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Abstra
t. Coer
ive subtyping is a theory of abbreviation for depen-

dent type theories. In this paper, we in
orporate the idea of 
oer
ive

subtyping into the traditional Hindley-Milner type systems in fun
tional

programming languages. This results in a typing system with 
oer
ions,

an extension of the Hindley-Milner type system. A type inferen
e algo-

rithm is developed and shown to be sound and 
omplete with respe
t

to the typing system. A notion of derivational 
oheren
e is developed to

deal with the problem of ambiguity and the 
orresponding type inferen
e

algorithm is shown to be sound and 
omplete.

1 Introdu
tion

The Hindley-Milner type system (HM system for short) [8℄ is the standard 
ore

of the modern typed fun
tional programming languages. Various extensions to

the HM system have been proposed in order to enri
h a programming language

with new and more powerful features. These in
lude, for example, Haskell's 
lass

me
hanism [10℄, whi
h provides 
onvenient overloading fa
ilities among other

things.

Coer
ive subtyping [14℄ is a theory of abbreviation developed in the setting

of dependent type theories, where 
oer
ions are regarded as abbreviation me
h-

anisms and dire
tly 
hara
terised in the proof system (type theory) extended

with 
oer
ions. It has been implemented in several proof development systems

[1, 19, 4℄ and e�e
tively used in proof development (e.g., [1℄).

In this paper, we in
orporate the idea of 
oer
ive subtyping into the tradi-

tional HM type system. There are several motivations in studying the possible


ombination of 
oer
ive subtyping and traditional polymorphi
 typing systems.

First, it leads to a novel approa
h that in
reases the power of the HM system

with new abbreviation me
hanisms, whi
h we believe would be useful in various

programming a
tivities. Se
ondly, 
oer
ive subtyping provides a 
lean and simple

theory for abbreviation in dependent type theories. In
orporating its ideas into

traditional type systems may lead to simple theoreti
al development and better

understanding of the more powerful fa
ilities (e.g., overloading) found useful in

programming. Thirdly, not the least important, studying 
oer
ions in polymor-

phi
 type systems meets with new 
hallenges, partly be
ause type uniqueness

simply does not hold in a polymorphi
 system.
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One of the results of our work is a typing system with 
oer
ions, an extension

of the HM type system, together with a sound and 
omplete type inferen
e

algorithm. Sin
e the HM system is polymorphi
, where a term may have more

than one type, the introdu
tion of 
oer
ions has to be very 
areful; a naive way to

introdu
e 
oer
ions 
auses problems. For example, one of the de
isions we have

made is that if a term is already typable in the original HM system, then no


oer
ions will be inserted. This also 
onforms with the intuition and, in pra
ti
e,

an implementation of the extended system will not alter the meanings of the

existing programs.

We shall also study a notion of derivational 
oheren
e that is developed to

deal with the problem of ambiguity of 
omputational meanings of a term. A

term may have di�erent 
ompletions { there may be di�erent ways to insert


oer
ions to make a term typable. The notion of derivational 
oheren
e 
aptures

this and we have developed a sound and 
omplete type inferen
e algorithm for

derivationally 
oherent terms.

We regard the Hindley-Milner system as well-known and refer its introdu
tion

for example to [21℄. In the remainder of this se
tion, we give a summary of

work on 
oer
ive subtyping and other related work. In Se
tion 2, we give a

brief introdu
tion to our approa
h by 
onsidering several simple examples. The

extended typing system with 
oer
ions is presented and explained formally in

Se
tion 3. In Se
tion 4, the type inferen
e algorithm is presented and proved to

be sound and 
omplete. Derivational 
oheren
e is introdu
ed in Se
tion 5, where

we also give the 
orresponding algorithm and dis
uss the proofs of its soundness

and 
ompleteness. We 
on
lude with some dis
ussions about future work.

1.1 Coer
ive subtyping

Coer
ive subtyping is a framework of abbreviation for dependent type theories

[14℄. The basi
 idea is: if there is a 
oer
ion 
 from A to B, then an obje
t of

type A may be regarded as an obje
t of type B via 
 in appropriate 
ontexts.

More pre
isely, a fun
tional operation f with domain B 
an be applied to any

obje
t a of A and the appli
ation fa is de�nitionally equal to f(
a). Intuitively,

we 
an view f as a 
ontext whi
h requires an obje
t of B; then the argument

a in the 
ontext f stands for its image of the 
oer
ion, 
a. Therefore, the term

fa, originally not well-typed, be
omes well-typed and \abbreviates" f(
a).

The se
ond author and his 
olleagues have studied the above simple idea

in the Logi
al Framework (and type theory), resulting in a very powerful the-

ory of abbreviation and inheritan
e, in
luding parameterised 
oer
ions and 
oer-


ions between parameterised indu
tive types. In 
oer
ive subtyping, the 
oer
ion

me
hanism is dire
tly 
hara
terised in the type theory proof-theoreti
ally. Some

important meta-theoreti
 aspe
ts of 
oer
ive subtyping su
h as the results on


onservativity, 
oheren
e, and transitivity elimination have been studied. They

not only justify the adequa
y of the theory from the proof-theoreti
 
onsidera-

tion, but provide the basis for implementation of 
oer
ive subtyping. See [1, 4,

13, 14, 20℄ for details of some of these development and appli
ations of 
oer
ive

subtyping.



