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Abstract

We propose and study coercive subtyping, a formal extension with subtyping of dependent type theories

such as Martin-L�of's type theory [NPS90] and the type theory UTT [Luo94]. In this approach, subtyping

with speci�ed implicit coercions is treated as a feature at the level of the logical framework; in particular,

subsumption and coercion are combined in such a way that the meaning of an object being in a supertype is

given by coercive de�nition rules for the de�nitional equality. It is shown that this provides a conceptually

simple and uniform framework to understand subtyping and coercion relations in type theories with

sophisticated type structures such as inductive types and universes. The use of coercive subtyping in

formal development and in reasoning about subsets of objects is discussed in the context of computer-

assisted formal reasoning.

1 Introduction

A type in type theory is often intuitively thought of as a set. For example, types in Martin-L�of's type theory

[ML84, NPS90] can be considered as inductively de�ned sets. A fundamental di�erence between type theory

and set theory is that in the former we do not have a notion of subtype that corresponds to the notion of

subset in the latter. The lack of useful subtyping mechanisms in dependent type theories with inductive

types [CPM90, Dyb91, Luo94] and the associated proof development systems [MN94, C

+

86, D

+

91, LP92]

is one of the obstacles in their applications to large-scale formal development.

Although subtyping is conceptually natural and pragmatically important, it has not been clear how use-

ful and suitable subtyping mechanisms can be introduced into dependent type theories. Particularly, in the

presence of inductive types which include types of natural numbers, lists, and trees, and types of mathemat-

ical structures such as �-types, it is not clear how subtyping should be introduced to reason about subsets

and represent inheritance, without compromising with good proof-theoretic properties. More recently, in

Aczel's project on formalising abstract algebraic theories (Galois theory), Bailey has implemented various

forms of coercions in the Lego system [LP92], which are very useful in practical large-scale development of

mathematical theories [Bai96].

In this paper, we present an equational formulation of coercive subtyping, a novel approach to introducing

user-speci�ed implicit coercions into dependent type theories that can be formulated in a logical framework.

Examples of such type theories include Martin-L�of's intensional type theory [NPS90] and the type theory

UTT [Luo94], which are the underlying type theories of the proof systems ALF and Lego, respectively. Our

approach has the following features:

� General subsumption and speci�ed implicit coercions are combined in such a way that the meaning

of an object being in a supertype is given by coercive de�nition rules for the de�nitional equality.

Introducing new judgement forms for principal typing, this gives a proof-theoretic (and direct meaning-

theoretic) treatment of subtyping as implicit coercions, as compared with its possible model-theoretic

semantic counterpart (cf., [BCGS91]).

� Subtyping is treated as an extension of the underlying logical framework|the meta-language in which

type theories are formulated. Making essential use of a typed logical framework LF [Luo94] (a typed

version of Martin-L�of's logical framework, see below), it gives a general extension of various intensional

�
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type theories with subtyping. As a formal system, the extended framework is just a simple extension

of LF.

� The extended framework provides a uniform setting to understand various forms of coercions in type

systems (e.g., those for structured types and universes and those found in Bailey's implementation in

Lego) and some other useful syntactic forms such as type-casting.

Coercive subtyping can be seen to represent a conceptually simple but powerful approach to introducing

subtyping into type theory. In the practice of computer-assisted formal reasoning, we believe that coercive

subtyping provides easier and more powerful reasoning mechanisms for reasoning about subsets of objects

as well as for reusing proven results in developed formal theories (cf., [Acz94]).

In the following section, we briey introduce the logical framework and explain how to use it as a meta-

language to specify type theories. In Section 3, the basic ideas of coercive subtyping are further explained

and the extended logical framework is formally presented with discussions of its properties. The use of

coercive subtyping is considered in Section 4. Related work and further research topics are discussed in the

Conclusion.

2 The logical framework LF and formulation of type theories

The logical framework LF is a typed version of Martin-L�of's logical framework (see Chapter 19 of [NPS90]

for a presentation of the latter). We should also point out that LF is di�erent from the Edinburgh Logical

Framework (ELF) [HHP87].

The presentation of LF and discussions on how it should be used in specifying type theories can be

found in Chapter 9 of [Luo94]. The inference rules of LF are given in Figure 1, which include general rules,

the rules for the kind of all types (Type, which represents the conceptual universe of types), and the rules

for dependent product kinds of the form (x:K)K

0

(kinds of functional operations). In the following, we give

a brief introduction to LF and its use in specifying type theories, with discussions on several aspects with

which we do not assume the familiarity of the reader.

2.1 Functional operations in LF

As in Martin-L�of's meaning explanation for his type theory, a functional operation of kind (x:K)K

0

in LF

can be applied to any object k of kind K to yield an object of kind [k=x]K

0

. The meaning of a functional

operation is given by explaining its application results. For example, abstractions are special forms of

functional operations whose meaning is essentially given by the de�nitional equality rule (�).

Remark In LF, the functional operations that express abstraction are of the form [x:K]k, rather than the

untyped [x]k as found in Martin-L�of's logical framework. In other words, we regard the meta-level functional

operations as having speci�c domains (and codomains).

1

This feature, as we shall see below, is essential in

the formulation of coercive subtyping.

The functional operations, in the form of abstraction or those introduced by declaring constants for a

speci�ed type theory (see below), are weakly extensional in the sense that the following rule is derivable by

means of the (�) and (�) rules:

(Ext)

� ` f : (x:K)K

0

� ` g : (x:K)K

0

�; x:K ` f(x) = g(x) : K

0

� ` f = g : (x:K)K

0

This reects the idea that LF provides meta-level schematic and de�nitional mechanisms, and the fact that

de�nitional equality for abbreviations is weakly extensional (in particular, the �-rule holds). For example,

as in ordinary mathematical practice, a de�nition f(g; x) = g(x) has the same e�ect as f(g) = g. This is in

contrast with the functions of �-types in type theory for which �-rule should not hold since it makes little

sense to be a computation rule (see below).

