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Abstract. Coercive subtyping is a theory of abbreviation for depen-
dent type theories. In this paper, we incorporate the idea of coercive
subtyping into the traditional Hindley-Milner type systems in functional
programming languages. This results in a typing system with coercions,
an extension of the Hindley-Milner type system. A type inference algo-
rithm is developed and shown to be sound and complete with respect
to the typing system. A notion of derivational coherence is developed to
deal with the problem of ambiguity and the corresponding type inference
algorithm is shown to be sound and complete.

1 Introduction

The Hindley-Milner type system (HM system for short) [8] is the standard core
of the modern typed functional programming languages. Various extensions to
the HM system have been proposed in order to enrich a programming language
with new and more powerful features. These include, for example, Haskell’s class
mechanism [10], which provides convenient overloading facilities among other
things.

Coercive subtyping [14] is a theory of abbreviation developed in the setting
of dependent type theories, where coercions are regarded as abbreviation mech-
anisms and directly characterised in the proof system (type theory) extended
with coercions. It has been implemented in several proof development systems
[1,19,4] and effectively used in proof development (e.g., [1]).

In this paper, we incorporate the idea of coercive subtyping into the tradi-
tional HM type system. There are several motivations in studying the possible
combination of coercive subtyping and traditional polymorphic typing systems.
First, it leads to a novel approach that increases the power of the HM system
with new abbreviation mechanisms, which we believe would be useful in various
programming activities. Secondly, coercive subtyping provides a clean and simple
theory for abbreviation in dependent type theories. Incorporating its ideas into
traditional type systems may lead to simple theoretical development and better
understanding of the more powerful facilities (e.g., overloading) found useful in
programming. Thirdly, not the least important, studying coercions in polymor-
phic type systems meets with new challenges, partly because type uniqueness
simply does not hold in a polymorphic system.

* This work is partly supported by the UK EPSRC grants GR/M75518, GR/R84092
and GR/R72259, the EU TYPES grant 21900 on the TYPES project and by an
EPSRC studentship.



One of the results of our work is a typing system with coercions, an extension
of the HM type system, together with a sound and complete type inference
algorithm. Since the HM system is polymorphic, where a term may have more
than one type, the introduction of coercions has to be very careful; a naive way to
introduce coercions causes problems. For example, one of the decisions we have
made is that if a term is already typable in the original HM system, then no
coercions will be inserted. This also conforms with the intuition and, in practice,
an implementation of the extended system will not alter the meanings of the
existing programs.

We shall also study a notion of derivational coherence that is developed to
deal with the problem of ambiguity of computational meanings of a term. A
term may have different completions — there may be different ways to insert
coercions to make a term typable. The notion of derivational coherence captures
this and we have developed a sound and complete type inference algorithm for
derivationally coherent terms.

We regard the Hindley-Milner system as well-known and refer its introduction
for example to [21]. In the remainder of this section, we give a summary of
work on coercive subtyping and other related work. In Section 2, we give a
brief introduction to our approach by considering several simple examples. The
extended typing system with coercions is presented and explained formally in
Section 3. In Section 4, the type inference algorithm is presented and proved to
be sound and complete. Derivational coherence is introduced in Section 5, where
we also give the corresponding algorithm and discuss the proofs of its soundness
and completeness. We conclude with some discussions about future work.

1.1 Coercive subtyping

Coercive subtyping is a framework of abbreviation for dependent type theories
[14]. The basic idea is: if there is a coercion ¢ from A to B, then an object of
type A may be regarded as an object of type B via ¢ in appropriate contexts.
More precisely, a functional operation f with domain B can be applied to any
object a of A and the application fa is definitionally equal to f(ca). Intuitively,
we can view f as a context which requires an object of B; then the argument
a in the context f stands for its image of the coercion, ca. Therefore, the term
fa, originally not well-typed, becomes well-typed and “abbreviates” f(ca).

