
Combining Inoherent Coerions for �-types

Yong Luo and Zhaohui Luo

Department of Computer Siene, University of Durham

Abstrat. Coherene is a vital requirement for the orret use of oer-

ive subtyping for abbreviation and other appliations. However, some

oerions are inoherent, although very useful. A typial example of suh

is the subtyping rules for �-types: the omponent-wise rules and the rule

of the �rst projetion. Both of these groups of rules are often used in

pratie (and oherent themselves), but they are inoherent when put

together diretly. In this paper, we study this ase for �-types by in-

troduing a new subtyping relation and the resulting system enjoys the

properties of oherene and admissibility of substitution and transitivity.

1 Introdution

Coerive subtyping for dependent type theories, as studied in [Luo97,Luo99℄ and

implemented in proof assistants suh as Lego [LP92℄, Coq [B

+

00℄ and Plasti

[CL01℄, is a powerful abbreviation mehanism and has been used in applia-

tions of proof development (e.g. [Bai98℄). An important requirement of oerion

mehanism is that of oherene, that is, oerions between any two types must

be omputationally equal. This requirement is essential for the onsistent use

and orret implementation of the mehanism.

A oherene problem Some oerions annot be put together diretly in a

oherent way, although very useful. A typial example of suh oerions is those

onerning �-types (types of dependent pairs). There are at least two sets of

natural and useful oerion rules: the omponent-wise subtyping rules and the

rule of the �rst projetion. They are oherent separately (see [LL01℄ for the

oherene of the former and [Bai98℄ for the use of the latter), but inoherent

when put together diretly (see the ounter example in setion 3 for details).

This prevents them from being used together.

Our solution to this oherene problem is basially, in this paper, by introdu-

ing a new subtyping relation and giving a new formulation of oerive subtyping,

to ensure that there is only one oerion (with respet to omputational equality)

between any two types (if there is one).

Transitivity This new formulation not only satis�es oherene requirements

but also enjoys other properties, partiularly, the admissibility of substitution

and transitivity beause suh properties are important for an implementation of

oerive subtyping. Through our investigation, we found out that the property

of admissibility of transitivity is atually very hard to ome by. In this paper,



we shall onsider two subtyping relations simultaneously, give new transitivity

rules and prove that all of them are admissible.

In setion 2, we shall give an overview of oerive subtyping and introdue

some onepts suh as Well-De�ned Coerions and notations to be used later in

the paper. In setion 3, the oherene problem and its solution will be intuitively

explained through a ounter example. In setion 4, there is a formal presenta-

tion of the solution. A new de�nition of oherene, new rules of substitution

and transitivity are also given. Some important properties, oherene and the

admissibility of substitution and transitivity, are proved. Disussions are in the

last setion, where we disuss issues suh as deidability and wider appliations

of the methods developed in this paper.

2 Coerive subtyping and well-de�ned oerions

In this setion, we give an overview of oerive subtyping, introdue some no-

tations and the onept of well-de�ned oerions that will be used later in the

paper.

2.1 Coerive subtyping

The basi idea of oerive subtyping, as studied in [Luo99℄, is that A is a subtype

of B if there is a (unique) oerion  from A to B, and therefore, any objet

of type A may be regarded as objet of type B via , where  is a funtional

operation from A to B in the type theory.

A oerion plays the role of abbreviation. More preisely, if  is a oerion

from K

0

to K, then a funtional operation f with domain K an be applied to

any objet k

0

of K

0

and the appliation f(k

0

) is de�nitionally equal to f((k

0

)).

Intuitively, we an view f as a ontext whih requires an objet of K; then

the argument k

0

in the ontext f stands for its image of the oerion, (k

0

).

Therefore, one an use f(k

0

) as an abbreviation of f((k

0

)).

The above simple idea, when formulated in the logial framework, beomes

very powerful. The seond author and his olleagues have developed the frame-

work of oerive subtyping that overs variety of subtyping relations inluding

those represented by parameterised oerions and oerions between parame-

terised indutive types. See [Luo99,Bai98,CL01,LC98,CLP01℄ for details of some

of these development and appliations of oerive subtyping.

Some important meta-theoreti aspets of oerive subtyping have been stud-

ied. In partiular, the results on onservativity and on transitivity elimination

for subkinding have been proved in [JLS98,SL02℄. The main result of [SL02℄

is essentially that oherene of basi subtyping rules does imply onservativity.

These results not only justify the adequay of the theory from the proof-theoreti

onsideration, but also provide the proof-theoreti basis for implementation of

oerive subtyping.

How to prove oherene and admissibility of transitivity at the type level

has been studied in [LL01℄ reently. In partiular, the onept of Well-de�ned
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oerions has been developed, and the suitable subtyping rules for �-types and

�-types have been given as examples to demonstrate these proof tehniques.