Coer
ion me
hanisms with 
ertain restri
tions have been implemented for

dependent type theory both in the proof development system Lego [15℄ and Coq

[2℄, by Bailey [1℄ and Sa��bi [19℄, respe
tively. Callaghan of the Computer Assisted

Reasoning Group at Durham has implemented Plasti
 [4℄, a proof assistant that

supports the Logi
al Framework LF and 
oer
ive subtyping with a mixture of

simple 
oer
ions, parameterised 
oer
ions, 
oer
ion rules for parameterised in-

du
tive types, and dependent 
oer
ions.

Remark 1. In
orporating the idea of 
oer
ive subtyping to a polymorphi
 
al
u-

lus is not straightforward. Coer
ive subtyping has been developed in dependent

type theories with indu
tive data types, whi
h are rather sophisti
ated systems.

However, most of them (or at least the standard ones) have the property of type

uniqueness; that is every well-typed obje
t has a unique type up to 
omputa-

tional equality. Compared with the polymorphi
 
al
uli su
h as the HM type

system where an obje
t may have more than one type, one may say that depen-

dent type theories are `simpler'. It is important to bear this in mind when we


onsider 
ombining 
oer
ive subtyping with a polymorphi
 
al
ulus.

1.2 Modelling subtyping by 
oer
ions

Various notions of 
oer
ion have been studied in the literature, parti
ularly when

subtyping systems are 
onsidered. In subtyping, we have the subsumption rule,

whi
h says that if a : A and A � B, then a : B. This 
an be modelled by means

of 
oer
ions (maps from A to B). In [3℄, this idea was proposed and used to give

a 
oer
ion-based semanti
 interpretation of Cardelli and Wegner's system Fun

[5℄. The idea of 
oer
ive subtyping dis
ussed above was in
uen
ed by this work.

People have used the term 
oer
ion to interpret subtyping simpler settings

as well. For example, Mit
hell [17, 18℄ 
onsiders a system where 
on
eptually a

subtype is a subset and thus 
oer
ions essentially represent set in
lusions. In [6,

12℄, the term 
oer
ion is used to denote a spe
ial restri
ted form of mapping in

modelling and explaining subtyping.

Remark 2. Note that, be
ause of the subsumption rule in subtyping, a term ob-

tains more types, while in our setting, a term does not get more types. Rather, in


oer
ive subtyping or the extended HM-system 
onsidered in this paper, where

there is no subsumption rule, there are more well-typed terms, whi
h are re-

garded as abbreviations, and typing 
on
i
ts are resolved by the insertion of 
o-

er
ions. Furthermore, this is studied in the typing system at the proof-theoreti


level.

2 Some simple examples

We 
onsider the HM type system extended with 
oer
ions. Coer
ions are re-

garded as abbreviations; more pre
isely, if a term is not well-typed in the orig-

inal HM type system, and after inserting 
oer
ions it be
omes well-typed, then



we regard the term to be well-typed and \abbreviate" the 
ompleted term with

appropriate 
oer
ions inserted.

We shall 
onsider extending the HM type system with two forms of 
oer
ions:

argument 
oer
ions and fun
tion 
oer
ions. By argument 
oer
ions, we mean

that the argument of a fun
tion is 
oer
ed a

ording to the typing requirement;

more pre
isely, the term fa abbreviates f(
a) if f : � ! � , a : �

0

, and there is a


oer
ion 
 from �

0

to �. By fun
tion 
oer
ion, we mean that a term in a fun
tion

position is 
oer
ed into an appropriate fun
tion a

ordingly; more pre
isely, ka

abbreviates (
k)a if k : �, a : �

0

, and there is a 
oer
ion from � to a fun
tion

type �

0

! � .

In the following, we give some simple examples to explain the above basi


idea. The �rst two examples explain argument 
oer
ions, while the last example

about overloading explains how fun
tion 
oer
ions work. We assume that the

types in
lude integers (Int), 
oating numbers (Float), booleans (Bool), monads

(T�, where � is any type), and a unit type (
alled Plus).

An example of basi
 
oer
ions

The simplest example of 
oer
ions, as often used in programming languages, is

to 
onvert integers to 
oating point numbers. For example, we 
an de
lare

int2float : Int! Float

as a 
oer
ion, either in a 
ontext or in a program by using the 
oer
ion de
-

laration

1


de
 int2float : Int ! Float in . Then, assuming 2 : Int and

plusone : Float ! Float, the term plusone 2 is typable and abbreviates its

\
ompletion" plusone (int2float 2), where the 
oer
ion int2float is inserted.

Note that the 
ompletion is typable in the original HM system. More formally,

we say that the term (or program) 
de
 int2float : Int! Float in plusone 2

has type Float. The fun
tion int2float here is represented as a 
onstant in the

typing system. It 
ould be de�ned externally (e.g., using system 
all at runtime).

This 
oer
ion is usually handled automati
ally by programming systems,

without a formal explanation. We provide a prin
ipled explanation of this in a

setting where we 
an, for example, formally answer 
oheren
e questions. Note

that we 
an handle the 
onverse 
oer
ion, from 
oating point numbers to integers

using e.g. floor, in the same way.