Remark In fact, in the presence of the (�)-rule, the above rule (Ext) is equivalent to (�)(�) as equational

1

One may want to consider a more philosophical argument of whether an operation should be considered as typed. See, for

example, [Bee85] for some relevant discussions.
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Contexts and assumptions

hi valid

� ` K kind x 62 FV (�)

�; x:K valid

�; x:K;�

0

valid

�; x:K;�

0

` x : K

General equality rules

� ` K kind

� ` K = K

� ` K = K

0

� ` K

0

= K

� ` K = K

0

� ` K

0

= K

00

� ` K = K

00

� ` k : K

� ` k = k : K

� ` k = k

0

: K

� ` k

0

= k : K

� ` k = k

0

: K � ` k

0

= k

00

: K

� ` k = k

00

: K

Equality typing rules

� ` k : K � ` K = K

0

� ` k : K

0

� ` k = k

0

: K � ` K = K

0

� ` k = k

0

: K

0

Substitution rules

�; x:K;�

0

valid � ` k : K

�; [k=x]�

0

valid

�; x:K;�

0

` K

0

kind � ` k : K

�; [k=x]�

0

` [k=x]K

0

kind

�; x:K;�

0

` K

0

kind � ` k = k

0

: K

�; [k=x]�

0

` [k=x]K

0

= [k

0

=x]K

0

�; x:K;�

0

` k

0

: K

0

� ` k : K

�; [k=x]�

0

` [k=x]k

0

: [k=x]K

0

�; x:K;�

0

` k

0

: K

0

� ` k

1

= k

2

: K

�; [k

1

=x]�

0

` [k

1

=x]k

0

= [k

2

=x]k

0

: [k

1

=x]K

0

�; x:K;�

0

` K

0

= K

00

� ` k : K

�; [k=x]�

0

` [k=x]K

0

= [k=x]K

00

�; x:K;�

0

` k

0

= k

00

: K

0

� ` k : K

�; [k=x]�

0

` [k=x]k

0

= [k=x]k

00

: [k=x]K

0

The kind Type

� valid

� ` Type kind

� ` A : Type

� ` El(A) kind

� ` A = B : Type

� ` El(A) = El(B)

Dependent product kinds

� ` K kind �; x:K ` K

0

kind

� ` (x:K)K

0

kind

� ` K

1

= K

2

�; x:K

1

` K

0

1

= K

0

2

� ` (x:K

1

)K

0

1

= (x:K

2

)K

0

2

�; x:K ` k : K

0

� ` [x:K]k : (x:K)K

0

(�)

� ` K

1

= K

2

�; x:K

1

` k

1

= k

2

: K

� ` [x:K

1

]k

1

= [x:K

2

]k

2

: (x:K

1

)K

(app)

� ` f : (x:K)K

0

� ` k : K

� ` f(k) : [k=x]K

0

(appEq)

� ` f = f

0

: (x:K)K

0

� ` k

1

= k

2

: K

� ` f(k

1

) = f

0

(k

2

) : [k

1

=x]K

0

(�)

�; x:K ` k

0

: K

0

� ` k : K

� ` ([x:K]k

0

)(k) = [k=x]k

0

: [k=x]K

0

(�)

� ` f : (x:K)K

0

x 62 FV (f)

� ` [x:K]f(x) = f : (x:K)K

0

Figure 1: The inference rules of LF.
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rules. However, it is easy to see that (Ext) cannot be used as a reduction rule because of the symmetry

between f and g.

2.2 Specifying type theories in LF

In general, a speci�cation of a type theory in the logical framework consists of a collection of declarations

of new constants and a collection of computation rules. Formally, declaring a new constant k to be of kind

K is to introduce the following inference rule to the speci�ed type theory:

� valid

� ` k : K

and, for a kind K which is either Type or of the form El(A), one can assert computation rules by writing

k = k

0

: K where k

i

: K

i

(i = 1; :::; n);

which introduces the following rule for computational equality:

(�)

� ` k

i

: K

i

(i = 1; :::; n) � ` k : K � ` k

0

: K

� ` k = k

0

: K

For example, one can introduce �-types by declaring the following constants (in this paper, we shall often

omit El to write A for El(A) when no confusion may occur and may write (K)K

0

for (x:K)K

0

when x does

not occur free in K

0

):

� : (A:Type)((A)Type)Type

� : (A:Type)(B:(A)Type)((x:A)B(x))�(A;B)

E

�

: (A:Type)(B:(A)Type)(C:(�(A;B))Type)

((g:(x:A)B(x))C(�(A;B; g))) (z:�(A;B))C(z)

and asserting the following computation rule:

E

�

(A;B;C; f; �(A;B; g)) = f(g) : C(�(A;B; g));

where A : Type, B : (A)Type, C : (�(A;B))Type, f : (g:(x:A)B(x))C(�(A;B; g)), and g : (x:A)B(x).

Then, the usual application operator can be de�ned as

app =

df

[A:Type][B:(A)Type][F :�(A;B)][a:A]

E

�

(A;B; [G:�(A;B)]B(a); [g:(x:A)B(x)]g(a); F ):

and we have app(A;B; �(A;B; f)) = f . However, the �-rule does not hold: �(A;B; app(A;B; F )) 6= F

when F :�(A;B) is a variable. In other words, functions of a �-type are not weakly extensional. Note that a

�-type �(A;B) is di�erent from the kind (x:A)B(x) (or more formally, (x:El(A))El(B(x))), whose objects

are weakly extensional functional operations (see above).

Notation For types A and B, when x does not occur free in B, we shall write A ! B for �(A; [x:A]B),

the type of functions from A to B. Similarly, A! B is di�erent from the kind (A)B.

One can similarly specify various types or type constructors, including inductive types, predicative or

impredicative type universes, etc. [CPM90, Dyb91, Luo94]. The following gives a brief description of how

inductive schemata can be introduced for introducing a large class of inductive data types (for formal details,

see Chapter 9 of [Luo94]), which we shall use later to generalise subtyping for parameterised inductive types.

First, we say that a kind is small if it is either of the form El(A) or of the form (x:K

1

)K

2

with K

1

and

K

2

small kinds. An inductive schema � with respect to a type variable X is of one of the following forms:

1. � � X , or

2. � � (x:K)�

0

, where K is a small kind and �

0

is an inductive schema, or
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3. � � (�)�

0

, where �

0

is an inductive schema and � is of the form (x

1

:K

1

):::(x

m

:K

m

)X , with m � 0

and K

i

being small kinds in which X does not occur free.

An inductive type M[

�

�] is generated by a sequence of inductive schemata

�

� � �

1

; :::;�

n

(with respect

to the same type variable X which becomes bound in M[

�

�]). Associated with the inductive type are its

introduction operators �

i

[

�

�] (i = 1; :::; n) and an elimination operator E[

�

�] with appropriate computation

rules.

For example, a type Nat of natural numbers can be de�ned as Nat =

df

M[

�

�

0

], where

�

�

0

� X; (X)X.

