An Account of Natural Language Coordination
in Type Theory with Coercive Subtyping*

Stergios Chatzikyriakidis' and Zhaohui Luo?

! Dept of Computer Science, Royal Holloway, Univ of London
Egham, Surrey TW20 0EX, U.K; Open University of Cyprus
stergios.chatzikyriakidis@cs.rhul.ac.uk,

2 Dept of Computer Science, Royal Holloway, Univ of London
Egham, Surrey TW20 0EX, U.K; Open University of Cyprus
zhaohui@cs.rhul.ac.uk

Abstract. We discuss the semantics of NL coordination in modern type
theories (MTTs) with coercive subtyping. The issue of conjoinable types
is handled by means of a type universe of linguistic types. We discuss
quantifier coordination, arguing that they should be allowed in principle
and that the semantic infelicity of some cases of quantifier coordination
is due to the incompatible semantics of the relevant quantifiers. Non-
Boolean collective readings of conjunction are also discussed and, in par-
ticular, treated as involving the vectors of type Vec(A,n), an inductive
family of types in an MTT. Lastly, the interaction between coordination
and copredication is briefly discussed, showing that the proposed account
of coordination and that of copredication by means of dot-types combine
consistently as expected.

1 Introduction

The literature on NL coordination dates back to [22] and a number of proposals
have been put forth within the Montagovian tradition since then. However, a
number of central issues as regards NL coordination have not been clarified
yet. In this paper we depart from single-sorted versions of type theory found in
Montague’s work (as well as in most of the subsequent work within the same
tradition) and employ a many-sorted modern type theory (MTT)3, as proposed
and studied for NL semantics in [30, 17, 18], to deal with two central issues in NL
coordination. These issues concern the notion of conjoinable types, in effect the
question of which NL elements can be coordinated, and non-Boolean conjunction,
where a collective rather than the expected Boolean distributive reading of and
arises. The difference between collective and distributive readings is exemplified

* This work is supported by the research grant F/07-537/AJ of the Leverhulme Trust
in the U.K.

3 Examples of modern type theories include Martin-Lof’s type theory [21,26], the
Unifying Theory of dependent Types (UTT) [15] and the type theory implemented
in the Coq proof assistant (pCIC) [7].



in the examples below, where the same conjoined NP is interpreted distributively
in (1) but collectively in (2):

(1) John and Mary came to the Party.
(2) John and Mary met at the Party.

We shall investigate how collective readings can be interpreted by means of
the inductive family of types of vectors in an MTT.

We further discuss the interaction between dot-types for coordinated NPs.
Dot-types have been proposed by Pustejovsky [28,29] for lexical interpretations
of inherently polysemous words in phenomena such as co-predication (see, for
example, [2]).* For example, book according to [28] can be represented with
the dot-type PHY e INFO, a type whose objects have both a physical and an
informational aspect. Dot-types have been formally introduced into MTTs with
coercive subtyping [17, 18] and a computational implementation of this account
in Plastic® has also been done [35]. What we want to look at in this paper is the
interaction between these types and coordination, i.e. examples of the following
sort:

(3) The book and my lunch were sent by mistake to someone else.

(4) John picked up the newspaper and the book from the floor.

Given that the dot-types of the coordinated phrases are different and assuming
that the NL coordination operate on the same types, we will have to explain
how coordination is possible in these cases. The problem that arises in examples
like (3) and (4) is that the individual NPs of the conjunction (e.g. the book and
my lunch in (3) have different types (PHY e INFO for book and EVENT e PHY for
lunch). The challenge is to account for the possibility of coordination in these
cases by, at the same time, retaining the assumption that coordination operates
on elements of the same type. As we shall see, the coercive subtyping mechanism
actually allows us to combine the proposed typing for NL coordinations and the
account with dot-types in a rather straightforward way.

2 Type Theory with Coercive Subtyping

In this paper, we employ modern type theories (MTTs) as the language for
formal semantics. A brief introduction to the relevant features of MTTs are
briefly given here.

An MTT has a number of differences when compared to Church’s simple type
theory as employed in Montague semantics [6,23]. One of the most important

4 See also [3] for a critique of the flaws in the various formalizations of dot-types in
their original formulation as well as in much of the later work based on that.