The second author and his colleagues have studied the above simple idea
in the Logical Framework (and type theory), resulting in a very powerful the-
ory of abbreviation and inheritance, including parameterised coercions and coer-
cions between parameterised inductive types. In coercive subtyping, the coercion
mechanism is directly characterised in the type theory proof-theoretically. Some
important meta-theoretic aspects of coercive subtyping such as the results on
conservativity, coherence, and transitivity elimination have been studied. They
not only justify the adequacy of the theory from the proof-theoretic considera-
tion, but provide the basis for implementation of coercive subtyping. See [1,4,
13,14, 20] for details of some of these development and applications of coercive
subtyping.



Coercion mechanisms with certain restrictions have been implemented for
dependent type theory both in the proof development system Lego [15] and Coq
[2], by Bailey [1] and Saibi [19], respectively. Callaghan of the Computer Assisted
Reasoning Group at Durham has implemented Plastic [4], a proof assistant that
supports the Logical Framework LF and coercive subtyping with a mixture of
simple coercions, parameterised coercions, coercion rules for parameterised in-
ductive types, and dependent coercions.

Remark 1. Incorporating the idea of coercive subtyping to a polymorphic calcu-
lus is not straightforward. Coercive subtyping has been developed in dependent
type theories with inductive data types, which are rather sophisticated systems.
However, most of them (or at least the standard ones) have the property of type
uniqueness; that is every well-typed object has a unique type up to computa-
tional equality. Compared with the polymorphic calculi such as the HM type
system where an object may have more than one type, one may say that depen-
dent type theories are ‘simpler’. It is important to bear this in mind when we
consider combining coercive subtyping with a polymorphic calculus.

1.2 Modelling subtyping by coercions

Various notions of coercion have been studied in the literature, particularly when
subtyping systems are considered. In subtyping, we have the subsumption rule,
which says that if a : A and A < B, then a : B. This can be modelled by means
of coercions (maps from A to B). In [3], this idea was proposed and used to give
a coercion-based semantic interpretation of Cardelli and Wegner’s system Fun
[5]. The idea of coercive subtyping discussed above was influenced by this work.

People have used the term coercion to interpret subtyping simpler settings
as well. For example, Mitchell [17, 18] considers a system where conceptually a
subtype is a subset and thus coercions essentially represent set inclusions. In [6,
12], the term coercion is used to denote a special restricted form of mapping in
modelling and explaining subtyping.

Remark 2. Note that, because of the subsumption rule in subtyping, a term ob-
tains more types, while in our setting, a term does not get more types. Rather, in
coercive subtyping or the extended HM-system considered in this paper, where
there is no subsumption rule, there are more well-typed terms, which are re-
garded as abbreviations, and typing conflicts are resolved by the insertion of co-
ercions. Furthermore, this is studied in the typing system at the proof-theoretic
level.

2 Some simple examples

We consider the HM type system extended with coercions. Coercions are re-
garded as abbreviations; more precisely, if a term is not well-typed in the orig-
inal HM type system, and after inserting coercions it becomes well-typed, then



we regard the term to be well-typed and “abbreviate” the completed term with
appropriate coercions inserted.

We shall consider extending the HM type system with two forms of coercions:
argument, coercions and function coercions. By argument coercions, we mean
that the argument of a function is coerced according to the typing requirement;
more precisely, the term fa abbreviates f(ca) if f : 0 — 7, a : 09, and there is a
coercion ¢ from oy to o. By function coercion, we mean that a term in a function
position is coerced into an appropriate function accordingly; more precisely, ka
abbreviates (ck)a if k : 0, a : 09, and there is a coercion from ¢ to a function
type 09 — T.

In the following, we give some simple examples to explain the above basic
idea. The first two examples explain argument coercions, while the last example
about overloading explains how function coercions work. We assume that the
types include integers (Int), floating numbers (Float), booleans (Bool), monads
(To, where o is any type), and a unit type (called Plus).

An example of basic coercions

The simplest example of coercions, as often used in programming languages, is
to convert integers to floating point numbers. For example, we can declare

int2float : Int — Float

as a coercion, either in a context or in a program by using the coercion dec-
laration' cdec int2float : Int — Float in . Then, assuming 2 : Int and
plusone : Float — Float, the term plusone 2 is typable and abbreviates its
“completion” plusone (int2float 2), where the coercion int2float is inserted.
Note that the completion is typable in the original HM system. More formally,
we say that the term (or program) cdec int2float : Int — Float in plusone 2
has type Float. The function int2float here is represented as a constant in the
typing system. It could be defined externally (e.g., using system call at runtime).