The associated introduction operators are 0 =

df

�

1

[

�

�

0

] : Nat and succ =

df

�

2

[

�

�

0

] : (Nat)Nat, and the elimi-

nation operator isE

Nat

=

df

E[

�

�

0

] : (C:(Nat)Type)(c:C(0))(f :(x:Nat)(C(x))C(succ(x)))(n:Nat)C(n), with

the computation rules E

Nat

(C; c; f; 0) = c and E

Nat

(C; c; f; succ(x)) = f(x;E

Nat

(C; c; f; x)).

Note that, as discussed in [Luo94], we can introduce di�erent inductive types with isomorphic structure.

For instance, a type Even isomorphic to Nat can be introduced as Even =

df

M

0

[

�

�

0

], which is just another

copy ofNat but with a di�erent name and with di�erent names for its introduction and elimination operators

(e.g., e

0

=

df

�

0

1

[

�

�

0

], e

1

=

df

�

0

2

[

�

�

0

], and E

Even

=

df

E

0

[

�

�

0

]). As we shall see below, with coercive subtyping,

Even can be regarded as a subtype of Nat|the type of even numbers.

The type theory UTT [Luo94] consists of an impredicative type universe of propositions, inductive

data types (and inductive families, not covered above), and predicative type universes. UTT has nice

meta-theoretic properties such as Church-Rosser, Subject Reduction, and Strong Normalisation [Gog94].

Implemented in the Lego proof development system, UTT has been applied to program speci�cation and

veri�cation (eg, [Bur93, BM92]), data re�nement [Luo93], and formalisation of mathematics [Pol94].

2.3 De�nitional equality and computational equality

We use LF seriously as a meta-level language (see Section 9.1.2 of [Luo94] for a discussion). Along the same

line, we make a distinction between the notion of de�nitional equality (abbreviational equality, reected

as ��-equality for functional operations in LF) and that of computational equality introduced by asserting

computation rules when specifying a type theory.

This distinction is also reected in our restriction above that new computation rules (�) can only be

asserted between two types or two objects of a type, but not between two functional operations with

a dependent product kind. For instance, under this restriction, one cannot declare a constant app :

(A:Type)(B:(A)Type)(�(A;B))(x:A)B(x) and directly assert app(A;B; �(A;B; f)) = f as a computa-

tional equality, though asserting app(A;B; �(A;B; f); x) = f(x) is legitimate. However, taking this latter

as a reduction rule (from the left to the right) is problematic since weak extensionality does not hold for

the reduction relation and the Church-Rosser property would fail to hold. Another possibility, pointed

out to me by Healfdene Goguen, is to declare app : (A:Type)(B:(A)Type)(x:A)(�(A;B))B(x) and assert

app(A;B; x; �(A;B; f)) = f(x).

As we shall see below, in the coercive subtyping approach, coercions between types introduce new

de�nitional equalities since implicit coercions are essentially an apparatus for abbreviation. In other words,

coercive subtyping is regarded as abbreviational mechanisms similar to de�nitional mechanisms. The choice

of considering coercive subtyping in the meta-level logical framework, rather than in some object-level type

systems (say Pure Type Systems such as the Calculus of Constructions) is important and bene�cial.

3 Coercive subtyping

In this section, we �rst introduce the basic ideas and give informal meaning explanations of the judgements

in the extended framework with coercive subtyping. Then, a formal presentation is given, followed by

discussion of its properties.

3.1 Basic ideas and informal explanation

Introducing subtyping into dependent type theories with inductive types raises new issues that have not been

considered before in research on subtyping for simpler type systems. We �rst consider the basic problems

and introduce the idea of coercive subtyping.
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3.1.1 Subtyping between inductive types: the problem

An inductive type can be understood as consisting of its canonical objects (values of the type). For instance,

the type Nat of natural numbers consists of 0 and the successors, and any natural number is regarded as

a representation of a canonical natural number, to which it can be computed. If A is a subtype of B, then

every object of type A is (regarded as) an object of type B. One of the basic considerations in studying

subtyping for inductive types is to look for a suitable approach with which the understanding of types based

on the notions of canonical object and computation still applies.

The traditional approaches based on direct overloading (eg, overloading �-terms to stand for objects of

di�erent function types) do not generalise to inductive types. A natural consideration might be to form a

subtype A of type B by selecting some (canonical) objects from B, which are regarded as the (canonical)

objects of A. For example, we may introduce a subtype Even of Nat by declaring its canonical objects to be

those natural numbers which are either 0 or of the form succ(succ(e)), where e is of type Even. However, in

such a setting, type-checking is di�cult (and in general undecidable). It is not clear how one may introduce

suitable restrictions on subtype formation to ensure decidable type-checking. One suggestion that has been

made in the literature is to specify a subtype by declaring its constructors to be a subset of the constructors

of an existing supertype [Coq92], but this would exclude even the example of Even and other interesting

applications of subtyping such as inheritance between mathematical theories [Acz94]. A related problem

is that, in the presence of subtyping, the usual elimination rules for inductive types become inadequate

since they do not take into the account (the forms of) the canonical objects in the subtypes. For instance,

subtyping between two �-types as found in the Extended Calculus of Constructions (ECC) [Luo89, Luo90]

is not quite compatible with the general elimination rules as found in Martin-L�of's type theory and UTT.

A simple combination would lead to a system for which the subject reduction property fails to hold (see

Section 4.3).

3.1.2 Coercive subtyping: informal explanation

There are two basic ideas on which coercive subtyping is based: implicit coercion and coercive rules for

de�nitional equality.

Implicit coercions

With coercive subtyping, for any A < B, there is a unique coercion � from A to B and every object a of type

A can be regarded as the object �(a) of type B, that is its image under the coercion. Coercions are implicit in

the sense that the subsumption rule applies in general (cf., the last two rules in Figure 2). Subtyping relations

between basic inductive types are speci�ed by de�ning coercion functions, which should be de�nable in the

type theory. For instance, the inductive type Even with constructors e

0

and e

1

, as speci�ed in Section 2.2,

can be introduced as an (inductive) subtype of Nat (i.e., Even < Nat), by giving the coercion de�ned by

means of structural recursion over Even as follows: �(e

0

) = 0 and �(e

1

(e)) = succ(succ(�(e))). These basic

coercions will then be generalised to other (structured) types.

Judgements and their meaning explanation

When subtyping is introduced, a type theory does not have the property of unique typing (type uniqueness)

anymore. Instead, a notion of principal typing is the best that one can expect (see, eg, [Luo90] for a

de�nition of the notion of principal type for ECC). Intuitively, K is a principal kind of object k if and only

if k is of kind K and, for any kind K

0

, k is of kind K

0

if and only if K is a subkind of K

0

. Note that being

a principal kind is more than just being a minimal or minimum kind, and in general, a principal kind of an

object is unique upto the computational equality.