Coerive subtyping is formally formulated as an extension of (type theories

spei�ed in) the logial framework LF

1

, whose rules are given in [Luo94℄. Types

in LF are alled kinds. The kind Type represents the oneptual universe of types

and a kind of form (x : K)K

0

represents the dependent produt with funtional

operations f as objets (e.g., abstration [x : K℄k

0

) whih an be applied to

objets of kind K to form appliation f(k). For every type (an objet of kind

Type), El(A) is the kind of objets of A. LF an be used to speify type theories,

suh as Martin-Löf's type theory [NPS90℄ and UTT [Luo94℄.

As presented in [Luo99℄, a system with oerive subtyping is an extension

of any type theory spei�ed in LF by a set of basi subtyping rules R whose

onlusions are subtyping judgements of the form � ` A <



B : Type. And the

subtyping rules in R are supposed to be oherent.

Notation We shall use the following notations:

� We sometimes use M [x℄ to indiate that variable x may our free in M .

� Context equality: for � � x

1

: K

1

; :::; x

n

: K

n

and �

0

� x

1

: K

0

1

; :::; x

n

: K

0

n

,

we shall write ` � = �

0

for the sequene of judgements ` K

1

= K

0

1

, ...,

x

1

: K

1

; :::; x

n�1

: K

n�1

` K

n

= K

0

n

.

� Types of non-dependent pairs: if A and B are types, we sometimes write

A�B for �(A; [x : A℄B) where x is not free in B.

2.2 Well-de�ned Coerions

Reently, a new onept of Well-de�ned Coerions (WDC) has been developed

in [LL01℄. Suppose there is a set of oerions, whih is oherent and have admis-

sibility properties, we prove that, after adding new subtyping rules, the extended

system still keeps the oherene and admissibility properties.

De�nition 1. (Well-de�ned oerions) If C is a set of subtyping judgements

of the form � ` M <

d

M

0

: Type whih satis�es the following onditions, we

say that C is a well-de�ned set of judgements for oerions, or brie�y alled

Well-de�ned Coerions (WDC).

1. (Coherene)

(a) � ` A <



B : Type 2 C implies � ` A : Type, � ` B : Type and

� `  : (A)B.

(b) � ` A <



A : Type =2 C for any � , A, and .

() � ` A <



1

B : Type 2 C and � ` A <



2

B : Type 2 C imply � ` 

1

=



2

: (A)B.

2. (Congruene) � ` A <



B : Type 2 C, � ` A = A

0

: Type, � ` B = B

0

:

Type and � `  = 

0

: (A)B imply � ` A

0

<



0

B

0

2 C.

3. (Transitivity) � ` A <



1

B : Type 2 C and � ` B <



2

A

0

: Type 2 C imply

� ` A <



2

Æ

1

A

0

: Type 2 C.

1

The LF here is di�erent from the Edinburgh Logial Framework [HHP87℄.
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4. (Substitution) �; x : K;�

0

` A <



B : Type 2 C implies for any k suh that

� ` k : K, �; [k=x℄�

0

` [k=x℄A <

[k=x℄

[k=x℄B : Type 2 C.

5. (Weakening) � ` A <



B : Type 2 C, � � �

0

and �

0

is valid imply �

0

`

A <



B : Type 2 C.

In this paper, the set R of basi oerion rules inludes the following rule, where

C is a WDC:

(WDCrule)

� ` A <



B : Type 2 C

� ` A <



B : Type

3 The basi subtyping rules and the oherene problem

In this setion, we give an example to illustrate the oherene problem of the

omponent-wise subtyping rules for �-types and the subtyping rule of its �rst

projetion and explain informally the solution through a ounter example.

Subtyping rules for �-types As studied in [LL01℄, there are three omponent-

wise subtyping rules for �-types. One of these rules is the following.

(FirstComponent rule)

� ` A <



A

0

: Type � ` B : (A

0

)Type

� ` �(A;B Æ ) <

d

1

�(A

0

; B) : Type

where d

1

= [z : �(A;B Æ )℄pair(A

0

; B; (�

1

(A;B Æ ; z)); �

2

(A;B Æ ; z)), whih

basially means that, for example, A�B is a subtype of A

0

�B if A , A

0

and B

are types and A is a subtype of A

0

.

The oerion of the �rst projetion is very useful; for example, it is used

signi�antly in Bailey's PhD thesis [Bai98℄ for formalisation of mathematis.

Formally, the subtyping rule is the following:

(�

1

rule)

� ` A : Type � ` B : (A)Type

� ` �(A;B) <

�

1

(A;B)

A : Type

With this oerion, it is very easy to express some mathematial properties. For

example, the type of olletion of groups is a subtype of the type of semi-groups

(i.e. a group is also a semi-group). Any funtional operator with the domain of

semi-groups an be applied to any group with a oerion.

A ounter example If the subtyping rule (�

1

rule) and the omponent-wise

subtyping rules for �-types are ombined together, we would have the following

two derivations.

The �rst derivation is

� ` A : Type � ` B : (A)Type

� ` �(A;B) : Type

� ` B : (A)Type

� ` B Æ �

1

(A;B) : (�(A;B))Type

� ` �(�(A;B); B Æ �

1

(A;B)) <

d

1

�(A;B) : Type

and the rule (�

1

rule) is used in the last step.
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The seond derivation is

(�

1

rule)

� ` A : Type � ` B : (A)Type

� ` �(A;B) <

�

1

(A;B)

A : Type

� ` B : (A)Type

� ` �(�(A;B); B Æ �

1

(A;B)) <

d

2

�(A;B) : Type

and the rule (�

1

rule) is used in the �rst step and the First Component rule is

used in the last step.