Using 
oer
ions in monads

Monads are a 
ommonly used vehi
le in fun
tional programming to deal with

\imperative" features like state, random numbers, partial fun
tions, error han-

dling or input/output. Every Monad 
onsists at least of a unary type 
onstru
tor

(
alled T here), an inje
tion fun
tion (
alled \return" here) and a lifting fun
tion.

We refer the reader for example to [22℄ for a full introdu
tion.

1

We leave out some type variable annotation; see Se
. 3.2 and 3.3 for more details



Coer
ions 
an ease use of monads, by allowing omission of the inje
tion of

a value into its \monadi�ed" type (fun
tion return). T in the types for the

examples below 
an be seen as the error monad. There are two ways to 
reate

values of this monadi
 type: one is a regular, good value (return : 8�: �! T�)

and the other is to signal an error or ex
eption (err : 8�: T�). We 
an then

de�ne a re
ipro
al fun
tion, from Float to T Float, whi
h 
aptures the division

by zero error:

�x: if (iszero x) err (return (sysdiv 1:0 x));

where

if : 8�: Bool! �! �! �

iszero : Float! Bool

sysdiv : Float! Float! Float

Using the 
oer
ion abbreviation me
hanism, however, we 
an leave the return

impli
it by de
laring it as a 
oer
ion:


de
 return : 8�: �! T� in

�x: if (iszero x) err (sysdiv 1:0 x)

Similar situations o

ur frequently when a monadi
 programming style is used,

making this a fairly useful abbreviation, both for 
ode 
larity and brevity.

Note that, as shown by this example, 
oer
ions are not ne
essarily represent-

ing simple in
lusion between types (as 
onsidered in the setting of subtyping

[17℄). They are arbitrary fun
tional maps whi
h one wishes to omit, in prefer-

en
e to the abbreviated form. In parti
ular, the intuition that a type that 
an

be 
oer
ed into another type 
an be viewed as set-theoreti
 in
lusion does not

apply.

Using 
oer
ions for overloading

Coer
ions 
an be used to represent ad ho
 polymorphism, or overloading. For

example, assume that we have two fun
tions for addition, one for the integers

and the other for the 
oating point numbers:

plusi : Int! Int! Int

plusf : Float! Float! Float

and we wish to use a single notation plus in both 
ases. This 
an be done by

means of 
oer
ions. What we need to do is to 
onsider a (unit) type Plus whi
h

has element plus : Plus and then de
lare the following two (fun
tion) 
oer
ions:


de
 (�x: plusi) : Plus! (Int! Int! Int)


de
 (�x: plusf) : Plus! (Float! Float! Float)



Then, we 
an use

plus 1 2 or plus 1:0 2:5

as intended, as these two terms abbreviate plusi 1 2 and plusf 1:0 2:5, respe
-

tively.

Note that, in this example, the 
oer
ions are de�ned �-terms rather than

just 
onstants. It also shows that 
oer
ions are not just the same as a previously

de�ned fun
tion. The idea of using unit types for overloading was studied by the

se
ond author [14℄. See [1℄ for more appli
ations of this idea.

Remark 3. We 
onsidered Plus to be a unit type. In fa
t, there 
ould be multiple

elements in Plus (i.e. 
onstants of that type), but they are all treated the same.

3 Typing System

3.1 Base Language

Our starting point in this development is an existing programming language,

namely a minimal polymorphi
 programming language with Hindley-Milner type

system [8℄ whi
h we 
all the base language. We assume readers are familiar

with the basi
 ideas. We omit additional elements ne
essary to make this into

a programming language, namely de
laration of new types and re
ursion. This

is be
ause we fo
us on typing, and those features do not a�e
t type 
he
king.

They 
an be added.

The typing judgment in the base language is denoted by

� `

HM

e : �;

whi
h 
an be read as \term e has type � in 
ontext �". We are extending the

base language with a 
oer
ion me
hanism, whi
h leads to our system `. We shall

explain in Se
tion 3.4 how we 
an re
over the HM system from our rules.

3.2 Syntax and notations

Apart from 
oer
ion-spe
i�
 extensions, we use standard notions of terms, types,

type s
hemes and 
ontexts [8℄. The synta
ti
 symbols to be used are as follows.

Type variables Sets of type variables

�; �; 
; % ��;

�

�; �
; �%

Types Type s
hemes

�; �; % ::= � j � ! � � ::= 8��: �

(Obje
t language) Variables Terms

x; y; z e; f; g ::= x j ee j �x: e j

let x = e in e j

Contexts 
de
 
 : 8��: � ! � in e

�;� ::= ; j �; x : � j �; 
de
 
 : 8��: � ! �



Notations The following notations will be used in our des
ription of the system.

{ FV stands for the set of (obje
t) variables de
lared in a 
ontext: FV (;) = ;,

FV (�; x : �) = FV (� ) [ fx g and FV (�; 
de
 
 : �) = FV (� ).