In a type theory speci�ed in LF with coercive subtyping, we introduce explicit judgement forms to

represent principal kinding/typing. Hence, besides judgements for context validity, we have the following

judgement forms:

� k : K asserts that K is the principal kind of k. When K � El(A), it asserts that A is the principal

type of k, which means that k computes to a canonical object of type A.

� k :: K asserts that k is of kind K, which means that either k : K or k : K

0

for some K

0

< K.

6



� K = K

0

asserts that K and K

0

are equal kinds, which means that k : K if and only if k : K

0

.

� K < K

0

asserts thatK is a proper subkind ofK

0

, which means that for a unique � : (K)K

0

, �(k) : K

0

for every k : K.

� k = k

0

: K asserts that k and k

0

are equal objects with principal kind K. When K � El(A), it means

that k and k

0

are computationally equal and compute to the same canonical object of type A.

� k = k

0

:: K asserts that k and k

0

are equal objects of kind K, which means that either k = k

0

: K

or k = k

0

: K

0

for some K

0

< K.

K is a subkind of K

0

, notation K � K

0

, if and only if either K = K

0

or K < K

0

.

The meaning explanations of judgements as sketched above coherently extends the meaning theory of

Martin-L�of for his intensional type theory (cf., [NPS90]) to subtyping. Our formulation of coercive subtyping

is strongly guided by the meaning explanation.

Coercive de�nition rules

To give meanings for the objects of a subkind being in a superkind, we shall introduce coercive de�nition

rules. One of the key points is to design suitable coercive de�nition rules so that the resulting type theory

reects the intended meanings of judgements and has nice proof-theoretic properties. The following is the

basic coercive de�nition rule, where � is the (unique) coercion from K

0

to K:

f : (x:K)K

0

k

0

: K

0

K

0

< K

f(k

0

) = f(�(k

0

)) : [k

0

=x]K

0

Intuitively, when a functional operation with domain K is applied to an object k

0

whose principal kind is a

proper subkind of K, f(k

0

) is de�nitionally equal to f(�(k

0

)), that is, the application result is the same as

that of applying f to the image of k

0

under the intended coercion. Note that, as to be made precise below,

we do not have any coercions (including the indentity function) from a type to itself (K

0

is a proper subkind

of K in the above rule), for otherwise regarding the above rule (with a premise K

0

� K) as a reduction rule

could lead to in�nite reduction sequences.

Note that the above rule conforms to Martin-L�of's meaning explanation for functional operations f ,

since in the presence of subkinding, the domain of a functional operation also has as objects those of any

of its subkinds and the coercive rules explain the e�ect of applying the functional operation to an object

of a subkind of its domain. Note that we do not have the following stronger rule, from which our coercive

subkinding rule can be derived:

(��)

k :: K K < K

0

k = �(k) :: K

0

This rule for dependent functional operations is not appropriate as meaning-giving, since the meaning of

a functional operation is not given by its canonical form, but rather by its behaviour when applied to its

arguments (this is exactly captured by our coercive equality rules). Furthermore, we note that our coercive

de�nition rules preserve principal kinds when regarded as reduction rules from the left to the right (i.e., the

subject reduction property), while the above stronger rule (��) does not. Furthermore, taking the above

rule (��) as a reduction rule could also lead to in�nite reduction sequences.

3.2 Coercive subtyping: a formal presentation

In this section, we give a formal presentation of type theories with coercive subtyping. We consider how to

extend any type theory T speci�ed in LF with coercive subtyping. Examples of such type theories include

Martin-L�of's intensional type theory, UTT, and many others.

Let T be any type theory speci�ed in LF (without subkinding). Let C be a set of pairs of types (ie,

objects of kind Type) such that

1. for any (A;B) 2 C, A and B are distinct, ie, A is not computationally equal to B;

2. the set C as a relation represents a directed graph which is a forest, that is there is a unique path (up

to computational equality) between any two types related by C (and hence the graph is acyclic);
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New rules for application

� ` f : (x:K)K

0

� ` k :: K

� ` f(k) : [k=x]K

0

� ` f = f

0

: (x:K)K

0

� ` k

1

= k

2

:: K

� ` f(k

1

) = f

0

(k

2

) : [k

1

=x]K

0

Coercive de�nition rule

� ` f : (x:K)K

0

� ` k

0

: K

0

� ` K

0

< K

� ` f(k

0

) = f(�[K

0

;K](k

0

)) : [k

0

=x]K

0

Subkinding

� valid (A;B) 2 C

� ` El(A) < El(B)

� ` K < K

0

� ` K

0

� K

00

� ` K < K

00

� ` K � K

0

� ` K

0

< K

00

� ` K < K

00

�; x:K;�

0

` K

1

< K

2

� ` k : K

�; [k=x]�

0

` [k=x]K

1

< [k=x]K

2

�; x:K;�

0

` K

1

< K

2

� ` k = k

0

: K

�; [k=x]�

0

` [k=x]K

1

< [k

0

=x]K

2

� ` K

0

1

< K

1

�; x:K

0

1

` K

2

� K

0

2

�; x:K

1

` K

2

kind

� ` (x:K

1

)K

2

< (x:K

0

1

)K

0

2

� ` K

0

1

� K

1

�; x:K

0

1

` K

2

< K

0

2

�; x:K

1

` K

2

kind

� ` (x:K

1

)K

2

< (x:K

0

1

)K

0

2

Lifting and subsumption

� ` k : K

� ` k :: K

� ` k = k

0

: K

� ` k = k

0

:: K

� ` k :: K � ` K < K

0

� ` k :: K

0

� ` k = k

0

:: K � ` K < K

0

� ` k = k

0

:: K

0

Figure 2: New inference rules in T[C].

3. each (A;B) 2 C is associated with a unique coercion function �[A;B] (up to computational equality)

which is of kind (A)B in T.

The type theory T[C], the extension of T with coercive subtyping with respect to the basic subtyping

relation C, is the type system obtained by extending T with new judgement forms � ` K < K

0

, � ` k :: K

and � ` k = k

0

:: K, and the new inference rules given in Figure 2.

Here, we give informal explanations and some remarks. We �rst emphasise that the judgement � ` k : K

means that k is an object with principal kind K, while � ` k :: K means that k is of kind K (see informal

meaning explanations in the above section). This reects the fact that, when no subtyping is present, the

notions of typing and principal typing coincide.

The basic subtyping relation C is between types, not arbitrary kinds. However, it is not restricted to

constant types (such as Even and Nat) but can be between structured types such as �-types representing

abstract mathematical theories (such as those of rings and groups) possibly with the intended coercions

speci�ed by the user of a proof system. The basic coercions are extended to dependent product kinds,

giving (unique) coercion operations �[K;K

0

] between every K and K

0

such that K < K

0

, as follows.