This coercion is usually handled automatically by programming systems,
without a formal explanation. We provide a principled explanation of this in a
setting where we can, for example, formally answer coherence questions. Note
that we can handle the converse coercion, from floating point numbers to integers
using e.g. floor, in the same way.

Using coercions in monads

Monads are a commonly used vehicle in functional programming to deal with
“imperative” features like state, random numbers, partial functions, error han-
dling or input/output. Every Monad consists at least of a unary type constructor
(called T here), an injection function (called “return” here) and a lifting function.
We refer the reader for example to [22] for a full introduction.

1 'We leave out some type variable annotation; see Sec. 3.2 and 3.3 for more details



Coercions can ease use of monads, by allowing omission of the injection of
a value into its “monadified” type (function return). T in the types for the
examples below can be seen as the error monad. There are two ways to create
values of this monadic type: one is a regular, good value (return:Va.a — Ta)
and the other is to signal an error or exception (err : Va.Ta). We can then
define a reciprocal function, from Float to T" Float, which captures the division
by zero error:

Az. if (iszero z) err (return (sysdiv 1.0 z)),

where
if : Va.Bool - o > a — «

iszero : Float — Bool
sysdiv : Float — Float — Float

Using the coercion abbreviation mechanism, however, we can leave the return
implicit by declaring it as a coercion:

cdec return: Va.a — Ta in
Az.if (iszero z) err (sysdiv 1.0 z)

Similar situations occur frequently when a monadic programming style is used,
making this a fairly useful abbreviation, both for code clarity and brevity.
Note that, as shown by this example, coercions are not necessarily represent-
ing simple inclusion between types (as considered in the setting of subtyping
[17]). They are arbitrary functional maps which one wishes to omit, in prefer-
ence to the abbreviated form. In particular, the intuition that a type that can
be coerced into another type can be viewed as set-theoretic inclusion does not

apply.

Using coercions for overloading

Coercions can be used to represent ad hoc polymorphism, or overloading. For
example, assume that we have two functions for addition, one for the integers
and the other for the floating point numbers:

plusi: Int — Int — Int

plusf : Float — Float — Float

and we wish to use a single notation plus in both cases. This can be done by
means of coercions. What we need to do is to consider a (unit) type Plus which
has element plus : P1lus and then declare the following two (function) coercions:

cdec (Az.plusi) : Plus — (Int — Int — Int)

cdec (Az.plusf) : Plus — (Float — Float — Float)



Then, we can use

plus12 or plus1.02.5

as intended, as these two terms abbreviate plusi 1 2 and plusf 1.0 2.5, respec-
tively.

Note that, in this example, the coercions are defined A-terms rather than
just constants. It also shows that coercions are not just the same as a previously
defined function. The idea of using unit types for overloading was studied by the
second author [14]. See [1] for more applications of this idea.

Remark 3. We considered Plus to be a unit type. In fact, there could be multiple
elements in Plus (i.e. constants of that type), but they are all treated the same.

3 Typing System

3.1 Base Language

Our starting point in this development is an existing programming language,
namely a minimal polymorphic programming language with Hindley-Milner type
system [8] which we call the base language. We assume readers are familiar
with the basic ideas. We omit additional elements necessary to make this into
a programming language, namely declaration of new types and recursion. This
is because we focus on typing, and those features do not affect type checking.
They can be added.
The typing judgment in the base language is denoted by

FI‘HMSST,

which can be read as “term e has type 7 in context I'””. We are extending the
base language with a coercion mechanism, which leads to our system F. We shall
explain in Section 3.4 how we can recover the HM system from our rules.

3.2 Syntax and notations

Apart from coercion-specific extensions, we use standard notions of terms, types,
type schemes and contexts [8]. The syntactic symbols to be used are as follows.