{ FTV denotes the set of free type variables of a 
ontext, type, type s
heme

or term. It is de�ned as:

FTV (�; x : �) = FTV (� ) [ FTV (�) FTV (;) = ;

FTV (�; 
de
 
 : �) = FTV (� ) [ FTV (
) [ FTV (�)

FTV (� ! �) = FTV (�) [ FTV (�) FTV (�) = f� g

FTV (8��: �) = FTV (�) n �� FTV (x) = ;

FTV (ef) = FTV (e) [ FTV (f) FTV (�x: e) = FTV (e)

FTV (let x = e in f) = FTV (e) [ FTV (f)

FTV (
de
 
 : � in e) = FTV (�) [ FTV (e) [ FTV (
)

{ Let � be a 
ontext. The 
oer
ion-free part of � is denoted by

b

� , and de�ned

as

b

; = ;,

d

�; x : � =

b

� ; x : � and




�

0

=

b

� , where �

0

is �; 
de
 
 : 8��: � ! � .

Furthermore, we write � (x) = � if x : � is an entry of � .

{ 8;: � is a spe
ial 
ase of 8��: �, denoting a type s
heme with no bound vari-

ables. We may omit 8; when the 
ontext makes it 
lear we denote a type

s
heme instead of a type.

{ ��

��

�means that � is a generi
 instan
e of � where all (free) type variables

of � are in ��.

3.3 Judgment Forms and Rules

The rules in �g. 1 de�ne our typing system. The forms of judgments are:

{ � `

��

e : � ) e

0

. This should be read as \term e has type � and 
omple-

tion e

0

in 
ontext � with free type variables ��. We extend the usual typing

judgment for ML-like languages � ` e : � by allowing 
oer
ion de
larations

in the 
ontext, adding the 
ompletion e

0

and an expli
it annotation for the

free type variables whi
h may o

ur in � , � and e.

{ � ��-valid. To 
apture the notion that a \
ontext � is valid with free type

variables in ��", we write � ��-valid. Note that this judgment is useful as we


onsider 
oer
ions in 
ontexts subje
t to 
ertain restri
tions.

{ � `

��

� !




� . This third form of judgment expresses that \
oer
ion 
 from

� to � 
an be derived from 
ontext �".

We also use the notation � 6`

HM

e : ? to express the side 
ondition that e is not

typable in the HM system.

Produ
t Types We 
an extend the language without a�e
ting the basi
 results

and me
hanisms presented. For example some of the examples below will require

the use of pairs. We 
an extend the language to add them to our language in

the standard way, using the rules like the following:

PairIn

� `

��

e

1

: �

1

) e

0

1

� `

��

e

2

: �

2

) e

0

2

� `

��

he

1

; e

2

i : �

1

� �

2

) he

0

1

; e

0

2

i

The results and the type 
he
king algorithm 
an be extended in straight-forward

ways.



CId

; ��-valid

CVar

� ��-valid

�; x:� ��-valid

x 62 FV (� );

FTV (�) � ��

CCoer

� ��-valid � `

��[

�

�




0

: � ! � ) 


�; 
de
 
 : 8

�

�: � ! � ��-valid

�� \

�

� = ;

Id

� ��-valid

� `

��

x : � ) x

��

��

�, � (x) = �

Abs

�; x : 8;: � `

��

e : � ) e

0

� `

��

�x: e : � ! � ) �x: e

0

App

� `

��

e

1

: � ! � ) e

0

1

� `

��

e

2

: � ) e

0

2

� `

��

e

1

e

2

: � ) e

0

1

e

0

2

App

a


� `

��

e

1

: � ! � ) e

0

1

� `

��

e

2

: �

0

) e

0

2

� `

��

�

0

!




�

� `

��

e

1

e

2

: � ) e

0

1

(
e

0

2

)

b

� 6`

HM

e

0

1

e

0

2

: ?

App

f


� `

��

e

1

: %

0

) e

0

1

� `

��

e

2

: � ) e

0

2

� `

��

%

0

!




(� ! � )

� `

��

e

1

e

2

: � ) (
e

0

1

)e

0

2

b

� 6`

HM

e

0

1

e

0

2

: ?

Let

� `

��[

�

�

e

1

: � ) e

0

1

�; x : 8

�

�
: � `

��

e

2

: � ) e

0

2

� `

��

let x = e

1

in e

2

: � ) let x = e

0

1

in e

0

2

�� \

�

� = ;

De
l

� `

��[

�

�


 : � ! � ) 


0

�; 
de
 


0

: 8

�

�: � ! � `

��

e : % ) e

0

� `

��


de
 
 : 8

�

�: � ! � in e : % ) e

0

�� \

�

� = ;

Lup

�; 
de
 
 : 8

�

�: �

0

! �

0

; �

0

`

��

� !




�

� ! � �

��

8

�

�: �

0

! �

0

Fig. 1. Typing Rules



3.4 Explanations

We give some informal explanations and prove some basi
 properties of the

system presented above.

Completion and Relation to HM The above system is an extension of

the system `

HM

in the sense that, if we remove rules App

a


, App

f


, De
l ,

Lup and CCoer and the notation of 
ompletion, the resulting system is equiv-

alent to Hindley-Milner typing. We say that a program e is well-typed if

; `

��

e : � ) e

0

for some type � , 
ompletion e

0

, and set of type variables ��.

