Combining Incoherent Coercions for X-types

Yong Luo and Zhaohui Luo

Department of Computer Science, University of Durham

Abstract. Coherence is a vital requirement for the correct use of coer-
cive subtyping for abbreviation and other applications. However, some
coercions are incoherent, although very useful. A typical example of such
is the subtyping rules for ¥-types: the component-wise rules and the rule
of the first projection. Both of these groups of rules are often used in
practice (and coherent themselves), but they are incoherent when put
together directly. In this paper, we study this case for Y-types by in-
troducing a new subtyping relation and the resulting system enjoys the
properties of coherence and admissibility of substitution and transitivity.

1 Introduction

Coercive subtyping for dependent type theories, as studied in [Luo97,Luo99] and
implemented in proof assistants such as Lego [LP92], Coq [BT00] and Plastic
[CLO1], is a powerful abbreviation mechanism and has been used in applica-
tions of proof development (e.g. [Bai98]). An important requirement of coercion
mechanism is that of coherence, that is, coercions between any two types must
be computationally equal. This requirement is essential for the consistent use
and correct implementation of the mechanism.

A coherence problem Some coercions cannot be put together directly in a
coherent way, although very useful. A typical example of such coercions is those
concerning Y-types (types of dependent pairs). There are at least two sets of
natural and useful coercion rules: the component-wise subtyping rules and the
rule of the first projection. They are coherent separately (see [LLO01] for the
coherence of the former and [Bai98] for the use of the latter), but incoherent
when put together directly (see the counter example in section 3 for details).
This prevents them from being used together.

Our solution to this coherence problem is basically, in this paper, by introduc-
ing a new subtyping relation and giving a new formulation of coercive subtyping,
to ensure that there is only one coercion (with respect to computational equality)
between any two types (if there is one).

Transitivity This new formulation not only satisfies coherence requirements
but also enjoys other properties, particularly, the admissibility of substitution
and transitivity because such properties are important for an implementation of
coercive subtyping. Through our investigation, we found out that the property
of admissibility of transitivity is actually very hard to come by. In this paper,

we shall consider two subtyping relations simultaneously, give new transitivity
rules and prove that all of them are admissible.

In section 2, we shall give an overview of coercive subtyping and introduce
some concepts such as Well-Defined Coercions and notations to be used later in
the paper. In section 3, the coherence problem and its solution will be intuitively
explained through a counter example. In section 4, there is a formal presenta-
tion of the solution. A new definition of coherence, new rules of substitution
and transitivity are also given. Some important properties, coherence and the
admissibility of substitution and transitivity, are proved. Discussions are in the
last section, where we discuss issues such as decidability and wider applications
of the methods developed in this paper.

2 Coercive subtyping and well-defined coercions

In this section, we give an overview of coercive subtyping, introduce some no-
tations and the concept of well-defined coercions that will be used later in the

paper.

2.1 Coercive subtyping

The basic idea of coercive subtyping, as studied in [Luo99], is that A4 is a subtype
of B if there is a (unique) coercion ¢ from A to B, and therefore, any object
of type A may be regarded as object of type B via ¢, where ¢ is a functional
operation from A to B in the type theory.

A coercion plays the role of abbreviation. More precisely, if ¢ is a coercion
from K, to K, then a functional operation f with domain K can be applied to
any object ko of Ko and the application f(kg) is definitionally equal to f(c(ko))-
Intuitively, we can view f as a context which requires an object of K; then
the argument ko in the context f stands for its image of the coercion, c(ko).
Therefore, one can use f(ko) as an abbreviation of f(c(ko)).

The above simple idea, when formulated in the logical framework, becomes
very powerful. The second author and his colleagues have developed the frame-
work of coercive subtyping that covers variety of subtyping relations including
those represented by parameterised coercions and coercions between parame-
terised inductive types. See [Luo99,Bai98,CL01,L.C98,CLP01] for details of some
of these development and applications of coercive subtyping.

Some important meta-theoretic aspects of coercive subtyping have been stud-
ied. In particular, the results on conservativity and on transitivity elimination
for subkinding have been proved in [JLS98,SL02]. The main result of [SLO2]
is essentially that coherence of basic subtyping rules does imply conservativity.
These results not only justify the adequacy of the theory from the proof-theoretic
consideration, but also provide the proof-theoretic basis for implementation of
coercive subtyping.

How to prove coherence and admissibility of transitivity at the type level
has been studied in [LLO1] recently. In particular, the concept of Well-defined

coercions has been developed, and the suitable subtyping rules for IT-types and
Y -types have been given as examples to demonstrate these proof techniques.

Coercive subtyping is formally formulated as an extension of (type theories
specified in) the logical framework LF!, whose rules are given in [Luo94]. Types
in LF are called kinds. The kind Type represents the conceptual universe of types
and a kind of form (x : K)K' represents the dependent product with functional
operations f as objects (e.g., abstraction [z : K]k') which can be applied to
objects of kind K to form application f(k). For every type (an object of kind
Type), El(A) is the kind of objects of A. LF can be used to specify type theories,
such as Martin-Lo6f’s type theory [NPS90] and UTT [Luo94].

