
Coer
ions in Hindley-Milner Systems

?

Robert Kie�ling and Zhaohui Luo

Department of Computer S
ien
e, University of Durham

Abstra
t. Coer
ive subtyping is a theory of abbreviation for depen-

dent type theories. In this paper, we in
orporate the idea of
oer
ive

subtyping into the traditional Hindley-Milner type systems in fun
tional

programming languages. This results in a typing system with
oer
ions,

an extension of the Hindley-Milner type system. A type inferen
e algo-

rithm is developed and shown to be sound and
omplete with respe
t

to the typing system. A notion of derivational
oheren
e is developed to

deal with the problem of ambiguity and the
orresponding type inferen
e

algorithm is shown to be sound and
omplete.

1 Introdu
tion

The Hindley-Milner type system (HM system for short) [8℄ is the standard
ore

of the modern typed fun
tional programming languages. Various extensions to

the HM system have been proposed in order to enri
h a programming language

with new and more powerful features. These in
lude, for example, Haskell's
lass

me
hanism [10℄, whi
h provides
onvenient overloading fa
ilities among other

things.

Coer
ive subtyping [14℄ is a theory of abbreviation developed in the setting

of dependent type theories, where
oer
ions are regarded as abbreviation me
h-

anisms and dire
tly
hara
terised in the proof system (type theory) extended

with
oer
ions. It has been implemented in several proof development systems

[1, 19, 4℄ and e�e
tively used in proof development (e.g., [1℄).

In this paper, we in
orporate the idea of
oer
ive subtyping into the tradi-

tional HM type system. There are several motivations in studying the possible

ombination of
oer
ive subtyping and traditional polymorphi
 typing systems.

First, it leads to a novel approa
h that in
reases the power of the HM system

with new abbreviation me
hanisms, whi
h we believe would be useful in various

programming a
tivities. Se
ondly,
oer
ive subtyping provides a
lean and simple

theory for abbreviation in dependent type theories. In
orporating its ideas into

traditional type systems may lead to simple theoreti
al development and better

understanding of the more powerful fa
ilities (e.g., overloading) found useful in

programming. Thirdly, not the least important, studying
oer
ions in polymor-

phi
 type systems meets with new
hallenges, partly be
ause type uniqueness

simply does not hold in a polymorphi
 system.

?

This work is partly supported by the UK EPSRC grants GR/M75518, GR/R84092

and GR/R72259, the EU TYPES grant 21900 on the TYPES proje
t and by an

EPSRC studentship.

One of the results of our work is a typing system with
oer
ions, an extension

of the HM type system, together with a sound and
omplete type inferen
e

algorithm. Sin
e the HM system is polymorphi
, where a term may have more

than one type, the introdu
tion of
oer
ions has to be very
areful; a naive way to

introdu
e
oer
ions
auses problems. For example, one of the de
isions we have

made is that if a term is already typable in the original HM system, then no

oer
ions will be inserted. This also
onforms with the intuition and, in pra
ti
e,

an implementation of the extended system will not alter the meanings of the

existing programs.

We shall also study a notion of derivational
oheren
e that is developed to

deal with the problem of ambiguity of
omputational meanings of a term. A

term may have di�erent
ompletions { there may be di�erent ways to insert

oer
ions to make a term typable. The notion of derivational
oheren
e
aptures

this and we have developed a sound and
omplete type inferen
e algorithm for

derivationally
oherent terms.

We regard the Hindley-Milner system as well-known and refer its introdu
tion

for example to [21℄. In the remainder of this se
tion, we give a summary of

work on
oer
ive subtyping and other related work. In Se
tion 2, we give a

brief introdu
tion to our approa
h by
onsidering several simple examples. The

extended typing system with
oer
ions is presented and explained formally in

Se
tion 3. In Se
tion 4, the type inferen
e algorithm is presented and proved to

be sound and
omplete. Derivational
oheren
e is introdu
ed in Se
tion 5, where

we also give the
orresponding algorithm and dis
uss the proofs of its soundness

and
ompleteness. We
on
lude with some dis
ussions about future work.

1.1 Coer
ive subtyping

Coer
ive subtyping is a framework of abbreviation for dependent type theories

[14℄. The basi
 idea is: if there is a
oer
ion
 from A to B, then an obje
t of

type A may be regarded as an obje
t of type B via
 in appropriate
ontexts.

More pre
isely, a fun
tional operation f with domain B
an be applied to any

obje
t a of A and the appli
ation fa is de�nitionally equal to f(
a). Intuitively,

we
an view f as a
ontext whi
h requires an obje
t of B; then the argument

a in the
ontext f stands for its image of the
oer
ion,
a. Therefore, the term

fa, originally not well-typed, be
omes well-typed and \abbreviates" f(
a).

The se
ond author and his
olleagues have studied the above simple idea

in the Logi
al Framework (and type theory), resulting in a very powerful the-

ory of abbreviation and inheritan
e, in
luding parameterised
oer
ions and
oer-

ions between parameterised indu
tive types. In
oer
ive subtyping, the
oer
ion

me
hanism is dire
tly
hara
terised in the type theory proof-theoreti
ally. Some

important meta-theoreti
 aspe
ts of
oer
ive subtyping su
h as the results on

onservativity,
oheren
e, and transitivity elimination have been studied. They

not only justify the adequa
y of the theory from the proof-theoreti

onsidera-

tion, but provide the basis for implementation of
oer
ive subtyping. See [1, 4,

13, 14, 20℄ for details of some of these development and appli
ations of
oer
ive

subtyping.