An addition to the language is 
ompletion. Informally, we insert all the

needed 
oer
ion fun
tions in a term e to form its 
ompletion e

0

, su
h that the


ompleted term is typable in the system without the 
oer
ion rules App

a


, App

f


and CCoer , i.e. in the base language `

HM

. This is formally 
aptured by lemma 1,

whi
h will establish the relationship between our typing judgment ` and that of

the base language `

HM

. It makes pre
ise why we 
all e

0

\
ompletion": be
ause

the 
ompletion is an expansion of the term e in question, and this 
ompletion

type 
he
ks in the base language.

De�nition 1 (Term Expansion). The notion that a term e

2

expands a term

e

1

, in symbols e

1

� e

2

, is indu
tively de�ned as follows.

x � x

�x: e

1

� �x: e

2

if e

1

� e

2

let x = e

1

in e

2

� let x = e

3

in e

4

if e

1

� e

3

and e

2

� e

4

e

1

e

2

� e

3

e

4

if e

1

� e

3

and e

2

� e

4

e

2

e

3

� (e

1

e

2

)e

3

e

1

e

3

� e

1

(e

2

e

3

)


de
 
 : 8��: � ! � in e � e

e

1

� e

3

if e

1

� e

2

and e

2

� e

3

Lemma 1 (Completion). If � `

��

e : � ) e

0

, then � `

HM

e

0

: � , and e � e

0

.

Proof Sket
h. We prove the following two statements by simultaneous indu
tion

on the derivations of � `

��

e : � ) e

0

and � ��-valid.

{ If � `

��

e : � ) e

0

, then � `

HM

e

0

: � and e � e

0

.

{ If � ��-valid and � `

��

� !




� , then � `

HM


 : � ! � .

Free Type Variables �� The handling of type variables needs some expla-

nation. The standard notation of typing judgment assumes that the free type

variables in � 
an be 
hosen arbitrarily. On the other hand, we require that

all variables must either be bound or 
hosen from the �� denoted in the judg-

ment. Formally, the role of the free type variable annotations is 
aptured by the

following lemma whi
h has three parts, for ea
h of the judgements.

Lemma 2 (Free type variables).



1. If � `

��

e : � ) e

0

, then FTV (� ) � ��, FTV (e) � �� and FTV (�) � ��.

2. If � ��-valid, then FTV (� ) � ��.

3. If � `

��

� !




� , then FTV (� ) � ��, FTV (� ! �) � �� and FTV (
) � ��.

By expli
itly denoting all possible free type variables, we no longer require

the notion of \generalisation" in the formulation of the Let rule, whi
h, in our

opinion, 
lari�es its intention.

Remark 4. Another way of looking at this is that there are no free type variables,

but all type variables are bound { some expli
itly in type s
hemes, while all others

are bound by the global quanti�
ation 8��. To our knowledge, this is the �rst

time this reformulation of the Let rule is published. It is due to M
Kinna [16℄.

In the rule Abs, we add x to the 
ontext, quantifying over no variables. This

means that all type variables in � are non-generi
 and 
annot be instantiated in

the derivation of e : � . This is in 
ontrast to the Let rule whi
h allows generi


type variables.

Global and lo
al 
oer
ions Besides assignments of types (more pre
isely type

s
hemes) to variables, our 
ontexts also 
ontain de
larations of (global) 
oer
ions,

of the form 
de
 
 : 8��: � ! � in e. The form of 
oer
ions is unlimited and 
an

be any expression in the base language, like a 
onstant fun
tion between base

types or a fun
tion between arbitrary types 
omputing the result in a 
omplex

way. The 
oer
ions de
lared in a 
ontext are well-typed and 
an be looked up

by means of the rule (Lup). We have

Lemma 3. If � `

��

� !




� , then � `

��


 : � ! � ) 
.

In fa
t, we know that any de
lared 
oer
ion is well-typed in the HM system (
.f.,

Lemma 1).

Besides global 
oer
ions, we also allow lo
al 
oer
ion de
larations in pro-

grams, similar to the way let works.

Example 1 (Lo
alised Coer
ions). This example shows the s
ope of 
oer
ion de
-

laration. In � = plusone : Int! Int; 1 : Int; 1:0 : Float; plus : Float! Float!

Float, the following program is well-typed.

plus (plusone 1)

(
de
 floor : 8;:Float! Int in plusone 1:0)

However, sin
e the 
oer
ion is not available when plusone is �rst used, the

following is not typable in �:

plus (plusone 1:0)

(
de
 floor : 8;:Float! Int in plusone 1:0)



Rules for argument and fun
tion 
oer
ions Let us have a 
loser look at the

spe
ial rules App

a


and App

f


for argument and fun
tion 
oer
ions, in parti
ular

on their side 
ondition. By

b

� 6`

HM

e

0

1

e

0

2

: ? we mean that e

0

1

e

0

2

is not typable in

the base language, i.e. there is no type � su
h that

b

� `

HM

e

0

1

e

0

2

: � . We illustrate

the ne
essity of this side 
ondition with an example whi
h shows that otherwise

ambiguity arises whi
h would lead to non-unique meaning of 
ertain terms.