As presented in [Luo99], a system with coercive subtyping is an extension
of any type theory specified in LF by a set of basic subtyping rules R whose
conclusions are subtyping judgements of the form I' F A <. B : Type. And the
subtyping rules in R are supposed to be coherent.

Notation We shall use the following notations:

e We sometimes use M[z] to indicate that variable z may occur free in M.

e Context equality: for I' =z : Ky, ...,xp : Ky and I'" =y : Ky, ..., 2y : K],
we shall write F I' = I for the sequence of judgements - K; = KJ, ...,
Iy . Kl, ey 1 1 Kn,1 F Kn = K':z

e Types of non-dependent pairs: if A and B are types, we sometimes write
A x B for Y(A,[z : A]B) where z is not free in B.

2.2 Well-defined Coercions

Recently, a new concept of Well-defined Coercions (WDC) has been developed
in [LLO1]. Suppose there is a set of coercions, which is coherent and have admis-
sibility properties, we prove that, after adding new subtyping rules, the extended
system still keeps the coherence and admissibility properties.

Definition 1. (Well-defined coercions) If C is a set of subtyping judgements
of the form I' v M <4 M' : Type which satisfies the following conditions, we
say that C is a well-defined set of judgements for coercions, or briefly called
Well-defined Coercions (WDC).

1. (Coherence)
(a) ' A <. B:Type € C implies ' v A : Type, I' - B : Type and
I'tc:(A)B.
(b)) ' A<.A:Type ¢ C for any I', A, and c.
(¢c) THFA<, B:Type e Cand ' A<, B:Type € C imply I' F ¢; =
Co . (A)B
2. (Congruence) ' - A<, B :Type € C, ' A=A":Type, ' - B=B':
Type and T'-c=¢" : (A)B imply ' A' <. B" € C.
3. (Transitivity) I' = A <., B: Type € C and I' - B <., A" : Type € C imply
I'A<cyoey A :Type € C.

! The LF here is different from the Edinburgh Logical Framework [HHPS7].

4. (Substitution) Iz : K, I+ A <. B : Type € C implies for any k such that
I'tk:K, Ik« [k/2]A <4/ [k/x]B : Type € C.

5. (Weakening) ' H A <. B : Type € C, I' C I'" and I'" is valid imply I'' +-
A<.B:Typee€C.

In this paper, the set R of basic coercion rules includes the following rule, where

Cis a WDC:
I'-A<.B:Type€eC(C

I'A<.B:Type

(WDC'rule)

3 The basic subtyping rules and the coherence problem

In this section, we give an example to illustrate the coherence problem of the
component-wise subtyping rules for X-types and the subtyping rule of its first
projection and explain informally the solution through a counter example.

Subtyping rules for Y-types As studied in [LLO1], there are three component-
wise subtyping rules for X-types. One of these rules is the following.

'A<, A :Type I'+ B : (A")Type
I'-Y(A,Boc) <q, X(A",B) : Type

(First Component rule)

where dy = [z : X (A, B o ¢)|pair(A’, B,c(m1 (A, Boc,z)),m2(A, Boec,z)), which
basically means that, for example, A x B is a subtype of A’ x Bif A, A" and B
are types and A is a subtype of A'.

The coercion of the first projection is very useful; for example, it is used
significantly in Bailey’s PhD thesis [Bai98] for formalisation of mathematics.
Formally, the subtyping rule is the following:

I'A:Type I'-B: (A)Type
' Y(A,B) <z,(a,B) A: Type

(mirule)

With this coercion, it is very easy to express some mathematical properties. For
example, the type of collection of groups is a subtype of the type of semi-groups
(i.e. a group is also a semi-group). Any functional operator with the domain of
semi-groups can be applied to any group with a coercion.

A counter example If the subtyping rule (m;rule) and the component-wise
subtyping rules for Y-types are combined together, we would have the following
two derivations.

The first derivation is

I'-A:TypeI' - B: (A)Type I'+ B : (A)Type
I'+ Y (A, B) : Type I'- Bom(A,B): (X¥(A,B))Type
I'-Y(X(A,B),Bomi(A,B)) <4, Y(A,B) :Type

and the rule (mrule) is used in the last step.

The second derivation is

I'FA:TypeT'F B: (A)Type
I'- Y(A,B) <z, a,B) A:Type
I'-Y(X(A,B),Bom(A,B)) <4, X(A,B) : Type

(mirule) I' B: (A)Type

and the rule (mrule) is used in the first step and the First Component rule is
used in the last step.

There are two coercions d; and dy from type X(X(A, B), B o m1(A, B)) to
type X (A, B)? and we have the following equations

dy (pair(pair(a,b), b2)) = pair(a,by)
da(pair(pair(a,b), b2)) = pair(a, bs)

We can see that d; and d» are neither computationally nor extensionally
equal. Hence, the vital requirement of coercive subtyping system, coherence,
fails.

