
1/28

On the Metatheory of Subtype Universes

Felix Bradley Zhaohui Luo

Department of Computer Science
Royal Holloway, University of London

14th June 2023

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



2/28

Presentation Overview

1 Background and Motivations

2 Subtype Universes

3 Our Results

4 Conclusion

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



3/28

Bounded quantification

Definition (Bounded Quantification)
A form of (universal or existential) quantifier which quantifies over
subtypes of a given type.

_(X ≤ B).M

Bounded quantification is a desirable concept in the design of type
theories and programming languages.

- Structural subtyping: Σ(x : A ).P (x) ≤ A

- Record types: {name : String, age : Nat} ≤ {name : String}
- Type Conversions:

f : Float → Float, x : Int16, Int16 ≤c Float ⊢ f (x) = f (c (x)) : Float

But certain choices of subtyping rules can cause problems.

- Benjamin Pierce showed that F≤ had undecidable subtyping and
undecidable type checking [Pie92; CP94]

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



3/28

Bounded quantification

Definition (Bounded Quantification)
A form of (universal or existential) quantifier which quantifies over
subtypes of a given type.

_(X ≤ B).M

Bounded quantification is a desirable concept in the design of type
theories and programming languages.

- Structural subtyping: Σ(x : A ).P (x) ≤ A

- Record types: {name : String, age : Nat} ≤ {name : String}
- Type Conversions:

f : Float → Float, x : Int16, Int16 ≤c Float ⊢ f (x) = f (c (x)) : Float

But certain choices of subtyping rules can cause problems.

- Benjamin Pierce showed that F≤ had undecidable subtyping and
undecidable type checking [Pie92; CP94]

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



3/28

Bounded quantification

Definition (Bounded Quantification)
A form of (universal or existential) quantifier which quantifies over
subtypes of a given type.

_(X ≤ B).M

Bounded quantification is a desirable concept in the design of type
theories and programming languages.

- Structural subtyping: Σ(x : A ).P (x) ≤ A

- Record types: {name : String, age : Nat} ≤ {name : String}
- Type Conversions:

f : Float → Float, x : Int16, Int16 ≤c Float ⊢ f (x) = f (c (x)) : Float

But certain choices of subtyping rules can cause problems.

- Benjamin Pierce showed that F≤ had undecidable subtyping and
undecidable type checking [Pie92; CP94]

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



3/28

Bounded quantification

Definition (Bounded Quantification)
A form of (universal or existential) quantifier which quantifies over
subtypes of a given type.

_(X ≤ B).M

Bounded quantification is a desirable concept in the design of type
theories and programming languages.

- Structural subtyping: Σ(x : A ).P (x) ≤ A

- Record types: {name : String, age : Nat} ≤ {name : String}

- Type Conversions:
f : Float → Float, x : Int16, Int16 ≤c Float ⊢ f (x) = f (c (x)) : Float

But certain choices of subtyping rules can cause problems.

- Benjamin Pierce showed that F≤ had undecidable subtyping and
undecidable type checking [Pie92; CP94]

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



3/28

Bounded quantification

Definition (Bounded Quantification)
A form of (universal or existential) quantifier which quantifies over
subtypes of a given type.

_(X ≤ B).M

Bounded quantification is a desirable concept in the design of type
theories and programming languages.

- Structural subtyping: Σ(x : A ).P (x) ≤ A

- Record types: {name : String, age : Nat} ≤ {name : String}
- Type Conversions:

f : Float → Float, x : Int16, Int16 ≤c Float ⊢ f (x) = f (c (x)) : Float

But certain choices of subtyping rules can cause problems.

- Benjamin Pierce showed that F≤ had undecidable subtyping and
undecidable type checking [Pie92; CP94]

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



3/28

Bounded quantification

Definition (Bounded Quantification)
A form of (universal or existential) quantifier which quantifies over
subtypes of a given type.

_(X ≤ B).M

Bounded quantification is a desirable concept in the design of type
theories and programming languages.

- Structural subtyping: Σ(x : A ).P (x) ≤ A

- Record types: {name : String, age : Nat} ≤ {name : String}
- Type Conversions:

f : Float → Float, x : Int16, Int16 ≤c Float ⊢ f (x) = f (c (x)) : Float

But certain choices of subtyping rules can cause problems.

- Benjamin Pierce showed that F≤ had undecidable subtyping and
undecidable type checking [Pie92; CP94]

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



3/28

Bounded quantification

Definition (Bounded Quantification)
A form of (universal or existential) quantifier which quantifies over
subtypes of a given type.

_(X ≤ B).M

Bounded quantification is a desirable concept in the design of type
theories and programming languages.

- Structural subtyping: Σ(x : A ).P (x) ≤ A

- Record types: {name : String, age : Nat} ≤ {name : String}
- Type Conversions:

f : Float → Float, x : Int16, Int16 ≤c Float ⊢ f (x) = f (c (x)) : Float

But certain choices of subtyping rules can cause problems.

- Benjamin Pierce showed that F≤ had undecidable subtyping and
undecidable type checking [Pie92; CP94]

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



4/28

What is a power type?

Cardelli introduced the notion of power types for subsumptive subtyping -
the universe of subtypes of a given type [Car88].

A ≤ B as shorthand for A : Power(B)

_(X ≤ A ).M def
= _(X : Power(A )).M

- Cardelli was interested in programming language design

- His proposed type theory included an impredicative universe of all
types

- Great for programming, problematic for nice metatheory

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



4/28

What is a power type?

Cardelli introduced the notion of power types for subsumptive subtyping -
the universe of subtypes of a given type [Car88].

A ≤ B as shorthand for A : Power(B)

_(X ≤ A ).M def
= _(X : Power(A )).M

- Cardelli was interested in programming language design

- His proposed type theory included an impredicative universe of all
types

- Great for programming, problematic for nice metatheory

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



4/28

What is a power type?

Cardelli introduced the notion of power types for subsumptive subtyping -
the universe of subtypes of a given type [Car88].

A ≤ B as shorthand for A : Power(B)

_(X ≤ A ).M def
= _(X : Power(A )).M

- Cardelli was interested in programming language design

- His proposed type theory included an impredicative universe of all
types

- Great for programming, problematic for nice metatheory

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



4/28

What is a power type?

