
Combining In
oherent Coer
ions for �-types

Yong Luo and Zhaohui Luo

Department of Computer S
ien
e, University of Durham

Abstra
t. Coheren
e is a vital requirement for the
orre
t use of
oer-

ive subtyping for abbreviation and other appli
ations. However, some

oer
ions are in
oherent, although very useful. A typi
al example of su
h

is the subtyping rules for �-types: the
omponent-wise rules and the rule

of the �rst proje
tion. Both of these groups of rules are often used in

pra
ti
e (and
oherent themselves), but they are in
oherent when put

together dire
tly. In this paper, we study this
ase for �-types by in-

trodu
ing a new subtyping relation and the resulting system enjoys the

properties of
oheren
e and admissibility of substitution and transitivity.

1 Introdu
tion

Coer
ive subtyping for dependent type theories, as studied in [Luo97,Luo99℄ and

implemented in proof assistants su
h as Lego [LP92℄, Coq [B

+

00℄ and Plasti

[CL01℄, is a powerful abbreviation me
hanism and has been used in appli
a-

tions of proof development (e.g. [Bai98℄). An important requirement of
oer
ion

me
hanism is that of
oheren
e, that is,
oer
ions between any two types must

be
omputationally equal. This requirement is essential for the
onsistent use

and
orre
t implementation of the me
hanism.

A
oheren
e problem Some
oer
ions
annot be put together dire
tly in a

oherent way, although very useful. A typi
al example of su
h
oer
ions is those

on
erning �-types (types of dependent pairs). There are at least two sets of

natural and useful
oer
ion rules: the
omponent-wise subtyping rules and the

rule of the �rst proje
tion. They are
oherent separately (see [LL01℄ for the

oheren
e of the former and [Bai98℄ for the use of the latter), but in
oherent

when put together dire
tly (see the
ounter example in se
tion 3 for details).

This prevents them from being used together.

Our solution to this
oheren
e problem is basi
ally, in this paper, by introdu
-

ing a new subtyping relation and giving a new formulation of
oer
ive subtyping,

to ensure that there is only one
oer
ion (with respe
t to
omputational equality)

between any two types (if there is one).

Transitivity This new formulation not only satis�es
oheren
e requirements

but also enjoys other properties, parti
ularly, the admissibility of substitution

and transitivity be
ause su
h properties are important for an implementation of

oer
ive subtyping. Through our investigation, we found out that the property

of admissibility of transitivity is a
tually very hard to
ome by. In this paper,

we shall
onsider two subtyping relations simultaneously, give new transitivity

rules and prove that all of them are admissible.

In se
tion 2, we shall give an overview of
oer
ive subtyping and introdu
e

some
on
epts su
h as Well-De�ned Coer
ions and notations to be used later in

the paper. In se
tion 3, the
oheren
e problem and its solution will be intuitively

explained through a
ounter example. In se
tion 4, there is a formal presenta-

tion of the solution. A new de�nition of
oheren
e, new rules of substitution

and transitivity are also given. Some important properties,
oheren
e and the

admissibility of substitution and transitivity, are proved. Dis
ussions are in the

last se
tion, where we dis
uss issues su
h as de
idability and wider appli
ations

of the methods developed in this paper.

2 Coer
ive subtyping and well-de�ned
oer
ions

In this se
tion, we give an overview of
oer
ive subtyping, introdu
e some no-

tations and the
on
ept of well-de�ned
oer
ions that will be used later in the

paper.

2.1 Coer
ive subtyping

The basi
 idea of
oer
ive subtyping, as studied in [Luo99℄, is that A is a subtype

of B if there is a (unique)
oer
ion
 from A to B, and therefore, any obje
t

of type A may be regarded as obje
t of type B via
, where
 is a fun
tional

operation from A to B in the type theory.

A
oer
ion plays the role of abbreviation. More pre
isely, if
 is a
oer
ion

from K

0

to K, then a fun
tional operation f with domain K
an be applied to

any obje
t k

0

of K

0

and the appli
ation f(k

0

) is de�nitionally equal to f(
(k

0

)).

Intuitively, we
an view f as a
ontext whi
h requires an obje
t of K; then

the argument k

0

in the
ontext f stands for its image of the
oer
ion,
(k

0

).

Therefore, one
an use f(k

0

) as an abbreviation of f(
(k

0

)).

The above simple idea, when formulated in the logi
al framework, be
omes

very powerful. The se
ond author and his
olleagues have developed the frame-

work of
oer
ive subtyping that
overs variety of subtyping relations in
luding

those represented by parameterised
oer
ions and
oer
ions between parame-

terised indu
tive types. See [Luo99,Bai98,CL01,LC98,CLP01℄ for details of some

of these development and appli
ations of
oer
ive subtyping.

Some important meta-theoreti
 aspe
ts of
oer
ive subtyping have been stud-

ied. In parti
ular, the results on
onservativity and on transitivity elimination

for subkinding have been proved in [JLS98,SL02℄. The main result of [SL02℄

is essentially that
oheren
e of basi
 subtyping rules does imply
onservativity.

These results not only justify the adequa
y of the theory from the proof-theoreti

onsideration, but also provide the proof-theoreti
 basis for implementation of

oer
ive subtyping.

How to prove
oheren
e and admissibility of transitivity at the type level

has been studied in [LL01℄ re
ently. In parti
ular, the
on
ept of Well-de�ned

2

oer
ions has been developed, and the suitable subtyping rules for �-types and

�-types have been given as examples to demonstrate these proof te
hniques.

Coer
ive subtyping is formally formulated as an extension of (type theories

spe
i�ed in) the logi
al framework LF

1

, whose rules are given in [Luo94℄. Types

in LF are
alled kinds. The kind Type represents the
on
eptual universe of types

and a kind of form (x : K)K

0

represents the dependent produ
t with fun
tional

operations f as obje
ts (e.g., abstra
tion [x : K℄k

0

) whi
h
an be applied to

obje
ts of kind K to form appli
ation f(k). For every type (an obje
t of kind

Type), El(A) is the kind of obje
ts of A. LF
an be used to spe
ify type theories,

su
h as Martin-Löf's type theory [NPS90℄ and UTT [Luo94℄.