Informal explanation of our solution From the above counter example, we
see that the existence of the two derivations makes the system incoherent. To
make it coherent, a natural way is to block one of the derivations. The first one
cannot be blocked, otherwise we lose the meaning that the first projection ()
is regarded as coercion. And hence we can only block the second derivation.
More precisely, we must not allow I' F A <. A’ : Type is used as the first
promise of the component-wise subtyping rules if it is (directly) derived from
mirule. In other words, a condition of the component-wise subtyping rules is
that the first promise is not (directly) derived from m;rule. There are several
attempts to satisfy this condition, one of which is to consider a notion of size as
a side-condition because A is a sub-term of X(A, B) in the conclusion of mrule,
and their sizes are intuitively different. However, the well-definedness of size is
problematic when we present the whole subtyping system (see discussion section
for more details).

In this paper, rather than thinking of any side-conditions, we introduce a new
subtyping relation (<) to represent coercion 7. This new subtyping relation will
never appear in the first premises of the component-wise subtyping rules and
hence the unwanted derivations such as the second one in the counter example
are blocked.

To make the subtyping system coherent is one thing; to make it also enjoy
the property of admissibility of transitivity is another. During our investigation,
we experienced that some formulations satisfy the property of coherence, but not
the admissibility of transitivity. The formulation in the next section will enjoy
all these properties.

2 There are two different coercions from (A x B) x B to A x B if A and B are types.

4 A formal presentation

In this section, we shall give a formal presentation of a new subtyping relation
and related subtyping rules. The coherence and admissibility of substitution and
transitivity will also be proved.

4.1 A new subtyping relation

We have seen the problem with the combination of the component-wise subtyping
rules and the subtyping rule of the first projection. Now, we introduce a new
relation to solve this problem and, consider a new system T'[Rm1], which is an
extension of coercive subtyping with the judgement form:

e ' A <. B :Type asserts that type A is a subtype of type B with c.

As we will see later, subtyping relation < and < are different. < represents the
idea that m; is regarded as a coercion, but < doesn’t.

The coercive definition rules The main idea of coercive subtyping can in-
formally be represented by the following coercive definition rule (contexts are
omitted):
K<.K' k:K f:(z:K)K"
f(k) = f(c(R)) : [e(k)/x] K"
The same idea is for the new subtyping relation. A new basic subkinding rule
for < is the following:

A <. B :Type
El(A) <. El(B)

By the coercive definition rule, we have the following derivable rule:

A<.B:Type k:El(A) f:(z:El(B)K
f(k) = f(e(k)) = [e(k) /] K

which says that if A <. B, any functional operator f with domain B can be
applied to any object z of A and, f(z) = f(c(x)).

We present the new subtyping system in two stages: first an intermediate
system T[Rm]o and the definition of coherence, and then the system T[Rm].

4.2 The system T[Rm1]o and T[Rm]

Formally, T[Rm]o is an extension of type theory T (only) with the following
rules:

e A set R of basic subtyping rules whose conclusions are subtyping judgements
of the form I' A <. B : Type.

e The following congruence rule for subtyping judgements
I'A<.B:Type
I'-A=A":TypeI'FB=B:Typel'Fc=c:(A)B
I' A" <. B': Type

(Cong)

e The new subtyping rules for the first projection in Figure 1, whose conclu-
sions are of the form I'+ A <. B : Type.

Notation: we shall use I' F A x. B : Type to represent I' H A <. B
Type or I' = A <. B : Type. For example, M actually represents

FAx.B:T F’)—A’ BT
two rules L-A<eBTupe 5pq LEAZ:B:Type, Xe 21 ype X T IUPE actually

represents four rules. We shall also say that Ais a subtype of B or there is a
coercion ¢ from A to Bif '+ A . B : T'ype.

New subtyping rule for the first projection:

I'A:Type I'+ B: (A)Type
't X(A,B) <, (4,) A: Type

'-Ax. A :Type T'+-B: (A)Type
I'+ Y(A,B) <con,(a,8) A : Type

New congurence rule:
'+ A<. B:Type
F''-A=A :TypeI'-B=B :Type'kFc=¢:(A)B
't A" <. B': Type

Fig. 1. New subtyping rules for the first projection

Remark 1. We have the following remarks.

e The basic understanding of the new subtyping rules for the first projection
is that X(A, B) is a subtype of A" if A= A’ or A is a subtype of A’.

e New substitution and transitivity rules for subtyping relations < and < will
be given later and, we will prove that all of them are admissible. We do not
include them in T[Rm1]o.

New subtyping rules for parameterised inductive types Now, we give
the component-wise subtyping rules for X-types and the rules for IT-types in
Figure 2 and 3 to demonstrate what the subtyping rules should be for the new
subtyping relation.