There are two oerions d

1

and d

2

from type �(�(A;B); B Æ �

1

(A;B)) to

type �(A;B)

2

and we have the following equations

d

1

(pair(pair(a; b

1

); b

2

)) = pair(a; b

1

)

d

2

(pair(pair(a; b

1

); b

2

)) = pair(a; b

2

)

We an see that d

1

and d

2

are neither omputationally nor extensionally

equal. Hene, the vital requirement of oerive subtyping system, oherene,

fails.

Informal explanation of our solution From the above ounter example, we

see that the existene of the two derivations makes the system inoherent. To

make it oherent, a natural way is to blok one of the derivations. The �rst one

annot be bloked, otherwise we lose the meaning that the �rst projetion (�

1

)

is regarded as oerion. And hene we an only blok the seond derivation.

More preisely, we must not allow � ` A <



A

0

: Type is used as the �rst

promise of the omponent-wise subtyping rules if it is (diretly) derived from

�

1

rule. In other words, a ondition of the omponent-wise subtyping rules is

that the �rst promise is not (diretly) derived from �

1

rule. There are several

attempts to satisfy this ondition, one of whih is to onsider a notion of size as

a side-ondition beause A is a sub-term of �(A;B) in the onlusion of �

1

rule,

and their sizes are intuitively di�erent. However, the well-de�nedness of size is

problemati when we present the whole subtyping system (see disussion setion

for more details).

In this paper, rather than thinking of any side-onditions, we introdue a new

subtyping relation (�) to represent oerion �

1

. This new subtyping relation will

never appear in the �rst premises of the omponent-wise subtyping rules and

hene the unwanted derivations suh as the seond one in the ounter example

are bloked.

To make the subtyping system oherent is one thing; to make it also enjoy

the property of admissibility of transitivity is another. During our investigation,

we experiened that some formulations satisfy the property of oherene, but not

the admissibility of transitivity. The formulation in the next setion will enjoy

all these properties.

2

There are two di�erent oerions from (A�B)�B to A�B if A and B are types.
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4 A formal presentation

In this setion, we shall give a formal presentation of a new subtyping relation

and related subtyping rules. The oherene and admissibility of substitution and

transitivity will also be proved.

4.1 A new subtyping relation

We have seen the problem with the ombination of the omponent-wise subtyping

rules and the subtyping rule of the �rst projetion. Now, we introdue a new

relation to solve this problem and, onsider a new system T [R�

1

℄, whih is an

extension of oerive subtyping with the judgement form:

� � ` A �



B : Type asserts that type A is a subtype of type B with .

As we will see later, subtyping relation < and � are di�erent. � represents the

idea that �

1

is regarded as a oerion, but < doesn't.

The oerive de�nition rules The main idea of oerive subtyping an in-

formally be represented by the following oerive de�nition rule (ontexts are

omitted):

K <



K

0

k : K f : (x : K

0

)K

00

f(k) = f((k)) : [(k)=x℄K

00

The same idea is for the new subtyping relation. A new basi subkinding rule

for � is the following:

A �



B : Type

El(A) <



El(B)

By the oerive de�nition rule, we have the following derivable rule:

A �



B : Type k : El(A) f : (x : El(B))K

f(k) = f((k)) : [(k)=x℄K

whih says that if A �



B, any funtional operator f with domain B an be

applied to any objet x of A and, f(x) = f((x)).

We present the new subtyping system in two stages: �rst an intermediate

system T [R�

1

℄

0

and the de�nition of oherene, and then the system T [R�

1

℄.

4.2 The system T [R�

1

℄

0

and T [R�

1

℄

Formally, T [R�

1

℄

0

is an extension of type theory T (only) with the following

rules:

� A set R of basi subtyping rules whose onlusions are subtyping judgements

of the form � ` A <



B : Type.
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� The following ongruene rule for subtyping judgements

(Cong)

� ` A <



B : Type

� ` A = A

0

: Type � ` B = B

0

: Type � `  = 

0

: (A)B

� ` A

0

<



0

B

0

: Type

� The new subtyping rules for the �rst projetion in Figure 1, whose onlu-

sions are of the form � ` A �



B : Type.

Notation: we shall use � ` A /



B : Type to represent � ` A <



B :

Type or � ` A �



B : Type. For example,

�`A/



B:Type

J

atually represents

two rules

�`A<



B:Type

J

and

�`A�



B:Type

J

;

�`A/



B:Type �

0

`A

0

/



0

B

0

:Type

J

atually

represents four rules. We shall also say that A is a subtype of B or there is a

oerion  from A to B if � ` A /



B : Type.

