
Coerions in Hindley-Milner Systems

?

Robert Kie�ling and Zhaohui Luo

Department of Computer Siene, University of Durham

Abstrat. Coerive subtyping is a theory of abbreviation for depen-

dent type theories. In this paper, we inorporate the idea of oerive

subtyping into the traditional Hindley-Milner type systems in funtional

programming languages. This results in a typing system with oerions,

an extension of the Hindley-Milner type system. A type inferene algo-

rithm is developed and shown to be sound and omplete with respet

to the typing system. A notion of derivational oherene is developed to

deal with the problem of ambiguity and the orresponding type inferene

algorithm is shown to be sound and omplete.

1 Introdution

The Hindley-Milner type system (HM system for short) [8℄ is the standard ore

of the modern typed funtional programming languages. Various extensions to

the HM system have been proposed in order to enrih a programming language

with new and more powerful features. These inlude, for example, Haskell's lass

mehanism [10℄, whih provides onvenient overloading failities among other

things.

Coerive subtyping [14℄ is a theory of abbreviation developed in the setting

of dependent type theories, where oerions are regarded as abbreviation meh-

anisms and diretly haraterised in the proof system (type theory) extended

with oerions. It has been implemented in several proof development systems

[1, 19, 4℄ and e�etively used in proof development (e.g., [1℄).

In this paper, we inorporate the idea of oerive subtyping into the tradi-

tional HM type system. There are several motivations in studying the possible

ombination of oerive subtyping and traditional polymorphi typing systems.

First, it leads to a novel approah that inreases the power of the HM system

with new abbreviation mehanisms, whih we believe would be useful in various

programming ativities. Seondly, oerive subtyping provides a lean and simple

theory for abbreviation in dependent type theories. Inorporating its ideas into

traditional type systems may lead to simple theoretial development and better

understanding of the more powerful failities (e.g., overloading) found useful in

programming. Thirdly, not the least important, studying oerions in polymor-

phi type systems meets with new hallenges, partly beause type uniqueness

simply does not hold in a polymorphi system.

?

This work is partly supported by the UK EPSRC grants GR/M75518, GR/R84092

and GR/R72259, the EU TYPES grant 21900 on the TYPES projet and by an

EPSRC studentship.

One of the results of our work is a typing system with oerions, an extension

of the HM type system, together with a sound and omplete type inferene

algorithm. Sine the HM system is polymorphi, where a term may have more

than one type, the introdution of oerions has to be very areful; a naive way to

introdue oerions auses problems. For example, one of the deisions we have

made is that if a term is already typable in the original HM system, then no

oerions will be inserted. This also onforms with the intuition and, in pratie,

an implementation of the extended system will not alter the meanings of the

existing programs.

We shall also study a notion of derivational oherene that is developed to

deal with the problem of ambiguity of omputational meanings of a term. A

term may have di�erent ompletions { there may be di�erent ways to insert

oerions to make a term typable. The notion of derivational oherene aptures

this and we have developed a sound and omplete type inferene algorithm for

derivationally oherent terms.

We regard the Hindley-Milner system as well-known and refer its introdution

for example to [21℄. In the remainder of this setion, we give a summary of

work on oerive subtyping and other related work. In Setion 2, we give a

brief introdution to our approah by onsidering several simple examples. The

extended typing system with oerions is presented and explained formally in

Setion 3. In Setion 4, the type inferene algorithm is presented and proved to

be sound and omplete. Derivational oherene is introdued in Setion 5, where

we also give the orresponding algorithm and disuss the proofs of its soundness

and ompleteness. We onlude with some disussions about future work.

1.1 Coerive subtyping

Coerive subtyping is a framework of abbreviation for dependent type theories

[14℄. The basi idea is: if there is a oerion from A to B, then an objet of

type A may be regarded as an objet of type B via in appropriate ontexts.

More preisely, a funtional operation f with domain B an be applied to any

objet a of A and the appliation fa is de�nitionally equal to f(a). Intuitively,

we an view f as a ontext whih requires an objet of B; then the argument

a in the ontext f stands for its image of the oerion, a. Therefore, the term

fa, originally not well-typed, beomes well-typed and \abbreviates" f(a).

The seond author and his olleagues have studied the above simple idea

in the Logial Framework (and type theory), resulting in a very powerful the-

ory of abbreviation and inheritane, inluding parameterised oerions and oer-

ions between parameterised indutive types. In oerive subtyping, the oerion

mehanism is diretly haraterised in the type theory proof-theoretially. Some

important meta-theoreti aspets of oerive subtyping suh as the results on

onservativity, oherene, and transitivity elimination have been studied. They

not only justify the adequay of the theory from the proof-theoreti onsidera-

tion, but provide the basis for implementation of oerive subtyping. See [1, 4,

13, 14, 20℄ for details of some of these development and appliations of oerive

subtyping.

Coerion mehanisms with ertain restritions have been implemented for

dependent type theory both in the proof development system Lego [15℄ and Coq

[2℄, by Bailey [1℄ and Sa��bi [19℄, respetively. Callaghan of the Computer Assisted

Reasoning Group at Durham has implemented Plasti [4℄, a proof assistant that

supports the Logial Framework LF and oerive subtyping with a mixture of

simple oerions, parameterised oerions, oerion rules for parameterised in-

dutive types, and dependent oerions.