Coer
ion me
hanisms with
ertain restri
tions have been implemented for

dependent type theory both in the proof development system Lego [15℄ and Coq

[2℄, by Bailey [1℄ and Sa��bi [19℄, respe
tively. Callaghan of the Computer Assisted

Reasoning Group at Durham has implemented Plasti
 [4℄, a proof assistant that

supports the Logi
al Framework LF and
oer
ive subtyping with a mixture of

simple
oer
ions, parameterised
oer
ions,
oer
ion rules for parameterised in-

du
tive types, and dependent
oer
ions.

Remark 1. In
orporating the idea of
oer
ive subtyping to a polymorphi

al
u-

lus is not straightforward. Coer
ive subtyping has been developed in dependent

type theories with indu
tive data types, whi
h are rather sophisti
ated systems.

However, most of them (or at least the standard ones) have the property of type

uniqueness; that is every well-typed obje
t has a unique type up to
omputa-

tional equality. Compared with the polymorphi

al
uli su
h as the HM type

system where an obje
t may have more than one type, one may say that depen-

dent type theories are `simpler'. It is important to bear this in mind when we

onsider
ombining
oer
ive subtyping with a polymorphi

al
ulus.

1.2 Modelling subtyping by
oer
ions

Various notions of
oer
ion have been studied in the literature, parti
ularly when

subtyping systems are
onsidered. In subtyping, we have the subsumption rule,

whi
h says that if a : A and A � B, then a : B. This
an be modelled by means

of
oer
ions (maps from A to B). In [3℄, this idea was proposed and used to give

a
oer
ion-based semanti
 interpretation of Cardelli and Wegner's system Fun

[5℄. The idea of
oer
ive subtyping dis
ussed above was in
uen
ed by this work.

People have used the term
oer
ion to interpret subtyping simpler settings

as well. For example, Mit
hell [17, 18℄
onsiders a system where
on
eptually a

subtype is a subset and thus
oer
ions essentially represent set in
lusions. In [6,

12℄, the term
oer
ion is used to denote a spe
ial restri
ted form of mapping in

modelling and explaining subtyping.

Remark 2. Note that, be
ause of the subsumption rule in subtyping, a term ob-

tains more types, while in our setting, a term does not get more types. Rather, in

oer
ive subtyping or the extended HM-system
onsidered in this paper, where

there is no subsumption rule, there are more well-typed terms, whi
h are re-

garded as abbreviations, and typing
on
i
ts are resolved by the insertion of
o-

er
ions. Furthermore, this is studied in the typing system at the proof-theoreti

level.

2 Some simple examples

We
onsider the HM type system extended with
oer
ions. Coer
ions are re-

garded as abbreviations; more pre
isely, if a term is not well-typed in the orig-

inal HM type system, and after inserting
oer
ions it be
omes well-typed, then

we regard the term to be well-typed and \abbreviate" the
ompleted term with

appropriate
oer
ions inserted.

We shall
onsider extending the HM type system with two forms of
oer
ions:

argument
oer
ions and fun
tion
oer
ions. By argument
oer
ions, we mean

that the argument of a fun
tion is
oer
ed a

ording to the typing requirement;

more pre
isely, the term fa abbreviates f(
a) if f : � ! � , a : �

0

, and there is a

oer
ion
 from �

0

to �. By fun
tion
oer
ion, we mean that a term in a fun
tion

position is
oer
ed into an appropriate fun
tion a

ordingly; more pre
isely, ka

abbreviates (
k)a if k : �, a : �

0

, and there is a
oer
ion from � to a fun
tion

type �

0

! � .

In the following, we give some simple examples to explain the above basi

idea. The �rst two examples explain argument
oer
ions, while the last example

about overloading explains how fun
tion
oer
ions work. We assume that the

types in
lude integers (Int),
oating numbers (Float), booleans (Bool), monads

(T�, where � is any type), and a unit type (
alled Plus).

An example of basi

oer
ions

The simplest example of
oer
ions, as often used in programming languages, is

to
onvert integers to
oating point numbers. For example, we
an de
lare

int2float : Int! Float

as a
oer
ion, either in a
ontext or in a program by using the
oer
ion de
-

laration

1

de
 int2float : Int ! Float in . Then, assuming 2 : Int and

plusone : Float ! Float, the term plusone 2 is typable and abbreviates its

\
ompletion" plusone (int2float 2), where the
oer
ion int2float is inserted.

Note that the
ompletion is typable in the original HM system. More formally,

we say that the term (or program)
de
 int2float : Int! Float in plusone 2

has type Float. The fun
tion int2float here is represented as a
onstant in the

typing system. It
ould be de�ned externally (e.g., using system
all at runtime).

This
oer
ion is usually handled automati
ally by programming systems,

without a formal explanation. We provide a prin
ipled explanation of this in a

setting where we
an, for example, formally answer
oheren
e questions. Note

that we
an handle the
onverse
oer
ion, from
oating point numbers to integers

using e.g. floor, in the same way.

Using
oer
ions in monads

Monads are a
ommonly used vehi
le in fun
tional programming to deal with

\imperative" features like state, random numbers, partial fun
tions, error han-

dling or input/output. Every Monad
onsists at least of a unary type
onstru
tor

(
alled T here), an inje
tion fun
tion (
alled \return" here) and a lifting fun
tion.

We refer the reader for example to [22℄ for a full introdu
tion.