Cardelli introduced the notion of power types for subsumptive subtyping -
the universe of subtypes of a given type [Car88].

A ≤ B as shorthand for A : Power(B)

_(X ≤ A ).M def
= _(X : Power(A )).M

- Cardelli was interested in programming language design

- His proposed type theory included an impredicative universe of all
types

- Great for programming, problematic for nice metatheory

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



4/28

What is a power type?

Cardelli introduced the notion of power types for subsumptive subtyping -
the universe of subtypes of a given type [Car88].

A ≤ B as shorthand for A : Power(B)

_(X ≤ A ).M def
= _(X : Power(A )).M

- Cardelli was interested in programming language design

- His proposed type theory included an impredicative universe of all
types

- Great for programming, problematic for nice metatheory

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



4/28

What is a power type?

Cardelli introduced the notion of power types for subsumptive subtyping -
the universe of subtypes of a given type [Car88].

A ≤ B as shorthand for A : Power(B)

_(X ≤ A ).M def
= _(X : Power(A )).M

- Cardelli was interested in programming language design

- His proposed type theory included an impredicative universe of all
types

- Great for programming, problematic for nice metatheory

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



5/28

Metatheory of power types

- Aspinall reformulated Cardelli’s ideas on power types into a
predicative typed lambda calculus _Power [Asp00].

- Aspinall developed a ‘rough type’-checking algorithm, and proved the
system was strongly normalising...

- ...but was unable to prove a inversion lemma/generation principle.

- The metatheory of subtyping has an inherent difficulty: transitivity
[AC96; Com04; Hut09].

Γ ⊢A ≤ B Γ ⊢B ≤ C

Γ ⊢A ≤ C

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



5/28

Metatheory of power types

- Aspinall reformulated Cardelli’s ideas on power types into a
predicative typed lambda calculus _Power [Asp00].

- Aspinall developed a ‘rough type’-checking algorithm, and proved the
system was strongly normalising...

- ...but was unable to prove a inversion lemma/generation principle.

- The metatheory of subtyping has an inherent difficulty: transitivity
[AC96; Com04; Hut09].

Γ ⊢A ≤ B Γ ⊢B ≤ C

Γ ⊢A ≤ C

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



5/28

Metatheory of power types

- Aspinall reformulated Cardelli’s ideas on power types into a
predicative typed lambda calculus _Power [Asp00].

- Aspinall developed a ‘rough type’-checking algorithm, and proved the
system was strongly normalising...

- ...but was unable to prove a inversion lemma/generation principle.

- The metatheory of subtyping has an inherent difficulty: transitivity
[AC96; Com04; Hut09].

Γ ⊢A ≤ B Γ ⊢B ≤ C

Γ ⊢A ≤ C

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



5/28

Metatheory of power types

- Aspinall reformulated Cardelli’s ideas on power types into a
predicative typed lambda calculus _Power [Asp00].

- Aspinall developed a ‘rough type’-checking algorithm, and proved the
system was strongly normalising...

- ...but was unable to prove a inversion lemma/generation principle.

- The metatheory of subtyping has an inherent difficulty: transitivity
[AC96; Com04; Hut09].

Γ ⊢A ≤ B Γ ⊢B ≤ C

Γ ⊢A ≤ C

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



6/28

What is subtyping?

What is a subtype? For types A and B, what does it mean for A to be a
subtype of B?

Definition (Subsumptive Subtyping)
If A is a subtype of B, then any object of type A is also an object of type B.

Γ ⊢ a : A Γ ⊢A ≤ B

Γ ⊢ a : B

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



6/28

What is subtyping?

What is a subtype? For types A and B, what does it mean for A to be a
subtype of B?

Definition (Subsumptive Subtyping)
If A is a subtype of B, then any object of type A is also an object of type B.

Γ ⊢ a : A Γ ⊢A ≤ B

Γ ⊢ a : B

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



7/28

Subsumptive subtyping

Advantages:

- Extremely simple

- Closely linked to set-theoretic intuition

- Good for programming languages

Disadvantages:

- Canonicity of objects fails [Luo12]

- Unclear if extending the type theory with new subtyping rules is
conservative

- Questions of decidable subtyping, type checking, minimal types

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



7/28

Subsumptive subtyping

Advantages:

- Extremely simple

- Closely linked to set-theoretic intuition

- Good for programming languages

Disadvantages:

- Canonicity of objects fails [Luo12]

- Unclear if extending the type theory with new subtyping rules is
conservative

- Questions of decidable subtyping, type checking, minimal types

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



8/28

What is subtyping?

Definition (Coercive Subtyping)
Intuition: If A is a subtype of B, then whenever we require an object of
type B, it is sufficient to provide an object of type A .

Γ ⊢ a : A Γ ⊢ f : Π(x : B).C Γ ⊢A ≤c B

Γ ⊢ f (a) : C [c (a)/x]

Γ ⊢ a : A Γ ⊢ f : Π(x : B).C Γ ⊢A ≤c B

Γ ⊢ f (a) = f (c (a)) : C [c (a)/x]

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



9/28

Coercive subtyping

Advantages:

Well-behaved metatheory; adding any coherent subtyping rule is a
conservative extension [LSX13]

Canonicity of objects is preserved

Ideal for logical type theories and proof assistants

Disadvantages:

More complex compared to subsumptive subtyping

Need two-step reduction - first insert coercions, then perform
standard reduction

Checking the coherency of subtyping rules is non-trivial

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



9/28

Coercive subtyping

Advantages:

Well-behaved metatheory; adding any coherent subtyping rule is a
conservative extension [LSX13]

Canonicity of objects is preserved

Ideal for logical type theories and proof assistants

Disadvantages:

More complex compared to subsumptive subtyping

Need two-step reduction - first insert coercions, then perform
standard reduction

Checking the coherency of subtyping rules is non-trivial

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



10/28

Unifying Theory of dependent Types

- Zhaohui Luo’s UTT is a well-studied type theory with nice
metatheoretical properties [Luo94; Gog94]

- UTT’s extension with coercive subtyping (UTT[C]) has been proven
to be conservative [Luo97; LSX13].

Harry Maclean and Zhaohui Luo introduced subtype universes -
predicative universes of subtypes for coercive subtyping - formulated as an
extension of UTT[C] [ML21].