Type variables Sets of type variables

a’ﬂ”‘y’g d’ﬂ’ﬁ’é
Types Type schemes
o, 7,0 un=alo—o I m=Va.o
(Object language) Variables Terms
T,Y, 2 e, f,g un=uz|ee|Az.e]
letz=eine|
Contexts cdecc:Va.0 - o ine
r,A w=0|Nz:p|lcdecec:Va.o =1



Notations The following notations will be used in our description of the system.

— FV stands for the set of (object) variables declared in a context: FV () = (),
FV(Iyz:p)=FV(I'U{z}and FV(I,cdecc: u) = FV(I).

— FTV denotes the set of free type variables of a context, type, type scheme
or term. It is defined as:

FTV (I, z: p) =FTV(I')UFTV () FTV(®) =0
FTV(I'yedecc:p) =FTV(I)UFTV(c)UFTV(u)

FTV(o = 7) — FTV (o) U FTV (r) FTV(a) ={a}
FTV (Va.o) — FTV(0)\ & FTV(z) =0

FTV (ef) =FTV(e)UFTV(f) FTV(Az.e) = FTV (e)
FTV(letx =ein f) = FTV(e) U FTV(f)

FTV(cdecc:pine) = FTV(u) UFTV(e) U FTV (c)

- Let/\ I be a context. The coercion-free part of I is denoted by f, and defined
as0 =0, Iz :p=1I,z:pand I' = ', where I'" is I, cdec c : Ya. o — 7.
Furthermore, we write I'(z) = p if z : p is an entry of I'.

— V0.0 is a special case of Va. o, denoting a type scheme with no bound vari-
ables. We may omit V() when the context makes it clear we denote a type
scheme instead of a type.

— 0<sp means that o is a generic instance of u where all (free) type variables
of o are in a.

3.3 Judgment Forms and Rules
The rules in fig. 1 define our typing system. The forms of judgments are:

— I' % e: 17 = ¢€'. This should be read as “term e has type 7 and comple-
tion €' in context I with free type variables &. We extend the usual typing
judgment for ML-like languages I' - e : 7 by allowing coercion declarations
in the context, adding the completion e’ and an explicit annotation for the
free type variables which may occur in I', 7 and e.

— I' a-valid. To capture the notion that a “context I" is valid with free type
variables in @”, we write I" a-valid. Note that this judgment is useful as we
consider coercions in contexts subject to certain restrictions.

— I' ® ¢ —. 7. This third form of judgment expresses that “coercion ¢ from
o to T can be derived from context I'”.

We also use the notation I t/gps e : 7 to express the side condition that e is not
typable in the HM system.

Product Types We can extend the language without affecting the basic results
and mechanisms presented. For example some of the examples below will require
the use of pairs. We can extend the language to add them to our language in
the standard way, using the rules like the following;:

I'Flei:m = e TIF%ey:m = €}

Pairl 5
awrin T'FY {er,ea) i1 x 1o = (e}, eh)

The results and the type checking algorithm can be extended in straight-forward
ways.



cld 0 a-valid

I' a-valid z ¢ FV(I'),

CVi - Ve 3
o Iyz:pa-valid  FTV(p) Ca
Favalid THFY ¢o:0 571 = ¢ _
CC - aNB=
oer I'ycdec c:Vp3. 0 — 7 a-valid anp=40
I' a-valid
1d _ L AVANC e (@) =
I'z:7 ==z T=ap, I(@) = p
Lr:Viorle:r = ¢
Abs & 7
' Xer.e:o— 1 = Ar.e
I'“ei:0o517 =>¢ I'F:0 = ¢
App = : >
' ejes: 7 = eley
I'Pei:o0317 =>¢e] T'F%ex:00 = €
't 09 2co ~
ApDac _ r heb 7
b '+ ejes: 7 = ej(ceh) Frar eres
I'Fie 100 = € I'FPey:o = €
T'F* oo —=¢ (0= 1) ~
A c — F Il:?
PPf '+ ejes: 7 = (cei)es Vi erez
FTHFY e g = ¢ Lz:VB.0F%ey:1 = e -
Let _ er: o e.l x:VB.0 es ,T ,ez ang=0
I'Fletxr=e1inex: 7 = letxz =e; ine;)
T8 g5t = ¢
Icdecc :VB.o 5 7FH%e:p = € =
Decl , © , -
e ' cdecc:VYB.0 »Tine: o = ¢ ang="o
Lup o — T <a

I'cdecc:VB.oco > 10, F o —e T VB.00 = To

Fig. 1. Typing Rules



3.4 Explanations

We give some informal explanations and prove some basic properties of the
system presented above.

