
Developing reuse technology in proof engineering

(position paper)

Zhaohui Luo

Department of Computer Science

University of Durham

February 1, 1995

1 Introduction

In the last several years type theory has emerged as an important technology for computer-assisted formal

reasoning. The intensive international e�ort to develop type theory and the associated technology for proof

development has resulted in a number of impressive systems based on type theory for program veri�cation

and formalisation of mathematics, including ALF [ACN90], Coq [D

+

91], NuPRL [C

+

86], and Lego [LP92].

The experience of proof development shows that, to apply our technology of proof development such

as systems based on type theory to large real-world application problems (e.g., in formalisation of a large

body of mathematics (cf. [Pol94]) and in veri�cation of safety-critical software components), it is very

useful and indeed necessary to develop methods and supporting tools for reuse of proofs, programs, and the

formalisation or development processes. Many proofs and many proof development processes have striking

similarities. E�ective reuse will make proof development more e�cient and cost-e�ective so that `proving in

the large' may become feasible in reasonable time limits.

It is important to develop the technology of proof reuse as a step to `bridge the gap between theory

and practice' in computer-assisted formal reasoning. Type theory provides rich abstraction, modularisation

and inheritance mechanisms which form a very good basis to support reuse of parameterised proofs, generic

theories, and various design decisions during proof and program development (cf. [Luo94a, Luo93]). The

potential of type theory has not been su�ciently exploited for reuse and, we believe, is very useful to do so

to enhance the productivity and cost-e�ectiveness of proof development.

2 Reuse in proof development based on type theory

Reusable entities in proof development include not only proof objects, but also proof sketches (or incomplete

proofs) and proof strategies adopted in proof development. In a proof development system which supports

explicit proof objects, one might classify reusable entities into two di�erent levels, that is, those expressible

in the object logical language (e.g. proof objects) and those which may be more conveniently considered at

the meta-level (e.g. proof sketches and tactics). However, it is sometimes di�cult to make this object/meta

level distinction since an expressive object language such as that of dependent types may have the power to

express, for example, incomplete proofs or even proof strategies which may usually be treated as meta-level

entities.

In fact, type theory does provide useful abstraction and modularisation mechanisms that support repre-

sentation of proof sketches as well as parameterised/generic proofs. Such an expressiveness has been studied

in the context of program speci�cation and data re�nement [Luo93], where it is shown how incomplete

programs and design decisions such as divide-and-conquer with sharing can be expressed and manipulated

in type theory for modular program development. This suggests an interesting approach to reuse in proof

development based on type theory and is also a good basis to develop useful libraries of reusable generic

proofs and proof sketches. Based on the notions of theory and theory morphism (similar to Burstall's notion

of deliverable), research is in progress to design such a library of abstract data types with an inheritance

and re�nement structure on the basis of the current library of simple inductive types in the Lego system. It

1



will allow users to reuse generic proofs and generic proof sketches to prove their concrete theorems simply

by instantiation.

Our suggestion to exploit the power of the object language (type theory) in reuse is not meant to say that

the meta-level study of reuse becomes less important. On the contrary, we believe many important issues

may only be addressed at the meta-level. For instance, many reusable proof strategies involve application

of generic forms of (meta-level) inference rules. It is interesting to investigate the combination of object-

level and meta-level reuse techniques. An example is that, in systems that support inductive data types,

there are striking similarities (or genericity) in the algorithms that are developed for di�erent inductive

types. This similarity is re
ected in the general schemata (see, e.g. [CPM90][Luo94a]) and suggests a useful

reuse strategy in various algorithm development and their correctness proofs. Such a genericity can only be

considered at the meta-level and is being investigated in the context of generic programming and program

transformation proofs [Luo94b].

A related interesting topic is to study how a language (e.g. with powerful type structures) more expressive

than the current programming languages may be used to implement a proof development system so that the

reusable proof scripts and proof strategies such as tactics may be expressed and manipulated [Pol95].

3 Supporting tools and reuse in software engineering

Reuse is an engineering issue, but it needs a sound basis to be supported properly. To develop suitable

tools to support reuse in proof development is especially important and some researchers have already

done some experimental work in this (e.g. [FH94]). To support our generic library of proofs and proof

sketches as described above, we need to build a good navigation tool for the user to �nd desirable generic

proofs/sketches in the library. The existing experience of software reuse is of particular interest in both

tool design and methodology study for proof reuse. We believe that proof engineering o�ers a good (and

speci�c) context to apply the idea of reuse and will hopefully contribute to the methodology and techniques

of software reuse as well.

References

[ACN90] L. Augustsson, Th. Coquand, and B. Nordstr�om. A short description of another logical framework.

In G. Huet and G. Plotkin, editors, Preliminary Proc. of Logical Frameworks, 1990.

[C

+

86] R.L. Constable et al. Implementing Mathematics with the NuPRL Proof Development System.

Pretice-Hall, 1986.

[CPM90] Th. Coquand and Ch. Paulin-Mohring. Inductively de�ned types. Lecture Notes in Computer

Science, 417, 1990.

[D

+

91] G. Dowek et al. The Coq Proof Assistent: User's Guide (version 5.6). INRIA-Rocquencourt and

CNRS-ENS Lyon, 1991.

[FH94] A. Felty and D. Howe. Generalisation and reuse of tectic proofs. Proc. of 5th Inter. Conf. on Logic

Programming and Automated Reasoning, 1994.

[LP92] Z. Luo and R. Pollack. LEGO Proof Development System: User's Manual. LFCS Report ECS-

LFCS-92-211, Department of Computer Science, University of Edinburgh, 1992.

[Luo93] Z. Luo. Program speci�cation and data re�nement in type theory. Mathematical Structures in

Computer Science, 3(3), 1993.

[Luo94a] Z. Luo. Computation and Reasoning: A Type Theory for Computer Science. Oxford University

Press, 1994.

[Luo94b] Z. Luo. Generic programming and program transformation. In preparation, 1994.

[Pol94] R. Pollack. The Theory of LEGO: A Proof Checker for the Extended Calculus of Constructions.

PhD thesis, Edinburgh University, 1994.

[Pol95] R. Pollack. Are tactics feasible? 2nd Conf. on Typed Lambda Calculi, 1995.

2