Remark 1. Inorporating the idea of oerive subtyping to a polymorphi alu-

lus is not straightforward. Coerive subtyping has been developed in dependent

type theories with indutive data types, whih are rather sophistiated systems.

However, most of them (or at least the standard ones) have the property of type

uniqueness; that is every well-typed objet has a unique type up to omputa-

tional equality. Compared with the polymorphi aluli suh as the HM type

system where an objet may have more than one type, one may say that depen-

dent type theories are `simpler'. It is important to bear this in mind when we

onsider ombining oerive subtyping with a polymorphi alulus.

1.2 Modelling subtyping by oerions

Various notions of oerion have been studied in the literature, partiularly when

subtyping systems are onsidered. In subtyping, we have the subsumption rule,

whih says that if a : A and A � B, then a : B. This an be modelled by means

of oerions (maps from A to B). In [3℄, this idea was proposed and used to give

a oerion-based semanti interpretation of Cardelli and Wegner's system Fun

[5℄. The idea of oerive subtyping disussed above was inuened by this work.

People have used the term oerion to interpret subtyping simpler settings

as well. For example, Mithell [17, 18℄ onsiders a system where oneptually a

subtype is a subset and thus oerions essentially represent set inlusions. In [6,

12℄, the term oerion is used to denote a speial restrited form of mapping in

modelling and explaining subtyping.

Remark 2. Note that, beause of the subsumption rule in subtyping, a term ob-

tains more types, while in our setting, a term does not get more types. Rather, in

oerive subtyping or the extended HM-system onsidered in this paper, where

there is no subsumption rule, there are more well-typed terms, whih are re-

garded as abbreviations, and typing onits are resolved by the insertion of o-

erions. Furthermore, this is studied in the typing system at the proof-theoreti

level.

2 Some simple examples

We onsider the HM type system extended with oerions. Coerions are re-

garded as abbreviations; more preisely, if a term is not well-typed in the orig-

inal HM type system, and after inserting oerions it beomes well-typed, then

we regard the term to be well-typed and \abbreviate" the ompleted term with

appropriate oerions inserted.

We shall onsider extending the HM type system with two forms of oerions:

argument oerions and funtion oerions. By argument oerions, we mean

that the argument of a funtion is oered aording to the typing requirement;

more preisely, the term fa abbreviates f(a) if f : � ! � , a : �

0

, and there is a

oerion from �

0

to �. By funtion oerion, we mean that a term in a funtion

position is oered into an appropriate funtion aordingly; more preisely, ka

abbreviates (k)a if k : �, a : �

0

, and there is a oerion from � to a funtion

type �

0

! � .

In the following, we give some simple examples to explain the above basi

idea. The �rst two examples explain argument oerions, while the last example

about overloading explains how funtion oerions work. We assume that the

types inlude integers (Int), oating numbers (Float), booleans (Bool), monads

(T�, where � is any type), and a unit type (alled Plus).

An example of basi oerions

The simplest example of oerions, as often used in programming languages, is

to onvert integers to oating point numbers. For example, we an delare

int2float : Int! Float

as a oerion, either in a ontext or in a program by using the oerion de-

laration

1

de int2float : Int ! Float in . Then, assuming 2 : Int and

plusone : Float ! Float, the term plusone 2 is typable and abbreviates its

\ompletion" plusone (int2float 2), where the oerion int2float is inserted.

Note that the ompletion is typable in the original HM system. More formally,

we say that the term (or program) de int2float : Int! Float in plusone 2

has type Float. The funtion int2float here is represented as a onstant in the

typing system. It ould be de�ned externally (e.g., using system all at runtime).

This oerion is usually handled automatially by programming systems,

without a formal explanation. We provide a prinipled explanation of this in a

setting where we an, for example, formally answer oherene questions. Note

that we an handle the onverse oerion, from oating point numbers to integers

using e.g. floor, in the same way.

Using oerions in monads

Monads are a ommonly used vehile in funtional programming to deal with

\imperative" features like state, random numbers, partial funtions, error han-

dling or input/output. Every Monad onsists at least of a unary type onstrutor

(alled T here), an injetion funtion (alled \return" here) and a lifting funtion.

We refer the reader for example to [22℄ for a full introdution.

1

We leave out some type variable annotation; see Se. 3.2 and 3.3 for more details

Coerions an ease use of monads, by allowing omission of the injetion of

a value into its \monadi�ed" type (funtion return). T in the types for the

examples below an be seen as the error monad. There are two ways to reate

values of this monadi type: one is a regular, good value (return : 8�: �! T�)

and the other is to signal an error or exeption (err : 8�: T�). We an then

de�ne a reiproal funtion, from Float to T Float, whih aptures the division

by zero error:

�x: if (iszero x) err (return (sysdiv 1:0 x));

where

if : 8�: Bool! �! �! �

iszero : Float! Bool

sysdiv : Float! Float! Float

Using the oerion abbreviation mehanism, however, we an leave the return

impliit by delaring it as a oerion:

de return : 8�: �! T� in

�x: if (iszero x) err (sysdiv 1:0 x)

Similar situations our frequently when a monadi programming style is used,

making this a fairly useful abbreviation, both for ode larity and brevity.