De�nition 3.1 (coercion reconstruction) The following de�nes a (unique) coercion operation �

�

[K;K

0

]

of kind (K)K

0

(in context �) for every K and K

0

such that � ` K < K

0

.

1. For any valid context � and (A;B) 2 C, �

�

[A;B] is the given coercion function.

2. If � ` K < K

0

and � ` K

0

< K

00

, �

�

[K;K

00

] =

df

[x:K]�

�

[K

0

; K

00

](�

�

[K;K

0

](x)).
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3. If � ` K

0

1

< K

1

and �; x:K

0

1

` K

2

= K

0

2

, then �

�

[(x:K

1

)K

2

; (x:K

0

1

)K

0

2

] =

df

[f :(x:K

1

)K

2

][x:K

0

1

]

f(�

�

[K

0

1

; K

1

](x)).

4. If � ` K

0

1

= K

1

and �; x:K

0

1

` K

2

< K

0

2

, then �

�

[(x:K

1

)K

2

; (x:K

0

1

)K

0

2

] =

df

[f :(x:K

1

)K

2

][x:K

0

1

]

�

�;x:K

0

1

[K

2

; K

0

2

](f(x)).

5. If � ` K

0

1

< K

1

and �; x:K

0

1

` K

2

< K

0

2

, then �

�

[(x:K

1

)K

2

; (x:K

0

1

)K

0

2

] =

df

[f :(x:K

1

)K

2

][x:K

0

1

]

�

�;x:K

0

1

[K

2

; K

0

2

](f(�

�

[K

0

1

; K

1

](x))).

For �

�

[K;K

0

], we shall often omit �, K and K

0

if they are clear from the context.

For example, for Even < Nat with coercion �, we shall have (Nat)Type < (Even)Type with coercion

�(f) =

df

[x:Even]f(�(x)).

The new rules for application in Figure 2, together with the subsumption rules, make the existing

application rules (app) and (appEq) in Figure 1 redundant. They allow a functional operation f : (x:K)K

0

to be applied to any object k of kind K (ie, k :: K), whose principal kind is either K or a proper subkind

of K. And, as explained above, the coercive de�nition rule gives the meaning to the object formed by such

an application.

It is obvious that T is a subsystem of T[C]; for instance, if � `

T

k : K, then � `

T [C]

k : K. We note

that when the basic subtyping relation C is empty, we have: � `

T [;]

k : K i� � `

T [;]

k :: K i� � `

T

k : K;

in this sense, T[;] is just the original type theory T. When C is not empty, there are more typable terms in

T[C] than in T.

Typed reduction

The above gives an equational presentation of the extension of type theory with coercive subtyping. The

intended notion of computation for the extended type theory is the notion of typed reduction. The typed

reduction relation � is the reexive and transitive closure generated from the following rules and the rules

for computational equality ((�) rules in Section 2) taken as reduction rules from the left to the right.

� ` K

1

� K

2

�; x:K

1

` K

0

1

� K

0

2

� ` (x:K

1

)K

0

1

� (x:K

2

)K

0

2

(�

�

)

� ` K

1

� K

2

�; x:K

1

` k

1

� k

2

: K

� ` [x:K

1

]k

1

� [x:K

2

]k

2

: (x:K

1

)K

(�

�

)

�; x:K ` k

0

: K

0

� ` k : K

� ` ([x:K]k

0

)(k) � [k=x]k

0

: [k=x]K

0

(�

�

)

� ` f : (x:K)K

0

x 62 FV (f)

� ` [x:K]f(x)� f : (x:K)K

0

� ` f � f

0

: (x:K)K

0

� ` k

1

� k

2

:: K

� ` f(k

1

) � f

0

(k

2

) : [k

1

=x]K

0

(�

c

)

� ` f : (x:K)K

0

� ` k

0

: K

0

� ` K

0

< K

� ` f(k

0

) � f(�[K

0

; K](k

0

)) : [k

0

=x]K

0

When the type theory T has nice proof-theoretic properties (e.g., when T is Martin-L�of's intensional type

theory or UTT), the typed reduction for T[C] is expected to have good properties as well. There is a coercion

completion mapping � from T[C] to T that inserts all of the appropriate coercions and we have M �

c

�(M).

It is then clear that the extended type system is weakly normalising if type theory T is. Typed reduction

also preserves principal kinding (and principal typing).

It is worth remarking that, besides the coercive de�nition rule, the (�) and (�) rules for de�nitional

equality and those for computational equality are all governed by principal kinding requirements, which

prevent unintended equalities or reductions. For instance, it is well known that, in the presence of subtyping

and untyped ��-reductions, Church-Rosser would fail even for well-typed terms. Typical examples include

the terms such as t � [x:Even]([y:Nat]y)(x) with Even < Nat (and Even 6= Nat). As illustrated in

Figure 3, with untyped reduction, t �-reduces to t

1

� [x:Even]x and �-reduces to t

2

� [y:Nat]y. However,

in our system, we only have

t = [x:Even]([y:Nat]y)(�(x)) = [x:Even]�(x) = �;

where � : (Even)Nat is the coercion from Even to Nat and, in particular, t is not equal to [x:Even]x

or [y:Nat]y, which have principal kinds (Even)Even and (Nat)Nat, respectively; they are di�erent from

(Even)Nat, the principal kind of t. This example also shows that untyped reduction does not preserve
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[x:Even]([y:Nat]y)(x) [x:Even]([y:Nat]y)(�(x)) [x:Even]�(x) �

- - -

�

c

�

�

�

�

[x:Even]x

[y:Nat]y

�

�

�

�

�3

Q

Q

Q

Q

Qs

untyped �

untyped �

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Xz

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�:

�

1

�

2

Figure 3: Reduction behaviour for ��: an example.

principal kinding. However, if we apply the coercions �

1

from (Even)Even to (Even)Nat and �

2

from

(Nat)Nat to (Even)Nat, to the incompatible terms t

1

and t

2

, respectively, both result in terms that reduce

to the term [x:Even]�(x) under typed reduction; in other words, the intended reduction result is recovered.