A ≤c B ⊢ a : U(B) where T(a) = A

This extended type theory UTT[C]U embeds back into UTT[C].

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



10/28

Unifying Theory of dependent Types

- Zhaohui Luo’s UTT is a well-studied type theory with nice
metatheoretical properties [Luo94; Gog94]

- UTT’s extension with coercive subtyping (UTT[C]) has been proven
to be conservative [Luo97; LSX13].

Harry Maclean and Zhaohui Luo introduced subtype universes -
predicative universes of subtypes for coercive subtyping - formulated as an
extension of UTT[C] [ML21].

A ≤c B ⊢ a : U(B) where T(a) = A

This extended type theory UTT[C]U embeds back into UTT[C].

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



10/28

Unifying Theory of dependent Types

- Zhaohui Luo’s UTT is a well-studied type theory with nice
metatheoretical properties [Luo94; Gog94]

- UTT’s extension with coercive subtyping (UTT[C]) has been proven
to be conservative [Luo97; LSX13].

Harry Maclean and Zhaohui Luo introduced subtype universes -
predicative universes of subtypes for coercive subtyping - formulated as an
extension of UTT[C] [ML21].

A ≤c B ⊢ a : U(B) where T(a) = A

This extended type theory UTT[C]U embeds back into UTT[C].

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



10/28

Unifying Theory of dependent Types

- Zhaohui Luo’s UTT is a well-studied type theory with nice
metatheoretical properties [Luo94; Gog94]

- UTT’s extension with coercive subtyping (UTT[C]) has been proven
to be conservative [Luo97; LSX13].

Harry Maclean and Zhaohui Luo introduced subtype universes -
predicative universes of subtypes for coercive subtyping - formulated as an
extension of UTT[C] [ML21].

A ≤c B ⊢ a : U(B) where T(a) = A

This extended type theory UTT[C]U embeds back into UTT[C].

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



10/28

Unifying Theory of dependent Types

- Zhaohui Luo’s UTT is a well-studied type theory with nice
metatheoretical properties [Luo94; Gog94]

- UTT’s extension with coercive subtyping (UTT[C]) has been proven
to be conservative [Luo97; LSX13].

Harry Maclean and Zhaohui Luo introduced subtype universes -
predicative universes of subtypes for coercive subtyping - formulated as an
extension of UTT[C] [ML21].

A ≤c B ⊢ a : U(B) where T(a) = A

This extended type theory UTT[C]U embeds back into UTT[C].

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



11/28

Subtype Universes

However, they only proved that UTT[C]U were strongly normalising when
the set of subtyping relations were ‘nice’.

1) Subtyping relations can’t use subtype universes.

2) Subtyping relations can’t use propositions.

3) A type cannot inhabit a universe smaller than the universes its
subtypes inhabit.

Does this matter?

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



11/28

Subtype Universes

However, they only proved that UTT[C]U were strongly normalising when
the set of subtyping relations were ‘nice’.

1) Subtyping relations can’t use subtype universes.

2) Subtyping relations can’t use propositions.

3) A type cannot inhabit a universe smaller than the universes its
subtypes inhabit.

Does this matter?

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



11/28

Subtype Universes

However, they only proved that UTT[C]U were strongly normalising when
the set of subtyping relations were ‘nice’.

1) Subtyping relations can’t use subtype universes.

2) Subtyping relations can’t use propositions.

3) A type cannot inhabit a universe smaller than the universes its
subtypes inhabit.

Does this matter?

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



11/28

Subtype Universes

However, they only proved that UTT[C]U were strongly normalising when
the set of subtyping relations were ‘nice’.

1) Subtyping relations can’t use subtype universes.

2) Subtyping relations can’t use propositions.

3) A type cannot inhabit a universe smaller than the universes its
subtypes inhabit.

Does this matter?

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



11/28

Subtype Universes

However, they only proved that UTT[C]U were strongly normalising when
the set of subtyping relations were ‘nice’.

1) Subtyping relations can’t use subtype universes.

2) Subtyping relations can’t use propositions.

3) A type cannot inhabit a universe smaller than the universes its
subtypes inhabit.

Does this matter?

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



12/28

Subtype Universes

Example
For a given type B, consider the type of pointed subtypes of B given by

Σ(x : U(B)).𝜎1(x)

Intuitively, this should be a subtype of B. Define

f def
= _(p : Σ(x : U(B)).𝜎1(x)).𝜎2(𝜋1(p)) (𝜋2(p))

Then
Σ(x : U(B)).𝜎1(x) ≤f B

is a coherent subtyping relation (in the sense of [LSX13]).

However, this subtyping relation contains a subtype universe U(B) on the
LHS, and so we can’t use this relation in Maclean and Luo’s system.

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



12/28

Subtype Universes

Example
For a given type B, consider the type of pointed subtypes of B given by

Σ(x : U(B)).𝜎1(x)

Intuitively, this should be a subtype of B.

Define

f def
= _(p : Σ(x : U(B)).𝜎1(x)).𝜎2(𝜋1(p)) (𝜋2(p))

Then
Σ(x : U(B)).𝜎1(x) ≤f B

is a coherent subtyping relation (in the sense of [LSX13]).

However, this subtyping relation contains a subtype universe U(B) on the
LHS, and so we can’t use this relation in Maclean and Luo’s system.

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



12/28

Subtype Universes

Example
For a given type B, consider the type of pointed subtypes of B given by

Σ(x : U(B)).𝜎1(x)

Intuitively, this should be a subtype of B. Define

f def
= _(p : Σ(x : U(B)).𝜎1(x)).𝜎2(𝜋1(p)) (𝜋2(p))

Then
Σ(x : U(B)).𝜎1(x) ≤f B

is a coherent subtyping relation (in the sense of [LSX13]).

However, this subtyping relation contains a subtype universe U(B) on the
LHS, and so we can’t use this relation in Maclean and Luo’s system.

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



12/28

Subtype Universes

Example
For a given type B, consider the type of pointed subtypes of B given by

Σ(x : U(B)).𝜎1(x)

Intuitively, this should be a subtype of B. Define

f def
= _(p : Σ(x : U(B)).𝜎1(x)).𝜎2(𝜋1(p)) (𝜋2(p))

Then
Σ(x : U(B)).𝜎1(x) ≤f B

is a coherent subtyping relation (in the sense of [LSX13]).