New subtyping rule for the �rst projetion:

� ` A : Type � ` B : (A)Type

� ` �(A;B) �

�

1

(A;B)

A : Type

� ` A /



A

0

: Type � ` B : (A)Type

� ` �(A;B) �

Æ�

1

(A;B)

A

0

: Type

New ongurene rule:

� ` A �



B : Type

� ` A = A

0

: Type � ` B = B

0

: Type � `  = 

0

: (A)B

� ` A

0

�



0

B

0

: Type

Fig. 1. New subtyping rules for the �rst projetion

Remark 1. We have the following remarks.

� The basi understanding of the new subtyping rules for the �rst projetion

is that �(A;B) is a subtype of A

0

if A = A

0

or A is a subtype of A

0

.

� New substitution and transitivity rules for subtyping relations < and � will

be given later and, we will prove that all of them are admissible. We do not

inlude them in T [R�

1

℄

0

.

New subtyping rules for parameterised indutive types Now, we give

the omponent-wise subtyping rules for �-types and the rules for �-types in

Figure 2 and 3 to demonstrate what the subtyping rules should be for the new

subtyping relation.

7



First Component rule:

� ` A <



A

0

: Type � ` B : (A

0

)Type

� ` �(A;B Æ ) <

d

1

�(A

0

; B) : Type

where d

1

= [z : �(A;B Æ )℄pair(A

0

; B; (�

1

(A;B Æ ; z)); �

2

(A;B Æ ; z))

Seond Component rule:

� ` B : (A)Type � ` B

0

: (A)Type �; x : A ` B(x) /

e[x℄

B

0

(x) : Type

� ` �(A;B) <

d

2

�(A;B

0

) : Type

where d

2

= [z : �(A;B)℄pair(A;B

0

; �

1

(A;B; z); e[�

1

(A;B; z)℄(�

2

(A;B; z)))

First-Seond Component rule:

� ` A <



A

0

: Type � ` B : (A)Type � ` B

0

: (A

0

)Type

�; x : A ` B(x) /

e[x℄

B

0

((x)) : Type

� ` �(A;B) <

d

3

�(A

0

; B

0

) : Type

where d

3

= [z : �(A;B)℄pair(A

0

; B

0

; (�

1

(A;B; z)); e[�

1

(A;B; z)℄(�

2

(A;B; z)))

Fig. 2. New omponent-wise subtyping rules for �-types

Domain rule:

� ` A

0

/



A : Type � ` B : (A)Type

� ` �(A;B) <

d

1

�(A

0

; B Æ ) : Type

where d

1

= [f : �(A;B)℄�(A

0

; B Æ ; app(A;B; f) Æ )

Codomain rule:

� ` B : (A)Type � ` B

0

: (A)Type �; x : A ` B(x) /

e[x℄

B

0

(x) : Type

� ` �(A;B) <

d

2

�(A;B

0

) : Type

where d

2

= [f : �(A;B)℄�(A;B

0

; [x : A℄e[x℄(app(A;B; f; x)))

Domain-Codomain rule:

� ` A

0

/



A : Type � ` B : (A)Type � ` B

0

: (A

0

)Type

�; x

0

: A

0

` B((x

0

)) /

e[x

0

℄

B

0

(x

0

) : Type

� ` �(A;B) <

d

3

�(A

0

; B

0

) : Type

where d

3

= [f : �(A;B)℄�(A

0

; B

0

; [x

0

: A

0

℄e[x

0

℄(app(A;B; f; (x

0

))))

Fig. 3. New subtyping rules for �-types
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Remark 2. We have the following remarks.

� In Figure 2 and 3, the onlusions of the rules are always of the form � `

A <



B : Type, no matter the premises are of the form � ` A <



B : Type

or � ` A �



B : Type.

� The essene of the new subtyping relation is that, the judgement form � `

A �



B : Type is never used in the premises of the �rst omponent of the

omponent-wise subtyping rules in Figure 2. And hene the seond derivation

of the ounter example in setion 3 is bloked.

� The basi understanding of the new subtyping rules for �-types is that

�(A;B) is a subtype of �(A

0

; B

0

) if A

0

is a subtype of A and B is a sub-

family of B

0

(we omit other ases suh as: �(A;B) is a subtype of �(A;B

0

)

if B is a sub-family of B

0

).

� For the new omponent-wise subtyping rules for �-types, beause of the

inoherene when �

1

is also regarded as a oerion, we need to have a striter

understanding, that is, �(A;B) is a subtype of �(A

0

; B

0

) if A is a subtype

of A

0

and B is a sub-family of B

0

and the sizes of A and A

0

are the same

(size is de�ned in the de�nition 4). In the following setion, we will prove

that the sizes of A and B are the same if � ` A <



B : Type and, the size

of A is bigger than the size of B if � ` A �



B : Type.

The subtyping system we presented here overs all the oerions derived from the

omponent-wise subtyping rules and the subtyping rule for the �rst projetion

when they are used separately. Atually, it has more oerions. For example, if

A, B and C are di�erent types, we an have a oerion from A � (B � C) to

A � B beause there is a oerion from B � C to B. But we an never derive

a oerion from A � (B � C) to A � B by the omponent-wise subtyping rules

or the subtyping rule for the �rst projetion separately. What we have exluded

are those oerions that need omponent-wise subtyping rules for �-types but

the sizes of their �rst omponents are di�erent. For example, we don't have a

oerion from (A�B)�C to A�C beause the sizes of A�B and A are di�erent

although there is a oerion from A�B to A.