As presented in [Luo99℄, a system with
oer
ive subtyping is an extension

of any type theory spe
i�ed in LF by a set of basi
 subtyping rules R whose

on
lusions are subtyping judgements of the form � ` A <

B : Type. And the

subtyping rules in R are supposed to be
oherent.

Notation We shall use the following notations:

� We sometimes use M [x℄ to indi
ate that variable x may o

ur free in M .

� Context equality: for � � x

1

: K

1

; :::; x

n

: K

n

and �

0

� x

1

: K

0

1

; :::; x

n

: K

0

n

,

we shall write ` � = �

0

for the sequen
e of judgements ` K

1

= K

0

1

, ...,

x

1

: K

1

; :::; x

n�1

: K

n�1

` K

n

= K

0

n

.

� Types of non-dependent pairs: if A and B are types, we sometimes write

A�B for �(A; [x : A℄B) where x is not free in B.

2.2 Well-de�ned Coer
ions

Re
ently, a new
on
ept of Well-de�ned Coer
ions (WDC) has been developed

in [LL01℄. Suppose there is a set of
oer
ions, whi
h is
oherent and have admis-

sibility properties, we prove that, after adding new subtyping rules, the extended

system still keeps the
oheren
e and admissibility properties.

De�nition 1. (Well-de�ned
oer
ions) If C is a set of subtyping judgements

of the form � ` M <

d

M

0

: Type whi
h satis�es the following
onditions, we

say that C is a well-de�ned set of judgements for
oer
ions, or brie�y
alled

Well-de�ned Coer
ions (WDC).

1. (Coheren
e)

(a) � ` A <

B : Type 2 C implies � ` A : Type, � ` B : Type and

� `
 : (A)B.

(b) � ` A <

A : Type =2 C for any � , A, and
.

(
) � ` A <

1

B : Type 2 C and � ` A <

2

B : Type 2 C imply � `

1

=

2

: (A)B.

2. (Congruen
e) � ` A <

B : Type 2 C, � ` A = A

0

: Type, � ` B = B

0

:

Type and � `
 =

0

: (A)B imply � ` A

0

<

0

B

0

2 C.

3. (Transitivity) � ` A <

1

B : Type 2 C and � ` B <

2

A

0

: Type 2 C imply

� ` A <

2

Æ

1

A

0

: Type 2 C.

1

The LF here is di�erent from the Edinburgh Logi
al Framework [HHP87℄.

3

4. (Substitution) �; x : K;�

0

` A <

B : Type 2 C implies for any k su
h that

� ` k : K, �; [k=x℄�

0

` [k=x℄A <

[k=x℄

[k=x℄B : Type 2 C.

5. (Weakening) � ` A <

B : Type 2 C, � � �

0

and �

0

is valid imply �

0

`

A <

B : Type 2 C.

In this paper, the set R of basi

oer
ion rules in
ludes the following rule, where

C is a WDC:

(WDCrule)

� ` A <

B : Type 2 C

� ` A <

B : Type

3 The basi
 subtyping rules and the
oheren
e problem

In this se
tion, we give an example to illustrate the
oheren
e problem of the

omponent-wise subtyping rules for �-types and the subtyping rule of its �rst

proje
tion and explain informally the solution through a
ounter example.

Subtyping rules for �-types As studied in [LL01℄, there are three
omponent-

wise subtyping rules for �-types. One of these rules is the following.

(FirstComponent rule)

� ` A <

A

0

: Type � ` B : (A

0

)Type

� ` �(A;B Æ
) <

d

1

�(A

0

; B) : Type

where d

1

= [z : �(A;B Æ
)℄pair(A

0

; B;
(�

1

(A;B Æ
; z)); �

2

(A;B Æ
; z)), whi
h

basi
ally means that, for example, A�B is a subtype of A

0

�B if A , A

0

and B

are types and A is a subtype of A

0

.

The
oer
ion of the �rst proje
tion is very useful; for example, it is used

signi�
antly in Bailey's PhD thesis [Bai98℄ for formalisation of mathemati
s.

Formally, the subtyping rule is the following:

(�

1

rule)

� ` A : Type � ` B : (A)Type

� ` �(A;B) <

�

1

(A;B)

A : Type

With this
oer
ion, it is very easy to express some mathemati
al properties. For

example, the type of
olle
tion of groups is a subtype of the type of semi-groups

(i.e. a group is also a semi-group). Any fun
tional operator with the domain of

semi-groups
an be applied to any group with a
oer
ion.

A
ounter example If the subtyping rule (�

1

rule) and the
omponent-wise

subtyping rules for �-types are
ombined together, we would have the following

two derivations.

The �rst derivation is

� ` A : Type � ` B : (A)Type

� ` �(A;B) : Type

� ` B : (A)Type

� ` B Æ �

1

(A;B) : (�(A;B))Type

� ` �(�(A;B); B Æ �

1

(A;B)) <

d

1

�(A;B) : Type

and the rule (�

1

rule) is used in the last step.

4

The se
ond derivation is

(�

1

rule)

� ` A : Type � ` B : (A)Type

� ` �(A;B) <

�

1

(A;B)

A : Type

� ` B : (A)Type

� ` �(�(A;B); B Æ �

1

(A;B)) <

d

2

�(A;B) : Type

and the rule (�

1

rule) is used in the �rst step and the First Component rule is

used in the last step.

There are two
oer
ions d

1

and d

2

from type �(�(A;B); B Æ �

1

(A;B)) to

type �(A;B)

2

and we have the following equations

d

1

(pair(pair(a; b

1

); b

2

)) = pair(a; b

1

)

d

2

(pair(pair(a; b

1

); b

2

)) = pair(a; b

2

)

We
an see that d

1

and d

2

are neither
omputationally nor extensionally

equal. Hen
e, the vital requirement of
oer
ive subtyping system,
oheren
e,

fails.