Completion and Relation to HM The above system is an extension of
the system Fga in the sense that, if we remove rules App,., Apps., Decl,
Lup and CCoer and the notation of completion, the resulting system is equiv-
alent to Hindley-Milner typing. We say that a program e is well-typed if
fF%e:7 = ¢ for some type T, completion €', and set of type variables a.

An addition to the language is completion. Informally, we insert all the
needed coercion functions in a term e to form its completion €', such that the
completed term is typable in the system without the coercion rules App,., Apps.
and CCoer, i.e. in the base language Fas. This is formally captured by lemma, 1,
which will establish the relationship between our typing judgment F and that of
the base language Fgas. It makes precise why we call €' “completion”: because
the completion is an expansion of the term e in question, and this completion
type checks in the base language.

Definition 1 (Term Expansion). The notion that a term ey expands a term
e1, in symbols e; < es, is inductively defined as follows.

r<zx

Ar.er < Ax.eq if eg < em

letz =e;iney; <letx =e3iney ifeg <ez andes < ey

eres < egeq if e < ez andex < ey

ezesz < (ejez)es

eres < ej(eze3)

cdecc:Va.c > Tine<e

e1 <egife <ey andes <es

Lemma 1 (Completion). If 't e:7 = €', then'Fup e : 7, ande < €.

Proof Sketch. We prove the following two statements by simultaneous induction
on the derivations of I' F® e : 7 = ¢’ and I" a-valid.

—IfI'F%e:7 = ¢e,then 'ty e’ :7and e < €.
—Ifl'avalidand '+ o =, 7, then ' Fypyrc:o — 1.

Free Type Variables @ The handling of type variables needs some expla-
nation. The standard notation of typing judgment assumes that the free type
variables in I' can be chosen arbitrarily. On the other hand, we require that
all variables must either be bound or chosen from the & denoted in the judg-
ment. Formally, the role of the free type variable annotations is captured by the
following lemma which has three parts, for each of the judgements.

Lemma 2 (Free type variables).



1. IfI't%e:17 = €, then FTV(I') Ca, FTV(e) C a and FTV (1) C .
2. If I a-valid, then FTV (") C a.
3. IfT' %0 =, 1, then FTV(I') Ca, FTV(ec — 1) Ca and FTV(c) C a.

By explicitly denoting all possible free type variables, we no longer require
the notion of “generalisation” in the formulation of the Let rule, which, in our
opinion, clarifies its intention.

Remark 4. Another way of looking at this is that there are no free type variables,
but all type variables are bound — some explicitly in type schemes, while all others
are bound by the global quantification Y&. To our knowledge, this is the first
time this reformulation of the Let rule is published. It is due to McKinna [16].

In the rule Abs, we add z to the context, quantifying over no variables. This
means that all type variables in ¢ are non-generic and cannot be instantiated in
the derivation of e : 7. This is in contrast to the Let rule which allows generic
type variables.

Global and local coercions Besides assignments of types (more precisely type
schemes) to variables, our contexts also contain declarations of (global) coercions,
of the form cdec ¢: V@a.0 — 7 in e. The form of coercions is unlimited and can
be any expression in the base language, like a constant function between base
types or a function between arbitrary types computing the result in a complex
way. The coercions declared in a context are well-typed and can be looked up
by means of the rule (Lup). We have

Lemma 3. If %o —. 7, then 'Fic:0 -7 = c.

In fact, we know that any declared coercion is well-typed in the HM system (c.f.,
Lemma 1).

Besides global coercions, we also allow local coercion declarations in pro-
grams, similar to the way let works.