Example 2. We assume that A and B are any base types inhabited by the 
on-

stants a : A and b

1

; b

2

: B, and we have produ
t types. Using the abbreviations

�=
de
 �hx; yi: hb

1

; b

2

i : 8;: A�A! B �B

f=�hx; yi: x

g=�hx; yi: hy; xi

we 
an obviously derive

� `

��

f : B �B ! B ) f

� `

��

g : A�A! A�A ) g

� `

��

g : B �B ! B � B ) g

Thus using App

a


without the side 
ondition � 6`

HM

e

0

1

e

0

2

: ? we 
ould derive

the following, where 
 = �hx; yi: hb

1

; b

2

i:

� `

��

f(gha; ai) : B ) f(
(gha; ai))

� `

��

f(gha; ai) : B ) f(g(
ha; ai))

However, f(
(gha; ai)) 
omputes to b

1

while f(g(
ha; ai)) to b

2

. This is a very

bad situation, sin
e it means that evaluation 
an no longer be uniquely de�ned,

and thus the term f(gha; ai) no longer has a de�nite, unique meaning.

The side 
ondition prevents this parti
ular ambiguity, by forbidding the use

of App

a


and App

f


when App 
an be used. In other words, it gives preferen
e to

derivations whi
h does not involve 
oer
ions, and a 
oer
ion may only be applied

if needed sin
e otherwise typing would fail. The side 
ondition is de
idable, for

example by traditional algorithm W . This side 
ondition does not prevent all

forms of ambiguities, however. Se
tion 5 dis
usses how to deal with them.

The example shows an essential di�eren
e to 
oer
ive subtyping in Type

Theory with its unique and expli
it typing, where the type of g would fully

determine the type of the 
oer
ion fun
tion to apply and whether a 
oer
ion is

needed at all.

The side 
onditions on rules App

a


and App

f


have another e�e
t too. In 
o-

er
ive subtyping for Type Theory, the question arises whether identity 
oer
ions

(i.e. the identity fun
tion de
lared as 
oer
ion) are allowed. We do not forbid

them, but these side 
onditions ensure that they will never be used, sin
e an

appli
ation with an identity 
oer
ion 
an always be typed without it.



Let Expression One noti
eable feature of our typing rules is that there are no


oer
ion-spe
i�
 rules involving let. Corresponding to the rules for appli
ation,

one might expe
t to �nd something like:

Let




� `

��[

�

�

e

1

: �

0

) e

0

1

�; x : 8

�

�: � `

��

e

2

: � ) e

0

2

� `

��[

�

�

�

0

!




�

� `

��

let x = e

1

in e

2

: � ) let x = 
e

0

1

in e

0

2

�� \

�

� = ;

With this rule basi
 soundness 
onditions still hold, like lemma 1 saying that

the 
ompletion is well-typed in the base language. Thus it is not obviously wrong

to add thus rule. Simple examples show that Let




is not admissible. Consider

(assuming A, B, C and D are any types) � = x : A; 
 : A! B; 
de
 
 : A! B.

With the new rule we 
an then derive let y = x in y : B, without it we 
annot.

Another example shows the 
ompli
ation of the rule Let




. With � = a :

A; b : B; 


1

: A ! (C ! D); 


2

: B ! C; 
de
 


1

: A ! (C ! D); 
de
 


2

:

B ! C and assuming the Let




rule is present, we are able to derive � `

;

let x = a in xb : D ) let x = 


1

a in 


2

b. Essentially, this amounts to a si-

multaneous use of fun
tional and argument 
oer
ions whi
h is not admissible in

our rules.

These examples illustrate that Let




would allow a more liberal use of 
oer-


ions. Our intention however is to restri
t the situations in whi
h they 
an o

ur

to allow a formulation of derivational 
oheren
e (see se
tion 5). A 
onsequen
e

of a rule like Let




is that a type 
he
king algorithm (Se
tion 4) would need to

sear
h for � whi
h is not present in the 
on
lusion of the rule; this may 
ause

diÆ
ulties.

4 Type Che
king Algorithm

The previous se
tion des
ribes our type system whi
h adds 
oer
ions to Hindley-

Milner type systems. The rules in �g. 1 des
ribe well-typing, but they do not

provide a de
ision pro
edure to verify well-typedness. This is mainly due to the

appli
ation rules (App, App

a


and App

f


), in whi
h the argument type � 
annot

be inferred from the typing judgment whose validity is to be veri�ed, and thus

there are in�nitely many derivation trees to 
he
k.

This se
tion provides a di�erent set of rules to resolve this problem (�g. 2).

4.1 Algorithm

In the tradition of algorithm W [8℄, the rules in �g. 2 des
ribe typing for most

general types. These rules 
an be read as an algorithm, whi
h we 
all \algo-

rithm W

C

", to give non-deterministi
 answers to the question: \Given � and e,

what are the type and 
ompletion of e?". The inputs are 
ontext � and term e

and the outputs substitution S, type � and 
ompletion e

0

. It is non-deterministi


be
ause of the rules LCde


W

1

and LCde


W

2

, where multiple 
oer
ions 
 
an be

found for a given pair of types � and � . In Se
tion 5 we will provide a determin-

isti
 algorithm together with a 
hara
terisation of its modi�ed behaviour.