First Component rule:

'A<, A :Type "'+ B: (A)Type
I'- ¥(A,Boc) <q, Y¥(A',B): Type

where di = [z : X(A, Bo ¢)pair(A’, B,c(m1(A,Boc,z2)),m(A,Boc,z2))

Second Component rule:

I'-B: (A)Type I't B : (A)Type Iz : A+ B(x) .z B (z) : Type
I'+ ¥(A,B) <a, ¥(A,B') : Type

where d> = [z : X (A, B)]pair(A, B',m (A, B, 2),e[m (A, B, 2)|(m2(4, B, 2)))

First-Second Component rule:
'A< A :Type '+ B: (A)Type '+ B': (A)Type
Iz : A¢ B(z) xcz) B'(c(z)) : Type
I't+ X (A,B) <a; Y¥(A',B"): Type

where ds = [z : ¥(A, B)|pair(A’, B',c(m1(A, B, z)),e[r1(A, B, z)](m=2(A, B, 2)))

Fig. 2. New component-wise subtyping rules for X-types

Domain rule:

'-A" o, A:Type '+ B: (A)Type
I'-1(A,B) <4, I(A',Boc): Type

where di = [f : IT(A, B)]\(A',Boc,app(A,B, f) o c)

Codomain rule:

I'-B: (A)Type I't B : (A)Type Iz : A+ B(x) .z B'(z) : Type
I'+1I(A,B) <4, II(A,B') : Type

where d> = [f : II(A, B)]\(A, B', [x : Ale[z](app(4, B, f, 7))

Domain-Codomain rule:
I''-A"o«.A:Type '+ B:(A)Type ' B’ : (A")Type
Iz’ : A" F B(e(z')) Xeper) B'(2') : Type
I'+1I(A,B) <4y II(A',B') : Type

where ds = [f : II(A, B)]N(A', B',[2" : A'le[+"](app(A, B, f, c(2"))))

Fig. 3. New subtyping rules for IT-types

Remark 2. We have the following remarks.

e In Figure 2 and 3, the conclusions of the rules are always of the form I' -
A <. B : Type, no matter the premises are of the form I'F A <. B : Type
or I' A <. B: Type.

e The essence of the new subtyping relation is that, the judgement form I" -
A <. B : Type is never used in the premises of the first component of the
component-wise subtyping rules in Figure 2. And hence the second derivation
of the counter example in section 3 is blocked.

e The basic understanding of the new subtyping rules for IT-types is that
II(A, B) is a subtype of IT(A’, B") if A’ is a subtype of A and B is a sub-
family of B’ (we omit other cases such as: II (A, B) is a subtype of II(A, B')
if B is a sub-family of B').

e For the new component-wise subtyping rules for X-types, because of the
incoherence when 7 is also regarded as a coercion, we need to have a stricter
understanding, that is, X (A, B) is a subtype of X(A4’, B') if A is a subtype
of A" and B is a sub-family of B’ and the sizes of A and A’ are the same
(size is defined in the definition 4). In the following section, we will prove
that the sizes of A and B are the same if I' - A <. B : Type and, the size
of A is bigger than the size of B if ' A <. B : Type.

The subtyping system we presented here covers all the coercions derived from the
component-wise subtyping rules and the subtyping rule for the first projection
when they are used separately. Actually, it has more coercions. For example, if
A, B and C are different types, we can have a coercion from A x (B x C) to
A x B because there is a coercion from B x C' to B. But we can never derive
a coercion from A x (B x C') to A X B by the component-wise subtyping rules
or the subtyping rule for the first projection separately. What we have excluded
are those coercions that need component-wise subtyping rules for X-types but
the sizes of their first components are different. For example, we don’t have a
coercion from (A x B) x C to A x C because the sizes of A x B and A are different
although there is a coercion from A x B to A.

In T[Rm]o, the subtyping judgements do not contribute to any derivation
of a judgement of any other forms in the original type theory T. Therefore, we
have the following lemma.

Lemma 1. T[Rm]o is a conservative extension of T.

Remark 3. As the two subtyping relations < and < do contribute to each other,
T[Rm]o is not a conservative extension of T[R]yo whose subtyping judgements
are only of the form I'+ A <. B : Type (see [Luo99] for details).

Now, we define the most basic requirement for the new subtyping relation in the
following.

Definition 2. (Coherence condition of T[Rm]o) We say that T[Rmi]o is
coherent if it has the following properties.

I' Ax. B :Type implies ' - A: Type, ' - B : Type, and I' - ¢ : (A)B.
I't A x. B:Type implies I' tf A =B : Type.

I'rA<.B:Typeand ' A <. B:Type imply I'-c=c": (A)B.
I'tA<.B:Typeand ' A <. B:Type imply I'-c=¢": (A)B.
(Disjointness) I' b A <. B : Type implies I' tf A <. B : Type for any ¢,
and vice versa, I' = A <. B : Type implies I' I/ A <. B : Type for any c'.