1

We leave out some type variable annotation; see Se
. 3.2 and 3.3 for more details

Coer
ions
an ease use of monads, by allowing omission of the inje
tion of

a value into its \monadi�ed" type (fun
tion return). T in the types for the

examples below
an be seen as the error monad. There are two ways to
reate

values of this monadi
 type: one is a regular, good value (return : 8�: �! T�)

and the other is to signal an error or ex
eption (err : 8�: T�). We
an then

de�ne a re
ipro
al fun
tion, from Float to T Float, whi
h
aptures the division

by zero error:

�x: if (iszero x) err (return (sysdiv 1:0 x));

where

if : 8�: Bool! �! �! �

iszero : Float! Bool

sysdiv : Float! Float! Float

Using the
oer
ion abbreviation me
hanism, however, we
an leave the return

impli
it by de
laring it as a
oer
ion:

de
 return : 8�: �! T� in

�x: if (iszero x) err (sysdiv 1:0 x)

Similar situations o

ur frequently when a monadi
 programming style is used,

making this a fairly useful abbreviation, both for
ode
larity and brevity.

Note that, as shown by this example,
oer
ions are not ne
essarily represent-

ing simple in
lusion between types (as
onsidered in the setting of subtyping

[17℄). They are arbitrary fun
tional maps whi
h one wishes to omit, in prefer-

en
e to the abbreviated form. In parti
ular, the intuition that a type that
an

be
oer
ed into another type
an be viewed as set-theoreti
 in
lusion does not

apply.

Using
oer
ions for overloading

Coer
ions
an be used to represent ad ho
 polymorphism, or overloading. For

example, assume that we have two fun
tions for addition, one for the integers

and the other for the
oating point numbers:

plusi : Int! Int! Int

plusf : Float! Float! Float

and we wish to use a single notation plus in both
ases. This
an be done by

means of
oer
ions. What we need to do is to
onsider a (unit) type Plus whi
h

has element plus : Plus and then de
lare the following two (fun
tion)
oer
ions:

de
 (�x: plusi) : Plus! (Int! Int! Int)

de
 (�x: plusf) : Plus! (Float! Float! Float)

Then, we
an use

plus 1 2 or plus 1:0 2:5

as intended, as these two terms abbreviate plusi 1 2 and plusf 1:0 2:5, respe
-

tively.

Note that, in this example, the
oer
ions are de�ned �-terms rather than

just
onstants. It also shows that
oer
ions are not just the same as a previously

de�ned fun
tion. The idea of using unit types for overloading was studied by the

se
ond author [14℄. See [1℄ for more appli
ations of this idea.

Remark 3. We
onsidered Plus to be a unit type. In fa
t, there
ould be multiple

elements in Plus (i.e.
onstants of that type), but they are all treated the same.

3 Typing System

3.1 Base Language

Our starting point in this development is an existing programming language,

namely a minimal polymorphi
 programming language with Hindley-Milner type

system [8℄ whi
h we
all the base language. We assume readers are familiar

with the basi
 ideas. We omit additional elements ne
essary to make this into

a programming language, namely de
laration of new types and re
ursion. This

is be
ause we fo
us on typing, and those features do not a�e
t type
he
king.

They
an be added.

The typing judgment in the base language is denoted by

� `

HM

e : �;

whi
h
an be read as \term e has type � in
ontext �". We are extending the

base language with a
oer
ion me
hanism, whi
h leads to our system `. We shall

explain in Se
tion 3.4 how we
an re
over the HM system from our rules.

3.2 Syntax and notations

Apart from
oer
ion-spe
i�
 extensions, we use standard notions of terms, types,

type s
hemes and
ontexts [8℄. The synta
ti
 symbols to be used are as follows.

Type variables Sets of type variables

�; �;
; % ��;

�

�; �
; �%

Types Type s
hemes

�; �; % ::= � j � ! � � ::= 8��: �

(Obje
t language) Variables Terms

x; y; z e; f; g ::= x j ee j �x: e j

let x = e in e j

Contexts
de

 : 8��: � ! � in e

�;� ::= ; j �; x : � j �;
de

 : 8��: � ! �

Notations The following notations will be used in our des
ription of the system.

{ FV stands for the set of (obje
t) variables de
lared in a
ontext: FV (;) = ;,

FV (�; x : �) = FV (�) [fx g and FV (�;
de

 : �) = FV (�).

{ FTV denotes the set of free type variables of a
ontext, type, type s
heme

or term. It is de�ned as:

FTV (�; x : �) = FTV (�) [FTV (�) FTV (;) = ;

FTV (�;
de

 : �) = FTV (�) [FTV (
) [FTV (�)

FTV (� ! �) = FTV (�) [FTV (�) FTV (�) = f� g

FTV (8��: �) = FTV (�) n �� FTV (x) = ;

FTV (ef) = FTV (e) [FTV (f) FTV (�x: e) = FTV (e)

FTV (let x = e in f) = FTV (e) [FTV (f)

FTV (
de

 : � in e) = FTV (�) [FTV (e) [FTV (
)

{ Let � be a
ontext. The
oer
ion-free part of � is denoted by

b

� , and de�ned

as

b

; = ;,

d

�; x : � =

b

� ; x : � and

�

0

=

b

� , where �

0

is �;
de

 : 8��: � ! � .

Furthermore, we write � (x) = � if x : � is an entry of � .

{ 8;: � is a spe
ial
ase of 8��: �, denoting a type s
heme with no bound vari-

ables. We may omit 8; when the
ontext makes it
lear we denote a type

s
heme instead of a type.

{ ��

��

�means that � is a generi
 instan
e of � where all (free) type variables

of � are in ��.

3.3 Judgment Forms and Rules

The rules in �g. 1 de�ne our typing system. The forms of judgments are:

{ � `

��

e : �) e

0

. This should be read as \term e has type � and
omple-

tion e

0

in
ontext � with free type variables ��. We extend the usual typing

judgment for ML-like languages � ` e : � by allowing
oer
ion de
larations

in the
ontext, adding the
ompletion e

0

and an expli
it annotation for the

free type variables whi
h may o

ur in � , � and e.