In T [R�

1

℄

0

, the subtyping judgements do not ontribute to any derivation

of a judgement of any other forms in the original type theory T . Therefore, we

have the following lemma.

Lemma 1. T [R�

1

℄

0

is a onservative extension of T .

Remark 3. As the two subtyping relations < and � do ontribute to eah other,

T [R�

1

℄

0

is not a onservative extension of T [R℄

0

whose subtyping judgements

are only of the form � ` A <



B : Type (see [Luo99℄ for details).

Now, we de�ne the most basi requirement for the new subtyping relation in the

following.

De�nition 2. (Coherene ondition of T [R�

1

℄

0

) We say that T [R�

1

℄

0

is

oherent if it has the following properties.
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1. � ` A /



B : Type implies � ` A : Type, � ` B : Type, and � `  : (A)B.

2. � ` A /



B : Type implies � 6` A = B : Type.

3. � ` A <



B : Type and � ` A <



0

B : Type imply � `  = 

0

: (A)B.

4. � ` A �



B : Type and � ` A �



0

B : Type imply � `  = 

0

: (A)B.

5. (Disjointness) � ` A <



B : Type implies � 6` A �



0

B : Type for any 

0

,

and vie versa, � ` A �



B : Type implies � 6` A <



0

B : Type for any 

0

.

Remark 4. One may onsider a more general oherene ondition like, if � `

A /



B : Type and � ` A /



0

B : Type then � `  = 

0

: (A)B. This will

inlude the ase whih both � ` A <



B : Type and � ` A �



B : Type may

happen. However, one of the reasons we need the new subtyping relation (�) is

deliberately to make sure that � ` A <



B : Type and � ` A �



B : Type may

never hold at the same time for any A and B. Disjointness is regarded as a part

of oherene ondition.

The system T [R�

1

℄ The system T [R�

1

℄ is an extension of T [R�

1

℄

0

with the

inferene rules in Appendix. Comparing with the original subkinding rules in

[Luo99℄, a new rule is added.

(New Basi Subkinding Rule)

� ` A �



B : Type

� ` El(A) <



El(B)

There is only one subkinding judgement form � ` K <



K

0

, although there are

two subtyping judgement forms � ` A <



B : Type and � ` A �



B : Type. At

the kind level, we are more onerned with the existene of a oerion no matter

it is derived from whih form at the type level.

Remark 5. The main result of [SL02℄ is essentially that oherene of subtyping

rules does imply onservativity. In the next setion, we shall also prove the

oherene of T [R�

1

℄

0

. So, T [R�

1

℄ is also expeted to be a onservative extension

of T .

4.3 Coherene of T [R�

1

℄

0

Now, we prove the oherene of T [R�

1

℄

0

, whih essentially says that oerions

between any two types must be unique. In this paper, the set R of basi sub-

typing onsists of the rule (WDCrule) and the new subtyping rules for �-types

and �-types (in Figure 2 and 3) and, the system T [R�

1

℄

0

also inludes the on-

gruene rule (Cong) and the new subtyping rules in Figure 1. Furthermore, we

assume that for any judgement � ` A <



B : Type 2 C, neither A nor B is om-

putationally equal to a �-type or �-type. We also assume that the original type

theory T has good properties, in partiular the properties of Churh-Rosser and

Strong Normalisation and the property of ontext replaement by equal kinds.

We give a de�nition of size(A) that only ounts how many times that �

1

an

be applied for an objet of type A. In order to de�ne size, we de�ne presize

�rst.
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De�nition 3. (presize) Let � `M : Type be a derivable judgement in T [R�

1

℄

0

and M a normal form ( i.e. M � nf(M)),

1. if M is not a �-type then presize(M) =

df

0,

2. if M � �(A;B) then presize(M) =

df

presize(A) + 1.

Remark 6. For the seond ase, beause M is a normal form, so is A. Therefore

presize is well-de�ned.

De�nition 4. (size) The de�nition of size in T [R�

1

℄

0

: Let � ` M : Type be

a derivable judgement in T [R�

1

℄

0

, size(M) =

df

presize(nf(M)).

Remark 7. T [R�

1

℄

0

is a onservative extension of T and every well-typed term

in T has its unique normal form. So, the value of size(M) is unique and size is

well-de�ned.

Lemma 2. In T [R�

1

℄

0

, if � `M

1

= M

2

: Type then size(M

1

) = size(M

2

).

Proof. T [R�

1

℄

0

is a onservative extension of T and T has properties of Churh-

Rosser and strong normalisation, i.e. nf(M

1

) � nf(M

2

).

Lemma 3. Let � `M : Type be a derivable judgement in T [R�

1

℄

0

.

� if M is not omputationally equal to a �-type then size(M) = 0 and,

� if � `M = �(A;B) : Type then size(M) = size(A) + 1.

Proof. By the de�nition of size and Lemma 2.