Ezxample 1 (Localised Coercions). This example shows the scope of coercion dec-
laration. In A = plusone : Int — Int, 1 : Int, 1.0 : Float, plus : Float — Float —
Float, the following program is well-typed.

plus (plusone 1)
(cdec floor : V0. Float — Int in plusone 1.0)

However, since the coercion is not available when plusone is first used, the
following is not typable in A:

plus (plusone 1.0)
(cdec floor : V(). Float — Int in plusone 1.0)



Rules for argument and function coercions Let us have a closer look at the
special rules App,. and Appy. for argument and function coercions, in particular
on their side condition. By I' b eleh : 7 we mean that efe) is not typable in
the base language, i.e. there is no type 7 such that r Fua ejely : 7. We illustrate
the necessity of this side condition with an example which shows that otherwise
ambiguity arises which would lead to non-unique meaning of certain terms.

Example 2. We assume that A and B are any base types inhabited by the con-
stants a : A and by, by : B, and we have product types. Using the abbreviations

I'=cdec X(z,y). (b1,b2) : V0. Ax A - Bx B
=Mz, y).x
9=Mz,y)- (y, z)

we can obviously derive

I+ f:BxB—>B = f
I'g: AxA—-AxA =g
I'*g:BxB—+BxB =g

Thus using App,. without the side condition I' /g ejeh : 7 we could derive
the following, where ¢ = A(z,y). (b1, ba):

r l—? f(g{a,a)) : B =
'+ f(g{a,a)) : B = f(g(c{a,a)))

However, f(c(g{a,a))) computes to by while f(g(c(a,a))) to bs. This is a very
bad situation, since it means that evaluation can no longer be uniquely defined,
and thus the term f(g{a,a)) no longer has a definite, unique meaning.

The side condition prevents this particular ambiguity, by forbidding the use
of Appe. and Apps. when App can be used. In other words, it gives preference to
derivations which does not involve coercions, and a coercion may only be applied
if needed since otherwise typing would fail. The side condition is decidable, for
example by traditional algorithm . This side condition does not prevent all
forms of ambiguities, however. Section 5 discusses how to deal with them.

The example shows an essential difference to coercive subtyping in Type
Theory with its unique and explicit typing, where the type of g would fully
determine the type of the coercion function to apply and whether a coercion is
needed at all.

The side conditions on rules App,. and Apps. have another effect too. In co-
ercive subtyping for Type Theory, the question arises whether identity coercions
(i.e. the identity function declared as coercion) are allowed. We do not forbid
them, but these side conditions ensure that they will never be used, since an
application with an identity coercion can always be typed without it.



Let Expression One noticeable feature of our typing rules is that there are no
coercion-specific rules involving let. Corresponding to the rules for application,
one might expect to find something like:

Fl-&ul?el:aoie’l Ix:Vp.oF¥ey: 7 = €
I8 g0 5.0

Let 5
¢ I'F¥letz =e;iney: 7 = let x =ce)| iné€)

anpg=1>0

With this rule basic soundness conditions still hold, like lemma 1 saying that
the completion is well-typed in the base language. Thus it is not obviously wrong
to add thus rule. Simple examples show that Let. is not admissible. Consider
(assuming A, B, C' and D are any types) ' =x: A,c: A — B,cdecc: A — B.
With the new rule we can then derive let y = z in y : B, without it we cannot.

Another example shows the complication of the rule Let.. With I" = a :
Ab:B,c; : A — (C = D),co: B— C,cdec ¢y : A — (C — D), cdec ¢ :
B — C and assuming the Let. rule is present, we are able to derive I’ -0
letx =ainzb: D = letx = cja in c2b. Essentially, this amounts to a si-
multaneous use of functional and argument coercions which is not admissible in
our rules.

These examples illustrate that Let. would allow a more liberal use of coer-
cions. Our intention however is to restrict the situations in which they can occur
to allow a formulation of derivational coherence (see section 5). A consequence
of a rule like Let. is that a type checking algorithm (Section 4) would need to
search for ¢ which is not present in the conclusion of the rule; this may cause
difficulties.