CId

W

;; valid

CVar

W

� ; valid

�; x:�; valid

x 62 FV (� )

CCoer

W

� ; valid � `

W


; h�; S; 


0

i

�; 
de
 
 : 8

�

�: � ! � ; valid

Id

W

�; x : 8�

1

; : : : ; �

n

: �; �

0

; valid

�; x : 8�

1

; : : : ; �

n

: �; �

0

`

W

x; h[�

i

=�

i

℄�; ;; xi

�

i

new

Abs

W

�; x : 8;: � `

W

e; h�; S Æ f� 7! � g; e

0

i

� `

W

�x: e; h� ! �; S; �x: e

0

i

� new

App

W

� `

W

e

1

; hS

1

; �

1

; e

0

1

i

S

1

� `

W

e

2

; hS

2

; �

2

; e

0

2

i

unify

C

(�; S

2

�

1

; �

2

; e

0

1

; e

0

2

); hT; e

0

3

i

� `

W

e

1

e

2

; hTS

2

�

1

; T Æ S

2

Æ S

1

; e

0

3

i

�; � new

Let

W

� `

W

e

1

; h�

1

; S

1

; e

0

1

i

S

1

�; x : Gen(�

1

; S

1

� ) `

W

e

2

; h�

2

; S

2

; e

0

2

i

� `

W

let x = e

1

in e

2

; h�

2

; S

2

Æ S

1

; let x = e

0

1

in e

0

2

i

De
l

W

� `

W


; h%

0

; ;; 


0

i

�; 
de
 


0

: 8

�

�: � ! � `

W

e; h%; S; e

0

i

� `

W


de
 
 : 8

�

�: � ! � in e; h%; S; e

0

i

� ! � � %

0

Un


W

unify(�; � ) = T

unify

C

(�; � ! �; �; e

1

; e

2

); hT; e

1

e

2

i

Un


W

a


unify(� ! �; �

0

! �) = T

� `

L

�

0

! � ; 


unify

C

(�; � ! �; �; e

1

; e

2

); hT; e

1

(
e

2

)i

unify(�; � )

fails

Un


W

f


unify(� ! (� ! �

1

); �

0

! �) = T

� `

L

�

0

! � ; 


unify

C

(�; �; �; e

1

; e

2

); hT; (
e

1

)e

2

i

unify(�; � )

fails

LVar

W

� `

L

� ! � ; 


�; x : � `

L

� ! � ; 


LCde


W

1

� `

L

� ! � ; 


�; 
de
 


0

: 8

�

�: �

0

! �

0

`

L

� ! � ; 


LCde


W

2

�; 
de
 
 : 8

�

�: � ! � `

L

� ! � ; 


Fig. 2. Algorithm W

C



W

C

is presented with judgments of the following forms:

{ � `

W

e; hS; �; e

0

i , whi
h 
an be read as \In 
ontext � , term e type 
he
ks

to substitution S, type � and 
ompletion e

0

.

{ � ; valid expresses that \� is valid"; in parti
ular, it means that the


oer
ions de
lared in it are well-typed.

{ � `

L

� ! � ; 
 stands for \in 
ontext � , the lookup for a 
oer
ion from

type � to type � yields the 
oer
ion term 
".

We use the standard notion of �rst-order uni�
ation unify. It is easy to see

that the traditional algorithm W 
an be re
overed from the rules in �g. 2 by

removing rules CCoer

W

, De
l

W

, Un


W

a


and Un


W

f


. (In that 
ase `

L

will not be

used either.) Using this observation and soundness and 
ompleteness of W , we


an see that the 
ondition on 
 in rule De
l

W

is a
tually the same as in De
l in

�g. 1.

Note that the side 
ondition of rules App

a


and App

f


in �g. 1 refers to the

separate system of HM typing, while the implementation uses a simple uni�-


ation test in Un


W

and does not need to refer to a separate type 
he
king

algorithm.

4.2 Soundness and Completeness

Algorithm W

C

(�g. 2) is a sound and 
omplete implementation of the typing

rules (�g. 1), in the following sense.

Soundness expresses that the 
omputed result type and 
ompletion 
an be

derived using the typing rules.

Theorem 1 (Soundness). Assume that we 
an derive � `

W

e; h�; S; e

0

i .

Let �� = FTV (S�; �; e). Then S� `

��

e : � ) e

0

.

Proof Sket
h. We 
an prove this by strengthening it with the additional 
ondi-

tion if � ; valid and �� = FTV (� ), then � ��-valid. We then do simultaneous

indu
tion on the derivations of � `

W

e; h�; S; e

0

i and � ; valid, using mu
h

of the stru
ture and lemmas from [7℄. Use of Un


W

in App

W

by the algorithm


orresponds to rule App, whereas Un


W

a


and Un


W

f



orrespond to App

a


and

App

f


, resp.

Completeness means that for any given 
ompletion, every derivable type for

a term is an instan
e of the type 
omputed by the algorithm for the result with

this 
ompletion.

Theorem 2 (Completeness). If S� `

��

e : � ) e

0

, then there are exa
tly

one type � and substitution T su
h that � `

W

e; h�; T; e

0

i , and there is a

substitution U with � = U� and S� = UT� .

