes in a proof assistant?

Thank you for listening!

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



24/28

Conclusion

Summary:

- Generalised subtype universes to be able to express new subtyping
relations

- Strong normalisation and logical consistency for monotonic and
k -monotonic subtyping

- Decidability of type-checking, minimal types, and the subtype relation

Open questions/future work:

- Results for non-monotonic subtyping?

- What does subtyping mean between propositions?

- Formalisation of subtype universes in a proof assistant?

Thank you for listening!

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



24/28

Conclusion

Summary:

- Generalised subtype universes to be able to express new subtyping
relations

- Strong normalisation and logical consistency for monotonic and
k -monotonic subtyping

- Decidability of type-checking, minimal types, and the subtype relation

Open questions/future work:

- Results for non-monotonic subtyping?

- What does subtyping mean between propositions?

- Formalisation of subtype universes in a proof assistant?

Thank you for listening!

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



24/28

Conclusion

Summary:

- Generalised subtype universes to be able to express new subtyping
relations

- Strong normalisation and logical consistency for monotonic and
k -monotonic subtyping

- Decidability of type-checking, minimal types, and the subtype relation

Open questions/future work:

- Results for non-monotonic subtyping?

- What does subtyping mean between propositions?

- Formalisation of subtype universes in a proof assistant?

Thank you for listening!

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



25/28

References I

[AC96] David Aspinall and Adriana Compagnoni. “Subtyping dependent
types”. In: Proceedings 11th Annual IEEE Symposium on Logic in
Computer Science. 1996, pp. 86–97. doi:
10.1109/LICS.1996.561307.

[Asp00] David Aspinall. “Subtyping with Power Types”. In: Computer Science
Logic. Ed. by Peter G. Clote and Helmut Schwichtenberg. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2000, pp. 156–171. isbn:
978-3-540-44622-4.

[Car88] Luca Cardelli. “Structural Subtyping and the Notion of Power Type”.
In: Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. POPL ’88. San Diego,
California, USA: Association for Computing Machinery, 1988,
pp. 70–79. isbn: 0897912527. doi: 10.1145/73560.73566. url:
https://doi.org/10.1145/73560.73566.

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023

https://doi.org/10.1109/LICS.1996.561307
https://doi.org/10.1145/73560.73566
https://doi.org/10.1145/73560.73566


26/28

References II

[Com04] Adriana Compagnoni. “Higher-order subtyping and its decidability”.
In: Information and Computation 191.1 (2004), pp. 41–103. issn:
0890-5401. doi: https://doi.org/10.1016/j.ic.2004.01.001.
url: https://www.sciencedirect.com/science/article/pii/
S0890540104000094.

[CP94] Giuseppe Castagna and Benjamin C. Pierce. “Decidable Bounded
Quantification”. In: Proceedings of the 21st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. POPL ’94.
Portland, Oregon, USA: Association for Computing Machinery, 1994,
pp. 151–162. isbn: 0897916360. doi: 10.1145/174675.177844. url:
https://doi.org/10.1145/174675.177844.

[Gog94] Healfdene Goguen. “A Typed Operational Semantics for Type
Theory”. University of Edinburgh, 1994.

[Hut09] DeLesley S. Hutchins. “Pure Subtype Systems: A Type Theory for
Extensible Software”. University of Edinburgh, 2009.

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023

https://doi.org/https://doi.org/10.1016/j.ic.2004.01.001
https://www.sciencedirect.com/science/article/pii/S0890540104000094
https://www.sciencedirect.com/science/article/pii/S0890540104000094
https://doi.org/10.1145/174675.177844
https://doi.org/10.1145/174675.177844


27/28

References III

[LSX13] Zhaohui Luo, Sergey Soloviev, and Tao Xue. “Coercive subtyping:
Theory and implementation”. In: Information and Computation 223
(2013), pp. 18–42. issn: 0890-5401. doi:
10.1016/j.ic.2012.10.020. url: https://www.sciencedirect.
com/science/article/pii/S0890540112001757.

[Luo12] Zhaohui Luo. Notes on Universes in Type Theory. 2012. url:
https://www.cs.rhul.ac.uk/home/zhaohui/universes.pdf.

[Luo94] Zhaohui Luo. Computation and Reasoning: A Type Theory for
Computer Science. London: Oxford University Press, Mar. 1994. isbn:
9780198538356.

[Luo97] Zhaohui Luo. “Coercive subtyping in type theory”. In: Computer
Science Logic. Ed. by Dirk van Dalen and Marc Bezem. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1997, pp. 275–296. isbn:
978-3-540-69201-0.

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023

https://doi.org/10.1016/j.ic.2012.10.020
https://www.sciencedirect.com/science/article/pii/S0890540112001757
https://www.sciencedirect.com/science/article/pii/S0890540112001757
https://www.cs.rhul.ac.uk/home/zhaohui/universes.pdf


28/28

References IV

[ML21] Harry Maclean and Zhaohui Luo. “Subtype Universes”. In: 26th
International Conference on Types for Proofs and Programs (TYPES
2020). Ed. by Ugo de’Liguoro, Stefano Berardi, and
Thorsten Altenkirch. Vol. 188. Leibniz International Proceedings in
Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2021, 9:1–9:16. isbn:
978-3-95977-182-5. doi: 10.4230/LIPIcs.TYPES.2020.9. url:
https://drops.dagstuhl.de/opus/volltexte/2021/13888.

[Pie92] Benjamin C. Pierce. “Bounded Quantification is Undecidable”. In:
Proceedings of the 19th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. POPL ’92. Albuquerque, New
Mexico, USA: Association for Computing Machinery, 1992,
pp. 305–315. isbn: 0897914538. doi: 10.1145/143165.143228. url:
https://doi.org/10.1145/143165.143228.

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023

https://doi.org/10.4230/LIPIcs.TYPES.2020.9
https://drops.dagstuhl.de/opus/volltexte/2021/13888
https://doi.org/10.1145/143165.143228
https://doi.org/10.1145/143165.143228

	Background and Motivations
	Subtype Universes
	Our Results
	Conclusion
	References