However, this subtyping relation contains a subtype universe U(B) on the
LHS, and so we can’t use this relation in Maclean and Luo’s system.

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



12/28

Subtype Universes

Example
For a given type B, consider the type of pointed subtypes of B given by

Σ(x : U(B)).𝜎1(x)

Intuitively, this should be a subtype of B. Define

f def
= _(p : Σ(x : U(B)).𝜎1(x)).𝜎2(𝜋1(p)) (𝜋2(p))

Then
Σ(x : U(B)).𝜎1(x) ≤f B

is a coherent subtyping relation (in the sense of [LSX13]).

However, this subtyping relation contains a subtype universe U(B) on the
LHS, and so we can’t use this relation in Maclean and Luo’s system.

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



13/28

Generalising Subtype Universes

We consider a base type theory 𝜏 with an impredicative universe of
propositions, inductive type constructors, Π types and Σ types, and
coercive subtyping given by a collection of coherent subtyping rules C.

Key idea: Objects of a subtype universe should also hold information
about the coercion.

Γ ⊢B type

Γ ⊢U(B) type
Γ ⊢A ≤c B

Γ ⊢⟨A , c⟩ : U(B)

Γ ⊢B type Γ ⊢ t : U(B)
Γ ⊢𝜎1(t) type

Γ ⊢B type Γ ⊢⟨A , c⟩ : U(B)
Γ ⊢𝜎1(⟨A , c⟩) = A

Γ ⊢B type Γ ⊢ t : U(B)
Γ ⊢𝜎2(t) : 𝜎1(t) → B

Γ ⊢B type Γ ⊢⟨A , c⟩ : U(B)
Γ ⊢𝜎2(⟨A , c⟩) = c : A → B

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



13/28

Generalising Subtype Universes

We consider a base type theory 𝜏 with an impredicative universe of
propositions, inductive type constructors, Π types and Σ types, and
coercive subtyping given by a collection of coherent subtyping rules C.

Key idea:

Objects of a subtype universe should also hold information
about the coercion.

Γ ⊢B type

Γ ⊢U(B) type
Γ ⊢A ≤c B

Γ ⊢⟨A , c⟩ : U(B)

Γ ⊢B type Γ ⊢ t : U(B)
Γ ⊢𝜎1(t) type

Γ ⊢B type Γ ⊢⟨A , c⟩ : U(B)
Γ ⊢𝜎1(⟨A , c⟩) = A

Γ ⊢B type Γ ⊢ t : U(B)
Γ ⊢𝜎2(t) : 𝜎1(t) → B

Γ ⊢B type Γ ⊢⟨A , c⟩ : U(B)
Γ ⊢𝜎2(⟨A , c⟩) = c : A → B

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



13/28

Generalising Subtype Universes

We consider a base type theory 𝜏 with an impredicative universe of
propositions, inductive type constructors, Π types and Σ types, and
coercive subtyping given by a collection of coherent subtyping rules C.

Key idea: Objects of a subtype universe should also hold information
about the coercion.

Γ ⊢B type

Γ ⊢U(B) type
Γ ⊢A ≤c B

Γ ⊢⟨A , c⟩ : U(B)

Γ ⊢B type Γ ⊢ t : U(B)
Γ ⊢𝜎1(t) type

Γ ⊢B type Γ ⊢⟨A , c⟩ : U(B)
Γ ⊢𝜎1(⟨A , c⟩) = A

Γ ⊢B type Γ ⊢ t : U(B)
Γ ⊢𝜎2(t) : 𝜎1(t) → B

Γ ⊢B type Γ ⊢⟨A , c⟩ : U(B)
Γ ⊢𝜎2(⟨A , c⟩) = c : A → B

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



13/28

Generalising Subtype Universes

We consider a base type theory 𝜏 with an impredicative universe of
propositions, inductive type constructors, Π types and Σ types, and
coercive subtyping given by a collection of coherent subtyping rules C.

Key idea: Objects of a subtype universe should also hold information
about the coercion.

Γ ⊢B type

Γ ⊢U(B) type
Γ ⊢A ≤c B

Γ ⊢⟨A , c⟩ : U(B)

Γ ⊢B type Γ ⊢ t : U(B)
Γ ⊢𝜎1(t) type

Γ ⊢B type Γ ⊢⟨A , c⟩ : U(B)
Γ ⊢𝜎1(⟨A , c⟩) = A

Γ ⊢B type Γ ⊢ t : U(B)
Γ ⊢𝜎2(t) : 𝜎1(t) → B

Γ ⊢B type Γ ⊢⟨A , c⟩ : U(B)
Γ ⊢𝜎2(⟨A , c⟩) = c : A → B

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



14/28

Generalising Subtype Universes

Example (Subtype Universes on the RHS)
We define a type family of ordinals

O (n) def
= Σ(x : N).(x < n)

and add in the subtyping rule allowing us to take any object of one of these
types as a natural number.

n : N ⊢O (n) ≤𝜋1 N

However, we may also want to interpret a natural number as one of these
ordinal types. So we also introduce the subtyping relation

N ≤_(n:N) .⟨O (n) , 𝜋1 ⟩ U(N)

This is a coherent subtyping relation (in the sense of [LSX13]).

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



14/28

Generalising Subtype Universes

Example (Subtype Universes on the RHS)
We define a type family of ordinals

O (n) def
= Σ(x : N).(x < n)

and add in the subtyping rule allowing us to take any object of one of these
types as a natural number.

n : N ⊢O (n) ≤𝜋1 N

However, we may also want to interpret a natural number as one of these
ordinal types. So we also introduce the subtyping relation

N ≤_(n:N) .⟨O (n) , 𝜋1 ⟩ U(N)

This is a coherent subtyping relation (in the sense of [LSX13]).

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



14/28

Generalising Subtype Universes

Example (Subtype Universes on the RHS)
We define a type family of ordinals

O (n) def
= Σ(x : N).(x < n)

and add in the subtyping rule allowing us to take any object of one of these
types as a natural number.

n : N ⊢O (n) ≤𝜋1 N

However, we may also want to interpret a natural number as one of these
ordinal types. So we also introduce the subtyping relation

N ≤_(n:N) .⟨O (n) , 𝜋1 ⟩ U(N)

This is a coherent subtyping relation (in the sense of [LSX13]).