Lemma 4. In T [R�

1

℄

0

, if � `M

1

<

d

M

2

: Type then size(M

1

) = size(M

2

).

Proof. By indution on derivations and Lemma 2 and Lemma 3. Note that

size(M

1

) = size(M

2

) = 0 if the last rule of � ` M

1

<

d

M

2

: Type is one

of the rules for �-types.

Lemma 5. In T [R�

1

℄

0

, if � `M

1

�



M

2

: Type then size(M

1

) > size(M

2

).

Proof. By indution on derivations and Lemma 2, Lemma 3 and Lemma 4.

The following theorems prove the oherene of T [R�

1

℄

0

.

Theorem 1. � If � `M

1

/



M

2

: Type then � `M

1

: Type, � `M

2

: Type

and � `  : (M

1

)M

2

: Type.

� If � `M

1

/



M

2

: Type then � 6`M

1

=M

2

: Type.

� If � ` M

1

�



M

2

: Type then � 6` M

1

<

d

M

2

: Type for any d. And vie

versa, if � `M

1

<



M

2

: Type, then � 6`M

1

�

d

M

2

: Type for any d.

Proof. By indution on derivations, the de�nition of WDC, Lemma 4 and Lemma

5.

Theorem 2. If ` � = �

0

� `M

1

= M

0

1

: Type and � `M

2

= M

0

2

: Type and

1. � `M

1

<

d

M

2

: Type and �

0

`M

0

1

<

d

0

M

0

2

: Type, or

11



2. � `M

1

�

d

M

2

: Type and �

0

`M

0

1

�

d

0

M

0

2

: Type

then � ` d = d

0

: (M

1

)M

3

.

Proof. By indution on derivations. A most important arguement in this proof is

that, any derivations of � `M

1

<

d

M

2

and �

0

`M

0

1

<

d

M

0

2

, or � `M

1

�

d

M

2

and �

0

`M

0

1

�

d

0

M

0

2

must ontain sub-derivations whose last rules are the same

rule, followed by appliations of the ongruene rules.

4.4 Admissibility of substitution and transitivity

Now, we give the subtyping rules of substitution and transitivity and, prove

that these rules are admissible. In an implementation of oerive subtyping,

these rules are ignored simply beause they annot be diretly implemented.

For this reason among others, proving the admissibility of suh rules (or their

elimination) is always an important task for any subtyping system.

Admissible substitution rules The substitution rules are as follows, whih

are what we expet normally.

�; x : K;�

0

` A <



B : Type � ` k : K

�; [k=x℄�

0

` [k=x℄A <

[k=x℄

[k=x℄B : Type

�; x : K;�

0

` A �



B : Type � ` k : K

�; [k=x℄�

0

` [k=x℄A �

[k=x℄

[k=x℄B : Type

Admissible transitivity rules We give the following four transitivity rules

that are basially saying that if there are oerions  and 

0

from type A to B

and from type B to C, then 

0

Æ  is a oerion from type A to C.

� ` A <



1

B : Type � ` B <



2

C : Type

� ` A <



2

Æ

1

C : Type

� ` A �



1

B : Type � ` B �



2

C : Type

� ` A �



2

Æ

1

C : Type

� ` A <



1

B : Type � ` B �



2

C : Type

� ` A �



2

Æ

1

C : Type

� ` A �



1

B : Type � ` B <



2

C : Type

� ` A �



2

Æ

1

C : Type

Remark 8. The above transitivity rule are su�ient and orret, in the sense

that, �rst, they apture the meaning of transitivity, and seond, they enjoy the

properties in the lemmas 4 and 5 . Other rules of di�erent ombination suh as

the rule

� ` A <



1

B : Type � ` B <



2

C : Type

� ` A �



2

Æ

1

C : Type

are not orret and ontraditory to the above properties.

Theorem 3. (Substitution in T [R�

1

℄

0

) If � ` k : K and

1. if �; x : K;�

0

` M

1

<



M

2

: Type, then �; [k=x℄�

0

` [k=x℄M

1

<

[k=x℄

[k=x℄M

2

: Type, and
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2. if �; x : K;�

0

` M

1

�



M

2

: Type, then �; [k=x℄�

0

` [k=x℄M

1

�

[k=x℄

[k=x℄M

2

: Type.

Proof. By indution on derivations.

In order to prove the admissibility of the transitivity rules, we also need to

prove the theorem about weakening.

Theorem 4. (Weakening in T [R�

1

℄

0

) If � � �

0

, �

0

is valid and

1. if � `M

1

<



M

2

: Type then �

0

`M

1

<



M

2

: Type, and

2. if � `M

1

�



M

2

: Type then �

0

`M

1

�



M

2

: Type.

Proof. By indution on derivations.

To prove the admissibility of transitivity rules, the usual methods (e.g. by in-

dution on derivations) do not seem to work. We develop a new measure (Depth)

that is an adoption of the measure (depth) developed by Chen, Aspinall and

Companoni [Che98℄. In the measure Depth, the subtyping judgements (< and

�) only ount.