Note that, as shown by this example, oerions are not neessarily represent-

ing simple inlusion between types (as onsidered in the setting of subtyping

[17℄). They are arbitrary funtional maps whih one wishes to omit, in prefer-

ene to the abbreviated form. In partiular, the intuition that a type that an

be oered into another type an be viewed as set-theoreti inlusion does not

apply.

Using oerions for overloading

Coerions an be used to represent ad ho polymorphism, or overloading. For

example, assume that we have two funtions for addition, one for the integers

and the other for the oating point numbers:

plusi : Int! Int! Int

plusf : Float! Float! Float

and we wish to use a single notation plus in both ases. This an be done by

means of oerions. What we need to do is to onsider a (unit) type Plus whih

has element plus : Plus and then delare the following two (funtion) oerions:

de (�x: plusi) : Plus! (Int! Int! Int)

de (�x: plusf) : Plus! (Float! Float! Float)

Then, we an use

plus 1 2 or plus 1:0 2:5

as intended, as these two terms abbreviate plusi 1 2 and plusf 1:0 2:5, respe-

tively.

Note that, in this example, the oerions are de�ned �-terms rather than

just onstants. It also shows that oerions are not just the same as a previously

de�ned funtion. The idea of using unit types for overloading was studied by the

seond author [14℄. See [1℄ for more appliations of this idea.

Remark 3. We onsidered Plus to be a unit type. In fat, there ould be multiple

elements in Plus (i.e. onstants of that type), but they are all treated the same.

3 Typing System

3.1 Base Language

Our starting point in this development is an existing programming language,

namely a minimal polymorphi programming language with Hindley-Milner type

system [8℄ whih we all the base language. We assume readers are familiar

with the basi ideas. We omit additional elements neessary to make this into

a programming language, namely delaration of new types and reursion. This

is beause we fous on typing, and those features do not a�et type heking.

They an be added.

The typing judgment in the base language is denoted by

� `

HM

e : �;

whih an be read as \term e has type � in ontext �". We are extending the

base language with a oerion mehanism, whih leads to our system `. We shall

explain in Setion 3.4 how we an reover the HM system from our rules.

3.2 Syntax and notations

Apart from oerion-spei� extensions, we use standard notions of terms, types,

type shemes and ontexts [8℄. The syntati symbols to be used are as follows.

Type variables Sets of type variables

�; �; ; % ��;

�

�; �; �%

Types Type shemes

�; �; % ::= � j � ! � � ::= 8��: �

(Objet language) Variables Terms

x; y; z e; f; g ::= x j ee j �x: e j

let x = e in e j

Contexts de : 8��: � ! � in e

�;� ::= ; j �; x : � j �; de : 8��: � ! �

Notations The following notations will be used in our desription of the system.

{ FV stands for the set of (objet) variables delared in a ontext: FV (;) = ;,

FV (�; x : �) = FV (�) [fx g and FV (�; de : �) = FV (�).

{ FTV denotes the set of free type variables of a ontext, type, type sheme

or term. It is de�ned as:

FTV (�; x : �) = FTV (�) [FTV (�) FTV (;) = ;

FTV (�; de : �) = FTV (�) [FTV () [FTV (�)

FTV (� ! �) = FTV (�) [FTV (�) FTV (�) = f� g

FTV (8��: �) = FTV (�) n �� FTV (x) = ;

FTV (ef) = FTV (e) [FTV (f) FTV (�x: e) = FTV (e)

FTV (let x = e in f) = FTV (e) [FTV (f)

FTV (de : � in e) = FTV (�) [FTV (e) [FTV ()

{ Let � be a ontext. The oerion-free part of � is denoted by

b

� , and de�ned

as

b

; = ;,

d

�; x : � =

b

� ; x : � and

�

0

=

b

� , where �

0

is �; de : 8��: � ! � .

Furthermore, we write � (x) = � if x : � is an entry of � .

{ 8;: � is a speial ase of 8��: �, denoting a type sheme with no bound vari-

ables. We may omit 8; when the ontext makes it lear we denote a type

sheme instead of a type.

{ ��

��

�means that � is a generi instane of � where all (free) type variables

of � are in ��.

3.3 Judgment Forms and Rules

The rules in �g. 1 de�ne our typing system. The forms of judgments are:

{ � `

��

e : �) e

0

. This should be read as \term e has type � and omple-

tion e

0

in ontext � with free type variables ��. We extend the usual typing

judgment for ML-like languages � ` e : � by allowing oerion delarations

in the ontext, adding the ompletion e

0

and an expliit annotation for the

free type variables whih may our in � , � and e.

{ � ��-valid. To apture the notion that a \ontext � is valid with free type

variables in ��", we write � ��-valid. Note that this judgment is useful as we

onsider oerions in ontexts subjet to ertain restritions.

{ � `

��

� !