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



15/28

Monotonic Subtyping

Definition (Level of a Type)
For a given context Γ, define LΓ such that

- LΓ (1),LΓ (Prop),LΓ (N), ... = 0

- LΓ (Π(x : A ).B),LΓ (Σ(x : A ).B), ... = max
x:A

{LΓ (A ),LΓ (B [x])}

- LΓ (U(B)) = LΓ (B) + 1

Definition (Monotonicity)
A subtyping judgement A ≤ B is monotonic if LΓ (A ) ≤ LΓ (B).

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



15/28

Monotonic Subtyping

Definition (Level of a Type)
For a given context Γ, define LΓ such that

- LΓ (1),LΓ (Prop),LΓ (N), ... = 0

- LΓ (Π(x : A ).B),LΓ (Σ(x : A ).B), ... = max
x:A

{LΓ (A ),LΓ (B [x])}

- LΓ (U(B)) = LΓ (B) + 1

Definition (Monotonicity)
A subtyping judgement A ≤ B is monotonic if LΓ (A ) ≤ LΓ (B).

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



15/28

Monotonic Subtyping

Definition (Level of a Type)
For a given context Γ, define LΓ such that

- LΓ (1),LΓ (Prop),LΓ (N), ... = 0

- LΓ (Π(x : A ).B),LΓ (Σ(x : A ).B), ... = max
x:A

{LΓ (A ),LΓ (B [x])}

- LΓ (U(B)) = LΓ (B) + 1

Definition (Monotonicity)
A subtyping judgement A ≤ B is monotonic if LΓ (A ) ≤ LΓ (B).

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



16/28

Metatheory for monotonic subtyping

We start by analysing the case where the collection of subtyping rules C is
entirely monotonic.

We construct an embedding 𝛿 : 𝜏 → UTT[C] defined inductively over
terms of 𝜏.

𝛿(U(B)) def
= Σ(X : TypeLΓ (B ) ).(X → 𝛿(B))

𝛿(⟨A , c⟩) def
= (nLΓ (B ) (𝛿(A )), 𝛿(c))

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



16/28

Metatheory for monotonic subtyping

We start by analysing the case where the collection of subtyping rules C is
entirely monotonic.
We construct an embedding 𝛿 : 𝜏 → UTT[C] defined inductively over
terms of 𝜏.

𝛿(U(B)) def
= Σ(X : TypeLΓ (B ) ).(X → 𝛿(B))

𝛿(⟨A , c⟩) def
= (nLΓ (B ) (𝛿(A )), 𝛿(c))

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



16/28

Metatheory for monotonic subtyping

We start by analysing the case where the collection of subtyping rules C is
entirely monotonic.
We construct an embedding 𝛿 : 𝜏 → UTT[C] defined inductively over
terms of 𝜏.

𝛿(U(B)) def
= Σ(X : TypeLΓ (B ) ).(X → 𝛿(B))

𝛿(⟨A , c⟩) def
= (nLΓ (B ) (𝛿(A )), 𝛿(c))

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



17/28

Metatheory for monotonic subtyping

Lemma
If Γ ⊢A type, then there exists some term n in UTT[𝛿(C)] such that the
following hold:

- 𝛿(Γ) ⊢ 𝛿(A ) : Type

- 𝛿(Γ) ⊢ n : TypeLΓ (A )
- TLΓ (A ) (n) = 𝛿(A )

Lemma
The rules of 𝜏 under translation via 𝛿 are admissible in UTT[𝛿(C)].

Proof.
Arduous. □

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



17/28

Metatheory for monotonic subtyping

Lemma
If Γ ⊢A type, then there exists some term n in UTT[𝛿(C)] such that the
following hold:

- 𝛿(Γ) ⊢ 𝛿(A ) : Type

- 𝛿(Γ) ⊢ n : TypeLΓ (A )
- TLΓ (A ) (n) = 𝛿(A )

Lemma
The rules of 𝜏 under translation via 𝛿 are admissible in UTT[𝛿(C)].

Proof.
Arduous. □

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



17/28

Metatheory for monotonic subtyping

Lemma
If Γ ⊢A type, then there exists some term n in UTT[𝛿(C)] such that the
following hold:

- 𝛿(Γ) ⊢ 𝛿(A ) : Type

- 𝛿(Γ) ⊢ n : TypeLΓ (A )
- TLΓ (A ) (n) = 𝛿(A )

Lemma
The rules of 𝜏 under translation via 𝛿 are admissible in UTT[𝛿(C)].

Proof.
Arduous. □

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



18/28

Metatheory for monotonic subtyping

Theorem (Logical Consistency for Monotonic Subtyping)
𝜏 is logically consistent, i.e. there is no Γ such that Γ ⊢ p : ∀(P : Prop).P

Theorem (Strong Normalisation for Monotonic Subtyping)
𝜏 is strongly normalising, i.e. if Γ ⊢M : A then every possible sequence of
reductions of M is finite.

Remark (Decidability of Typing and Subtyping)
As 𝛿 is injective, we can type-check any given term M in 𝜏 by
type-checking 𝛿(M) in UTT[𝛿(C)].
Likewise, we can decide if Γ ⊢A ≤ B by looking at a term t which is
typable if and only if A ≤ B is derivable, e.g. _(f : B → N)._(a : A ).f (a)

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



18/28

Metatheory for monotonic subtyping

Theorem (Logical Consistency for Monotonic Subtyping)
𝜏 is logically consistent, i.e. there is no Γ such that Γ ⊢ p : ∀(P : Prop).P

Theorem (Strong Normalisation for Monotonic Subtyping)
𝜏 is strongly normalising, i.e. if Γ ⊢M : A then every possible sequence of
reductions of M is finite.