De�nition 5. (Depth) Let D be a derivation of a subtyping judgement of the

form � ` A <



B : Type or � ` A �



B : Type.

D :

S

1

::: S

n

T

1

::: T

m

� ` A /



B : Type

where � ` A /



B : Type represents � ` A <



B : Type or � ` A �



B : Type,

S

1

,...,S

n

are derivations of subtyping judgements of the form � ` M

1

<

d

M

2

:

Type or � `M

1

�

d

M

2

: Type and, T

1

,..., T

m

are derivations of other forms of

judgements,

Depth(D) =

df

1 +maxfDepth(S

1

); :::; Depth(S

n

)g

Speially, if n = 0 then Depth(D) =

df

1.

The following lemmas show that, from a derivation D of a subtyping judgement

J one an always get a derivation D

0

of the judgement obtained from J by

ontext replaement suh that D and D

0

have the same depth.

Lemma 6. If ` � = �

0

and

1. if D is a derivation of � `M

1

<

d

M

2

: Type, then there is a derivation D

0

of �

0

`M

1

<

d

M

2

: Type suh that Depth(D) = Depth(D

0

), or

2. if D is a derivation of � `M

1

�

d

M

2

: Type, then there is a derivation D

0

of �

0

`M

1

�

d

M

2

: Type suh that Depth(D) = Depth(D

0

).

Proof. By indution on derivations.

Lemma 7. If �; x : K;�

0

` M

1

<



1

M

2

: Type 2 C and � ` 

2

: (K

0

)K then

�; y : K

0

; [

2

(y)=x℄�

0

` [

2

(y)=x℄M

1

<

[

2

(y)=x℄

1

[

2

(y)=x℄M

2

: Type 2 C.
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Proof. By the weakening and substitution in the de�nition of WDC.

Lemma 8. If � ` 

2

: (K

0

)K and,

1. if D is a derivation of �; x : K;�

0

` M

1

<



1

M

2

: Type, then there is a

derivation D

0

of �; y : K

0

; [

2

(y)=x℄�

0

` [

2

(y)=x℄M

1

<

[

2

(y)=x℄

1

[

2

(y)=x℄M

2

:

Type suh that Depth(D) = Depth(D

0

), or

2. if D is a derivation of �; x : K;�

0

` M

1

<



1

M

2

: Type, then there is a

derivation D

0

of �; y : K

0

; [

2

(y)=x℄�

0

` [

2

(y)=x℄M

1

<

[

2

(y)=x℄

1

[

2

(y)=x℄M

2

:

Type suh that Depth(D) = Depth(D

0

).

Proof. By indution on derivations and Lemma 7. The theorem of weakening

and substitution in type theory T and the property of onservativity of T [R�

1

℄

0

over T are also needed in this proof.

Now, we an prove the admissibility of transitivity rules.

Theorem 5. (Transitivity in T [R�

1

℄

0

) If � `M

2

= M

0

2

: Type and

1. if � `M

1

<

d

1

M

2

: Type and � `M

0

2

<

d

2

M

3

: Type, then

� `M

1

<

d

2

Æd

1

M

3

: Type, and

2. � `M

1

�

d

1

M

2

: Type and � `M

0

2

�

d

2

M

3

: Type, then

� `M

1

�

d

2

Æd

1

M

3

: Type.

3. if � `M

1

<

d

1

M

2

: Type and � `M

0

2

�

d

2

M

3

: Type, then

� `M

1

�

d

2

Æd

1

M

3

: Type, and

4. � `M

1

�

d

1

M

2

: Type and � `M

0

2

<

d

2

M

3

: Type, then

� `M

1

�

d

2

Æd

1

M

3

: Type, and

Proof. By indution on Depth(D) +Depth(D

0

), where D is a derivation of � `

M

1

<

d

1

M

2

: Type or � `M

1

�

d

1

M

2

: Type, D

0

is a derivation of � `M

0

2

<

d

2

M

3

: Type or � `M

0

2

�

d

2

M

3

: Type.

5 Disussions

Side onditions

3

In order to blok the unwanted derivations, one may still

try to keep the rule �

1

rule in setion 3 and use side onditions for the First

Component rule, without introduing any new subtyping relation. For instane,

one of suh side onditions for the First Component rule is the following.

� ` A <



A

0

: Type � ` B : (A

0

)Type

� ` �(A;B Æ ) <

d

1

�(A

0

; B) : Type

(size(A) = size(A

0

))

or

� ` A <



A

0

: Type � ` B : (A

0

)Type

� ` �(A;B Æ ) <

d

1

�(A

0

; B) : Type

(size(A) 6> size(A

0

))

In T [R�

1

℄

0

, size is well-de�ned. Similarly, size an be de�ned in T [R℄

0

and one

an prove its well-de�nedness (see [Luo99,LL01℄ for more details of T [R℄

0

and

T [R℄. Here, R inludes one of the above rules). It is obvious that T [R�

1

℄

0

and

T [R℄

0

are equivalent in terms of the following lemma.

3

Thanks to an anonymous referee for the omments on this issue.
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Lemma 9. If � ` A /



B : Type is derivable in T [R�

1

℄

0

then � ` A <



B :

Type is derivable in T [R℄

0

and vie versa.