Informal explanation of our solution From the above
ounter example, we

see that the existen
e of the two derivations makes the system in
oherent. To

make it
oherent, a natural way is to blo
k one of the derivations. The �rst one

annot be blo
ked, otherwise we lose the meaning that the �rst proje
tion (�

1

)

is regarded as
oer
ion. And hen
e we
an only blo
k the se
ond derivation.

More pre
isely, we must not allow � ` A <

A

0

: Type is used as the �rst

promise of the
omponent-wise subtyping rules if it is (dire
tly) derived from

�

1

rule. In other words, a
ondition of the
omponent-wise subtyping rules is

that the �rst promise is not (dire
tly) derived from �

1

rule. There are several

attempts to satisfy this
ondition, one of whi
h is to
onsider a notion of size as

a side-
ondition be
ause A is a sub-term of �(A;B) in the
on
lusion of �

1

rule,

and their sizes are intuitively di�erent. However, the well-de�nedness of size is

problemati
 when we present the whole subtyping system (see dis
ussion se
tion

for more details).

In this paper, rather than thinking of any side-
onditions, we introdu
e a new

subtyping relation (�) to represent
oer
ion �

1

. This new subtyping relation will

never appear in the �rst premises of the
omponent-wise subtyping rules and

hen
e the unwanted derivations su
h as the se
ond one in the
ounter example

are blo
ked.

To make the subtyping system
oherent is one thing; to make it also enjoy

the property of admissibility of transitivity is another. During our investigation,

we experien
ed that some formulations satisfy the property of
oheren
e, but not

the admissibility of transitivity. The formulation in the next se
tion will enjoy

all these properties.

2

There are two di�erent
oer
ions from (A�B)�B to A�B if A and B are types.

5

4 A formal presentation

In this se
tion, we shall give a formal presentation of a new subtyping relation

and related subtyping rules. The
oheren
e and admissibility of substitution and

transitivity will also be proved.

4.1 A new subtyping relation

We have seen the problem with the
ombination of the
omponent-wise subtyping

rules and the subtyping rule of the �rst proje
tion. Now, we introdu
e a new

relation to solve this problem and,
onsider a new system T [R�

1

℄, whi
h is an

extension of
oer
ive subtyping with the judgement form:

� � ` A �

B : Type asserts that type A is a subtype of type B with
.

As we will see later, subtyping relation < and � are di�erent. � represents the

idea that �

1

is regarded as a
oer
ion, but < doesn't.

The
oer
ive de�nition rules The main idea of
oer
ive subtyping
an in-

formally be represented by the following
oer
ive de�nition rule (
ontexts are

omitted):

K <

K

0

k : K f : (x : K

0

)K

00

f(k) = f(
(k)) : [
(k)=x℄K

00

The same idea is for the new subtyping relation. A new basi
 subkinding rule

for � is the following:

A �

B : Type

El(A) <

El(B)

By the
oer
ive de�nition rule, we have the following derivable rule:

A �

B : Type k : El(A) f : (x : El(B))K

f(k) = f(
(k)) : [
(k)=x℄K

whi
h says that if A �

B, any fun
tional operator f with domain B
an be

applied to any obje
t x of A and, f(x) = f(
(x)).

We present the new subtyping system in two stages: �rst an intermediate

system T [R�

1

℄

0

and the de�nition of
oheren
e, and then the system T [R�

1

℄.

4.2 The system T [R�

1

℄

0

and T [R�

1

℄

Formally, T [R�

1

℄

0

is an extension of type theory T (only) with the following

rules:

� A set R of basi
 subtyping rules whose
on
lusions are subtyping judgements

of the form � ` A <

B : Type.

6

� The following
ongruen
e rule for subtyping judgements

(Cong)

� ` A <

B : Type

� ` A = A

0

: Type � ` B = B

0

: Type � `
 =

0

: (A)B

� ` A

0

<

0

B

0

: Type

� The new subtyping rules for the �rst proje
tion in Figure 1, whose
on
lu-

sions are of the form � ` A �

B : Type.

Notation: we shall use � ` A /

B : Type to represent � ` A <

B :

Type or � ` A �

B : Type. For example,

�`A/

B:Type

J

a
tually represents

two rules

�`A<

B:Type

J

and

�`A�

B:Type

J

;

�`A/

B:Type �

0

`A

0

/

0

B

0

:Type

J

a
tually

represents four rules. We shall also say that A is a subtype of B or there is a

oer
ion
 from A to B if � ` A /

B : Type.

New subtyping rule for the �rst proje
tion:

� ` A : Type � ` B : (A)Type

� ` �(A;B) �

�

1

(A;B)

A : Type

� ` A /

A

0

: Type � ` B : (A)Type

� ` �(A;B) �

Æ�

1

(A;B)

A

0

: Type

New
onguren
e rule:

� ` A �

B : Type

� ` A = A

0

: Type � ` B = B

0

: Type � `
 =

0

: (A)B

� ` A

0

�

0

B

0

: Type

Fig. 1. New subtyping rules for the �rst proje
tion

Remark 1. We have the following remarks.

� The basi
 understanding of the new subtyping rules for the �rst proje
tion

is that �(A;B) is a subtype of A

0

if A = A

0

or A is a subtype of A

0

.

� New substitution and transitivity rules for subtyping relations < and � will

be given later and, we will prove that all of them are admissible. We do not

in
lude them in T [R�

1

℄

0

.

New subtyping rules for parameterised indu
tive types Now, we give

the
omponent-wise subtyping rules for �-types and the rules for �-types in

Figure 2 and 3 to demonstrate what the subtyping rules should be for the new

subtyping relation.