Remark (Decidability of Typing and Subtyping)
As 𝛿 is injective, we can type-check any given term M in 𝜏 by
type-checking 𝛿(M) in UTT[𝛿(C)].
Likewise, we can decide if Γ ⊢A ≤ B by looking at a term t which is
typable if and only if A ≤ B is derivable, e.g. _(f : B → N)._(a : A ).f (a)

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



18/28

Metatheory for monotonic subtyping

Theorem (Logical Consistency for Monotonic Subtyping)
𝜏 is logically consistent, i.e. there is no Γ such that Γ ⊢ p : ∀(P : Prop).P

Theorem (Strong Normalisation for Monotonic Subtyping)
𝜏 is strongly normalising, i.e. if Γ ⊢M : A then every possible sequence of
reductions of M is finite.

Remark (Decidability of Typing and Subtyping)
As 𝛿 is injective, we can type-check any given term M in 𝜏 by
type-checking 𝛿(M) in UTT[𝛿(C)].
Likewise, we can decide if Γ ⊢A ≤ B by looking at a term t which is
typable if and only if A ≤ B is derivable, e.g. _(f : B → N)._(a : A ).f (a)

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



19/28

Metatheory for nonmonotonic subtyping

How should we go about nonmonotonic subtyping?

Our first idea: We should be able to insert coercions to ‘reduce’ a system
with a nonmonotonic subtyping relation to one without that relation.

In systems without subtype universes, extending with new subtyping rules
is conservative.

Traditional proofs for coercive subtyping formalise the two-step reduction -
insert coercions, then reduce as normal.

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



19/28

Metatheory for nonmonotonic subtyping

How should we go about nonmonotonic subtyping?

Our first idea:

We should be able to insert coercions to ‘reduce’ a system
with a nonmonotonic subtyping relation to one without that relation.

In systems without subtype universes, extending with new subtyping rules
is conservative.

Traditional proofs for coercive subtyping formalise the two-step reduction -
insert coercions, then reduce as normal.

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



19/28

Metatheory for nonmonotonic subtyping

How should we go about nonmonotonic subtyping?

Our first idea: We should be able to insert coercions to ‘reduce’ a system
with a nonmonotonic subtyping relation to one without that relation.

In systems without subtype universes, extending with new subtyping rules
is conservative.

Traditional proofs for coercive subtyping formalise the two-step reduction -
insert coercions, then reduce as normal.

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



19/28

Metatheory for nonmonotonic subtyping

How should we go about nonmonotonic subtyping?

Our first idea: We should be able to insert coercions to ‘reduce’ a system
with a nonmonotonic subtyping relation to one without that relation.

In systems without subtype universes, extending with new subtyping rules
is conservative.

Traditional proofs for coercive subtyping formalise the two-step reduction -
insert coercions, then reduce as normal.

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



19/28

Metatheory for nonmonotonic subtyping

How should we go about nonmonotonic subtyping?

Our first idea: We should be able to insert coercions to ‘reduce’ a system
with a nonmonotonic subtyping relation to one without that relation.

In systems without subtype universes, extending with new subtyping rules
is conservative.

Traditional proofs for coercive subtyping formalise the two-step reduction -
insert coercions, then reduce as normal.

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



19/28

Metatheory for nonmonotonic subtyping

How should we go about nonmonotonic subtyping?

Our first idea: We should be able to insert coercions to ‘reduce’ a system
with a nonmonotonic subtyping relation to one without that relation.

In systems without subtype universes, extending with new subtyping rules
is conservative.

Traditional proofs for coercive subtyping formalise the two-step reduction -
insert coercions, then reduce as normal.

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



20/28

Metatheory for nonmonotonic subtyping

Every subtype universe U(B) contains the term ⟨B , id⟩.

Solution idea: Modify the reduction method to also send each
⟨A , c⟩ : U(B) to ⟨B , idB⟩ : U(B).

- Terms depending on types, e.g. f : Π(x : U(B)).M
✓ OK because f (⟨B , idB⟩) is defined

- Types depending on terms, e.g. Σ(x : U).(x = ⟨A , c⟩)
Uhh...

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



20/28

Metatheory for nonmonotonic subtyping

Every subtype universe U(B) contains the term ⟨B , id⟩.

Solution idea: Modify the reduction method to also send each
⟨A , c⟩ : U(B) to ⟨B , idB⟩ : U(B).

- Terms depending on types, e.g. f : Π(x : U(B)).M
✓ OK because f (⟨B , idB⟩) is defined

- Types depending on terms, e.g. Σ(x : U).(x = ⟨A , c⟩)
Uhh...

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



20/28

Metatheory for nonmonotonic subtyping

Every subtype universe U(B) contains the term ⟨B , id⟩.

Solution idea: Modify the reduction method to also send each
⟨A , c⟩ : U(B) to ⟨B , idB⟩ : U(B).

- Terms depending on types, e.g. f : Π(x : U(B)).M

✓ OK because f (⟨B , idB⟩) is defined

- Types depending on terms, e.g. Σ(x : U).(x = ⟨A , c⟩)
Uhh...

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



20/28

Metatheory for nonmonotonic subtyping

Every subtype universe U(B) contains the term ⟨B , id⟩.

Solution idea: Modify the reduction method to also send each
⟨A , c⟩ : U(B) to ⟨B , idB⟩ : U(B).

- Terms depending on types, e.g. f : Π(x : U(B)).M
✓ OK because f (⟨B , idB⟩) is defined

- Types depending on terms, e.g. Σ(x : U).(x = ⟨A , c⟩)
Uhh...

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



20/28

Metatheory for nonmonotonic subtyping

Every subtype universe U(B) contains the term ⟨B , id⟩.

Solution idea: Modify the reduction method to also send each
⟨A , c⟩ : U(B) to ⟨B , idB⟩ : U(B).

- Terms depending on types, e.g. f : Π(x : U(B)).M
✓ OK because f (⟨B , idB⟩) is defined

- Types depending on terms, e.g. Σ(x : U).(x = ⟨A , c⟩)

Uhh...

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



20/28

Metatheory for nonmonotonic subtyping

Every subtype universe U(B) contains the term ⟨B , id⟩.

Solution idea: Modify the reduction method to also send each
⟨A , c⟩ : U(B) to ⟨B , idB⟩ : U(B).

- Terms depending on types, e.g. f : Π(x : U(B)).M
✓ OK because f (⟨B , idB⟩) is defined

- Types depending on terms, e.g. Σ(x : U).(x = ⟨A , c⟩)
Uhh...

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



21/28

Metatheory for k -monotonic subtyping

What if we only look at subtyping relations where there is a bound on how
‘problematic’ it is?