Proof Sket
h. The proof uses indu
tion on the derivation of S� `

��

e : � ) e

0

.

Thus when looking for the right derivations for W

C

(� ; e) to prove the theorem,

we already know the 
ompletion in the result. This 
ompletion resolves possible

ambiguities in the 
hoi
e of rules Un


W

a


or Un


W

f


.



5 Resolving Ambiguities

The rules in �g. 2 allow 
ertain ambiguities, that 
an o

ur if there is more than

one mat
hing 
oer
ion during 
oer
ion sear
h in Un


W

. Assume, for example,

that A and B are base types and � is f : � � � ! �; a : A; 
de
 


1

: 8;: A !

A�A; 
de
 


2

: 8;: A! B �B. Then we have both � `

W

fa; hA; ;; f(


1

a)i

and � `

W

fa; hB; ;; f(


2

a)i .

Su
h a situation is not desirable, sin
e it means that the evaluation behaviour

is not uniquely de�ned. This is the 
oheren
e problem whi
h needs to be ad-

dressed for any system of (
oer
ive) subtyping.

We 
an solve this problem by repla
ing unify

C

in App

W

by unify

1

C

, whi
h

su

eeds if and only if unify

C

returns a unique result:

De�nition 2 (unify

1

C

). unify

1

C

(�; �; �; e); hT; fi if unify

C

(�; �; �; e) ; hT; fi

and for all U , g su
h that unify

1

C

(�; �; �; e); hU; gi, U = T and f = g.

unify

1

C

is e�e
tively de
idable sin
e unify

C

is de
idable and 
an only return a

�nite number of results.

We 
all algorithm W

1

C

the algorithm obtained from W

C

where the App

W


ase uses unify

1

C

instead of unify

C

, and `

W

1

for the 
orresponding judgment.

Algorithm W

1

C


an return at most one result, and is therefore a deterministi


algorithm, in 
ontrast to non-deterministi
 W

C

.

These additional side 
onditions 
learly limit the 
ases in whi
h the algo-

rithm su

eeds. This still allows all the examples presented earlier. However the

question is how this restri
ted behaviour 
an be des
ribed in the typing rules.

For this, we introdu
e the notion of \derivational 
oheren
e".

De�nition 3 (Derivational Coheren
e). A term e is derivationally 
o-

herent over a 
ontext � if for ea
h subterm f of e and �

1

`

��

f : �

1

) e

0

1

and

�

2

`

��

f : �

2

) e

0

2

o

urring anywhere in any derivation of � `

��

e : � ) e

0

for

any �

1

, �

2

, e

0

1

and e

0

2

, the two 
ompletions are the same, i.e. e

0

1

= e

0

2

.

Using this notion, we 
an formulate a soundness and 
ompleteness result for

W

1

C

.

Theorem 3. For all � , e, the following holds. There are � , S and e

0

su
h that

� `

W

1

e; h�; S; e

0

i if and only if e is derivationally 
oherent over � and there

are �, f

0

and �� su
h that � `

��

e : � ) f

0

. In both dire
tions, e

0

= f

0

and

��

��

� .

For the proof we note that the derivation trees for typing derivation and for

type 
he
king are isomorphi
, and thus we 
an establish the 
onditions in whi
h

ambiguities o

ur by an indu
tive analysis of them, using the previous soundness

and 
ompleteness results (Theorems 1 and 2).



6 Con
lusion

We have presented an extension of the Hindley-Milner polymorphi
 system with


oer
ions by in
orporating the idea from 
oer
ive subtyping. The extended typ-

ing system 
an be further enri
hed with other features su
h as re
ords whose

asso
iated inheritan
e relation 
an be represented as 
oer
ions. More details of

the work, in
luding a prototype implementation of the extended system and the

details of the proofs, 
an be found in the forth
oming thesis of the �rst author

[11℄.

There are several issues to be further studied. For example, in our rules we

have not in
luded \transitivity" as found in general subtyping or 
oer
ive sub-

typing systems. For basi
 types, adding transitivity of 
oer
ions is not a problem;

it simply be
omes a de
idable sear
h problem of the transitive 
losure of the 
o-

er
ions between basi
 types, representable as a �nite graph [19℄. However, when


oer
ions parameterised over type variables are 
onsidered, as they are allowed

here in general, it is not 
lear to us that the 
oer
ion sear
h with transitivity is

de
idable.

Coer
ion rules are another �eld of further study (e.g., see [14℄). The 
urrent

system would allow to add rules to derive new 
oer
ions from the rules already

de
lared, like lifting of 
oer
ions over lists. The requirement is that 
oer
ion

sear
h must be de
idable.

As mentioned in the introdu
tion, 
oer
ion sear
h for type theory is fa
ili-

tated 
onsiderably by the unique typing property. That is no longer given, how-

ever, if metavariables are added. Thus we 
an look to apply the te
hniques of

this paper to type theory with metavariables.

Coer
ion me
hanisms as dis
ussed in this paper fa
ilitate overloading among

other things. Another me
hanism for overloading is the 
lass me
hanism in

Haskell [23, 10℄. An interesting resear
h topi
 is to 
ompare these me
hanisms

formally and 
onsider a possible general framework for abbreviations.
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