7

First Component rule:

� ` A <

A

0

: Type � ` B : (A

0

)Type

� ` �(A;B Æ
) <

d

1

�(A

0

; B) : Type

where d

1

= [z : �(A;B Æ
)℄pair(A

0

; B;
(�

1

(A;B Æ
; z)); �

2

(A;B Æ
; z))

Se
ond Component rule:

� ` B : (A)Type � ` B

0

: (A)Type �; x : A ` B(x) /

e[x℄

B

0

(x) : Type

� ` �(A;B) <

d

2

�(A;B

0

) : Type

where d

2

= [z : �(A;B)℄pair(A;B

0

; �

1

(A;B; z); e[�

1

(A;B; z)℄(�

2

(A;B; z)))

First-Se
ond Component rule:

� ` A <

A

0

: Type � ` B : (A)Type � ` B

0

: (A

0

)Type

�; x : A ` B(x) /

e[x℄

B

0

(
(x)) : Type

� ` �(A;B) <

d

3

�(A

0

; B

0

) : Type

where d

3

= [z : �(A;B)℄pair(A

0

; B

0

;
(�

1

(A;B; z)); e[�

1

(A;B; z)℄(�

2

(A;B; z)))

Fig. 2. New
omponent-wise subtyping rules for �-types

Domain rule:

� ` A

0

/

A : Type � ` B : (A)Type

� ` �(A;B) <

d

1

�(A

0

; B Æ
) : Type

where d

1

= [f : �(A;B)℄�(A

0

; B Æ
; app(A;B; f) Æ
)

Codomain rule:

� ` B : (A)Type � ` B

0

: (A)Type �; x : A ` B(x) /

e[x℄

B

0

(x) : Type

� ` �(A;B) <

d

2

�(A;B

0

) : Type

where d

2

= [f : �(A;B)℄�(A;B

0

; [x : A℄e[x℄(app(A;B; f; x)))

Domain-Codomain rule:

� ` A

0

/

A : Type � ` B : (A)Type � ` B

0

: (A

0

)Type

�; x

0

: A

0

` B(
(x

0

)) /

e[x

0

℄

B

0

(x

0

) : Type

� ` �(A;B) <

d

3

�(A

0

; B

0

) : Type

where d

3

= [f : �(A;B)℄�(A

0

; B

0

; [x

0

: A

0

℄e[x

0

℄(app(A;B; f;
(x

0

))))

Fig. 3. New subtyping rules for �-types

8

Remark 2. We have the following remarks.

� In Figure 2 and 3, the
on
lusions of the rules are always of the form � `

A <

B : Type, no matter the premises are of the form � ` A <

B : Type

or � ` A �

B : Type.

� The essen
e of the new subtyping relation is that, the judgement form � `

A �

B : Type is never used in the premises of the �rst
omponent of the

omponent-wise subtyping rules in Figure 2. And hen
e the se
ond derivation

of the
ounter example in se
tion 3 is blo
ked.

� The basi
 understanding of the new subtyping rules for �-types is that

�(A;B) is a subtype of �(A

0

; B

0

) if A

0

is a subtype of A and B is a sub-

family of B

0

(we omit other
ases su
h as: �(A;B) is a subtype of �(A;B

0

)

if B is a sub-family of B

0

).

� For the new
omponent-wise subtyping rules for �-types, be
ause of the

in
oheren
e when �

1

is also regarded as a
oer
ion, we need to have a stri
ter

understanding, that is, �(A;B) is a subtype of �(A

0

; B

0

) if A is a subtype

of A

0

and B is a sub-family of B

0

and the sizes of A and A

0

are the same

(size is de�ned in the de�nition 4). In the following se
tion, we will prove

that the sizes of A and B are the same if � ` A <

B : Type and, the size

of A is bigger than the size of B if � ` A �

B : Type.

The subtyping system we presented here
overs all the
oer
ions derived from the

omponent-wise subtyping rules and the subtyping rule for the �rst proje
tion

when they are used separately. A
tually, it has more
oer
ions. For example, if

A, B and C are di�erent types, we
an have a
oer
ion from A � (B � C) to

A � B be
ause there is a
oer
ion from B � C to B. But we
an never derive

a
oer
ion from A � (B � C) to A � B by the
omponent-wise subtyping rules

or the subtyping rule for the �rst proje
tion separately. What we have ex
luded

are those
oer
ions that need
omponent-wise subtyping rules for �-types but

the sizes of their �rst
omponents are di�erent. For example, we don't have a

oer
ion from (A�B)�C to A�C be
ause the sizes of A�B and A are di�erent

although there is a
oer
ion from A�B to A.

In T [R�

1

℄

0

, the subtyping judgements do not
ontribute to any derivation

of a judgement of any other forms in the original type theory T . Therefore, we

have the following lemma.

Lemma 1. T [R�

1

℄

0

is a
onservative extension of T .

Remark 3. As the two subtyping relations < and � do
ontribute to ea
h other,

T [R�

1

℄

0

is not a
onservative extension of T [R℄

0

whose subtyping judgements

are only of the form � ` A <

B : Type (see [Luo99℄ for details).

Now, we de�ne the most basi
 requirement for the new subtyping relation in the

following.

De�nition 2. (Coheren
e
ondition of T [R�

1

℄

0

) We say that T [R�

1

℄

0

is

oherent if it has the following properties.

9

1. � ` A /

B : Type implies � ` A : Type, � ` B : Type, and � `
 : (A)B.

2. � ` A /

B : Type implies � 6` A = B : Type.

3. � ` A <

B : Type and � ` A <

0

B : Type imply � `
 =

0

: (A)B.

4. � ` A �

B : Type and � ` A �

0

B : Type imply � `
 =

0

: (A)B.

5. (Disjointness) � ` A <

B : Type implies � 6` A �

0

B : Type for any

0

,

and vi
e versa, � ` A �

B : Type implies � 6` A <

0

B : Type for any

0

.