5 Plastic [5] is a proof assistant, an implementation of the modern types theory UTT
[15] on the computer for formalised proof development. In the context of linguistic
semantics, type theory based proof assistants such as Agda [1], Coq [7] and Plastic
can be used to formalise and reason about the formal semantics based on MTTs.



differences between an MTT and the simple type theory, is that the former can
be regarded as many-sorted while the latter single-sorted. MTTs use many types
to interpret Common Nouns (CN) such as man and table, while single-sorted
type theories use only one type (e) for the type of all entities (and another type ¢
for logical truth values), with CNs being interpreted as predicates of type e — ¢.

In Montague semantics, an Intransitive Verb (IV) is interpreted as a function
from entities to truth values (e — t), a type which is shared with CNs and
intersective adjectives, and a quantified NP as of the type from properties to
truth values ((e — t) — t).

In an MTT, types (‘sorts’) are used to interpret the domains to be repre-
sented. Some of them are:

— the propositional types (or logical propositions),

— the inductive types such as the type of natural numbers and X-types of
dependent pairs,

— the inductive families of types such as the types Vec(A,n) of vectors (or
lists) of length n, and

— other more advanced type constructions such as type universes.

For example, within such a many-sorted logical system CNs are not interpreted
as predicates as in the Montagovian tradition but rather as Types. Theoreti-
cal motivation behind such a proposal has been provided by the second author
based on the notion of identity criteria that CNs have according to [9]. (See [19]
for the exact details of this proposal.) Then given the interpretation of CNs as
types, adjectives are interpreted as a predicate over the type interpreting the
domain of the adjective. For example, the adjective handsome is interpreted
as [handsome] : [man] — Prop, with Prop being the type of logical proposi-
tions.% Modified CNs are then interpreted as X-types, the types that intuitively
represent subset types but contain explicit proof objects.”

One of the important features of MTTs is the use of dependent types. Two
examples of basic constructors for dependent types are IT and Y. The II-type
corresponds to universal quantification in the dependent case and implication in
the non-dependent case. In more detail, when A is a type and P is a predicate
over A, ITz:A.P(x) is the dependent function type that, in the embedded logic,
stands for the universally quantified proposition Va:A.P(x). A II-type degener-
ates to the function type A — B in the non-dependent case. In the case of X, if
A is a type and B is an A-indexed family of types, then X' (A, B), or sometimes
written as Xz:A.B(z), is a type, consisting of pairs (a,b) such that a is of type

5 MTTs have consistent internal logics based on the propositions-as-types principle
[8,14]. For example, in a predicative type theory such as Martin-Lof’s type theory,
the logical proposition A& B corresponds to the product type A x B (a special case
of X-type — see below) and a pair of a proof of A and a proof of B corresponds to an
object of the product type. In an impredicative types theory such as UTT, logical
propositions are similarly constructed as types but, furthermore, there is the type
Prop — a totality of logical propositions.

7 See [30, 17] for more details on this.



A and b is of type B(a). When B(x) is a constant type (i.e., always the same
type no matter what z is), the Y-type degenerates into product type A x B
of non-dependent pairs. X-types (and product types) are associated projection
operations 7 and o so that m1(a,b) = a and ma(a,b) = b, for every (a,b) of
type X (A, B) or A x B.

Coercive subtyping is an adequate subtyping mechanism for MTTs [16, 20]
and, in particular, it avoids a problem associated with the ordinary notion of sub-
typing (subsumptive subtyping), namely violation of canonicity [17].8 Basically,
coercive subtyping is an an abbreviation mechanism: A is a (proper) subtype of
B (A < B) if there is a unique implicit coercion ¢ from type A to type B and, if
s0, an object a of type A can be used in any context €z[_] that expects an object
of type B: €gla] is legal (well-typed) and equal to €p[c(a)]. For instance, one
may introduce [man] < [human]. Then, if we assume that [John] : [man] and
[shout] : [human] — Prop, the interpretation (6) of (5) is well-typed, thanks
to the coercive subtyping relation between [man] and [human]:

(5) John shouts.
(6) [shout]([John])

Ending our discussion on the preliminaries of TTCS, we mention one further
more advanced feature of the theory, that of universes. A universe is a collection
of (the names of) types into a type [21]. This can be seen as a reflection princi-
ple where the universe basically reflects the types whose names are its objects.
Universes are extremely useful in accounts of lexical semantics using MTTs.
Specifically, universes can help semantic representations. To give an example,
one may use the universe CN : Type of all common noun interpretations and,
for cach type A that interprets a common noun, there is a name A in ¢N. For
example,

[man] : cN  and Tex([man]) = [man] .