4 Type Checking Algorithm

The previous section describes our type system which adds coercions to Hindley-
Milner type systems. The rules in fig. 1 describe well-typing, but they do not
provide a decision procedure to verify well-typedness. This is mainly due to the
application rules (App, Appac and Appy.), in which the argument type o cannot
be inferred from the typing judgment whose validity is to be verified, and thus
there are infinitely many derivation trees to check.

This section provides a different set of rules to resolve this problem (fig. 2).

4.1 Algorithm

In the tradition of algorithm W [8], the rules in fig. 2 describe typing for most
general types. These rules can be read as an algorithm, which we call “algo-
rithm We¢”, to give non-deterministic answers to the question: “Given I" and e,
what are the type and completion of €?”. The inputs are context I" and term e
and the outputs substitution S, type 7 and completion e’. It is non-deterministic
because of the rules LCdec)V and LCdec)”, where multiple coercions ¢ can be
found for a given pair of types o and 7. In Section 5 we will provide a determin-
istic algorithm together with a characterisation of its modified behaviour.
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' e (Qg,@,d)
TIcdecc :VB.0 > T7FW e~ (p,S,e)
I'FY cdecc:VB.0 = Tine~s (o, S, e')

a new

a, 3 new

o—T < 00

unify(B,7) =T
un'LfyC (F7/8 — Q,T,el, 62) ~> (T7 6162>

unify( - r,00 > 0) =T
Tkroo—=o~c unify(B,7)
unifye (I, 8 — a, T, e1,e2) ~ (T,ei(ce2))  fails

unify(8 = (r = 11),00 > 0) =T
[Fioosore unify(5,7)
unifye (I, B, T, e1,e2) ~ (T, (cer)ez)  fails

I'Fpo—=1~ec
Nr:pkro—-1~c

I'Fro—1~c
I'cdeccp:VB.00 > TobFr o= 1T~c

Icdecc:VB.o 5 ThL o= T~ ¢

Fig. 2. Algorithm W¢



We is presented with judgments of the following forms:

— I'Ew e~ (S, 1,€'), which can be read as “In context I', term e type checks
to substitution S, type T and completion e’.

— I' ~ valid expresses that “I" is valid”; in particular, it means that the
coercions declared in it are well-typed.

— I''tp 0 = 7 ~ ¢ stands for “in context I', the lookup for a coercion from
type o to type 7 yields the coercion term ¢”.

We use the standard notion of first-order unification unify. It is easy to see
that the traditional algorithm W can be recovered from the rules in fig. 2 by
removing rules CCoer"”, Decl”, Une)¥ and Unc}’cv. (In that case 1 will not be
used either.) Using this observation and soundness and completeness of W, we
can see that the condition on ¢ in rule Decl”V is actually the same as in Decl in
fig. 1.

Note that the side condition of rules App,. and Appy. in fig. 1 refers to the
separate system of HM typing, while the implementation uses a simple unifi-
cation test in Unc”” and does not need to refer to a separate type checking
algorithm.

4.2 Soundness and Completeness

Algorithm W, (fig. 2) is a sound and complete implementation of the typing
rules (fig. 1), in the following sense.

Soundness expresses that the computed result type and completion can be
derived using the typing rules.

Theorem 1 (Soundness). Assume that we can derive I' F» e~ (1,S,€').
Let a = FTV(SI,1,e). Then ST F¥e:7 = €.

Proof Sketch. We can prove this by strengthening it with the additional condi-
tion if I' ~ valid and @ = FTV(I"), then I" a-valid. We then do simultaneous
induction on the derivations of I' FW e ~» (1, S, ¢’} and I" ~» valid, using much
of the structure and lemmas from [7]. Use of Unc"’ in App"V by the algorithm
corresponds to rule App, whereas Unc)y and Unc}) correspond to App,. and
Appyec, resp.

Completeness means that for any given completion, every derivable type for
a term is an instance of the type computed by the algorithm for the result with
this completion.

Theorem 2 (Completeness). If SI' F% e: 7 = ¢, then there are exactly
one type o and substitution T such that ' VW e~ (0,T,e'), and there is a
substitution U with 7 = Uo and ST’ =UTT.