It is interesting to note that certain subtyping relations between types can introduce forms of self-

application. An example of this is to consider some types A and B and the basic subtyping relations such

that A < (A! A) < (B ! B) < B, where B 6� A. (Note that the arrow here is the constructor for function

types, not functional kinds. For any kind K, it is impossible to have in our system, for example, K < (K)K

or (K)K < K.) Then, for any x:A, app(A; [y:A]A; x; x) is of type A, because the �rst occurrence of x is of

type A ! A and the second of type A. Now, consider the following term M , which stands for �x:A:xx in

the usual �-notation:

M � �(A; [y:A]A; [x:A]app(A; [y:A]A; x; x));

we have that M is of type A! A and Y � app(B; [y:B]B;M;M) is of type B. It is obvious that the term

Y computes to itself under untyped reduction and hence has an in�nite reduction sequence. Under typed

reduction, the term Y cannot compute to itself, because the principal kinding requirement is not satis�ed

for the reduction to happen; instead, Y must �rst compute to app(B; [y:B]B; �[A! A;B ! B](M); �[A!

A;B](M)), with the appropriate coercions inserted.

We conjecture that T[C] satis�es the strong normalisation property with respect to the typed reduction,

if the original type theory T does.

4 Reasoning with coercive subtyping and applications

In this section, it is shown that the simple framework of coercive subtyping provides a powerful setting in

reasoning about subsets of objects, representing inheritance between formal theories in proof development,

understanding various forms of coercions as implemented in proof systems, and understanding some issues

in implementing type theories such as universe inclusion and type-casting.

4.1 Subtyping between basic inductive types

Besides our earlier example of even and natural numbers, one meets many other applications where subtyping

between basic inductive types is useful in practice. For instance, in a formalisation of the syntax of an

imperative programming language, the primitive statements form an inductive type which is a subtype of

the type of programs.

Coercive subtyping represents such subtyping relations in a natural way and provides new power for

expressing and reasoning about subsets in a more concise way. The following gives a simple illustrative

example how the induction principles of subtypes can be used to reason about corresponding objects in

a supertype. For instance, the induction principle for Even can be used to show that every even natural

number of type Nat has certain properties. Let us consider the proof of showing the simple property

that `none of the even natural number is equal to one'. Let D be the predicate de�ned over natural
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numbers as D(n) � (n 6=

Nat

succ(0)), where =

Nat

is a propositional equality over natural numbers. First,

without subtyping, we would have to de�ne a predicate PEven over Nat and the above statement can be

expressed as the proposition 8n:Nat: PEven(n) � D(n). With coercive subtyping, it can be expressed

more concisely as 8e:Even:D(e), which can then be proved by means of the induction principle expressed

by E

Even

. In such a proof, we only have to consider the base case D(e

0

) = D(0) and the induction

step (e:Even)(D(e))D(e

1

(e)) = (e:Even)(D(�(e)))D(succ(succ(�(e)))), which only concern with the even

natural numbers. Note that, without subtyping, to use the induction principle forNat to prove the statement

involving PEven, we would have to consider the cases for the other natural numbers (the odd ones) as well.

Such a power in reasoning about subsets of objects through coercive subtyping comes from an e�ective

use of computational functions (coercions) to represent subsets. This represents a typical advantage of type

theory being also a computational language, as compared with traditional logical systems.

We note that not every predicate P over Nat can be represented as a function from Nat to Nat in the

sense that the images of the function are exactly those natural numbers that satisfy P . In general, not every

subset of a type can be represented as a subtype as above to assist inductive reasoning. For every predicate

P over a type A, the �-type �(A; P ) can be regarded as a subtype of A with the �rst projection as coercion.

However, for example, the subtype �(Nat; PEven) does not help us reason about even numbers inductively

as we have shown above.

4.2 Subtyping between parameterised inductive types

Another class of subtyping relations are between parameterised inductive types. For instance, if A � B,

List(A) � List(B). Similarly, since �-types are a special kind of inductive types, we naturally expect that,

e.g., if A � A

0

and B � B

0

, then A � B � A

0

� B

0

. In a proof development system, it is natural to assume

such extensions of the basic subtyping relation, unless requested otherwise by the user (e.g., by giving a

speci�c coercion between two �-types). In [Luo92] we have suggested how subtyping can in general be

extended to inductive types on the basis of the inductive schemata. Here, we extend the idea to coercive

subtyping, which gives a systematic extension of the user-speci�ed (basic) subtyping to structured inductive

types.

Consider two inductive types with the same number of constructors (introduction operators): A �M[

�

�]

and A

0

�M[

�

�

0

]. Intuitively, A can be regarded as a subtype of A

0

, notation A �

p

A

0

, if the corresponding

constructors have the same number of parameters and any parameter kind of a constructor of A is a subkind

of that of the corresponding parameter for A

0

. To give a precise de�nition of this, we �rst de�ne a binary

relation �

s

between inductive schemata as the smallest relation generated by the following rules, where �,

�

0

, �

0

, and �

0

0

stand for arbitrary inductive schemata with respect to type variable X :

� �

s

�

K � K

0

�

0

�

s

�

0

0

(x:K)�

0

�

s

(x:K

0

)�

0

0

� � �

0

�

0

�

s

�

0

0

(�)�

0

�

s

(�

0

)�

0

0

Let A �M[

�

�] and A

0

�M[

�

�

0

], where

�

� � �

1

; :::;�

n

and

�

� � �

0

1

; :::;�

0

n

. Then, we de�ne: A �

p

A

0

if and

only if �

i

�

s

�

0

i

for i = 1; :::; n, and A <

p

A

0

if and only if A �

p

A

0

and A 6= A

0

. The implicit coercions

for the subtyping relation <

p

can be de�ned straightforwardly and we omit the details here. The subscript

in the relations �

p

and <

p

is to indicate that this is not necessarily a subtyping relation used in practice

because, for example, user-de�ned implicit coercions may (and should) have higher priority and therefore

override such a `default' relation between inductive types. The following are some examples.

� Lists: List =

df

[A:Type] M[X; (A)(X)X]. Then, we have List(A) �

p

List(B) if A � B.

� �-types: � =

df

[A:Type][B:(A)Type] M[((x:A)B(x))X ]. We have �(A;B) �

p

�(A

0

; B

0

) if

(x:A)B(x) � (x:A

0

)B

0

(x), that is, if A

0

� A and B(x) � B

0

(x).

� �-types: � =

df

[A:Type][B:(A)Type] M[(x:A)(B(x))X ]. We have �(A;B) �

p

�(A

0

; B

0

) if A � A

0

and B(x) � B

0

(x).

� Disjoint union types: + =

df

[A:Type][B:Type]M[(A)X; (B)X ]. We have A+B �

p

A

0

+B

0

if A � A

0

and B � B

0

.