Srds Lo o~

Remark 4. One may consider a more general coherence condition like, if I" -
Ax. B :Type and I' F A o B : Type then I' F ¢ = ¢ : (A)B. This will
include the case which both I'H A <. B : Type and I' - A <. B : Type may
happen. However, one of the reasons we need the new subtyping relation (<) is
deliberately to make sure that I' - A <. B : Type and I' - A <. B : Type may
never hold at the same time for any A and B. Disjointness is regarded as a part
of coherence condition.

The system T[R7] The system T[R7] is an extension of T[Rm]o with the
inference rules in Appendix. Comparing with the original subkinding rules in
[Luo99], a new rule is added.

I'A<.B:Type
I'+ El(A) <. El(B)

(New Basic Subkinding Rule)

There is only one subkinding judgement form I' - K <. K', although there are
two subtyping judgement forms I' - A <. B : Type and I' - A <. B : Type. At
the kind level, we are more concerned with the existence of a coercion no matter
it is derived from which form at the type level.

Remark 5. The main result of [SLO2] is essentially that coherence of subtyping
rules does imply conservativity. In the next section, we shall also prove the

coherence of T[Rm]o. So, T[Rm] is also expected to be a conservative extension
of T.

4.3 Coherence of T[R71]o

Now, we prove the coherence of T[Rm]p, which essentially says that coercions
between any two types must be unique. In this paper, the set R of basic sub-
typing consists of the rule (W DCrule) and the new subtyping rules for X-types
and IT-types (in Figure 2 and 3) and, the system T[Rm]o also includes the con-
gruence rule (Cong) and the new subtyping rules in Figure 1. Furthermore, we
assume that for any judgement I' - A <. B : T'ype € C, neither A nor B is com-
putationally equal to a Y-type or II-type. We also assume that the original type
theory T has good properties, in particular the properties of Church-Rosser and
Strong Normalisation and the property of context replacement by equal kinds.

We give a definition of size(A) that only counts how many times that m; can
be applied for an object of type A. In order to define size, we define presize
first.

10

Definition 3. (presize) Let I' = M : T'ype be a derivable judgement in T[Rm1]o
and M a normal form (i.e. M =nf(M)),

1. if M is not o X-type then presize(M) =4 0,
2. if M = X (A, B) then presize(M) =g presize(A) + 1.

Remark 6. For the second case, because M is a normal form, so is A. Therefore
presize is well-defined.

Definition 4. (size) The definition of size in T[Rm]o: Let I' = M : T'ype be
a derivable judgement in T[Rmi]o, size(M) =45 presize(nf(M)).

Remark 7. T[Rm]o is a conservative extension of T and every well-typed term
in T has its unique normal form. So, the value of size(M) is unique and size is
well-defined.

Lemma 2. In T[Rmi]o, if I' F My = My : Type then size(M;) = size(Ms).

Proof. T[Rm]o is a conservative extension of T' and T has properties of Church-
Rosser and strong normalisation, i.e. nf (M) = nf(Ma).

Lemma 3. Let I' - M : Type be a derivable judgement in T[Rm1]o.

e if M is not computationally equal to a X-type then size(M) =0 and,
o if ' M = Y (A, B) : Type then size(M) = size(A) + 1.

Proof. By the definition of size and Lemma, 2.
Lemma 4. In T[Rmi)o, if I'F My <4 M : Type then size(My) = size(Ms).

Proof. By induction on derivations and Lemma 2 and Lemma 3. Note that
size(M;) = size(Ms) = 0 if the last rule of I' + My <4 M> : Type is one
of the rules for I7-types.

Lemma 5. In T[Rmi]o, if I'F My <. Ms : Type then size(M;) > size(Ms).
Proof. By induction on derivations and Lemma 2, Lemma 3 and Lemma 4.
The following theorems prove the coherence of T[Rm]o.

Theorem 1. o IfI'F My . My : Type then I' = My : Type, I' = M> : Type
and I'+c: (My)M> : Type.
o If 't My . My : Type then I' t/ My = M, : Type.
o [fI'F My <. My : Type then I' tf My <4 M : Type for any d. And vice
versa, if ' = My <. My : Type, then I' Y My <4 M : Type for any d.

Proof. By induction on derivations, the definition of WDC, Lemma 4 and Lemma
5.

Theorem 2. If- I'=T"T+ My = M| : Type and ' - My = M}, : Type and
1. TEM; <4 My :Type and I = M| <q M} : Type, or

11

2. ' My <4 My : Type and I'' = M| <4 M}, : Type
then T'Fd=d : (M)Ms.

Proof. By induction on derivations. A most important arguement in this proof is
that, any derivations of I' = My <4 My and I'" - M{ <4 M}, or I' b M; <4 Mo
and I'" + M| <4 Mj must contain sub-derivations whose last rules are the same
rule, followed by applications of the congruence rules.