In practice, we do not distinguish a type in CN and its name by omitting the
overlines and the operator Ty by simply writing, for instance, [man].
Summarizing, we can say that the use of TTCS in interpreting NL semantics
has given a number of interesting results and insights. These include an increased
type granularity when compared to Montague Semantics given its type richness
as well as an adequate subtyping mechanism.® Furthermore the interpretation
of CNs as Types rather than predicates seems to be closer to the idea accord-
ing to which the distinguishing feature of CNs, when compared to other parts
of speech, is that only the former have what Geach called, criteria of identity
[9]. The work presented in [19] provides strong arguments for supporting the
non-predicate view on CNs based on Geach’s identity criteria. The successful
formalization [17] and subsequent implementation in Plastic [35] of dot.types is
another achievement of this line of research given that no proper formalization

8 See [17] for the notion of canonicity.
9 This subtyping mechanism is however in line with canonicity and as such computa-
tionally more attractive [17].



of dot.types existed up to that point. The use of universes has been also proven
fruitful in looking at alternative ways for defining the types for quantifiers and
adverbs among others. Lastly, parts of the various proposals made in the afore-
mentioned papers have been tested using the Coq interactive theorem prover.
Some first results can be seen in [18] as well as in this paper. Current work of the
first author concentrates on the use of Coq to prove valid NL theorems' as well
as building universes relevant to NL semantics (e.g. CN, LType) in Plastic.!!

3 Conjoinable Types

The issue of defining which NL types are conjoinable is of very high importance
to all accounts of coordination proposed so far. Most of the accounts that have
been proposed in the Montagovian tradition argue that conjoinable types are
either of type t or of a function type that ends with ¢. The formalization might
be different in individual cases but the core of the proposal is pretty much the
same. The definition as given by Winter [34] is given below (using the term
t-reducible):'?

(7) 7 is a t-reducible type iff 7 =t or 7 = 772, where 71 is any type and 7 is
a t-reducible type.

Such type of formulation allows coordination of categories ending in type ¢ only,
with type e conjunction not being possible. Thus, in these accounts proper name
coordination is either assumed to involve type-lifting to quantifier type or proper
names are assumed to be quantifiers in all cases. However, Partee & Rooth [27]
propose a definition of e conjoinable types to deal with collective reading cases.
Similar proposals have been made by Hoeksema [11]. Of course, an inductive
definition of an e-conjoinable type does not make much sense given that at least
in standard Montagovian semantics, the only e conjoinable types are the type
of individual concepts, of type s — e, i.e the type from indices to individuals, so
the definition basically covers just one case.

Moving away from the simple type theory in Montague Grammar and using
many-sorted MTTs, the first question to ask ourselves is how conjoinable cat-
egories can be defined. Well, the first question to be asked is which linguistic
types can be conjoined? Surprisingly (or not) it seems that all linguistic cate-
gories can be conjoined. We first note the obvious cases of sentence and predicate
coordination (8 and 9) to CN coordination (10):

(8) John walks and Mary talks.
(9) John walks and talks.

10 An example of this type is the following: if John and Mary met then John met Mary.
Such theorems can be proved if the correct semantics are given in each case.

1 This is not possible in Cog.

12 We follow the notation as this is given in [34]. As such, 7172 should be taken to mean
T1 — T2.



(10) A friend and colleague came.

Then, quantified NP coordination (11), quantifier coordination (12) and proper
name (PN) coordination are possible (13):

(11) Every student and every professor arrived.
(12) Some but not all students got an A.
(13) John and Mary went to Italy.

Adverb conjunction(14), preposition conjunction(15), PP conjunction (16)

(14) I watered the plant in my bedroom but it still died slowly and agonizingly.
(15) I can do with or without you.
(16) The book is on the table and next to the chair.

Lastly, coordination of subordinate connectives is also possible (17):

(17) When and if he comes, you can ask him.

3.1 Universe of Linguistic Types

In this section we will propose a way to handle the flexibility NL coordination
exhibits by using a MTT. The key idea behind the account we are going to
propose is the notion of a universe.

A universe, as we have already mentioned at the end of §2, is a collection of
(the names of) types into a type [21]. In the case of coordination, the universe
CN of the types that we have used to interpret common nouns is far too small
to capture the generality of the phenomenon. Given that all linguistic categories
can be coordinated, the universe we need, has to be far more general than CN.