� . This third form of judgment expresses that \oerion from

� to � an be derived from ontext �".

We also use the notation � 6`

HM

e : ? to express the side ondition that e is not

typable in the HM system.

Produt Types We an extend the language without a�eting the basi results

and mehanisms presented. For example some of the examples below will require

the use of pairs. We an extend the language to add them to our language in

the standard way, using the rules like the following:

PairIn

� `

��

e

1

: �

1

) e

0

1

� `

��

e

2

: �

2

) e

0

2

� `

��

he

1

; e

2

i : �

1

� �

2

) he

0

1

; e

0

2

i

The results and the type heking algorithm an be extended in straight-forward

ways.

CId

; ��-valid

CVar

� ��-valid

�; x:� ��-valid

x 62 FV (�);

FTV (�) � ��

CCoer

� ��-valid � `

��[

�

�

0

: � ! �)

�; de : 8

�

�: � ! � ��-valid

�� \

�

� = ;

Id

� ��-valid

� `

��

x : �) x

��

��

�, � (x) = �

Abs

�; x : 8;: � `

��

e : �) e

0

� `

��

�x: e : � ! �) �x: e

0

App

� `

��

e

1

: � ! �) e

0

1

� `

��

e

2

: �) e

0

2

� `

��

e

1

e

2

: �) e

0

1

e

0

2

App

a

� `

��

e

1

: � ! �) e

0

1

� `

��

e

2

: �

0

) e

0

2

� `

��

�

0

!

�

� `

��

e

1

e

2

: �) e

0

1

(e

0

2

)

b

� 6`

HM

e

0

1

e

0

2

: ?

App

f

� `

��

e

1

: %

0

) e

0

1

� `

��

e

2

: �) e

0

2

� `

��

%

0

!

(� ! �)

� `

��

e

1

e

2

: �) (e

0

1

)e

0

2

b

� 6`

HM

e

0

1

e

0

2

: ?

Let

� `

��[

�

�

e

1

: �) e

0

1

�; x : 8

�

�
: � `

��

e

2

: �) e

0

2

� `

��

let x = e

1

in e

2

: �) let x = e

0

1

in e

0

2

�� \

�

� = ;

Del

� `

��[

�

�

 : � ! �)

0

�; de

0

: 8

�

�: � ! � `

��

e : %) e

0

� `

��

de : 8

�

�: � ! � in e : %) e

0

�� \

�

� = ;

Lup

�; de : 8

�

�: �

0

! �

0

; �

0

`

��

� !

�

� ! � �

��

8

�

�: �

0

! �

0

Fig. 1. Typing Rules

3.4 Explanations

We give some informal explanations and prove some basi properties of the

system presented above.

Completion and Relation to HM The above system is an extension of

the system `

HM

in the sense that, if we remove rules App

a

, App

f

, Del ,

Lup and CCoer and the notation of ompletion, the resulting system is equiv-

alent to Hindley-Milner typing. We say that a program e is well-typed if

; `

��

e : �) e

0

for some type � , ompletion e

0

, and set of type variables ��.

An addition to the language is ompletion. Informally, we insert all the

needed oerion funtions in a term e to form its ompletion e

0

, suh that the

ompleted term is typable in the system without the oerion rules App

a

, App

f

and CCoer , i.e. in the base language `

HM

. This is formally aptured by lemma 1,

whih will establish the relationship between our typing judgment ` and that of

the base language `

HM

. It makes preise why we all e

0

\ompletion": beause

the ompletion is an expansion of the term e in question, and this ompletion

type heks in the base language.

De�nition 1 (Term Expansion). The notion that a term e

2

expands a term

e

1

, in symbols e

1

� e

2

, is indutively de�ned as follows.

x � x

�x: e

1

� �x: e

2

if e

1

� e

2

let x = e

1

in e

2

� let x = e

3

in e

4

if e

1

� e

3

and e

2

� e

4

e

1

e

2

� e

3

e

4

if e

1

� e

3

and e

2

� e

4

e

2

e

3

� (e

1

e

2

)e

3

e

1

e

3

� e

1

(e

2

e

3

)

de : 8��: � ! � in e � e

e

1

� e

3

if e

1

� e

2

and e

2

� e

3

Lemma 1 (Completion). If � `

��

e : �) e

0

, then � `

HM

e

0

: � , and e � e

0

.

Proof Sketh. We prove the following two statements by simultaneous indution

on the derivations of � `

��

e : �) e

0

and � ��-valid.

{ If � `

��

e : �) e

0

, then � `

HM

e

0

: � and e � e

0

.

{ If � ��-valid and � `

��

� !

� , then � `

HM

 : � ! � .

Free Type Variables �� The handling of type variables needs some expla-

nation. The standard notation of typing judgment assumes that the free type

variables in � an be hosen arbitrarily. On the other hand, we require that

all variables must either be bound or hosen from the �� denoted in the judg-

ment. Formally, the role of the free type variable annotations is aptured by the

following lemma whih has three parts, for eah of the judgements.

Lemma 2 (Free type variables).

1. If � `

��

e : �) e

0

, then FTV (�) � ��, FTV (e) � �� and FTV (�) � ��.