4.4 Admissibility of substitution and transitivity

Now, we give the subtyping rules of substitution and transitivity and, prove
that these rules are admissible. In an implementation of coercive subtyping,
these rules are ignored simply because they cannot be directly implemented.
For this reason among others, proving the admissibility of such rules (or their
elimination) is always an important task for any subtyping system.

Admissible substitution rules The substitution rules are as follows, which
are what we expect normally.

INr:K,I"'+-A<.,B:Type I'+k: K
L [k/z)I F [k/2]A <gya1c [k/2]B : Type

INex:K,I"FA<.B:Type I'+k: K
I [k/z)I F [k/2]A <(/a1c [k/2]B : Type

Admissible transitivity rules We give the following four transitivity rules
that are basically saying that if there are coercions ¢ and ¢’ from type A to B
and from type B to C, then ¢’ o ¢ is a coercion from type A to C.

I'FA<., B:Type 't B<.,, C:Type I'A <., B:Type '+ B <., C : Type

I'F A <cpoey C:Type I'F A <cyoe, C:Type

'A<, B:Type 't B <., C:Type I'A <., B:Type I' B <., C : Type

I'F A <cyoe, C:Type I'F A <cyoe, C:Type

Remark 8. The above transitivity rule are sufficient and correct, in the sense
that, first, they capture the meaning of transitivity, and second, they enjoy the
properties in the lemmas 4 and 5 . Other rules of different combination such as
the rule

'A<, B:Type 'k B <., C:Type

I'F A <00, C:Type

are not correct and contradictory to the above properties.

Theorem 3. (Substitution in T[Rmio) If '+ k: K and

Lif Nz : K,I" = My <. My : Type, then I',[k/x]" = [k/x]Mi <(kq)c
[k/x]M> : Type, and

12

2.4f INw « K,I" b My <. My : Type, then I',[k/x]" & [k/x]M) <[i/a2c
[k/x]M> : Type.

Proof. By induction on derivations.
In order to prove the admissibility of the transitivity rules, we also need to
prove the theorem about weakening.

Theorem 4. (Weakening in T[Rmilo) If ' C I, I'" is valid and

1. if T'F My <. My : Type then I'" = My <. M5 : Type, and
2. if '+ My <. My : Type then I'" = My <. M5 : Type.

Proof. By induction on derivations.

To prove the admissibility of transitivity rules, the usual methods (e.g. by in-
duction on derivations) do not seem to work. We develop a new measure (Depth)
that is an adoption of the measure (depth) developed by Chen, Aspinall and
Companoni [Che98]. In the measure Depth, the subtyping judgements (< and
<) only count.

Definition 5. (Depth) Let D be a derivation of a subtyping judgement of the
form ' A <. B:Type or ' - A <. B : Type.

Sy .. ST ... Ty

D:
I'Ax.B:Type

where I' = A oc. B : Type represents I' - A <. B : Type or ' - A <. B : Type,
S1,...,Sn are derivations of subtyping judgements of the form I' = My <4 M :
Type or I' = My <4 Ms : Type and, Ty,..., T,, are derivations of other forms of
judgements,

Depth(D) =4 1+ max{Depth(S1), ..., Depth(Sy)}
Specially, if n =0 then Depth(D) =4 1.

The following lemmas show that, from a derivation D of a subtyping judgement
J one can always get a derivation D’ of the judgement obtained from .J by
context replacement such that D and D' have the same depth.

Lemma 6. If- ' =1TI" and

1. if D is a derivation of I' = My <4 M : Type, then there is a derivation D’
of '+ My <q My : Type such that Depth(D) = Depth(D'), or

2. if D is a deriwation of I' b My <4 Ms : Type, then there is a derivation D'
of '+ My <4 My : Type such that Depth(D) = Depth(D').

Proof. By induction on derivations.

Lemma 7. If Iz : K,I" - My <., My :Type € C and I' F ¢3 : (K')K then
Ty - K" e () /21T F [es(W)/21My <pea(yyefer [e2(y) /7)Mo : Type € C.

13

Proof. By the weakening and substitution in the definition of WDC.
Lemma 8. If 't ¢y : (K')K and,

1. if D is a deriwation of I''x : K,I"" - My <., M> : Type, then there is a
derivation D" of I’y : K', [ca(y) /]I F [ea(y) /x] My <(ey(y)/ate, [c2(y) /@] M2 :
Type such that Depth(D) = Depth(D'), or

2. if D is a derivation of I'nx : K, I'" - M; <. Ms : Type, then there is a
derivation D" of I’y : K", [ca(y) /]I F [ea(y) /x] My <(ey(y)/ate, [c2(y) /@] M2 :
Type such that Depth(D) = Depth(D").

Proof. By induction on derivations and Lemma 7. The theorem of weakening
and substitution in type theory T and the property of conservativity of T[R]o
over T are also needed in this proof.