Proof Sketch. The proof uses induction on the derivation of SI' % e : 7 = €.
Thus when looking for the right derivations for W¢(I'; e) to prove the theorem,
we already know the completion in the result. This completion resolves possible
ambiguities in the choice of rules Unc)? or Unc}y .



5 Resolving Ambiguities

The rules in fig. 2 allow certain ambiguities, that can occur if there is more than
one matching coercion during coercion search in Unc". Assume, for example,
that A and B are base types and I'is f : a X @ = a,a : A,cdec c; : V. A —
A x A cdeccy : V. A— B x B. Then we have both I' bW fa ~s (A, 0, f(c1a))
and I' FW fa~» (B, 0, f(csa)).

Such a situation is not desirable, since it means that the evaluation behaviour
is not uniquely defined. This is the coherence problem which needs to be ad-
dressed for any system of (coercive) subtyping.

We can solve this problem by replacing unify, in App"V by um'fyé, which
succeeds if and only if unify, returns a unique result:

Definition 2 (unifyc). unifye (I, 8,7,€) ~ (T, f) if unifye (I, 8,7,€) ~ (T, f)
and for all U, g such that unifyé(F,B,T, e)~(U,9),U=T and f =g.

um'fyé is effectively decidable since unify, is decidable and can only return a
finite number of results.

We call algorithm W/} the algorithm obtained from W¢ where the App"Y
case uses unifyé instead of unify., and FV for the corresponding judgment.
Algorithm W} can return at most one result, and is therefore a deterministic
algorithm, in contrast to non-deterministic We.

These additional side conditions clearly limit the cases in which the algo-
rithm succeeds. This still allows all the examples presented earlier. However the
question is how this restricted behaviour can be described in the typing rules.
For this, we introduce the notion of “derivational coherence”.

Definition 3 (Derivational Coherence). A term e is derivationally co-
herent over a context I' if for each subterm f ofe and It F2 f: 1y = el1 and
L fimn = e; occurring anywhere in any derivation of '+%e: 7 = ¢ for
any T1, T2, € and e}, the two completions are the same, i.e. €] = €.

Using this notion, we can formulate a soundness and completeness result for
W

Theorem 3. For all I', e, the following holds. There are T, S and €' such that
I'EY e~ (1,S,€') if and only if e is derivationally coherent over I' and there
are o, f' and @ such that I' v e: 0 = f'. In both directions, ¢ = f' and
0<aT.

For the proof we note that the derivation trees for typing derivation and for
type checking are isomorphic, and thus we can establish the conditions in which
ambiguities occur by an inductive analysis of them, using the previous soundness
and completeness results (Theorems 1 and 2).



6 Conclusion

We have presented an extension of the Hindley-Milner polymorphic system with
coercions by incorporating the idea from coercive subtyping. The extended typ-
ing system can be further enriched with other features such as records whose
associated inheritance relation can be represented as coercions. More details of
the work, including a prototype implementation of the extended system and the
details of the proofs, can be found in the forthcoming thesis of the first author
[11].

There are several issues to be further studied. For example, in our rules we
have not included “transitivity” as found in general subtyping or coercive sub-
typing systems. For basic types, adding transitivity of coercions is not a problem;
it simply becomes a decidable search problem of the transitive closure of the co-
ercions between basic types, representable as a finite graph [19]. However, when
coercions parameterised over type variables are considered, as they are allowed
here in general, it is not clear to us that the coercion search with transitivity is
decidable.

Coercion rules are another field of further study (e.g., see [14]). The current
system would allow to add rules to derive new coercions from the rules already
declared, like lifting of coercions over lists. The requirement is that coercion
search must be decidable.

As mentioned in the introduction, coercion search for type theory is facili-
tated considerably by the unique typing property. That is no longer given, how-
ever, if metavariables are added. Thus we can look to apply the techniques of
this paper to type theory with metavariables.

Coercion mechanisms as discussed in this paper facilitate overloading among
other things. Another mechanism for overloading is the class mechanism in
Haskell [23,10]. An interesting research topic is to compare these mechanisms
formally and consider a possible general framework for abbreviations.

Acknowledgements We thank Paul Callaghan and James McKinna for dis-
cussions and comments on a draft.
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