The idea is to introduce a type universe LType of Linguistic Types. Intu-
itively, LType contains (the names of) all types that are employed in linguistic
semantics. Of course, in doing so, we will have to specifically say what we con-
sider a linguistic type to be. Even though a thorough discussion of meticulously
constructing the universe of linguistic types is out of the scope of this paper, we
shall indicate positively what types may have names in the universe LType.'3
Figure 1 contain some of the introduction rules for LType, where we have used
the so-called Russell-style formulation of a universe to omit the names of its
objects. The informal explanations of the rules in Figure 1 are given below.

— The type Prop of logical propositions is a linguistic type. (It is of type
PType!* by the first rule and hence of type LType by the last rule.)

13 We leave this most thorough and complete discussion of the universe LType for future
work.

14 Ptype can be thought of as the universe of predicates. It is an intermediate universe
used to build LType.



A: LType P(x): PType [z:A]

PType : Type Prop: PType IIz:A.P(x): PType
A:CN A : PType
LType : Type CN : LType A: LType A : LType

Fig. 1. Some (not all) introduction rules for LType.

— If A are linguistic types and P is an A-index family of types in PType, so is
the IT-type ITx:A.P(z). In particular, in the non-dependent case, if A; are
linguistic types, so is the arrow type A; — ... = A,, — Prop. (It is of type
PType by repeated uses of the third rule and hence of type LType by the
last rule.)

— The universe CN (of types that interpret common nouns) is an object of
type LType.

— If A interprets a common noun, then A is a linguistic type in LType. For
example, the Y-types that interpret modified CNs are in LT ype.

Other example types in LType include the type of VP adverbs and that of
quantifiers, shown in the following examples:

(18) ITA : oN. (A — Prop) — (A — Prop)
(19) ITA : oN. (A — Prop) — Prop

Please note that we have only listed some of the introduction rules for LType.
For example we have not yet included the type for PP-modifiers. At the moment,
we shall leave the universe LType to be open in the sense that we may introduce
new types into it in the future.'®

Having described the universe of linguistic types, we can now use it to de-
scribe the type of coordinators: every (binary) coordinator is of the following

type:
(20) ITA : LType. A - A — A

For instance, the coordinator and is of the above type.

To give an example of how this type works, let us imagine three cases of
coordination: PN coordination (John and George), propositional coordination
(John runs and Mary drives) and VP coordination (John cycles and drives). In
the first case, John and George are of type [Man], so the A in this case is
of type [Man] which is in LType given that it is of type CN. In the case of
propositional coordination, our A is of type Prop, which being a PType is also
an LType. In the third case our A is of type [Man] — Prop which is also in
LType. Similar considerations apply to all the cases from (8) to (17). Thus, this
type captures the flexibility associated with coordination.'® It is not difficult to

15 Formally, openness of a universe would imply that we do not impose an elimination
rule for it. We omit the technical details here.

16 Of course, there are cases discussed in the literature where coordination of different
categories seems to be possible. One such example is discussed in [24], where an



see that all examples of coordination from (8) to (17) are predicted via the type
given for coordination above.!'” However, what we need to discuss is examples
where the rule proposed in (20) might seem to overgenerate or departs from the
standard assumptions as these are made in the formal semantic literature.

3.2 Quantifier Coordination

The type for coordination we have proposed might be argued to overgenerate
for cases involving coordination of two quantifiers like the ones shown below:

(21) # Some and every man came
(22) # No and some boy read

The above sentences seem to be generated via the rule we have proposed for
coordination. Note, that this problem applies to all coordination accounts pro-
posed. Given that quantifiers involve a function type ending in ¢, they should be
conjoinable according to the accounts proposed in the Montagovian literature.
No explicit discussion has been made of how cases like these are disallowed, so
it would be good to see in more detail what is going on in these cases.

The basic problem is that some quantifiers seem to be able to be coordinated
and some others do not. Between the cases of quantifiers that cannot be coordi-
nated with a coordinator there are cases where adding a modal adverb between
the coordinator and the second conjunct make a difference in acceptability. For
example, adding the modal adverb possibly in (21) but not in (24) makes the
sentence semantically felicitous:

(23) Some and possibly every man came

(24) # No and possibly some boy read

For the rest of the cases, whether such sentences will be semantically felicitous
depends on the type of coordination in each case (cf. the two examples below):

(25) # One and two of my students came to the party.
(26) One or two of my students came to the party.