2. If � ��-valid, then FTV (�) � ��.

3. If � `

��

� !

� , then FTV (�) � ��, FTV (� ! �) � �� and FTV () � ��.

By expliitly denoting all possible free type variables, we no longer require

the notion of \generalisation" in the formulation of the Let rule, whih, in our

opinion, lari�es its intention.

Remark 4. Another way of looking at this is that there are no free type variables,

but all type variables are bound { some expliitly in type shemes, while all others

are bound by the global quanti�ation 8��. To our knowledge, this is the �rst

time this reformulation of the Let rule is published. It is due to MKinna [16℄.

In the rule Abs, we add x to the ontext, quantifying over no variables. This

means that all type variables in � are non-generi and annot be instantiated in

the derivation of e : � . This is in ontrast to the Let rule whih allows generi

type variables.

Global and loal oerions Besides assignments of types (more preisely type

shemes) to variables, our ontexts also ontain delarations of (global) oerions,

of the form de : 8��: � ! � in e. The form of oerions is unlimited and an

be any expression in the base language, like a onstant funtion between base

types or a funtion between arbitrary types omputing the result in a omplex

way. The oerions delared in a ontext are well-typed and an be looked up

by means of the rule (Lup). We have

Lemma 3. If � `

��

� !

� , then � `

��

 : � ! �) .

In fat, we know that any delared oerion is well-typed in the HM system (.f.,

Lemma 1).

Besides global oerions, we also allow loal oerion delarations in pro-

grams, similar to the way let works.

Example 1 (Loalised Coerions). This example shows the sope of oerion de-

laration. In � = plusone : Int! Int; 1 : Int; 1:0 : Float; plus : Float! Float!

Float, the following program is well-typed.

plus (plusone 1)

(de floor : 8;:Float! Int in plusone 1:0)

However, sine the oerion is not available when plusone is �rst used, the

following is not typable in �:

plus (plusone 1:0)

(de floor : 8;:Float! Int in plusone 1:0)

Rules for argument and funtion oerions Let us have a loser look at the

speial rules App

a

and App

f

for argument and funtion oerions, in partiular

on their side ondition. By

b

� 6`

HM

e

0

1

e

0

2

: ? we mean that e

0

1

e

0

2

is not typable in

the base language, i.e. there is no type � suh that

b

� `

HM

e

0

1

e

0

2

: � . We illustrate

the neessity of this side ondition with an example whih shows that otherwise

ambiguity arises whih would lead to non-unique meaning of ertain terms.

Example 2. We assume that A and B are any base types inhabited by the on-

stants a : A and b

1

; b

2

: B, and we have produt types. Using the abbreviations

�=de �hx; yi: hb

1

; b

2

i : 8;: A�A! B �B

f=�hx; yi: x

g=�hx; yi: hy; xi

we an obviously derive

� `

��

f : B �B ! B) f

� `

��

g : A�A! A�A) g

� `

��

g : B �B ! B � B) g

Thus using App

a

without the side ondition � 6`

HM

e

0

1

e

0

2

: ? we ould derive

the following, where = �hx; yi: hb

1

; b

2

i:

� `

��

f(gha; ai) : B) f((gha; ai))

� `

��

f(gha; ai) : B) f(g(ha; ai))

However, f((gha; ai)) omputes to b

1

while f(g(ha; ai)) to b

2

. This is a very

bad situation, sine it means that evaluation an no longer be uniquely de�ned,

and thus the term f(gha; ai) no longer has a de�nite, unique meaning.

The side ondition prevents this partiular ambiguity, by forbidding the use

of App

a

and App

f

when App an be used. In other words, it gives preferene to

derivations whih does not involve oerions, and a oerion may only be applied

if needed sine otherwise typing would fail. The side ondition is deidable, for

example by traditional algorithm W . This side ondition does not prevent all

forms of ambiguities, however. Setion 5 disusses how to deal with them.

The example shows an essential di�erene to oerive subtyping in Type

Theory with its unique and expliit typing, where the type of g would fully

determine the type of the oerion funtion to apply and whether a oerion is

needed at all.

The side onditions on rules App

a

and App

f

have another e�et too. In o-

erive subtyping for Type Theory, the question arises whether identity oerions

(i.e. the identity funtion delared as oerion) are allowed. We do not forbid

them, but these side onditions ensure that they will never be used, sine an

appliation with an identity oerion an always be typed without it.

Let Expression One notieable feature of our typing rules is that there are no

oerion-spei� rules involving let. Corresponding to the rules for appliation,

one might expet to �nd something like:

Let

� `

��[

�

�

e

1

: �

0

) e

0

1

�; x : 8

�

�: � `

��

e

2

: �) e

0

2

� `

��[

�

�

�

0

!

�

� `

��

let x = e

1

in e

2

: �) let x = e

0

1

in e

0

2

�� \

�

� = ;

With this rule basi soundness onditions still hold, like lemma 1 saying that

the ompletion is well-typed in the base language. Thus it is not obviously wrong

to add thus rule. Simple examples show that Let

is not admissible. Consider

(assuming A, B, C and D are any types) � = x : A; : A! B; de : A! B.