{ � ��-valid. To
apture the notion that a \
ontext � is valid with free type

variables in ��", we write � ��-valid. Note that this judgment is useful as we

onsider
oer
ions in
ontexts subje
t to
ertain restri
tions.

{ � `

��

� !

� . This third form of judgment expresses that \
oer
ion
 from

� to �
an be derived from
ontext �".

We also use the notation � 6`

HM

e : ? to express the side
ondition that e is not

typable in the HM system.

Produ
t Types We
an extend the language without a�e
ting the basi
 results

and me
hanisms presented. For example some of the examples below will require

the use of pairs. We
an extend the language to add them to our language in

the standard way, using the rules like the following:

PairIn

� `

��

e

1

: �

1

) e

0

1

� `

��

e

2

: �

2

) e

0

2

� `

��

he

1

; e

2

i : �

1

� �

2

) he

0

1

; e

0

2

i

The results and the type
he
king algorithm
an be extended in straight-forward

ways.

CId

; ��-valid

CVar

� ��-valid

�; x:� ��-valid

x 62 FV (�);

FTV (�) � ��

CCoer

� ��-valid � `

��[

�

�

0

: � ! �)

�;
de

 : 8

�

�: � ! � ��-valid

�� \

�

� = ;

Id

� ��-valid

� `

��

x : �) x

��

��

�, � (x) = �

Abs

�; x : 8;: � `

��

e : �) e

0

� `

��

�x: e : � ! �) �x: e

0

App

� `

��

e

1

: � ! �) e

0

1

� `

��

e

2

: �) e

0

2

� `

��

e

1

e

2

: �) e

0

1

e

0

2

App

a

� `

��

e

1

: � ! �) e

0

1

� `

��

e

2

: �

0

) e

0

2

� `

��

�

0

!

�

� `

��

e

1

e

2

: �) e

0

1

(
e

0

2

)

b

� 6`

HM

e

0

1

e

0

2

: ?

App

f

� `

��

e

1

: %

0

) e

0

1

� `

��

e

2

: �) e

0

2

� `

��

%

0

!

(� ! �)

� `

��

e

1

e

2

: �) (
e

0

1

)e

0

2

b

� 6`

HM

e

0

1

e

0

2

: ?

Let

� `

��[

�

�

e

1

: �) e

0

1

�; x : 8

�

�
: � `

��

e

2

: �) e

0

2

� `

��

let x = e

1

in e

2

: �) let x = e

0

1

in e

0

2

�� \

�

� = ;

De
l

� `

��[

�

�

 : � ! �)

0

�;
de

0

: 8

�

�: � ! � `

��

e : %) e

0

� `

��

de

 : 8

�

�: � ! � in e : %) e

0

�� \

�

� = ;

Lup

�;
de

 : 8

�

�: �

0

! �

0

; �

0

`

��

� !

�

� ! � �

��

8

�

�: �

0

! �

0

Fig. 1. Typing Rules

3.4 Explanations

We give some informal explanations and prove some basi
 properties of the

system presented above.

Completion and Relation to HM The above system is an extension of

the system `

HM

in the sense that, if we remove rules App

a

, App

f

, De
l ,

Lup and CCoer and the notation of
ompletion, the resulting system is equiv-

alent to Hindley-Milner typing. We say that a program e is well-typed if

; `

��

e : �) e

0

for some type � ,
ompletion e

0

, and set of type variables ��.

An addition to the language is
ompletion. Informally, we insert all the

needed
oer
ion fun
tions in a term e to form its
ompletion e

0

, su
h that the

ompleted term is typable in the system without the
oer
ion rules App

a

, App

f

and CCoer , i.e. in the base language `

HM

. This is formally
aptured by lemma 1,

whi
h will establish the relationship between our typing judgment ` and that of

the base language `

HM

. It makes pre
ise why we
all e

0

\
ompletion": be
ause

the
ompletion is an expansion of the term e in question, and this
ompletion

type
he
ks in the base language.

De�nition 1 (Term Expansion). The notion that a term e

2

expands a term

e

1

, in symbols e

1

� e

2

, is indu
tively de�ned as follows.

x � x

�x: e

1

� �x: e

2

if e

1

� e

2

let x = e

1

in e

2

� let x = e

3

in e

4

if e

1

� e

3

and e

2

� e

4

e

1

e

2

� e

3

e

4

if e

1

� e

3

and e

2

� e

4

e

2

e

3

� (e

1

e

2

)e

3

e

1

e

3

� e

1

(e

2

e

3

)

de

 : 8��: � ! � in e � e

e

1

� e

3

if e

1

� e

2

and e

2

� e

3

Lemma 1 (Completion). If � `

��

e : �) e

0

, then � `

HM

e

0

: � , and e � e

0

.

Proof Sket
h. We prove the following two statements by simultaneous indu
tion

on the derivations of � `

��

e : �) e

0

and � ��-valid.

{ If � `

��

e : �) e

0

, then � `

HM

e

0

: � and e � e

0

.

{ If � ��-valid and � `

��

� !

� , then � `

HM

 : � ! � .

Free Type Variables �� The handling of type variables needs some expla-

nation. The standard notation of typing judgment assumes that the free type

variables in �
an be
hosen arbitrarily. On the other hand, we require that

all variables must either be bound or
hosen from the �� denoted in the judg-

ment. Formally, the role of the free type variable annotations is
aptured by the

following lemma whi
h has three parts, for ea
h of the judgements.