So, it seems that in principle, we should allow coordination of quantifiers,
since there are clear cases where this is possible. However, allowing coordination
of quantifiers to be in principle possible, we will have to explain semantically
infelicitous cases like (25). A way that can help us rule out a number of infelic-
itous semantic cases is to look at the semantics of the individual quantifiers in

adjective is coordinated with a NP: John is either stupid or a liar. We will not
pursue an account here but we could note that an account in a similar vein to the
one proposed by [25] where coordination even in this case operates on like and not
on unlike categories is possible.

17 All the examples have been checked using the Coq theorem prover [7]. The code can
be found in the Appendix.



combination with the coordinator in each case. Let us take the example of the
following NP:

(27) # Some and no men arrived.

The quantifiers in the above example can be coordinated via the rule we have
proposed. However, the semantics we get for the coordinated NP some and no
man are the following, in effect a contradiction:

(28) Jz : [man] .P(x)A ~ 3z : [man] .P(x)

We can quite plausibly assume that the contradictory semantics is the reason
the conjunction is infelicitous in (31), especially when uttered out of the blue
without any context. Now imagine the following situation: someone is lying and
has stated that no men arrived on one occasion and that some men arrived on
another. Then, the hearer might spot this contradiction and utter the following
‘some and no men arrived?’. In this case, some and no men is perfectly felic-
itous.'® Disjunction of the same quantifiers is possible without the aid of some
special context. Examples of this quantifier combination are quite frequently
found in NL:

(29) People with some or no academic training.

(30) This license may grant the customer the ability to configure some or no
parts of the software themselves.

The semantics of some or no x in contrast to the semantics of some and
no x do not give rise to a contradiction. To the contrary, they are always true
under any interpretation. The example below depicts the semantics of some or

no men:19

(31) 3z : [man] P(z)V ~ Jz : [man] .P(x)

Further examples of quantifiers that do not need a special context are some
but not all, more than three and less than five. It might then be the case, that
quantifier combinations that are always false need a special context in order to be
felicitous while quantifier combinations that do not fall into this category do not.
Of course, there are obvious counterexamples to such a proposal, for example
cases like some and all or most and all, which are of course infelicitous in the
absence of any special context contrary to what we expect in case what we say is
true. However, quantifiers like some and most in NL carry a quantity implicature
(see e.g. [13], [12] and [10] among others). The idea is that a speaker uttering
some and not the stronger all, does that because he believes that substitution
for the stronger value cannot be done salva veritate. For if the latter was true, he
would have uttered the stronger all. A quantifier combination like some and all
cancels out this implicature, so this might be the reason for the infelicitousness of

'8 The same kind of example can be devised for cases like (23).
19 This is the case assuming a logical interpretation of some. If the quantity implicature
is taken into consideration, the quantifier combination is not always true.



this quantifier combination when uttered out of context. The same can be argued
for the case of most and all. The issue requires more careful examination in order
to see whether what we have argued is true or not. In particular, one has to check
whether cases of quantifier combinations that are always false need the aid of
some special context in order to be felicitous. Then, cases where infelicitousness
arises unexpectedly must be shown to arise from other independent factors (like
the quantity implicature for example). We believe that what we have proposed
can produce a fruitful line of research as regards quantifier coordination but at
least for this paper, we will not examine the issue any further. What is rather
uncontroversial, no matter the assumptions we make as regards the interplay
of quantifier coordination and the use of context, is that we need a rule for
coordination that will in principle allow quantifier coordination. The rule we
have proposed in (24) suffices for this reason.

Recapitulating, we propose a general rule for coordination which extends
over a universe that contains all linguistic types, the universe LType. This rule is
general enough to allow all types of coordination we find in NL. The rule might
seem to overgenerate in the case of quantifier coordination, but as we have seen,
in principle quantifier coordination should be allowed. The infelicitous cases
(when uttered out of the blue) are attributed to the semantics of the individual
quantifiers under the coordinator involved in each case.

3.3 Non-Boolean Conjunction

The first thing we have to see is what is the prediction our typing rule proposed
for coordination makes for these cases. But before doing this, we first have to
discuss the typing of predicates like meet in their collective interpretation. Such
predicates can be seen as one place predicates that take a plural argument and
return a logical proposition (something in Prop in our case), an assumption
already made in a number of the accounts within the Montagovian tradition
(e.g. [34,33]). The plausible question is how plural arguments are going to be
represented.