With the new rule we an then derive let y = x in y : B, without it we annot.

Another example shows the ompliation of the rule Let

. With � = a :

A; b : B;

1

: A ! (C ! D);

2

: B ! C; de

1

: A ! (C ! D); de

2

:

B ! C and assuming the Let

rule is present, we are able to derive � `

;

let x = a in xb : D) let x =

1

a in

2

b. Essentially, this amounts to a si-

multaneous use of funtional and argument oerions whih is not admissible in

our rules.

These examples illustrate that Let

would allow a more liberal use of oer-

ions. Our intention however is to restrit the situations in whih they an our

to allow a formulation of derivational oherene (see setion 5). A onsequene

of a rule like Let

is that a type heking algorithm (Setion 4) would need to

searh for � whih is not present in the onlusion of the rule; this may ause

diÆulties.

4 Type Cheking Algorithm

The previous setion desribes our type system whih adds oerions to Hindley-

Milner type systems. The rules in �g. 1 desribe well-typing, but they do not

provide a deision proedure to verify well-typedness. This is mainly due to the

appliation rules (App, App

a

and App

f

), in whih the argument type � annot

be inferred from the typing judgment whose validity is to be veri�ed, and thus

there are in�nitely many derivation trees to hek.

This setion provides a di�erent set of rules to resolve this problem (�g. 2).

4.1 Algorithm

In the tradition of algorithm W [8℄, the rules in �g. 2 desribe typing for most

general types. These rules an be read as an algorithm, whih we all \algo-

rithm W

C

", to give non-deterministi answers to the question: \Given � and e,

what are the type and ompletion of e?". The inputs are ontext � and term e

and the outputs substitution S, type � and ompletion e

0

. It is non-deterministi

beause of the rules LCde

W

1

and LCde

W

2

, where multiple oerions an be

found for a given pair of types � and � . In Setion 5 we will provide a determin-

isti algorithm together with a haraterisation of its modi�ed behaviour.

CId

W

;; valid

CVar

W

� ; valid

�; x:�; valid

x 62 FV (�)

CCoer

W

� ; valid � `

W

; h�; S;

0

i

�; de : 8

�

�: � ! � ; valid

Id

W

�; x : 8�

1

; : : : ; �

n

: �; �

0

; valid

�; x : 8�

1

; : : : ; �

n

: �; �

0

`

W

x; h[�

i

=�

i

℄�; ;; xi

�

i

new

Abs

W

�; x : 8;: � `

W

e; h�; S Æ f� 7! � g; e

0

i

� `

W

�x: e; h� ! �; S; �x: e

0

i

� new

App

W

� `

W

e

1

; hS

1

; �

1

; e

0

1

i

S

1

� `

W

e

2

; hS

2

; �

2

; e

0

2

i

unify

C

(�; S

2

�

1

; �

2

; e

0

1

; e

0

2

); hT; e

0

3

i

� `

W

e

1

e

2

; hTS

2

�

1

; T Æ S

2

Æ S

1

; e

0

3

i

�; � new

Let

W

� `

W

e

1

; h�

1

; S

1

; e

0

1

i

S

1

�; x : Gen(�

1

; S

1

�) `

W

e

2

; h�

2

; S

2

; e

0

2

i

� `

W

let x = e

1

in e

2

; h�

2

; S

2

Æ S

1

; let x = e

0

1

in e

0

2

i

Del

W

� `

W

; h%

0

; ;;

0

i

�; de

0

: 8

�

�: � ! � `

W

e; h%; S; e

0

i

� `

W

de : 8

�

�: � ! � in e; h%; S; e

0

i

� ! � � %

0

Un

W

unify(�; �) = T

unify

C

(�; � ! �; �; e

1

; e

2

); hT; e

1

e

2

i

Un

W

a

unify(� ! �; �

0

! �) = T

� `

L

�

0

! � ;

unify

C

(�; � ! �; �; e

1

; e

2

); hT; e

1

(e

2

)i

unify(�; �)

fails

Un

W

f

unify(� ! (� ! �

1

); �

0

! �) = T

� `

L

�

0

! � ;

unify

C

(�; �; �; e

1

; e

2

); hT; (e

1

)e

2

i

unify(�; �)

fails

LVar

W

� `

L

� ! � ;

�; x : � `

L

� ! � ;

LCde

W

1

� `

L

� ! � ;

�; de

0

: 8

�

�: �

0

! �

0

`

L

� ! � ;

LCde

W

2

�; de : 8

�

�: � ! � `

L

� ! � ;

Fig. 2. Algorithm W

C

W

C

is presented with judgments of the following forms:

{ � `

W

e; hS; �; e

0

i , whih an be read as \In ontext � , term e type heks

to substitution S, type � and ompletion e

0

.

{ � ; valid expresses that \� is valid"; in partiular, it means that the

oerions delared in it are well-typed.

{ � `

L

� ! � ; stands for \in ontext � , the lookup for a oerion from

type � to type � yields the oerion term ".