Lemma 2 (Free type variables).

1. If � `

��

e : �) e

0

, then FTV (�) � ��, FTV (e) � �� and FTV (�) � ��.

2. If � ��-valid, then FTV (�) � ��.

3. If � `

��

� !

� , then FTV (�) � ��, FTV (� ! �) � �� and FTV (
) � ��.

By expli
itly denoting all possible free type variables, we no longer require

the notion of \generalisation" in the formulation of the Let rule, whi
h, in our

opinion,
lari�es its intention.

Remark 4. Another way of looking at this is that there are no free type variables,

but all type variables are bound { some expli
itly in type s
hemes, while all others

are bound by the global quanti�
ation 8��. To our knowledge, this is the �rst

time this reformulation of the Let rule is published. It is due to M
Kinna [16℄.

In the rule Abs, we add x to the
ontext, quantifying over no variables. This

means that all type variables in � are non-generi
 and
annot be instantiated in

the derivation of e : � . This is in
ontrast to the Let rule whi
h allows generi

type variables.

Global and lo
al
oer
ions Besides assignments of types (more pre
isely type

s
hemes) to variables, our
ontexts also
ontain de
larations of (global)
oer
ions,

of the form
de

 : 8��: � ! � in e. The form of
oer
ions is unlimited and
an

be any expression in the base language, like a
onstant fun
tion between base

types or a fun
tion between arbitrary types
omputing the result in a
omplex

way. The
oer
ions de
lared in a
ontext are well-typed and
an be looked up

by means of the rule (Lup). We have

Lemma 3. If � `

��

� !

� , then � `

��

 : � ! �)
.

In fa
t, we know that any de
lared
oer
ion is well-typed in the HM system (
.f.,

Lemma 1).

Besides global
oer
ions, we also allow lo
al
oer
ion de
larations in pro-

grams, similar to the way let works.

Example 1 (Lo
alised Coer
ions). This example shows the s
ope of
oer
ion de
-

laration. In � = plusone : Int! Int; 1 : Int; 1:0 : Float; plus : Float! Float!

Float, the following program is well-typed.

plus (plusone 1)

(
de
 floor : 8;:Float! Int in plusone 1:0)

However, sin
e the
oer
ion is not available when plusone is �rst used, the

following is not typable in �:

plus (plusone 1:0)

(
de
 floor : 8;:Float! Int in plusone 1:0)

Rules for argument and fun
tion
oer
ions Let us have a
loser look at the

spe
ial rules App

a

and App

f

for argument and fun
tion
oer
ions, in parti
ular

on their side
ondition. By

b

� 6`

HM

e

0

1

e

0

2

: ? we mean that e

0

1

e

0

2

is not typable in

the base language, i.e. there is no type � su
h that

b

� `

HM

e

0

1

e

0

2

: � . We illustrate

the ne
essity of this side
ondition with an example whi
h shows that otherwise

ambiguity arises whi
h would lead to non-unique meaning of
ertain terms.

Example 2. We assume that A and B are any base types inhabited by the
on-

stants a : A and b

1

; b

2

: B, and we have produ
t types. Using the abbreviations

�=
de
 �hx; yi: hb

1

; b

2

i : 8;: A�A! B �B

f=�hx; yi: x

g=�hx; yi: hy; xi

we
an obviously derive

� `

��

f : B �B ! B) f

� `

��

g : A�A! A�A) g

� `

��

g : B �B ! B � B) g

Thus using App

a

without the side
ondition � 6`

HM

e

0

1

e

0

2

: ? we
ould derive

the following, where
 = �hx; yi: hb

1

; b

2

i:

� `

��

f(gha; ai) : B) f(
(gha; ai))

� `

��

f(gha; ai) : B) f(g(
ha; ai))

However, f(
(gha; ai))
omputes to b

1

while f(g(
ha; ai)) to b

2

. This is a very

bad situation, sin
e it means that evaluation
an no longer be uniquely de�ned,

and thus the term f(gha; ai) no longer has a de�nite, unique meaning.

The side
ondition prevents this parti
ular ambiguity, by forbidding the use

of App

a

and App

f

when App
an be used. In other words, it gives preferen
e to

derivations whi
h does not involve
oer
ions, and a
oer
ion may only be applied

if needed sin
e otherwise typing would fail. The side
ondition is de
idable, for

example by traditional algorithm W . This side
ondition does not prevent all

forms of ambiguities, however. Se
tion 5 dis
usses how to deal with them.

The example shows an essential di�eren
e to
oer
ive subtyping in Type

Theory with its unique and expli
it typing, where the type of g would fully

determine the type of the
oer
ion fun
tion to apply and whether a
oer
ion is

needed at all.

The side
onditions on rules App

a

and App

f

have another e�e
t too. In
o-

er
ive subtyping for Type Theory, the question arises whether identity
oer
ions

(i.e. the identity fun
tion de
lared as
oer
ion) are allowed. We do not forbid

them, but these side
onditions ensure that they will never be used, sin
e an

appli
ation with an identity
oer
ion
an always be typed without it.

Let Expression One noti
eable feature of our typing rules is that there are no

oer
ion-spe
i�
 rules involving let. Corresponding to the rules for appli
ation,

one might expe
t to �nd something like:

Let

� `

��[

�

�

e

1

: �

0

) e

0

1

�; x : 8

�

�: � `

��

e

2

: �) e

0

2

� `

��[

�

�

�

0

!