However, sine the system T [R℄ inludes the Coerive de�nition rule and the

Coerive appliation rules in Appendix, A and A

0

in the side-ondition may not

be well-typed in the original type theory any more. The way to ompute suh

terms is to insert oerions �rst and then do usual omputation in the original

type theory. So the property that inserting oerion is deidable in T [R℄ must be

proved �rst in order to argue the well-de�nedness of size. There is a irularity,

that is, a property of T [R℄ is needed in order to present T [R℄ itself.

Algorithm and deidability Sine we proved the oherene and admissibility

of substitution and transitivity, the oerion searhing for whole system is de-

idable if it is deidable for C . In other words, there is an algorithm to hek

whether there exists a oerion between any two types. We omit the details here.

Further study In this paper, we had a ase study about how to ombine in-

oherent oerions. The methods developed here may have a wider appliation.

In general, it is also natural to onsider new subtyping relations to blok those

derivations whih make the oerive subtyping system inoherent. The method

to introdue new transitivity rules may guide a further study of a system in

whih there are more than one subtyping relations.

The subtyping rules for parameterised indutive types need further study.

For example, we introdue subtyping rules for lists as follows.

� ` A /



B : Type

� ` List(A) <

d

List(B) : Type

where d = map(A;B; ) suh that d(nil(A)) = nil(B) and d(ons(A; a; l)) =

ons(B; (a); d(l)).

As studied in [LLS02℄, if we add this rule in the system, the transitivity rules

would not be admissible. In a forthoming paper, we will study new omputation

rules for parameterised indutive types and suh rules will make, for example,

map(B;C; 

0

) Æmap(A;B; ) and map(A;C; 

0

Æ ) omputationally equal. And

hene the above subtyping rules for lists enjoy the property of admissibility of

transitivity.

Related work The early development of the framework of oerive subtyp-

ing is losely related to Azel's idea in type-heking overloading methods for

lasses [Az94℄ and the work on giving oerion semantis to lambda aluli

with subtyping by Breazu-Tannen et al [BCGS91℄. Barthe and his olleagues

have studied onstrutor subtyping and its possible appliations in proof sys-

tems [BF99,BvR00℄. A reent logial study of subtyping in system F an be

found in [LMS95℄ and Chen has studied the issue of transitivity elimination in

that framework [Che98℄.
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Assisted Reasoning Group at Durham for disussions and the TYPES03 referees

for the omments on the paper.
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Appendix: The following are the inferene rules for the oerive subkinding

extension T [R�

1

℄ (not inluding the rules for subtyping)

Basi subkinding rule

� ` A <



B : Type

� ` El(A) <



El(B)

� ` A �



B : Type

� ` El(A) <



El(B)

Coerive appliation rules

� ` f : (x : K)K

0

� ` k

0

: K

0

� ` K

0

<



K

� ` f(k

0

) : [(k

0

)=x℄K

0

� ` f = f

0

: (x : K)K

0

� ` k

0

= k

0

0

: K

0

� ` K

0

<



K

� ` f(k

0

) = f

0

(k

0

0

) : [(k

0

)=x℄K

0

Coerive de�nition rule

� ` f : (x : K)K

0

� ` k

0

: K

0

� ` K

0

<



K

� ` f(k

0

) = f((k

0

)) : [(k

0

)=x℄K

0

Subkinding for dependent produt kinds

� ` K

0

1

= K

1

�; x

0

: K

0

1

` K

2

<



K

0

2

�; x : K

1

` K

2

kind

� ` (x : K

1

)K

2

<

[f :(x:K

1

)K

2

℄[x

0

:K

0

1

℄(f(x

0

))

(x

0

: K

0

1

)K

0

2

� ` K

0

1

<



K

1

�; x

0

: K

0

1

` [(x

0

)=x℄K

2

= K

0

2

�; x : K

1

` K

2

kind

� ` (x : K

1

)K

2

<

[f :(x:K

1

)K

2

℄[x

0

:K

0

1

℄f((x

0

))

(x

0

: K

0

1

)K

0

2

� ` K

0

1

<



1

K

1

�; x

0

: K

0

1

` [

1

(x

0

)=x℄K

2

<



2

K

0

2

�; x : K

1

` K

2

kind

� ` (x : K

1

)K

2

<

[f :(x:K

1

)K

2

℄[x

0

:K

0

1

℄

2

(f(

1

(x

0

)))

(x

0

: K

0

1

)K

0

2

Congruene rules for subkinding

� ` K

1

<



K

2

� ` K

1

= K

0

1

� ` K

2

= K

0

2

� `  = 

0

: (K)K

0

� ` K

0

1

<



0

K

0

2

Transitivity and Substitution rules for subkinding

� ` K <



K

0

� ` K

0

<



0

K

00

� ` K <



0

Æ

K

00

�; x : K;�

0

` K

1

<



K

2

� ` k : K

�; [k=x℄�

0

` [k=x℄K

1

<

[k=x℄

[k=x℄K

2
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