Definition (k -Monotonicity)
A subtyping rule Γ ⊢A ≤ B is k-monotonic if ∀Γ,LΓ (B) − LΓ (A ) ≥ −k .

Moreover, a set of subtyping rules C is k -monotonic if every rule R ∈ C is
k -monotonic.

Remark
A subtyping rule is monotonic iff it is 0-monotonic.

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



21/28

Metatheory for k -monotonic subtyping

What if we only look at subtyping relations where there is a bound on how
‘problematic’ it is?

Definition (k -Monotonicity)
A subtyping rule Γ ⊢A ≤ B is k-monotonic if ∀Γ,LΓ (B) − LΓ (A ) ≥ −k .

Moreover, a set of subtyping rules C is k -monotonic if every rule R ∈ C is
k -monotonic.

Remark
A subtyping rule is monotonic iff it is 0-monotonic.

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



21/28

Metatheory for k -monotonic subtyping

What if we only look at subtyping relations where there is a bound on how
‘problematic’ it is?

Definition (k -Monotonicity)
A subtyping rule Γ ⊢A ≤ B is k-monotonic if ∀Γ,LΓ (B) − LΓ (A ) ≥ −k .

Moreover, a set of subtyping rules C is k -monotonic if every rule R ∈ C is
k -monotonic.

Remark
A subtyping rule is monotonic iff it is 0-monotonic.

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



22/28

Metatheory for k -monotonic subtyping

Example
For a given type B, recall the type of pointed subtypes of B

Σ(x : U(B)).𝜎1(x) ≤f B .

Note that ∀Γ,

LΓ (B) − LΓ (Σ(x : U(B)).𝜎1(x)) = min(−1,−LΓ (𝜎1(x)))

and so as long as we choose the subtype relations involving B on the RHS
sensibly, we can have some k such that this subtyping relation is
k -monotonic.

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



22/28

Metatheory for k -monotonic subtyping

Example
For a given type B, recall the type of pointed subtypes of B

Σ(x : U(B)).𝜎1(x) ≤f B .

Note that ∀Γ,

LΓ (B) − LΓ (Σ(x : U(B)).𝜎1(x)) = min(−1,−LΓ (𝜎1(x)))

and so as long as we choose the subtype relations involving B on the RHS
sensibly, we can have some k such that this subtyping relation is
k -monotonic.

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



22/28

Metatheory for k -monotonic subtyping

Example
For a given type B, recall the type of pointed subtypes of B

Σ(x : U(B)).𝜎1(x) ≤f B .

Note that ∀Γ,

LΓ (B) − LΓ (Σ(x : U(B)).𝜎1(x)) = min(−1,−LΓ (𝜎1(x)))

and so as long as we choose the subtype relations involving B on the RHS
sensibly, we can have some k such that this subtyping relation is
k -monotonic.

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



23/28

Metatheory for k -monotonic subtyping

We modify our embedding 𝛿 : 𝜏 → UTT[C] to be correct when C is
k -monotonic.

𝛿(U(B)) def
= Σ(X : Typek+LΓ (B ) ).(X → 𝛿(B))

𝛿(⟨A , c⟩) def
= (nk+LΓ (B ) (𝛿(A )), 𝛿(c))

Theorem (Logical Consistency for k -monotonic Subtyping)
𝜏 is logically consistent, i.e. there is no Γ such that Γ ⊢ p : ∀(P : Prop).P

Theorem (Strong Normalisation for k -monotonic Subtyping)
𝜏 is strongly normalising, i.e. if Γ ⊢M : A then every possible sequence of
reductions of M is finite.

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



23/28

Metatheory for k -monotonic subtyping

We modify our embedding 𝛿 : 𝜏 → UTT[C] to be correct when C is
k -monotonic.

𝛿(U(B)) def
= Σ(X : Typek+LΓ (B ) ).(X → 𝛿(B))

𝛿(⟨A , c⟩) def
= (nk+LΓ (B ) (𝛿(A )), 𝛿(c))

Theorem (Logical Consistency for k -monotonic Subtyping)
𝜏 is logically consistent, i.e. there is no Γ such that Γ ⊢ p : ∀(P : Prop).P

Theorem (Strong Normalisation for k -monotonic Subtyping)
𝜏 is strongly normalising, i.e. if Γ ⊢M : A then every possible sequence of
reductions of M is finite.

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



23/28

Metatheory for k -monotonic subtyping

We modify our embedding 𝛿 : 𝜏 → UTT[C] to be correct when C is
k -monotonic.

𝛿(U(B)) def
= Σ(X : Typek+LΓ (B ) ).(X → 𝛿(B))

𝛿(⟨A , c⟩) def
= (nk+LΓ (B ) (𝛿(A )), 𝛿(c))

Theorem (Logical Consistency for k -monotonic Subtyping)
𝜏 is logically consistent, i.e. there is no Γ such that Γ ⊢ p : ∀(P : Prop).P

Theorem (Strong Normalisation for k -monotonic Subtyping)
𝜏 is strongly normalising, i.e. if Γ ⊢M : A then every possible sequence of
reductions of M is finite.

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



24/28

Conclusion

Summary:

- Generalised subtype universes to be able to express new subtyping
relations

- Strong normalisation and logical consistency for monotonic and
k -monotonic subtyping

- Decidability of type-checking, minimal types, and the subtype relation

Open questions/future work:

- Results for non-monotonic subtyping?

- What does subtyping mean between propositions?

- Formalisation of subtype universes in a proof assistant?

Thank you for listening!

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



24/28

Conclusion

Summary:

- Generalised subtype universes to be able to express new subtyping
relations

- Strong normalisation and logical consistency for monotonic and
k -monotonic subtyping

- Decidability of type-checking, minimal types, and the subtype relation

Open questions/future work:

- Results for non-monotonic subtyping?

- What does subtyping mean between propositions?

- Formalisation of subtype universes in a proof assistant?

Thank you for listening!

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



24/28

Conclusion

Summary:

- Generalised subtype universes to be able to express new subtyping
relations

- Strong normalisation and logical consistency for monotonic and
k -monotonic subtyping

- Decidability of type-checking, minimal types, and the subtype relation

Open questions/future work:

- Results for non-monotonic subtyping?