An interesting account of plurality within an MTT is presented by [4], where
Martin-Lof’s type theory is used for linguistic semantics. In this account, plural
count nouns are interpreted using the type List(A). Such an account is shown to
give a uniform treatment of both singular and plural anaphora, being compatible
with the classical type-theoretic treatment of anaphora, as this is given by [32].20
In MLTT, List(A) corresponds to the set of lists of elements of a set A. We will
keep the intuition regarding the need to represent lists of objects but instead
of using the inductive type List(A), we will use the inductive family of types
Vec(A,n). Vec(A,n) and List(A) are very much alike, with the difference being
mainly that Vec(A,n) involves an additional argument n of type Nat, which

20 Another interesting account of plurals is given by [31] using Girard’s system F. Tt is

shown that the basic properties of plurals can be effectively accounted for by using
a second-order system like Girard’s system F.

10



counts the number of the elements in a list (that is why they are called vectors):2!

(32) Vec: (A : Type)(n : Nat)Type

Now, collective predicates can be given types in a more appropriate way. For
example, the collective predicate meet can be given the following type:

(33) IIn:Nat. Vec([human],n + 2) — Prop

Please note that, as n > 0, an object of type Vec([human],n + 2) has length of
at least 2 or longer — this means that meet can only be applied to at least two
people, but not less. Such more exact requirements are captured in typing by
means of the inductive families like Viec(A,n).

Now, let us explain how to interpret sentences like (34):

(34) John and Mary met.

The above typing of meet assumes that the typing for humans can distinguish
the number for the plural cases. In other words, this assumes that, collective and
should be given the following type:

(35) A : CN. IIn,m:Nat. Vec(A,n) = Vec(A,m) = Vec(A,n+m)

Therefore, for example, assuming that .J : Vec([human], 1) and M : Vec([human], 1),
then J and M is of type Vec([human],2). In order to type phrases like John
and Mary, we need to introduce the following coercions, for every type A:

A <. Vec(A,1)

where the coercion ¢ maps any a to [a], the vector with only element a. With
John : [man] < [human] and Mary : Jwoman] < [human], we have that
John and Mary is interpreted as of type Vec([human],2) and therefore, the
above sentence (34) gets interpreted as intended.

However, we are not done yet with collective predication, given that we have
not yet discussed cases involving quantifiers. Such a case is shown below:

(36) Three men and five women met.

Given the type associated with quantifiers, the rule for collective coordination
as this was given in (35) will not work. What we propose is to use a unit type
which will encode both typings for collective and. There is no space here to

21 See Chapter 9 of [15] for the formal definition of Vec(A,n). We omit the formal
details here. Furthermore, and as suggested by an anonymous reviewer, one might
consider using finite types (see for example Appendix B of [19]) instead of vector
type. This seems to be a good suggestion and will be considered for future refinements
of the proposals found in this paper.

11



explain the notion of a unit type but let us say that such a type will encode both
the typings in (37) via the coercions in (38):%2

(37) [andy] : HA : CN. IIn,m:Nat. Vec(A,n) — Vec(4,m) = Vec(A,n+ m)
[ands] : ITA : ¢oN. (Vec(A,n) — Prop) — Prop) — ((Vec(A,m) —
Prop) — Prop) — ((Vec(A,n+ m) — Prop) — Prop)

(38) c1(and) = Jand;] and cz(and) = [andz]

Now, given [man], [woman] < [human], we have:

(39) and([three men])([five women]) : ((Vec([human],3 + 5) — Prop) —
Prop)

Meet is applied to the above type and the sentence is well-typed.