Remark 4. One may
onsider a more general
oheren
e
ondition like, if � `

A /

B : Type and � ` A /

0

B : Type then � `
 =

0

: (A)B. This will

in
lude the
ase whi
h both � ` A <

B : Type and � ` A �

B : Type may

happen. However, one of the reasons we need the new subtyping relation (�) is

deliberately to make sure that � ` A <

B : Type and � ` A �

B : Type may

never hold at the same time for any A and B. Disjointness is regarded as a part

of
oheren
e
ondition.

The system T [R�

1

℄ The system T [R�

1

℄ is an extension of T [R�

1

℄

0

with the

inferen
e rules in Appendix. Comparing with the original subkinding rules in

[Luo99℄, a new rule is added.

(New Basi
 Subkinding Rule)

� ` A �

B : Type

� ` El(A) <

El(B)

There is only one subkinding judgement form � ` K <

K

0

, although there are

two subtyping judgement forms � ` A <

B : Type and � ` A �

B : Type. At

the kind level, we are more
on
erned with the existen
e of a
oer
ion no matter

it is derived from whi
h form at the type level.

Remark 5. The main result of [SL02℄ is essentially that
oheren
e of subtyping

rules does imply
onservativity. In the next se
tion, we shall also prove the

oheren
e of T [R�

1

℄

0

. So, T [R�

1

℄ is also expe
ted to be a
onservative extension

of T .

4.3 Coheren
e of T [R�

1

℄

0

Now, we prove the
oheren
e of T [R�

1

℄

0

, whi
h essentially says that
oer
ions

between any two types must be unique. In this paper, the set R of basi
 sub-

typing
onsists of the rule (WDCrule) and the new subtyping rules for �-types

and �-types (in Figure 2 and 3) and, the system T [R�

1

℄

0

also in
ludes the
on-

gruen
e rule (Cong) and the new subtyping rules in Figure 1. Furthermore, we

assume that for any judgement � ` A <

B : Type 2 C, neither A nor B is
om-

putationally equal to a �-type or �-type. We also assume that the original type

theory T has good properties, in parti
ular the properties of Chur
h-Rosser and

Strong Normalisation and the property of
ontext repla
ement by equal kinds.

We give a de�nition of size(A) that only
ounts how many times that �

1

an

be applied for an obje
t of type A. In order to de�ne size, we de�ne presize

�rst.

10

De�nition 3. (presize) Let � `M : Type be a derivable judgement in T [R�

1

℄

0

and M a normal form (i.e. M � nf(M)),

1. if M is not a �-type then presize(M) =

df

0,

2. if M � �(A;B) then presize(M) =

df

presize(A) + 1.

Remark 6. For the se
ond
ase, be
ause M is a normal form, so is A. Therefore

presize is well-de�ned.

De�nition 4. (size) The de�nition of size in T [R�

1

℄

0

: Let � ` M : Type be

a derivable judgement in T [R�

1

℄

0

, size(M) =

df

presize(nf(M)).

Remark 7. T [R�

1

℄

0

is a
onservative extension of T and every well-typed term

in T has its unique normal form. So, the value of size(M) is unique and size is

well-de�ned.

Lemma 2. In T [R�

1

℄

0

, if � `M

1

= M

2

: Type then size(M

1

) = size(M

2

).

Proof. T [R�

1

℄

0

is a
onservative extension of T and T has properties of Chur
h-

Rosser and strong normalisation, i.e. nf(M

1

) � nf(M

2

).

Lemma 3. Let � `M : Type be a derivable judgement in T [R�

1

℄

0

.

� if M is not
omputationally equal to a �-type then size(M) = 0 and,

� if � `M = �(A;B) : Type then size(M) = size(A) + 1.

Proof. By the de�nition of size and Lemma 2.

Lemma 4. In T [R�

1

℄

0

, if � `M

1

<

d

M

2

: Type then size(M

1

) = size(M

2

).

Proof. By indu
tion on derivations and Lemma 2 and Lemma 3. Note that

size(M

1

) = size(M

2

) = 0 if the last rule of � ` M

1

<

d

M

2

: Type is one

of the rules for �-types.

Lemma 5. In T [R�

1

℄

0

, if � `M

1

�

M

2

: Type then size(M

1

) > size(M

2

).

Proof. By indu
tion on derivations and Lemma 2, Lemma 3 and Lemma 4.

The following theorems prove the
oheren
e of T [R�

1

℄

0

.

Theorem 1. � If � `M

1

/

M

2

: Type then � `M

1

: Type, � `M

2

: Type

and � `
 : (M

1

)M

2

: Type.

� If � `M

1

/

M

2

: Type then � 6`M

1

=M

2

: Type.

� If � ` M

1

�

M

2

: Type then � 6` M

1

<

d

M

2

: Type for any d. And vi
e

versa, if � `M

1

<

M

2

: Type, then � 6`M

1

�

d

M

2

: Type for any d.

Proof. By indu
tion on derivations, the de�nition of WDC, Lemma 4 and Lemma

5.

Theorem 2. If ` � = �

0

� `M

1

= M

0

1

: Type and � `M

2

= M

0

2

: Type and

1. � `M

1

<

d

M

2

: Type and �

0

`M

0

1

<

d

0

M

0

2

: Type, or

11

2. � `M

1

�

d

M

2

: Type and �

0

`M

0

1

�

d

0

M

0

2

: Type

then � ` d = d

0

: (M

1

)M

3

.

Proof. By indu
tion on derivations. A most important arguement in this proof is

that, any derivations of � `M

1

<

d

M

2

and �

0

`M

0

1

<

d

M

0

2

, or � `M

1

�

d

M

2

and �

0

`M

0

1

�

d

0

M

0

2

must
ontain sub-derivations whose last rules are the same

rule, followed by appli
ations of the
ongruen
e rules.

4.4 Admissibility of substitution and transitivity

Now, we give the subtyping rules of substitution and transitivity and, prove

that these rules are admissible. In an implementation of
oer
ive subtyping,

these rules are ignored simply be
ause they
annot be dire
tly implemented.