We use the standard notion of �rst-order uni�ation unify. It is easy to see

that the traditional algorithm W an be reovered from the rules in �g. 2 by

removing rules CCoer

W

, Del

W

, Un

W

a

and Un

W

f

. (In that ase `

L

will not be

used either.) Using this observation and soundness and ompleteness of W , we

an see that the ondition on in rule Del

W

is atually the same as in Del in

�g. 1.

Note that the side ondition of rules App

a

and App

f

in �g. 1 refers to the

separate system of HM typing, while the implementation uses a simple uni�-

ation test in Un

W

and does not need to refer to a separate type heking

algorithm.

4.2 Soundness and Completeness

Algorithm W

C

(�g. 2) is a sound and omplete implementation of the typing

rules (�g. 1), in the following sense.

Soundness expresses that the omputed result type and ompletion an be

derived using the typing rules.

Theorem 1 (Soundness). Assume that we an derive � `

W

e; h�; S; e

0

i .

Let �� = FTV (S�; �; e). Then S� `

��

e : �) e

0

.

Proof Sketh. We an prove this by strengthening it with the additional ondi-

tion if � ; valid and �� = FTV (�), then � ��-valid. We then do simultaneous

indution on the derivations of � `

W

e; h�; S; e

0

i and � ; valid, using muh

of the struture and lemmas from [7℄. Use of Un

W

in App

W

by the algorithm

orresponds to rule App, whereas Un

W

a

and Un

W

f

orrespond to App

a

and

App

f

, resp.

Completeness means that for any given ompletion, every derivable type for

a term is an instane of the type omputed by the algorithm for the result with

this ompletion.

Theorem 2 (Completeness). If S� `

��

e : �) e

0

, then there are exatly

one type � and substitution T suh that � `

W

e; h�; T; e

0

i , and there is a

substitution U with � = U� and S� = UT� .

Proof Sketh. The proof uses indution on the derivation of S� `

��

e : �) e

0

.

Thus when looking for the right derivations for W

C

(� ; e) to prove the theorem,

we already know the ompletion in the result. This ompletion resolves possible

ambiguities in the hoie of rules Un

W

a

or Un

W

f

.

5 Resolving Ambiguities

The rules in �g. 2 allow ertain ambiguities, that an our if there is more than

one mathing oerion during oerion searh in Un

W

. Assume, for example,

that A and B are base types and � is f : � � � ! �; a : A; de

1

: 8;: A !

A�A; de

2

: 8;: A! B �B. Then we have both � `

W

fa; hA; ;; f(

1

a)i

and � `

W

fa; hB; ;; f(

2

a)i .

Suh a situation is not desirable, sine it means that the evaluation behaviour

is not uniquely de�ned. This is the oherene problem whih needs to be ad-

dressed for any system of (oerive) subtyping.

We an solve this problem by replaing unify

C

in App

W

by unify

1

C

, whih

sueeds if and only if unify

C

returns a unique result:

De�nition 2 (unify

1

C

). unify

1

C

(�; �; �; e); hT; fi if unify

C

(�; �; �; e) ; hT; fi

and for all U , g suh that unify

1

C

(�; �; �; e); hU; gi, U = T and f = g.

unify

1

C

is e�etively deidable sine unify

C

is deidable and an only return a

�nite number of results.

We all algorithm W

1

C

the algorithm obtained from W

C

where the App

W

ase uses unify

1

C

instead of unify

C

, and `

W

1

for the orresponding judgment.

Algorithm W

1

C

an return at most one result, and is therefore a deterministi

algorithm, in ontrast to non-deterministi W

C

.

These additional side onditions learly limit the ases in whih the algo-

rithm sueeds. This still allows all the examples presented earlier. However the

question is how this restrited behaviour an be desribed in the typing rules.

For this, we introdue the notion of \derivational oherene".

De�nition 3 (Derivational Coherene). A term e is derivationally o-

herent over a ontext � if for eah subterm f of e and �

1

`

��

f : �

1

) e

0

1

and

�

2

`

��

f : �

2

) e

0

2

ourring anywhere in any derivation of � `

��

e : �) e

0

for

any �

1

, �

2

, e

0

1

and e

0

2

, the two ompletions are the same, i.e. e

0

1

= e

0

2

.

Using this notion, we an formulate a soundness and ompleteness result for

W

1

C

.

Theorem 3. For all � , e, the following holds. There are � , S and e

0

suh that

� `

W

1

e; h�; S; e

0

i if and only if e is derivationally oherent over � and there

are �, f

0

and �� suh that � `

��

e : �) f

0

. In both diretions, e

0

= f

0

and

��

��

� .

For the proof we note that the derivation trees for typing derivation and for

type heking are isomorphi, and thus we an establish the onditions in whih

ambiguities our by an indutive analysis of them, using the previous soundness

and ompleteness results (Theorems 1 and 2).

6 Conlusion

We have presented an extension of the Hindley-Milner polymorphi system with

oerions by inorporating the idea from oerive subtyping. The extended typ-

ing system an be further enrihed with other features suh as reords whose

assoiated inheritane relation an be represented as oerions. More details of

the work, inluding a prototype implementation of the extended system and the

details of the proofs, an be found in the forthoming thesis of the �rst author

[11℄.