�

� `

��

let x = e

1

in e

2

: �) let x =
e

0

1

in e

0

2

�� \

�

� = ;

With this rule basi
 soundness
onditions still hold, like lemma 1 saying that

the
ompletion is well-typed in the base language. Thus it is not obviously wrong

to add thus rule. Simple examples show that Let

is not admissible. Consider

(assuming A, B, C and D are any types) � = x : A;
 : A! B;
de

 : A! B.

With the new rule we
an then derive let y = x in y : B, without it we
annot.

Another example shows the
ompli
ation of the rule Let

. With � = a :

A; b : B;

1

: A ! (C ! D);

2

: B ! C;
de

1

: A ! (C ! D);
de

2

:

B ! C and assuming the Let

rule is present, we are able to derive � `

;

let x = a in xb : D) let x =

1

a in

2

b. Essentially, this amounts to a si-

multaneous use of fun
tional and argument
oer
ions whi
h is not admissible in

our rules.

These examples illustrate that Let

would allow a more liberal use of
oer-

ions. Our intention however is to restri
t the situations in whi
h they
an o

ur

to allow a formulation of derivational
oheren
e (see se
tion 5). A
onsequen
e

of a rule like Let

is that a type
he
king algorithm (Se
tion 4) would need to

sear
h for � whi
h is not present in the
on
lusion of the rule; this may
ause

diÆ
ulties.

4 Type Che
king Algorithm

The previous se
tion des
ribes our type system whi
h adds
oer
ions to Hindley-

Milner type systems. The rules in �g. 1 des
ribe well-typing, but they do not

provide a de
ision pro
edure to verify well-typedness. This is mainly due to the

appli
ation rules (App, App

a

and App

f

), in whi
h the argument type �
annot

be inferred from the typing judgment whose validity is to be veri�ed, and thus

there are in�nitely many derivation trees to
he
k.

This se
tion provides a di�erent set of rules to resolve this problem (�g. 2).

4.1 Algorithm

In the tradition of algorithm W [8℄, the rules in �g. 2 des
ribe typing for most

general types. These rules
an be read as an algorithm, whi
h we
all \algo-

rithm W

C

", to give non-deterministi
 answers to the question: \Given � and e,

what are the type and
ompletion of e?". The inputs are
ontext � and term e

and the outputs substitution S, type � and
ompletion e

0

. It is non-deterministi

be
ause of the rules LCde

W

1

and LCde

W

2

, where multiple
oer
ions

an be

found for a given pair of types � and � . In Se
tion 5 we will provide a determin-

isti
 algorithm together with a
hara
terisation of its modi�ed behaviour.

CId

W

;; valid

CVar

W

� ; valid

�; x:�; valid

x 62 FV (�)

CCoer

W

� ; valid � `

W

; h�; S;

0

i

�;
de

 : 8

�

�: � ! � ; valid

Id

W

�; x : 8�

1

; : : : ; �

n

: �; �

0

; valid

�; x : 8�

1

; : : : ; �

n

: �; �

0

`

W

x; h[�

i

=�

i

℄�; ;; xi

�

i

new

Abs

W

�; x : 8;: � `

W

e; h�; S Æ f� 7! � g; e

0

i

� `

W

�x: e; h� ! �; S; �x: e

0

i

� new

App

W

� `

W

e

1

; hS

1

; �

1

; e

0

1

i

S

1

� `

W

e

2

; hS

2

; �

2

; e

0

2

i

unify

C

(�; S

2

�

1

; �

2

; e

0

1

; e

0

2

); hT; e

0

3

i

� `

W

e

1

e

2

; hTS

2

�

1

; T Æ S

2

Æ S

1

; e

0

3

i

�; � new

Let

W

� `

W

e

1

; h�

1

; S

1

; e

0

1

i

S

1

�; x : Gen(�

1

; S

1

�) `

W

e

2

; h�

2

; S

2

; e

0

2

i

� `

W

let x = e

1

in e

2

; h�

2

; S

2

Æ S

1

; let x = e

0

1

in e

0

2

i

De
l

W

� `

W

; h%

0

; ;;

0

i

�;
de

0

: 8

�

�: � ! � `

W

e; h%; S; e

0

i

� `

W

de

 : 8

�

�: � ! � in e; h%; S; e

0

i

� ! � � %

0

Un

W

unify(�; �) = T

unify

C

(�; � ! �; �; e

1

; e

2

); hT; e

1

e

2

i

Un

W

a

unify(� ! �; �

0

! �) = T

� `

L

�

0

! � ;

unify

C

(�; � ! �; �; e

1

; e

2

); hT; e

1

(
e

2

)i

unify(�; �)

fails

Un

W

f

unify(� ! (� ! �

1

); �

0

! �) = T

� `

L

�

0

! � ;

unify

C

(�; �; �; e

1

; e

2

); hT; (
e

1

)e

2

i

unify(�; �)

fails

LVar

W

� `

L

� ! � ;

�; x : � `

L

� ! � ;

LCde

W

1

� `

L

� ! � ;

�;
de

0

: 8

�

�: �

0

! �

0

`

L

� ! � ;

LCde

W

2

�;
de

 : 8

�

�: � ! � `

L

� ! � ;

Fig. 2. Algorithm W

C

W

C

is presented with judgments of the following forms:

{ � `

W

e; hS; �; e

0

i , whi
h
an be read as \In
ontext � , term e type
he
ks

to substitution S, type � and
ompletion e

0

.

{ � ; valid expresses that \� is valid"; in parti
ular, it means that the

oer
ions de
lared in it are well-typed.

{ � `

L

� ! � ;
 stands for \in
ontext � , the lookup for a
oer
ion from

type � to type � yields the
oer
ion term
".