For this reason among others, proving the admissibility of su
h rules (or their

elimination) is always an important task for any subtyping system.

Admissible substitution rules The substitution rules are as follows, whi
h

are what we expe
t normally.

�; x : K;�

0

` A <

B : Type � ` k : K

�; [k=x℄�

0

` [k=x℄A <

[k=x℄

[k=x℄B : Type

�; x : K;�

0

` A �

B : Type � ` k : K

�; [k=x℄�

0

` [k=x℄A �

[k=x℄

[k=x℄B : Type

Admissible transitivity rules We give the following four transitivity rules

that are basi
ally saying that if there are
oer
ions
 and

0

from type A to B

and from type B to C, then

0

Æ
 is a
oer
ion from type A to C.

� ` A <

1

B : Type � ` B <

2

C : Type

� ` A <

2

Æ

1

C : Type

� ` A �

1

B : Type � ` B �

2

C : Type

� ` A �

2

Æ

1

C : Type

� ` A <

1

B : Type � ` B �

2

C : Type

� ` A �

2

Æ

1

C : Type

� ` A �

1

B : Type � ` B <

2

C : Type

� ` A �

2

Æ

1

C : Type

Remark 8. The above transitivity rule are su�
ient and
orre
t, in the sense

that, �rst, they
apture the meaning of transitivity, and se
ond, they enjoy the

properties in the lemmas 4 and 5 . Other rules of di�erent
ombination su
h as

the rule

� ` A <

1

B : Type � ` B <

2

C : Type

� ` A �

2

Æ

1

C : Type

are not
orre
t and
ontradi
tory to the above properties.

Theorem 3. (Substitution in T [R�

1

℄

0

) If � ` k : K and

1. if �; x : K;�

0

` M

1

<

M

2

: Type, then �; [k=x℄�

0

` [k=x℄M

1

<

[k=x℄

[k=x℄M

2

: Type, and

12

2. if �; x : K;�

0

` M

1

�

M

2

: Type, then �; [k=x℄�

0

` [k=x℄M

1

�

[k=x℄

[k=x℄M

2

: Type.

Proof. By indu
tion on derivations.

In order to prove the admissibility of the transitivity rules, we also need to

prove the theorem about weakening.

Theorem 4. (Weakening in T [R�

1

℄

0

) If � � �

0

, �

0

is valid and

1. if � `M

1

<

M

2

: Type then �

0

`M

1

<

M

2

: Type, and

2. if � `M

1

�

M

2

: Type then �

0

`M

1

�

M

2

: Type.

Proof. By indu
tion on derivations.

To prove the admissibility of transitivity rules, the usual methods (e.g. by in-

du
tion on derivations) do not seem to work. We develop a new measure (Depth)

that is an adoption of the measure (depth) developed by Chen, Aspinall and

Companoni [Che98℄. In the measure Depth, the subtyping judgements (< and

�) only
ount.

De�nition 5. (Depth) Let D be a derivation of a subtyping judgement of the

form � ` A <

B : Type or � ` A �

B : Type.

D :

S

1

::: S

n

T

1

::: T

m

� ` A /

B : Type

where � ` A /

B : Type represents � ` A <

B : Type or � ` A �

B : Type,

S

1

,...,S

n

are derivations of subtyping judgements of the form � ` M

1

<

d

M

2

:

Type or � `M

1

�

d

M

2

: Type and, T

1

,..., T

m

are derivations of other forms of

judgements,

Depth(D) =

df

1 +maxfDepth(S

1

); :::; Depth(S

n

)g

Spe
ially, if n = 0 then Depth(D) =

df

1.

The following lemmas show that, from a derivation D of a subtyping judgement

J one
an always get a derivation D

0

of the judgement obtained from J by

ontext repla
ement su
h that D and D

0

have the same depth.

Lemma 6. If ` � = �

0

and

1. if D is a derivation of � `M

1

<

d

M

2

: Type, then there is a derivation D

0

of �

0

`M

1

<

d

M

2

: Type su
h that Depth(D) = Depth(D

0

), or

2. if D is a derivation of � `M

1

�

d

M

2

: Type, then there is a derivation D

0

of �

0

`M

1

�

d

M

2

: Type su
h that Depth(D) = Depth(D

0

).

Proof. By indu
tion on derivations.

Lemma 7. If �; x : K;�

0

` M

1

<

1

M

2

: Type 2 C and � `

2

: (K

0

)K then

�; y : K

0

; [

2

(y)=x℄�

0

` [

2

(y)=x℄M

1

<

[

2

(y)=x℄

1

[

2

(y)=x℄M

2

: Type 2 C.

13

Proof. By the weakening and substitution in the de�nition of WDC.

Lemma 8. If � `

2

: (K

0

)K and,

1. if D is a derivation of �; x : K;�

0

` M

1

<

1

M

2

: Type, then there is a

derivation D

0

of �; y : K

0

; [

2

(y)=x℄�

0

` [

2

(y)=x℄M

1

<

[

2

(y)=x℄

1

[

2

(y)=x℄M

2

:

Type su
h that Depth(D) = Depth(D

0

), or

2. if D is a derivation of �; x : K;�

0

` M

1

<

1

M

2

: Type, then there is a

derivation D

0

of �; y : K

0

; [

2

(y)=x℄�

0

` [

2

(y)=x℄M

1

<

[

2

(y)=x℄

1

[

2

(y)=x℄M

2

:

Type su
h that Depth(D) = Depth(D

0

).

Proof. By indu
tion on derivations and Lemma 7. The theorem of weakening

and substitution in type theory T and the property of
onservativity of T [R�

1

℄

0

over T are also needed in this proof.

Now, we
an prove the admissibility of transitivity rules.

Theorem 5. (Transitivity in T [R�

1

℄

0

) If � `M

2

= M

0

2

: Type and

1. if � `M

1

<

d

1

M

2

: Type and � `M

0

2

<

d

2

M

3

: Type, then

� `M

1

<

d

2

Æd

1

M

3

: Type, and

2. � `M

1

�

d

1

M

2

: Type and � `M

0

2

�

d

2

M

3

: Type, then

� `M

1

�

d

2

Æd

1

M

3

: Type.