Remark 1. Another way of dealing with collective predication is to assume a
type for collective and that extends over the universe LType rather than C'N.
This rule will produce the following typing in case of quantifier coordination
Vec(((A — Prop) — Prop),n+ m). However, given such a type since meet will
not be able to apply assuming the type in (40). The solution in this case will
be to have a unit type for meet, where one of the two types of the unit type is
type lifted and turned into a functor taking a G@Q as an argument. We leave the
discussion on the consequences and formalization of such proposal open due to
space limitations. a

One further welcoming extension of the account proposed is a straightforward
explanation of the way the reciprocal each other functions in English. Verbs like
meet are reciprocal predicates in the sense that they do not need an overt recip-
rocal to give rise to a reciprocal reading (basically what we have been calling the
collective reading so far). For non-reciprocal predicates, there is the possibility
of getting these readings via the use of each other. The idea is that each other in
English turns a transitive predicate into an intransitive one whose sole argument
is a vector A : CN with n of at least 2:23

(40) [eachother] : ITA : ¢N.(A — A — Prop) — (Vec(A,n + 2)Prop)

22 Another possibility will be to assume that only the type relevant for the collec-
tive interpretation of GQs is needed. In this case, proper names can be interpreted
collectively only in their GQ guise.

23 If we want to generalize the rule to verbs with arity of more than two, we can use
the following: [eachother] : IIA : ctN.(A — A — A* — Prop) — (Vec(A,2) —
A*Prop), where A* stands for 0 or more A arguments.

12



4 Interaction of Coordination and Copredication

Dot-types have been successfully formalized in MTTs with coercive subtyping
[17,18], and an implementation of them in the proof assistant Plastic also exists
[35]. We first summarize the account proposed for dot-types and then proceed
and discuss the interaction between dot-types and coordination. We will use book
as our prototypical example in presenting the account.

Book is assumed to be a dot-type having both a physical and an informational
aspect. The type-theoretic formalization of this intuition proceeds as follows.
Let PHY and INFO be the types of physical objects and informational objects,
respectively. One may consider the dot-type PHY®INFO as the type of the objects
with both physical and informational aspects. A dot-type is then a subtype of
its constituent types: PHY @ INFO < PHY and PHY e INFO < INFO. A book may
be considered as having both physical and informational aspects, reflected as:

(%) [book] < PHY e INFO.

Now, consider the following sentence:

(41) John picked up and mastered the book.
We assume the following typing for pick-up and master respectively:

[pick up] : [human] — PHY — Prop
[master] : [human] — INFO — Prop

Because of the above subtyping relationship (x) (and contravariance of subtyping
for the function types), we have

[pick up] : [human] — PHY — Prop
< [human] — PHY e INFO — Prop
< [human] — [book] — Prop

[master] : [human] — INFO — Prop
< [human] — PuyY e INFO — Prop
< [human] — [book] — Prop

Therefore, [pick up] and [master] can both be used in a context where terms
of type [human] — [book] — Prop are required and the interpretation of the
sentence (41) can proceed as intended.

The first case of interaction has already been introduced and involves exam-
ples like (41). It is to see how this is going to be predicted given what we have
said.?*

21 See [17,18] for an account of this.
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The next step is to take a look at examples where two words with dot-types
are coordinated. Such an example is shown below:

(42) The book and my lunch were sent by mistake to someone else.

In the above example we have two dot-types involved, PHY e INFO and PHY e
EVENT, representing the types for book and lunch respectively. Let us see whether
the rule for coordination we have along with the treatment of dot-types will give
us the correct results.

We need to coordinate the two NPs:

[the book] : [book] and  [my lunch] : [lunch].
Furthermore, the passive send is of the following type:
[sendpqss] : HUMAN — PHY — Prop.

Now, because
[book] < PHY e INFO < PHY

[lunch] < PHY @ EVENT < PHY

the above sentence (42) can be interpreted as intended. In other words, the
coercive subtyping mechanism interacts with that for coordination correctly.

5 Conclusions

In this paper we presented an account of NL coordination using Type Theory
with Coercive Subtyping. The issue of conjoinable types was taken care of by
proposing an inductive type for coordination which extends over the universe
of Linguistic Types, called LType. This type has been shown to be sufficient to
explain the flexibility of NL coordination. We argued that a rule for NL coor-
dination should in principle allow quantifier coordination and showed that the
infelicitous quantifier combination cases are due to the inherent semantics of the
quantifier combination under the coordinator in each case, along with general
pragmatic implicatures associated with quantifiers (e.g. the quantity implica-
ture for quantifiers some and most). Non-Boolean conjunction was accounted
for, assuming that collective predicates take one vector argument representing
plurality. A second rule for collective and was proposed which takes two vector
arguments of n and m length and produces a vector type of length n+m. Lastly,
the interaction of dot.types with coordination was briefly discussed. It was shown
that the coordination account proposed in combination with the co-predication
account as this was given in [18] gives the correct predictions.
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A Implementations in Coq

We use Coq’s predifined Type Universe instead of LType. Bvector is needed
for vectors (Require Import Bvector). The coercion A <. Vec(A, 1) for proper
nouns is not possible in Coq, so we have to introduce the coercions as separate
entries.