- What does subtyping mean between propositions?

- Formalisation of subtype universes in a proof assistant?

Thank you for listening!

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



24/28

Conclusion

Summary:

- Generalised subtype universes to be able to express new subtyping
relations

- Strong normalisation and logical consistency for monotonic and
k -monotonic subtyping

- Decidability of type-checking, minimal types, and the subtype relation

Open questions/future work:

- Results for non-monotonic subtyping?

- What does subtyping mean between propositions?

- Formalisation of subtype universes in a proof assistant?

Thank you for listening!

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



24/28

Conclusion

Summary:

- Generalised subtype universes to be able to express new subtyping
relations

- Strong normalisation and logical consistency for monotonic and
k -monotonic subtyping

- Decidability of type-checking, minimal types, and the subtype relation

Open questions/future work:

- Results for non-monotonic subtyping?

- What does subtyping mean between propositions?

- Formalisation of subtype universes in a proof assistant?

Thank you for listening!

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



24/28

Conclusion

Summary:

- Generalised subtype universes to be able to express new subtyping
relations

- Strong normalisation and logical consistency for monotonic and
k -monotonic subtyping

- Decidability of type-checking, minimal types, and the subtype relation

Open questions/future work:

- Results for non-monotonic subtyping?

- What does subtyping mean between propositions?

- Formalisation of subtype universes in a proof assistant?

Thank you for listening!

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023



25/28

References I

[AC96] David Aspinall and Adriana Compagnoni. “Subtyping dependent
types”. In: Proceedings 11th Annual IEEE Symposium on Logic in
Computer Science. 1996, pp. 86–97. doi:
10.1109/LICS.1996.561307.

[Asp00] David Aspinall. “Subtyping with Power Types”. In: Computer Science
Logic. Ed. by Peter G. Clote and Helmut Schwichtenberg. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2000, pp. 156–171. isbn:
978-3-540-44622-4.

[Car88] Luca Cardelli. “Structural Subtyping and the Notion of Power Type”.
In: Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. POPL ’88. San Diego,
California, USA: Association for Computing Machinery, 1988,
pp. 70–79. isbn: 0897912527. doi: 10.1145/73560.73566. url:
https://doi.org/10.1145/73560.73566.

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023

https://doi.org/10.1109/LICS.1996.561307
https://doi.org/10.1145/73560.73566
https://doi.org/10.1145/73560.73566


26/28

References II

[Com04] Adriana Compagnoni. “Higher-order subtyping and its decidability”.
In: Information and Computation 191.1 (2004), pp. 41–103. issn:
0890-5401. doi: https://doi.org/10.1016/j.ic.2004.01.001.
url: https://www.sciencedirect.com/science/article/pii/
S0890540104000094.

[CP94] Giuseppe Castagna and Benjamin C. Pierce. “Decidable Bounded
Quantification”. In: Proceedings of the 21st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. POPL ’94.
Portland, Oregon, USA: Association for Computing Machinery, 1994,
pp. 151–162. isbn: 0897916360. doi: 10.1145/174675.177844. url:
https://doi.org/10.1145/174675.177844.

[Gog94] Healfdene Goguen. “A Typed Operational Semantics for Type
Theory”. University of Edinburgh, 1994.

[Hut09] DeLesley S. Hutchins. “Pure Subtype Systems: A Type Theory for
Extensible Software”. University of Edinburgh, 2009.

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023

https://doi.org/https://doi.org/10.1016/j.ic.2004.01.001
https://www.sciencedirect.com/science/article/pii/S0890540104000094
https://www.sciencedirect.com/science/article/pii/S0890540104000094
https://doi.org/10.1145/174675.177844
https://doi.org/10.1145/174675.177844


27/28

References III

[LSX13] Zhaohui Luo, Sergey Soloviev, and Tao Xue. “Coercive subtyping:
Theory and implementation”. In: Information and Computation 223
(2013), pp. 18–42. issn: 0890-5401. doi:
10.1016/j.ic.2012.10.020. url: https://www.sciencedirect.
com/science/article/pii/S0890540112001757.

[Luo12] Zhaohui Luo. Notes on Universes in Type Theory. 2012. url:
https://www.cs.rhul.ac.uk/home/zhaohui/universes.pdf.

[Luo94] Zhaohui Luo. Computation and Reasoning: A Type Theory for
Computer Science. London: Oxford University Press, Mar. 1994. isbn:
9780198538356.

[Luo97] Zhaohui Luo. “Coercive subtyping in type theory”. In: Computer
Science Logic. Ed. by Dirk van Dalen and Marc Bezem. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1997, pp. 275–296. isbn:
978-3-540-69201-0.

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023

https://doi.org/10.1016/j.ic.2012.10.020
https://www.sciencedirect.com/science/article/pii/S0890540112001757
https://www.sciencedirect.com/science/article/pii/S0890540112001757
https://www.cs.rhul.ac.uk/home/zhaohui/universes.pdf


28/28

References IV

[ML21] Harry Maclean and Zhaohui Luo. “Subtype Universes”. In: 26th
International Conference on Types for Proofs and Programs (TYPES
2020). Ed. by Ugo de’Liguoro, Stefano Berardi, and
Thorsten Altenkirch. Vol. 188. Leibniz International Proceedings in
Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2021, 9:1–9:16. isbn:
978-3-95977-182-5. doi: 10.4230/LIPIcs.TYPES.2020.9. url:
https://drops.dagstuhl.de/opus/volltexte/2021/13888.

[Pie92] Benjamin C. Pierce. “Bounded Quantification is Undecidable”. In:
Proceedings of the 19th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. POPL ’92. Albuquerque, New
Mexico, USA: Association for Computing Machinery, 1992,
pp. 305–315. isbn: 0897914538. doi: 10.1145/143165.143228. url:
https://doi.org/10.1145/143165.143228.

Felix Bradley, Zhaohui Luo On the Metatheory of Subtype Universes 14th June 2023

https://doi.org/10.4230/LIPIcs.TYPES.2020.9
https://drops.dagstuhl.de/opus/volltexte/2021/13888
https://doi.org/10.1145/143165.143228
https://doi.org/10.1145/143165.143228

	Background and Motivations
	Subtype Universes
	Our Results
	Conclusion
	References