� B-branching trees: Tree =

df

[B:Type]M[X; ((B)X)X]. We have Tree(B) �

p

Tree(B

0

) if B

0

� B.
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For instance, we have List(Even) <

p

List(Nat) and Tree(Nat) <

p

Tree(Even).

In practice, the relation <

p

can be regarded as a default generalisation of the user-speci�ed subtyping

relation (C in our formulation), with appropriate overriding by the latter (eg, a user-de�ned coercion between

�(Even;B) and �(Nat; B) will override the default coercion generated from the coercion between Even

and Nat). We note that, when C is a forest, the above generalisation also guarantees that there is only one

unique path between a subtype and a supertype.

4.3 Subtyping between type universes

The inclusion relation between type universes may either be introduced by means of explicit lifting operators

(e.g., adopted in the presentation of UTT in [Luo94]) or direct subtyping (e.g., adopted in the presentation

of the Extended Calculus of Constructions [Luo90] and used in systems such as Lego), called by Martin-L�of

as universes �a la Tarski and universes �a la Russell, respectively [ML84]. The latter approach is based on

overloading common term operators and is not quite compatible with the elimination rules when general

inductive types are introduced; in particular, the subject reduction property would fail to hold. For instance,

for the product types with introduction operator pair

�

and elimination operator E

�

, we would have, in the

following context,

x; y:Type

0

; C:(Type

1

� Type

1

)Type; f :(x; y:Type

1

)C(pair

�

(Type

1

; Type

1

; x; y));

that the following well-typed term (since Type

0

� Type

0

< Type

1

� Type

1

)

p � E

�

(Type

1

; Type

1

; C; f; pair

�

(Type

0

; Type

0

; x; y));

computes to f(x; y), which is of type C(pair

�

(Type

1

; Type

1

; x; y)) but not of type

C(pair

�

(Type

0

; Type

0

; x; y)), a type of p. This has caused a problem in extending subtyping to param-

eterised inductive types in systems such as Lego. The reason is essentially that the formulation of the

elimination rule has not taken into the account that, with subtyping, a supertype also contains canonical

objects of its subtypes.

2

With coercive subtyping, a natural bridge between the (more semantics-oriented) formulation �a la Tarski

and the more practically useful formulation �a la Russell can be established because we can declare subtyp-

ing relations between universes and take the explicit lifting operators as the intended implicit coercions.

For example, inclusions between predicative universes in UTT are introduced by means of explicit lifting

operators as follows (here we omit the introduction of names of inductive types in universes):

Type

i

: Type; type

i

: Type

i+1

;

T

i

: (Type

i

)Type; T

i+1

(type

i

) = Type

i

: Type;

t

i+1

: (Type

i

)Type

i+1

; T

i+1

(t

i+1

(a)) = T

i

(a) : Type:

We can introduce the subtyping relations Type

i

< Type

i+1

with coercions de�ned as �[Type

i

; Type

i+1

] =

df

t

i+1

. This �ts well with the implementation of subtyping in proof development systems such as Lego and

solves the above problem.

4.4 Interpreting practical forms of coercion

Anthony Bailey has recently implemented various interesting and useful coercion mechanisms in Lego [Bai96].

(Also see [Sai96] for a related development in the Coq system.) Bailey has given interesting examples to

illustrate the use of implicit coercion to make proof development easier (more readable etc.). We briey

discuss how these basic coercion mechanisms may be understood in our setting of coercive subtyping.

On the basis of the Lego system, the implementation of which is not based on a logical framework

description of type theory, Bailey has introduced several kinds of implicit coercions, called argument coer-

cion, kind coercion, and �-coercion. Argument-coercion deals with application of a function of a �-type

�x:A:B(x) to an object a whose principal type is a subtype of A. This is similar to our treatment of the

application for dependent product kinds. In our setting, argument coercion for �-types can be understood

as a special case when applying app(A;B; f) to a.

2

Furthermore, it is not clear how it can be modi�ed to do so, since it may require a substantial extension with new forms of

judgements. We do not discuss this issue here.
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Bailey's notion of kind-coercion may better be called type-coercion in our terminology. It is introduced

to deal with the following situation. For instance, suppose Group is the �-type representing the theory

of groups and G : Group. One may hope to write, for example, �x:G:C(x) for `for all x in (the carrier

type of) G, C(x)', though this is not allowed since G is not its carrier type. This becomes possible when

a kind-coercion el from Group to types in a universe U is declared to obtain the carrier type of every

group structure, and the above �-type would stand for �x:el(G):C(x). Kind-coercion can be understood

as a special case of argument coercion in our formulation. For instance, for the above example, �x:G:C(x)

abbreviates �(G;C) = �(el(G); C) when Group < U with coercion el.

The notion of �-coercion is to deal with the cases where an object F supposed to be of a �-type is

applied to an object but F does not have the right �-type. This can also be regarded as a special case of

coercive de�nition: with an implicit coercion � from the type of F to the expected �-type �(A;B), we have

app(A;B; F; a) = app(A;B; �(F ); a).

4.5 Coercive subtyping and type-casting

In a private communication with the author, Peter Aczel has recently pointed out a close relationship

between coercive subtyping and type-casting. Type-casting is a way to form terms in proof systems such as

Lego, which was introduced primarily for dealing with type ambiguity introduced by subtyping (eg, universe

inclusion) or omission of syntax to provide user-friendliness. For example, in the Lego system, one may write

a term of the form a:A, which stands for `the term a with principal type A'.

We can understand a:A as the term ([x:A]x)(a) in our system. When a : A

0

and A

0

< A, we have,

by the coercive de�nition rule and (�), ([x:A]x)(a) = �(a), whose principal type is A. For instance, with

universe subtyping introduced above, we will have (type

0

:Type

3

) = ([x:Type

3

]x)(type

0

) = t

3

(t

2

(type

0

)).

In other words, in a type theory where every object has a principal type, type-casting is de�nable with

coercive subtyping. Alternatively, on the basis of the above understanding, one may directly introduce

type-casting as basic terms and introduce the following rules (modi�ed from a suggestion by Aczel), which

analyse the coercive de�nition rules into two parts:

k

0

:: K

(k

0

:K) : K

k

0

: K

0

(k

0

:K

0

) = k

0

: K

0

K

0

< K k

0

: K

0

(k

0

:K) = �(k

0

) : K

f : (x:K)K

0

k

0

: K

0

K

0

< K

f(k

0

) = f(k

0

:K) : [k

0

=x]K

0

These rules reect the meaning of type-casting directly. If (k

0

:K) is de�ned as ([x:K]x)(k

0

), the above rules

are all derivable.