3. if � `M

1

<

d

1

M

2

: Type and � `M

0

2

�

d

2

M

3

: Type, then

� `M

1

�

d

2

Æd

1

M

3

: Type, and

4. � `M

1

�

d

1

M

2

: Type and � `M

0

2

<

d

2

M

3

: Type, then

� `M

1

�

d

2

Æd

1

M

3

: Type, and

Proof. By indu
tion on Depth(D) +Depth(D

0

), where D is a derivation of � `

M

1

<

d

1

M

2

: Type or � `M

1

�

d

1

M

2

: Type, D

0

is a derivation of � `M

0

2

<

d

2

M

3

: Type or � `M

0

2

�

d

2

M

3

: Type.

5 Dis
ussions

Side
onditions

3

In order to blo
k the unwanted derivations, one may still

try to keep the rule �

1

rule in se
tion 3 and use side
onditions for the First

Component rule, without introdu
ing any new subtyping relation. For instan
e,

one of su
h side
onditions for the First Component rule is the following.

� ` A <

A

0

: Type � ` B : (A

0

)Type

� ` �(A;B Æ
) <

d

1

�(A

0

; B) : Type

(size(A) = size(A

0

))

or

� ` A <

A

0

: Type � ` B : (A

0

)Type

� ` �(A;B Æ
) <

d

1

�(A

0

; B) : Type

(size(A) 6> size(A

0

))

In T [R�

1

℄

0

, size is well-de�ned. Similarly, size
an be de�ned in T [R℄

0

and one

an prove its well-de�nedness (see [Luo99,LL01℄ for more details of T [R℄

0

and

T [R℄. Here, R in
ludes one of the above rules). It is obvious that T [R�

1

℄

0

and

T [R℄

0

are equivalent in terms of the following lemma.

3

Thanks to an anonymous referee for the
omments on this issue.

14

Lemma 9. If � ` A /

B : Type is derivable in T [R�

1

℄

0

then � ` A <

B :

Type is derivable in T [R℄

0

and vi
e versa.

However, sin
e the system T [R℄ in
ludes the Coer
ive de�nition rule and the

Coer
ive appli
ation rules in Appendix, A and A

0

in the side-
ondition may not

be well-typed in the original type theory any more. The way to
ompute su
h

terms is to insert
oer
ions �rst and then do usual
omputation in the original

type theory. So the property that inserting
oer
ion is de
idable in T [R℄ must be

proved �rst in order to argue the well-de�nedness of size. There is a
ir
ularity,

that is, a property of T [R℄ is needed in order to present T [R℄ itself.

Algorithm and de
idability Sin
e we proved the
oheren
e and admissibility

of substitution and transitivity, the
oer
ion sear
hing for whole system is de-

idable if it is de
idable for C . In other words, there is an algorithm to
he
k

whether there exists a
oer
ion between any two types. We omit the details here.

Further study In this paper, we had a
ase study about how to
ombine in-

oherent
oer
ions. The methods developed here may have a wider appli
ation.

In general, it is also natural to
onsider new subtyping relations to blo
k those

derivations whi
h make the
oer
ive subtyping system in
oherent. The method

to introdu
e new transitivity rules may guide a further study of a system in

whi
h there are more than one subtyping relations.

The subtyping rules for parameterised indu
tive types need further study.

For example, we introdu
e subtyping rules for lists as follows.

� ` A /

B : Type

� ` List(A) <

d

List(B) : Type

where d = map(A;B;
) su
h that d(nil(A)) = nil(B) and d(
ons(A; a; l)) =

ons(B;
(a); d(l)).

As studied in [LLS02℄, if we add this rule in the system, the transitivity rules

would not be admissible. In a forth
oming paper, we will study new
omputation

rules for parameterised indu
tive types and su
h rules will make, for example,

map(B;C;

0

) Æmap(A;B;
) and map(A;C;

0

Æ
)
omputationally equal. And

hen
e the above subtyping rules for lists enjoy the property of admissibility of

transitivity.

Related work The early development of the framework of
oer
ive subtyp-

ing is
losely related to A
zel's idea in type-
he
king overloading methods for

lasses [A
z94℄ and the work on giving
oer
ion semanti
s to lambda
al
uli

with subtyping by Breazu-Tannen et al [BCGS91℄. Barthe and his
olleagues

have studied
onstru
tor subtyping and its possible appli
ations in proof sys-

tems [BF99,BvR00℄. A re
ent logi
al study of subtyping in system F
an be

found in [LMS95℄ and Chen has studied the issue of transitivity elimination in

that framework [Che98℄.

A
knowlegements We would like to thank the member of the Computer-

Assisted Reasoning Group at Durham for dis
ussions and the TYPES03 referees

for the
omments on the paper.

15

Referen
es

[A
z94℄ P. A
zel. Simple overloading for type theories. Draft, 1994.

[B

+

00℄ B. Barras et al. The Coq Proof Assistant Referen
e Manual

(Version 6.3.1). INRIA-Ro
quen
ourt, 2000.

[Bai98℄ A. Bailey. The Ma
hine-
he
ked Literate Formalisation of Al-

gebra in Type Theory. PhD thesis, University of Man
hester,

1998.

[BCGS91℄ V. Breazu-Tannen, T. Coquand, C. Gunter, and A. S
edrov.

Inheritan
e and expli
it
oer
ion. Information and Computation,

93, 1991.

[BF99℄ G. Barthe and M.J. Frade. Constru
tor subtyping. Pro
eedings

of ESOP'99, LNCS 1576, 1999.

[BvR00℄ G. Barthe and F. van Raamsdonk. Constru
tor subtyping in the

al
ulus of indu
tive
onstru
tions. Pro
eedings of FOSSACS'00,

LNCS 1784, 2000.