Now, we can prove the admissibility of transitivity rules.
Theorem 5. (Transitivity in T[Rm]o) If '+ My = M : Type and

1. if T'F My <4, Ms : Type and I' = M4 <4, M3 : Type, then
I' - My <dy0a, M3 : Type, and

2. 't My <4, My : Type and ' + M} <4, M3 : Type, then
I'- My <4504, M3 : Type.

3. if '+ My <4, My : Type and I' = M}, <4, M3 : Type, then
I'- My <4y0d, M3 : T'ype, and

4. T'E My <4, My : Type and I' = M} <4, M5 : Type, then
I'- My <4y0a, M3 : Type, and

Proof. By induction on Depth(D) + Depth(D'), where D is a derivation of I" I
My <4, Ms : Type or I' = My <4, Ms : Type, D' is a derivation of I' F M} <4,
Ms : Type or I' - M} <4, M3 : Type.

5 Discussions

Side conditions® In order to block the unwanted derivations, one may still
try to keep the rule mirule in section 3 and use side conditions for the First
Component rule, without introducing any new subtyping relation. For instance,
one of such side conditions for the First Component rule is the following.

I'rA<.A :Type I'+ B : (A)Type

P
TF (A, Boc) <g DA B): Type "120lA) = size(d)

or
'A< A :Type '+ B: (A)Type

I'¥(A,Boc) <q, X(A",B) : Type
In T[Rm1]o, size is well-defined. Similarly, size can be defined in T[R] and one
can prove its well-definedness (see [Luo99,LL01] for more details of T[R]o and
T[R]. Here, R includes one of the above rules). It is obvious that T[Rm]o and
T[R]o are equivalent in terms of the following lemma.

(size(A) ¥ size(A"))

 Thanks to an anonymous referee for the comments on this issue.

14

Lemma 9. If I' H A . B : Type is derivable in T[Rm]o then [F A <. B :
Type is derivable in T[R]o and vice versa.

However, since the system T'[R] includes the Coercive definition rule and the
Coercive application rules in Appendix, A and A’ in the side-condition may not
be well-typed in the original type theory any more. The way to compute such
terms is to insert coercions first and then do usual computation in the original
type theory. So the property that inserting coercion is decidable in T'[R] must be
proved first in order to argue the well-definedness of size. There is a circularity,
that is, a property of T[R] is needed in order to present T[R] itself.
Algorithm and decidability Since we proved the coherence and admissibility
of substitution and transitivity, the coercion searching for whole system is de-
cidable if it is decidable for C . In other words, there is an algorithm to check
whether there exists a coercion between any two types. We omit the details here.
Further study In this paper, we had a case study about how to combine in-
coherent coercions. The methods developed here may have a wider application.
In general, it is also natural to consider new subtyping relations to block those
derivations which make the coercive subtyping system incoherent. The method
to introduce new transitivity rules may guide a further study of a system in
which there are more than one subtyping relations.

The subtyping rules for parameterised inductive types need further study.
For example, we introduce subtyping rules for lists as follows.

I'Aox.B:Type
I' - List(A) <4 List(B) : Type

where d = map(A, B, c) such that d(nil(A)) = nil(B) and d(cons(4,a,l)) =
cons(B, c¢(a),d(l)).

As studied in [LLS02], if we add this rule in the system, the transitivity rules

would not be admissible. In a forthcoming paper, we will study new computation
rules for parameterised inductive types and such rules will make, for example,
map(B, C,c') o map(A, B,c) and map(A,C,c o ¢) computationally equal. And
hence the above subtyping rules for lists enjoy the property of admissibility of
transitivity.
Related work The early development of the framework of coercive subtyp-
ing is closely related to Aczel’s idea in type-checking overloading methods for
classes [Acz94] and the work on giving coercion semantics to lambda calculi
with subtyping by Breazu-Tannen et al [BCGS91]. Barthe and his colleagues
have studied constructor subtyping and its possible applications in proof sys-
tems [BF99,BvR00]. A recent logical study of subtyping in system F can be
found in [LMS95] and Chen has studied the issue of transitivity elimination in
that framework [Che98].

Acknowlegements We would like to thank the member of the Computer-
Assisted Reasoning Group at Durham for discussions and the TYPES03 referees
for the comments on the paper.

15

References

[Acz94]
[B*00]

[Bai98]

P. Aczel. Simple overloading for type theories. Draft, 1994.

B. Barras et al. The Coq Proof Assistant Reference Manual
(Version 6.3.1). INRIA-Rocquencourt, 2000.

A. Bailey. The Machine-checked Literate Formalisation of Al-
gebra in Type Theory. PhD thesis, University of Manchester,
1998.

[BCGS91] V. Breazu-Tannen, T. Coquand, C. Gunter, and A. Scedrov.

[BF99]

[BvRO00]

[Che98]

[CLO1]

[CLPO1]

[HHP87]

[TLS98]

[LC98]

[LLO1]

[LLS02]

[LMS95]

[LP92]

Inheritance and explicit coercion. Information and Computation,
93, 1991.