Type-casting pairs: an example

The above understanding can be used to understand the use of type-casting in resolving the possible type

ambiguity of pairs (objects of �-types) as well. For instance, for a : A, the (untyped) pair (A; a) may have

type Type

0

�A or �X :Type

0

:X , which are incompatible. In the Lego system, the former is the default type

and if it is the second type that is the intended one, one has to use type-casting to write explicitly (A,a :

<X:Type(0)>X). Such a decision seems to be ad hoc, though very useful in practice.

To analyse this problem with coercive subtyping, we can consider a special family of unit types 1(A; a)

indexed by types A : Type and objects a : A, each of which has only one constructor �(A; a) : 1(A; a).

Then, for any type A, any family of types B : (A)Type, and any a : A, we can de�ne two coercions, �

1

from 1(A; a)� B(a) to A�B(a) and �

2

from 1(A; a)� B(a) to �(A;B) (ie, �x:A:B(x)), as follows:

�

1

(pair

�

(1(A; a); B(a); �(A; a); b)) = pair

�

(A;B(a); a; b);

�

2

(pair

�

(1(A; a); B(a); �(A; a); b)) = pair

�

(A;B; a; b):

where pair

�

and pair

�

are the introduction operators for the product types and the �-types, respectively.

Then, for a : A and b : B(a), we can regard the untyped pair (a; b) as standing for

pair

�

(1(A; a); B(a); �(A;a); b). An implementation based on this understanding will then �gure out the

appropriate typing for an untyped pair by choosing one of the coercions to apply. Note that according to

this analysis, the treatment in the Lego system is not quite adequate, while the implementation of type-

checking pairs in the system PVS is more exible and seems to be very close to our analysis.

3

3

Thanks to Paul Jackson for an interesting conversation on this topic, which has helped to spot an error in an earlier version

of this paper.
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The above discussion on type-casting is an example of understanding implicit syntax [Pol90] (via coercive

subtyping). It would be interesting to study whether other forms of implicit syntax can be understood in

such a manner.

5 Conclusions, related work, and further research

The central idea of coercive subtyping is to introduce coercive de�nition rules so that general subsumption

and implicit coercion can be combined together and obtain a uniform proof-theoretic treatment in type

theory. This is di�erent from using model-theoretic (denotational) semantics in understanding subtyping.

Our approach is more syntactic and gives direct meaning-theoretic treatment of subtyping and coercions

(and extends Martin-L�of's meaning theory of type theory in a coherent way). It o�ers the opportunity for

subtyping to be introduced into the current proof development systems such as Coq, ALF, and Lego, and

to make the task of formal development easier. Although the formal treatment deals with type theories

formulated in LF directly, it is not di�cult to be modi�ed so that it can be applied to other type theories

such as those implemented in the Coq system or the NuPRL system. We believe that direct inheritance

supported by coercive subtyping is a very useful mechanism that provides a powerful tool in applications

such as speci�cation and data re�nement (with re�nement maps between speci�cations [Luo93] as coercions),

development of mathematical theories in proof development (with theory morphisms [Luo91] as coercions

[Bai96]), and library structuring for proof reuse [Luo95].

Subtyping is in general a subtle issue partly because, in the presence of (arbitrary) subtyping, a judgement

of the form k :: K is a synthetic judgement in the sense of Martin-L�of [ML94]; that is, the judgement form

is essentially existential and hence in general undecidable, unless the formulation of the system has certain

restrictions. Coercive subtyping o�ers one such restriction. It remains to see how further development can

be made in this direction. For instance, with the new form of judgement k :: K, it may be reasonable

to consider introduction of assumptions of the form x::K in contexts and hence quanti�cations of the form

(x::K)K

0

or �x::A:B. Also, we have not considered `dependent' coercions between a type and a family of

types, whose kind can be of the form (x:K)K

0

where x does occur free in K

0

. These coercions may be useful

in understanding other forms of implicit syntax such as those o�ered by argument synthesis (e.g., in the Lego

system); but they can be used to introduce in�nitely many coercions, which may be di�cult to implement

properly to guarantee uniqueness of coercions. Similar implementation problems exist for parameterised

coercions and are among the interesting further research topics.

In this paper, we have restricted the basic subtyping relation to be a forest to guarantee the uniqueness

(up to computational equality) of a coercion between any two types or kinds. Note that we allow multiple

inheritance in the sense that a type can have more than one subtype or supertype, though it is not allowed

to have two di�erent coercions (which are not computationally equal) between two types. For instance, two

di�erent mappings from a type of rings to a type of monoids, which map a ring to its di�erent monoids, are

not allowed to be coercions at the same time. The only possibility is to regard them as coercions from the

ring type to two di�erent types of monoids.

Among the closely related work, Pollack and Pierce's suggestion (private communication) to consider

coercions as a basic mechanism in type-checking overloading methods for classes proposed by Aczel [Acz94]

was a major inuence to the idea of coercive subtyping. This idea goes back to the work on giving coercion

semantics to lambda calculi with subtyping by Breazu-Tannen et al [BCGS91]. Bailey's development of

coercions in Lego share the major practical motivation with this work. His implementation is based on

the syntactical equality rather than computational equality. This allows him to implement certain forms of

parameterised coercions as well. However, Bailey has not considered contravariant subtyping for �-types

in his implementation. It is not yet clear how the coercive de�nition rules may be directly related to such

implementations of implicit coercions based on syntactical equality, though the equational theory presented

in this paper provides a type-theoretic framework in which coercion-based implicit syntax can be understood.

Work is in progress to study implementation issues based on the notion of typed reduction and more e�cient

reduction strategies.

Subtyping has also been studied extensively by many researchers in the context of typed functional

programming, inspired by the notion of inheritance as found in object-oriented programming (cf., [CW85,

Car88]). Semantic studies on subtyping in type systems (without dependent types) such as the second-order

lambda calculus (ie, the system F) include the use of the PER model [BL90] and the coercion-based approach

[BCGS91]. A more recent logical study of subtyping in system F can be found in [LMS95]. There is not
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much work on subtyping in dependent type systems in the context of proof development systems based

on type theory. Pfenning's work on re�nement types [Pfe93] and Aspinall and Compagnoni's work on the

decidability of Edinburgh LF with subtyping [AC96] are among the recent research development. It is clear

that coercive subtyping is strongly motivated by the need in proof development, where inductive types are

essential. Traditional approaches based on overloading term constructors (such as �) cannot be generalised

in this context. However, some ideas in the research on subtyping in programming language context may

be very useful for proof languages, examples of which include introduction of subtyping assumptions into

contexts and bounded quanti�ers, among others. Further research is needed to see whether they are useful

and how they may be incorporated for coercive subtyping.
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