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Introduction. Martin-Lof [9] introduced the concept of a universe in order to describe collec-
tions of types. The universe Type, contains all small types, Type, itself is contained in Type;,
and so on. This predicative hierarchy of universes is designed to provide expressive power (we
can quantify over collections of types) whilst avoiding paradoxes.

In this paper we explore a new form of universe: a collection of subtypes. For any type A
we define a universe U(A) as the collection of all subtypes of A. We work in a system UTT[C]
which is an extension of UTT [6] with coercive subtyping [8] specified by means of a set C of
coherent coercions. Our subtype universe is defined by the addition of two rules (for brevity
we use universe formulation ¢ la Russell):

' H:Type . 'A< H:Type . .
TF U(H) : Type U-formation TFA:U(H) U-introduction
U-formation declares that for type H, U(H) is also a type, and U-introduction says that for
any type A which is a subtype of H, A is in the universe U(H). Note that H is always
contained in U(H) and, as a degenerate case, U(H) contains only H when C is empty. We now
have a type for “all subtypes of H”, and can therefore quantify over this type. For example,
V(X : U(H)).P(X) is the proposition that a particular property P holds for all subtypes of H.

This subtype universe neatly models bounded quantification (of the form II(A < H).P(A))
whilst avoiding the type checking issues traditionally associated with it [10]. We show that a
specific form of this construction is a logically consistent extension of UTT[C], explore applica-
tions in programming and natural language semantics, and discuss possible further work.

Application to programming. Subtype universes provide an alternative model for bounded
quantification [3]. For example, we can define a polymorphic identity function over all subtypes
of H as idy = AX.\x.x : II(X : U(H)).X — X. In a system without subtype universes or
bounded quantification the equivalent function would be idy = Az.x : H — H. Given an object
h : H where H' < H, the expression idg(h) is well-typed via subtype subsumption, but the
result will be an object of type H - we have lost the information that h is of type H’, simply
by passing it through the identity function. By specifying the argument type and not relying
on subsumption, both bounded quantification and subtype universes avoid this problem.

As a more compelling example, consider a type of (non-dependent) records, representing
heterogeneous sets of labelled values. We write a record type as {z : A,y : B, ...} where z,y are
field labels and A, B are field types. We define a subtyping relation on records as follows:

'k A: Type '+ R: RType
: : (z ¢ R)
I'{R,z: A} < R:Type
where R is the type of records and {R,z : A} denotes the extension of R by a field x of type
A, under the assumption that R does not have a field labelled x. RType is the kind of record

types, as described in [7]. We can write the type of a function that extracts the value named
“length” as
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getLength : II(R : U({length : Int})).R — Int

where U ({length : Int}) is the universe of subtypes of the record type {length : Int}. getLength
can be applied to any record which has a field labelled “length” of type Int.

Unlike bounded quantification, subtype universes can appear anywhere in a type. For
example the codomain of the function f : U(H) — U(H) — U(H) is a universe, and U(H) x A
is a product type containing a universe.

Application to natural language semantics. In formal semantics based on type theories
[11, 5, 4], common nouns are interpreted as types and subtype universes are useful in semantic
constructions. For example, they can be employed to model gradable adjectives (words such
as “tall”). Gradable adjectives map their arguments on to a totally ordered set of degrees, or
scale. For “tall”, this scale is height. Consider a universe 7' of base types containing objects
for which we can determine their height, which may contain Human : T and Building : T. We
can define the type of “tall” as tall : II(H : T').II(A : U(H)).(A — Prop).

In words, “tall” is a predicate on subtypes of types in T, and U(H) is the subtype uni-
verse for H. Thus if we have a type Man < Human and an object socrates : Man then
tall(Human, Man, socrates) : Prop. An example definition is tall(H, A,x) = height(x) >
¢(H,A), where £ : II(H : T).(U(H) — N) is a function that calculates the “threshold” height
for any subtype of a type in T

Metatheoretic correctness. We have proved that the extension of UTT[C] with the two
universe formation rules is not problematic in a simplified case of the more general system. We
pick a specific (but arbitrary) small type H and a single subtyping rule:
Iz: A P: Prop
PFX(xz:A).P<, A:Type

where m : X(x : A).P — A is the first projection for pairs. We prove that all theorems
of this simplified system (written UTTg[C]) are derivable in UTT|C] via a transformation 4,
which maps U(H) to Type, but leaves terms otherwise unchanged. A corollary to this is that
UTTgIC] is logically consistent, as UTT[C] is a conservative extension of UTT, which is itself
a consistent system.

Recent work has extended this result to an arbitrary but coherent set of coercions obeying
a restriction that we define here informally: for any coercion ¢ : A — B we require A : Type,,
B : Type; and i < j. Care must be taken to ensure that coercions cannot themselves mention
subtype universes, as otherwise we can derive potentially paradoxical judgements. For example,
from the coercion ¢ : U(H) — H we can derive a judgement I' - U(H) : U(H). The relationship
between subtype universes and the existing predicative universe hierarchy is ambiguous and in
need of further investigation.

Conclusion. Subtype universes provide a powerful mechanism for quantifying over collec-
tions of subtypes without the undecidability issues of bounded quantification. We give several
example applications in programming and natural language semantics; there are surely others.

Subtype universes bear similarities to Cardelli’s power type [2] Power(A), a type containing
all subtypes of A. Cardelli’s formulation uses structural subtyping and a system with the
logically inconsistent Type : Type, whereas our system is built on the logically consistent UTT.
Aspinall’s Apower [1] is a predicative and simplified alternative to Cardelli’s system, but it has
been difficult to prove some of its metatheoretic properties (such as subject reduction).

So far we have focused on a specific (but arbitrary) type H : Type,. We are hopeful that
the result can be extended to any type, and this will be the focus of future work.
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