We use the standard notion of �rst-order uni�
ation unify. It is easy to see

that the traditional algorithm W
an be re
overed from the rules in �g. 2 by

removing rules CCoer

W

, De
l

W

, Un

W

a

and Un

W

f

. (In that
ase `

L

will not be

used either.) Using this observation and soundness and
ompleteness of W , we

an see that the
ondition on
 in rule De
l

W

is a
tually the same as in De
l in

�g. 1.

Note that the side
ondition of rules App

a

and App

f

in �g. 1 refers to the

separate system of HM typing, while the implementation uses a simple uni�-

ation test in Un

W

and does not need to refer to a separate type
he
king

algorithm.

4.2 Soundness and Completeness

Algorithm W

C

(�g. 2) is a sound and
omplete implementation of the typing

rules (�g. 1), in the following sense.

Soundness expresses that the
omputed result type and
ompletion
an be

derived using the typing rules.

Theorem 1 (Soundness). Assume that we
an derive � `

W

e; h�; S; e

0

i .

Let �� = FTV (S�; �; e). Then S� `

��

e : �) e

0

.

Proof Sket
h. We
an prove this by strengthening it with the additional
ondi-

tion if � ; valid and �� = FTV (�), then � ��-valid. We then do simultaneous

indu
tion on the derivations of � `

W

e; h�; S; e

0

i and � ; valid, using mu
h

of the stru
ture and lemmas from [7℄. Use of Un

W

in App

W

by the algorithm

orresponds to rule App, whereas Un

W

a

and Un

W

f

orrespond to App

a

and

App

f

, resp.

Completeness means that for any given
ompletion, every derivable type for

a term is an instan
e of the type
omputed by the algorithm for the result with

this
ompletion.

Theorem 2 (Completeness). If S� `

��

e : �) e

0

, then there are exa
tly

one type � and substitution T su
h that � `

W

e; h�; T; e

0

i , and there is a

substitution U with � = U� and S� = UT� .

Proof Sket
h. The proof uses indu
tion on the derivation of S� `

��

e : �) e

0

.

Thus when looking for the right derivations for W

C

(� ; e) to prove the theorem,

we already know the
ompletion in the result. This
ompletion resolves possible

ambiguities in the
hoi
e of rules Un

W

a

or Un

W

f

.

5 Resolving Ambiguities

The rules in �g. 2 allow
ertain ambiguities, that
an o

ur if there is more than

one mat
hing
oer
ion during
oer
ion sear
h in Un

W

. Assume, for example,

that A and B are base types and � is f : � � � ! �; a : A;
de

1

: 8;: A !

A�A;
de

2

: 8;: A! B �B. Then we have both � `

W

fa; hA; ;; f(

1

a)i

and � `

W

fa; hB; ;; f(

2

a)i .

Su
h a situation is not desirable, sin
e it means that the evaluation behaviour

is not uniquely de�ned. This is the
oheren
e problem whi
h needs to be ad-

dressed for any system of (
oer
ive) subtyping.

We
an solve this problem by repla
ing unify

C

in App

W

by unify

1

C

, whi
h

su

eeds if and only if unify

C

returns a unique result:

De�nition 2 (unify

1

C

). unify

1

C

(�; �; �; e); hT; fi if unify

C

(�; �; �; e) ; hT; fi

and for all U , g su
h that unify

1

C

(�; �; �; e); hU; gi, U = T and f = g.

unify

1

C

is e�e
tively de
idable sin
e unify

C

is de
idable and
an only return a

�nite number of results.

We
all algorithm W

1

C

the algorithm obtained from W

C

where the App

W

ase uses unify

1

C

instead of unify

C

, and `

W

1

for the
orresponding judgment.

Algorithm W

1

C

an return at most one result, and is therefore a deterministi

algorithm, in
ontrast to non-deterministi
 W

C

.

These additional side
onditions
learly limit the
ases in whi
h the algo-

rithm su

eeds. This still allows all the examples presented earlier. However the

question is how this restri
ted behaviour
an be des
ribed in the typing rules.

For this, we introdu
e the notion of \derivational
oheren
e".

De�nition 3 (Derivational Coheren
e). A term e is derivationally
o-

herent over a
ontext � if for ea
h subterm f of e and �

1

`

��

f : �

1

) e

0

1

and

�

2

`

��

f : �

2

) e

0

2

o

urring anywhere in any derivation of � `

��

e : �) e

0

for

any �

1

, �

2

, e

0

1

and e

0

2

, the two
ompletions are the same, i.e. e

0

1

= e

0

2

.

Using this notion, we
an formulate a soundness and
ompleteness result for

W

1

C

.

Theorem 3. For all � , e, the following holds. There are � , S and e

0

su
h that

� `

W

1

e; h�; S; e

0

i if and only if e is derivationally
oherent over � and there

are �, f

0

and �� su
h that � `

��

e : �) f

0

. In both dire
tions, e

0

= f

0

and

��

��

� .

For the proof we note that the derivation trees for typing derivation and for

type
he
king are isomorphi
, and thus we
an establish the
onditions in whi
h

ambiguities o

ur by an indu
tive analysis of them, using the previous soundness

and
ompleteness results (Theorems 1 and 2).

6 Con
lusion

We have presented an extension of the Hindley-Milner polymorphi
 system with

oer
ions by in
orporating the idea from
oer
ive subtyping. The extended typ-

ing system
an be further enri
hed with other features su
h as re
ords whose

asso
iated inheritan
e relation
an be represented as
oer
ions. More details of

the work, in
luding a prototype implementation of the extended system and the

details of the proofs,
an be found in the forth
oming thesis of the �rst author

[11℄.