There are several issues to be further studied. For example, in our rules we

have not inluded \transitivity" as found in general subtyping or oerive sub-

typing systems. For basi types, adding transitivity of oerions is not a problem;

it simply beomes a deidable searh problem of the transitive losure of the o-

erions between basi types, representable as a �nite graph [19℄. However, when

oerions parameterised over type variables are onsidered, as they are allowed

here in general, it is not lear to us that the oerion searh with transitivity is

deidable.

Coerion rules are another �eld of further study (e.g., see [14℄). The urrent

system would allow to add rules to derive new oerions from the rules already

delared, like lifting of oerions over lists. The requirement is that oerion

searh must be deidable.

As mentioned in the introdution, oerion searh for type theory is faili-

tated onsiderably by the unique typing property. That is no longer given, how-

ever, if metavariables are added. Thus we an look to apply the tehniques of

this paper to type theory with metavariables.

Coerion mehanisms as disussed in this paper failitate overloading among

other things. Another mehanism for overloading is the lass mehanism in

Haskell [23, 10℄. An interesting researh topi is to ompare these mehanisms

formally and onsider a possible general framework for abbreviations.

Aknowledgements We thank Paul Callaghan and James MKinna for dis-

ussions and omments on a draft.

Referenes

1. A. Bailey. The Mahine-heked Literate Formalisation of Algebra in Type Theory.

PhD thesis, University of Manhester, 1999.

2. B. Barras et al. The Coq Proof Assistant Referene Manual (Version 6.3.1). INRIA-

Roquenourt, 2000.

3. Val Breazu-Tannen, Thierry Coquand, Carl Gunter, and Andr�e

�

S�edrov. Inheri-

tane as impliit oerion. Information and Computation, 93:172{221, 1991. Also

in the olletion [9℄.

4. P. Callaghan and Z. Luo. An implementation of LF with oerive subtyping and

universes. Journal of Automated Reasoning, 27(1):3{27, 2001.

5. Lua Cardelli and Peter Wegner. On understanding types, data abstration and

polymorphism. Computing Surveys, 17(4):471{522, 1985.

6. G. Chen. Subtyping, Type Conversion and Transitivity Elimination. PhD thesis,

University of Paris VII, 1998.

7. Luis Damas. Type Assignment in Programming Languages. PhD thesis, Laboratory

for Foundations of Computer Siene, University of Edinburgh, 1985. CST-33-85.

8. Luis Damas and Robin Milner. Prinipal type-shemes for funtional programming

languages. In Ninth Annual Symposium on Priniples of Programming Languages

(POPL) (Albuquerque, NM), pages 207{212. ACM, January 1982.

9. Carl A. Gunter and John C. Mithell. Theoretial Aspets of Objet-Oriented

Programming, Types, Semantis, and Language Design. Foundations of Computing

Series. MIT Press, 1994.

10. Simon Peyton Jones, Mark Jones, and Erik Meijer. Type lasses: an exploration

of the design spae, 1997.

11. Robert Kie�ling. Coerions in Hindley-Milner systems. forthoming thesis, 2004.

12. Giuseppe Longo, Kathleen Milsted, and Sergei Soloviev. Coherene and transitivity

of subtyping as entailment. Journal of Logi and Computation, 10(4):493{526,

August 2000.

13. Y. Luo and Z. Luo. Coherene and transitivity in oerive subtyping. Pro. of the

8th Inter. Conf. on Logi for Programming, Arti�ial Intelligene and Reasoning

(LPAR'01), Havana, Cuba. LNAI 2250, 2001.

14. Z. Luo. Coerive subtyping. Journal of Logi and Computation, 9(1):105{130,

1999.

15. Z. Luo and R. Pollak. LEGO Proof Development System: User's Manual. LFCS

Report ECS-LFCS-92-211, Department of Computer Siene, University of Edin-

burgh, 1992.

16. James MKinna. personal ommuniation, 2001.

17. John C. Mithell. Coerion and type inferene. In Tenth Annual Symposium

on Priniples of Programming Languages (POPL) (Austin, TX), pages 175{185.

ACM, January 1983.

18. John C. Mithell. Type inferene with simple subtypes. Journal of Funtional

Programming, 1(2):245{286, July 1991.

19. A. Sa��bi. Typing algorithm in type theory with inheritane. Pro of POPL'97,

1997.

20. S. Soloviev and Z. Luo. Coerion ompletion and onservativity in oerive sub-

typing. Annals of Pure and Applied Logi, 113(1-3):297{322, 2002.

21. Simon Thompson. Type Theory and Funtional Programming. International Com-

puter Siene Series. Addison-Wesley, 1991.

22. Philip Wadler. Monads for funtional programming. In J. Jeuring and E. Mei-

jer, editors, Advaned Funtional Programming, volume 925 of Leture Notes in

Computer Siene, pages 24{52. Springer-Verlag, 1995.

23. Philip Wadler and Stephen Blott. How to make ad-ho polymorhism less ad-ho.

In Proeedings of POPL '89, pages 60{76. ACM, January 1989.