A.1 Conjoinable types

(* Categoriesx)

Definition CN := Set.

Parameters Bank Institution Human Man Woman Object Animal 0OObject: CN.

Parameter John Stergios Zhaohui : Man.

Parameter Mary: Woman.

Axiom mh : Man->Human. Coercion mh : Man >-> Human.

Axiom wh : Woman->Human. Coercion wh : Woman >-> Human.

Axiom ha: Human-> Animal. Coercion ha: Human>-> Animal.

Axiom ao: Animal->0Object. Coercion ao: Animal>-> Object.

Axiom ooo: 00bject-> Object. Coercion ooo: 00bject>->Object.

Parameter walk: Animal ->Prop.

Parameter talk cycle drive: Human->Prop.

Parameter attack killed: Animal -> Animal -> Prop.

Parameter If when: Prop-> Prop-> Prop.

Parameter the some most all: forall A:CN, (A->Prop)->Prop.

Parameter die: 0Object-> Prop.

Parameter slowly agonizingly: forall A:CN, (A->Prop)->(A->Prop).

Parameter And: forall A:Type, A->A->A. (xPredefined Type universe
instead of LTypex)

(¥Cases to checkx)

Check And Man (Stergios) (Zhaohui)

Check And Man (Stergios) (Mary) (*does not go through because Mary:Womanx)

Check And Human (Stergios)(Mary) (*this is fine given Woman Man<Humanx)
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Check And ((Human->Prop)->Prop) (some Man) (some Woman) (*Quantifier NP coordination)

Check And (forall A: CN, (A->Prop)->Prop) (some)(all).(*Quantifier coordinationx)

Check And (Human->Prop) (cycle) (drive) (*VP coordinationx)

Check And (forall A:CN, (A->Prop)->(A->Prop)) (slowly) (agonizingly). (*VP adverb coordination)
Check And (Prop->Prop->Prop) (If)(when) (*subordinate conjunction coordinationx)

A.2 Non-Boolean Conjunction

Require Import Bvector.

Variables n m: nat.

Parameter meetc:forall n:nat, vector Human(n+2)->Prop. (*collective meetx*).

Parameter Johnl Georgel: vector Human 1.(xcoercions do not work with vectors so we use Human
instead of Man herex)

(¥Unit type for collective Andx*)

Inductive OneAndc : Set := Andc.

Definition AndSeml := forall A: CN,forall n:nat,forall m:nat, vector (A)(n)

->vector (A) (m) ->vector (4) (n+m) .

Definition AndSem2 :=forall A: CN,forall n:nat,forall m:nat, ((vector A n)->Prop)->Prop->
((vector A m)->Prop)->Prop->((vector A (n+m))->Prop).

Parameter Andcl : AndSeml.

Parameter Andc2 : AndSem2.

Definition al (a:0OneAndc) : AndSeml

Definition a2 (a:0OneAndc) : AndSem2
*Some interesting cases to checkx*
Check meetc 0 ((Andc:AndSeml (Human) (1) (1) (Johnl) (Georgel)) (*John and George met, with both George
and John of lower typex)

Andcl. Coercion al : OneAndc >-> AndSeml.
Andc2. Coercion a2 : OneAndc >-> AndSem2.

A.3 Co-predication

(* Phy dot Info *)

Parameter Phy Phyl Info : CN. (*Phyl should be taken to be the same as Phyx*)

Record PhyInfo : CN := mkPhyInfo { phy :> Phy; info :> Info }.

Parameter Book: PhylInfo.

Parameter Event : CN.

Record EventPhy : CN := mkEventPhy { event :> Event; phyl :> Phyl}. (*Phyl is used because Phy
cannot be used twicex)

Parameter lunch: EventPhy.

Axiom po: Phy->Object. Coercion po:Phy>->0Object.

Axiom pp: Phyl->Phy. Coercion pp: Phy1>->Phy. (*We introduce this coercion to mean that the two
Phy and Phyl are the same.x*)

Parameter was_given_to_someone_else: Object->Prop.

*Interesting case to checkx)

Check was_given_to_someone_else (And(Object) (Book) (lunch)).

17