[Che98℄ G. Chen. Subtyping, Type Conversion and Transitivity Elimina-

tion. PhD thesis, University of Paris VII, 1998.

[CL01℄ P. Callaghan and Z. Luo. An implementation of LF with
oer-

ive subtyping and universes. Journal of Automated Reasoning,

27(1):3�27, 2001.

[CLP01℄ P. C. Callaghan, Z. Luo, and J. Pang. Obje
t languages in a type-

theoreti
 meta-framework. Workshop of Proof Transformation

and Presentation and Proof Complexities (PTP'01), 2001.

[HHP87℄ R. Harper, F. Honsell, and G. Plotkin. A framework for de�ning

logi
s. Pro
. 2nd Ann. Symp. on Logi
 in Computer S
ien
e.

IEEE, 1987.

[JLS98℄ A. Jones, Z. Luo, and S. Soloviev. Some proof-theoreti
 and

algorithmi
 aspe
ts of
oer
ive subtyping. Types for proofs and

programs (eds, E. Gimenez and C. Paulin-Mohring), Pro
. of the

Inter. Conf. TYPES'96, LNCS 1512, 1998.

[LC98℄ Z. Luo and P. Callaghan. Coer
ive subtyping and lexi
al seman-

ti
s (extended abstra
t). LACL'98, 1998.

[LL01℄ Y. Luo and Z. Luo. Coheren
e and transitivity in
oer
ive sub-

typing. In R. Nieuwenhuis and A. Voronkov, editors, 8th Inter-

national Conferen
e on Logi
 for Programming, Arti�
ial Intel-

ligen
e, and Reasoning, volume 2250 of LNAI, pages 249�265.

Springer-Verlag, 2001.

[LLS02℄ Y. Luo, Z. Luo, and S. Soloviev. Weak transitivity in
oer
ive sub-

typing. In H. Geuvers and F. Wiedijk, editors, Types for Proofs

and Programs, volume 2646 of LNCS, pages 220�239. Springer-

Verlag, 2002.

[LMS95℄ G. Longo, K. Milsted, and S. Soloviev. A logi
 of subtyping. In

Pro
. of LICS'95, 1995.

[LP92℄ Z. Luo and R. Polla
k. LEGO Proof Development System: User's

Manual. LFCS Report ECS-LFCS-92-211, Department of Com-

puter S
ien
e, University of Edinburgh, 1992.

16

[Luo94℄ Z. Luo. Computation and Reasoning: A Type Theory for Com-

puter S
ien
e. Oxford University Press, 1994.

[Luo97℄ Z. Luo. Coer
ive subtyping in type theory. Pro
. of CSL'96, the

1996 Annual Conferen
e of the European Asso
iation for Com-

puter S
ien
e Logi
, Utre
ht. LNCS 1258, 1997.

[Luo99℄ Z. Luo. Coer
ive subtyping. Journal of Logi
 and Computation,

9(1):105�130, 1999.

[NPS90℄ B. Nordström, K. Petersson, and J. Smith. Programming in

Martin-Löf's Type Theory: An Introdu
tion. Oxford University

Press, 1990.

[SL02℄ S. Soloviev and Z. Luo. Coer
ion
ompletion and
onservativity

in
oer
ive subtyping. Annals of Pure and Applied Logi
, 2002.

Appendix: The following are the inferen
e rules for the
oer
ive subkinding

extension T [R�

1

℄ (not in
luding the rules for subtyping)

Basi
 subkinding rule

� ` A <

B : Type

� ` El(A) <

El(B)

� ` A �

B : Type

� ` El(A) <

El(B)

Coer
ive appli
ation rules

� ` f : (x : K)K

0

� ` k

0

: K

0

� ` K

0

<

K

� ` f(k

0

) : [
(k

0

)=x℄K

0

� ` f = f

0

: (x : K)K

0

� ` k

0

= k

0

0

: K

0

� ` K

0

<

K

� ` f(k

0

) = f

0

(k

0

0

) : [
(k

0

)=x℄K

0

Coer
ive de�nition rule

� ` f : (x : K)K

0

� ` k

0

: K

0

� ` K

0

<

K

� ` f(k

0

) = f(
(k

0

)) : [
(k

0

)=x℄K

0

Subkinding for dependent produ
t kinds

� ` K

0

1

= K

1

�; x

0

: K

0

1

` K

2

<

K

0

2

�; x : K

1

` K

2

kind

� ` (x : K

1

)K

2

<

[f :(x:K

1

)K

2

℄[x

0

:K

0

1

℄
(f(x

0

))

(x

0

: K

0

1

)K

0

2

� ` K

0

1

<

K

1

�; x

0

: K

0

1

` [
(x

0

)=x℄K

2

= K

0

2

�; x : K

1

` K

2

kind

� ` (x : K

1

)K

2

<

[f :(x:K

1

)K

2

℄[x

0

:K

0

1

℄f(
(x

0

))

(x

0

: K

0

1

)K

0

2

� ` K

0

1

<

1

K

1

�; x

0

: K

0

1

` [

1

(x

0

)=x℄K

2

<

2

K

0

2

�; x : K

1

` K

2

kind

� ` (x : K

1

)K

2

<

[f :(x:K

1

)K

2

℄[x

0

:K

0

1

℄

2

(f(

1

(x

0

)))

(x

0

: K

0

1

)K

0

2

Congruen
e rules for subkinding

� ` K

1

<

K

2

� ` K

1

= K

0

1

� ` K

2

= K

0

2

� `
 =

0

: (K)K

0

� ` K

0

1

<

0

K

0

2

Transitivity and Substitution rules for subkinding

� ` K <

K

0

� ` K

0

<

0

K

00

� ` K <

0

Æ

K

00

�; x : K;�

0

` K

1

<

K

2

� ` k : K

�; [k=x℄�

0

` [k=x℄K

1

<

[k=x℄

[k=x℄K

2

17