G. Barthe and M.J. Frade. Constructor subtyping. Proceedings
of ESOP’99, LNCS 1576, 1999.

G. Barthe and F. van Raamsdonk. Constructor subtyping in the
calculus of inductive constructions. Proceedings of FOSSACS’00,
LNCS 1784, 2000.

G. Chen. Subtyping, Type Conversion and Transitivity Elimina-
tion. PhD thesis, University of Paris VII, 1998.

P. Callaghan and Z. Luo. An implementation of LF with coer-
cive subtyping and universes. Journal of Automated Reasoning,
27(1):3-27, 2001.

P. C. Callaghan, Z. Luo, and J. Pang. Object languages in a type-
theoretic meta-framework. Workshop of Proof Transformation
and Presentation and Proof Complexities (PTP’01), 2001.

R. Harper, F. Honsell, and G. Plotkin. A framework for defining
logics. Proc. 2nd Ann. Symp. on Logic in Computer Science.
IEEE, 1987.

A. Jones, Z. Luo, and S. Soloviev. Some proof-theoretic and
algorithmic aspects of coercive subtyping. Types for proofs and
programs (eds, E. Gimenez and C. Paulin-Mohring), Proc. of the
Inter. Conf. TYPES’96, LNCS 1512, 1998.

Z. Luo and P. Callaghan. Coercive subtyping and lexical seman-
tics (extended abstract). LACL’98, 1998.

Y. Luo and Z. Luo. Coherence and transitivity in coercive sub-
typing. In R. Nieuwenhuis and A. Voronkov, editors, 8th Inter-
national Conference on Logic for Programming, Artificial Intel-
ligence, and Reasoning, volume 2250 of LNAI, pages 249—-265.
Springer-Verlag, 2001.

Y. Luo, Z. Luo, and S. Soloviev. Weak transitivity in coercive sub-
typing. In H. Geuvers and F. Wiedijk, editors, Types for Proofs
and Programs, volume 2646 of LNCS, pages 220-239. Springer-
Verlag, 2002.

G. Longo, K. Milsted, and S. Soloviev. A logic of subtyping. In
Proc. of LICS’95, 1995.

Z. Luo and R. Pollack. LEGO Proof Development System: User’s
Manual. LFCS Report ECS-LFCS-92-211, Department of Com-
puter Science, University of Edinburgh, 1992.

16

[Luo94] Z. Luo. Computation and Reasoning: A Type Theory for Com-
puter Science. Oxford University Press, 1994.

[Luo97] Z. Luo. Coercive subtyping in type theory. Proc. of CSL’96, the
1996 Annual Conference of the European Assoctiation for Com-
puter Science Logic, Utrecht. LNCS 1258, 1997.

[Luo99] Z. Luo. Coercive subtyping. Journal of Logic and Computation,
9(1):105-130, 1999.

[NPS90] B. Nordstréom, K. Petersson, and J. Smith. Programming in
Martin-Léf’s Type Theory: An Introduction. Oxford University
Press, 1990.

[SLO2] S. Soloviev and Z. Luo. Coercion completion and conservativity
in coercive subtyping. Annals of Pure and Applied Logic, 2002.

Appendix: The following are the inference rules for the coercive subkinding
extension T[Rm] (not including the rules for subtyping)

Basic subkinding rule
I'A<.B:Type I'+A<.B:Type

I'+ El(A) <. El(B) I'+ El(A) <. El(B)

Coercive application rules
I'tf:(x:K)K' 'bko:Kg I' Ko <. K
't f(ko) : [e(ko) /x| K'
I'tf=f:(z:K)K'I'tko=k) : Ko 't Ky <. K
't f(ko) = f'(kg) : [e(ko)/x] K
Coercive definition rule
I'tf:(x:K)K' 'bko: Ko ' Ko <. K
I't f(ko) = f(c(ko)) : [e(ko) /] K
Subkinding for dependent product kinds
I'rK{ =K, INe' . K{ - Ko <. K} I''w : K1 - Ky kind
Ik (2 : K1) K> <{f.(e:x0) Kalle:Kile(7(2) (81 K1)E
'K <. Ky It . K| F[c(e') /2] K2 = K Tz : Ky F Ky kind
I'E (2 K1) K2 <{pi(e:50) K2 K f(c()) (&0 K7) K
'K <., K1 Iz' : K] F [e1(2") /2] Ky <., K Tz : K1 F Ky kind
't (z:K)K> <[fi(e:K1)Ka][a": K Jea(f(c1(2"))) (z': Ki) K,
Congruence rules for subkinding
I''rKi<.Kho 'FKy=K| I'FKy=K), I'te=¢:(K)K'
I'HK{| <. K}
Transitivity and Substitution rules for subkinding
I''rK<.K'T+-FK' <o K" T@x:KI'FK <. Ky T'tk:K
I'F K <goe K" I [k/x|I" & [k]z] Ky <[k/z]e [k/z] Ko

17