There are several issues to be further studied. For example, in our rules we

have not in
luded \transitivity" as found in general subtyping or
oer
ive sub-

typing systems. For basi
 types, adding transitivity of
oer
ions is not a problem;

it simply be
omes a de
idable sear
h problem of the transitive
losure of the
o-

er
ions between basi
 types, representable as a �nite graph [19℄. However, when

oer
ions parameterised over type variables are
onsidered, as they are allowed

here in general, it is not
lear to us that the
oer
ion sear
h with transitivity is

de
idable.

Coer
ion rules are another �eld of further study (e.g., see [14℄). The
urrent

system would allow to add rules to derive new
oer
ions from the rules already

de
lared, like lifting of
oer
ions over lists. The requirement is that
oer
ion

sear
h must be de
idable.

As mentioned in the introdu
tion,
oer
ion sear
h for type theory is fa
ili-

tated
onsiderably by the unique typing property. That is no longer given, how-

ever, if metavariables are added. Thus we
an look to apply the te
hniques of

this paper to type theory with metavariables.

Coer
ion me
hanisms as dis
ussed in this paper fa
ilitate overloading among

other things. Another me
hanism for overloading is the
lass me
hanism in

Haskell [23, 10℄. An interesting resear
h topi
 is to
ompare these me
hanisms

formally and
onsider a possible general framework for abbreviations.

A
knowledgements We thank Paul Callaghan and James M
Kinna for dis-

ussions and
omments on a draft.

Referen
es

1. A. Bailey. The Ma
hine-
he
ked Literate Formalisation of Algebra in Type Theory.

PhD thesis, University of Man
hester, 1999.

2. B. Barras et al. The Coq Proof Assistant Referen
e Manual (Version 6.3.1). INRIA-

Ro
quen
ourt, 2000.

3. Val Breazu-Tannen, Thierry Coquand, Carl Gunter, and Andr�e

�

S�
edrov. Inheri-

tan
e as impli
it
oer
ion. Information and Computation, 93:172{221, 1991. Also

in the
olle
tion [9℄.

4. P. Callaghan and Z. Luo. An implementation of LF with
oer
ive subtyping and

universes. Journal of Automated Reasoning, 27(1):3{27, 2001.

5. Lu
a Cardelli and Peter Wegner. On understanding types, data abstra
tion and

polymorphism. Computing Surveys, 17(4):471{522, 1985.

6. G. Chen. Subtyping, Type Conversion and Transitivity Elimination. PhD thesis,

University of Paris VII, 1998.

7. Luis Damas. Type Assignment in Programming Languages. PhD thesis, Laboratory

for Foundations of Computer S
ien
e, University of Edinburgh, 1985. CST-33-85.

8. Luis Damas and Robin Milner. Prin
ipal type-s
hemes for fun
tional programming

languages. In Ninth Annual Symposium on Prin
iples of Programming Languages

(POPL) (Albuquerque, NM), pages 207{212. ACM, January 1982.

9. Carl A. Gunter and John C. Mit
hell. Theoreti
al Aspe
ts of Obje
t-Oriented

Programming, Types, Semanti
s, and Language Design. Foundations of Computing

Series. MIT Press, 1994.

10. Simon Peyton Jones, Mark Jones, and Erik Meijer. Type
lasses: an exploration

of the design spa
e, 1997.

11. Robert Kie�ling. Coer
ions in Hindley-Milner systems. forth
oming thesis, 2004.

12. Giuseppe Longo, Kathleen Milsted, and Sergei Soloviev. Coheren
e and transitivity

of subtyping as entailment. Journal of Logi
 and Computation, 10(4):493{526,

August 2000.

13. Y. Luo and Z. Luo. Coheren
e and transitivity in
oer
ive subtyping. Pro
. of the

8th Inter. Conf. on Logi
 for Programming, Arti�
ial Intelligen
e and Reasoning

(LPAR'01), Havana, Cuba. LNAI 2250, 2001.

14. Z. Luo. Coer
ive subtyping. Journal of Logi
 and Computation, 9(1):105{130,

1999.

15. Z. Luo and R. Polla
k. LEGO Proof Development System: User's Manual. LFCS

Report ECS-LFCS-92-211, Department of Computer S
ien
e, University of Edin-

burgh, 1992.

16. James M
Kinna. personal
ommuni
ation, 2001.

17. John C. Mit
hell. Coer
ion and type inferen
e. In Tenth Annual Symposium

on Prin
iples of Programming Languages (POPL) (Austin, TX), pages 175{185.

ACM, January 1983.

18. John C. Mit
hell. Type inferen
e with simple subtypes. Journal of Fun
tional

Programming, 1(2):245{286, July 1991.

19. A. Sa��bi. Typing algorithm in type theory with inheritan
e. Pro
 of POPL'97,

1997.

20. S. Soloviev and Z. Luo. Coer
ion
ompletion and
onservativity in
oer
ive sub-

typing. Annals of Pure and Applied Logi
, 113(1-3):297{322, 2002.

21. Simon Thompson. Type Theory and Fun
tional Programming. International Com-

puter S
ien
e Series. Addison-Wesley, 1991.

22. Philip Wadler. Monads for fun
tional programming. In J. Jeuring and E. Mei-

jer, editors, Advan
ed Fun
tional Programming, volume 925 of Le
ture Notes in

Computer S
ien
e, pages 24{52. Springer-Verlag, 1995.

23. Philip Wadler and Stephen Blott. How to make ad-ho
 polymorhism less ad-ho
.

In Pro
eedings of POPL '89, pages 60{76. ACM, January 1989.

