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Propositional Forms of Judgemental Interpretations
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Abstract In formal semantics based on modern type theories, some sentences
may be interpreted as judgements and some as logical propositions. When
interpreting composite sentences, one may want to turn a judgemental inter-
pretation or an ill-typed semantic interpretation into a proposition in order
to obtain an intended semantics. For instance, an incorrect judgement a : A
may be turned into its propositional form is(A, a) and an ill-typed application
p(a) into do(p, a), so that the propositional forms can take part in logical
compositions that interpret composite sentences, especially those that involve
negations and conditionals.

In this paper, we propose an operator not that facilitates such a transfor-
mation. Introducing not axiomatically, with five axiomatic laws to govern its
behaviour, we shall use it to define is and do and give examples to illustrate
its use in semantic interpretation. The introduction of not into type theories
is logically consistent – this is justified by showing that not can be defined by
means of the heterogeneous equality JMeq so that all of the axiomatic laws
for not become provable. Therefore, since the extension with JMeq preserves
logical consistency, so does the extension with not. We shall also study con-
ditions under which is and do operators can be used safely without the risk
of over-generation.
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1 Introduction

In recent years, the virtue of rich type structures in constructing semantic
interpretations has been recognised by many researchers and various rich type
systems have been successfully employed in formal semantics including, for ex-
ample, (Luo, 2012b; Retoré, 2014; Bekki, 2014). In some of these approaches,
common nouns are interpreted as types, rather than predicates as in the tra-
ditional Montagovian approach. For example, the sentence (1) is interpreted
as (2), where Teacher that interprets the CN ‘teacher’ is a type, talk that
interprets the verb ‘talk’ is a predicate whose domain is type Human of hu-
mans, and Teacher is a subtype of Human (and hence talk(x) is well-typed
when x : Teacher). The interpretation (2) is different from the traditional
Montagovian semantics (3) where teacher, talk1 : e → t are predicates with
domain e of all entities.1

(1) Every teacher talks.

(2) ∀x : Teacher. talk(x)

(3) ∀x : e. teacher(x) ∧ talk1(x)

This CNs-as-types paradigm (Mönnich, 1985; Sundholm, 1986; Ranta, 1994;
Luo, 2012a) has several merits including, for instance, desirable treatment of
some linguistic features such as copredication that have been found difficult
to be dealt with in traditional settings. It is adopted and further developed in
formal semantics based on Modern Type Theories (MTT-semantics for short)
(Luo, 2012b; Chatzikyriakidis and Luo, 2020), where the rich type structure
has been used effectively and shown to provide powerful means in semantic
constructions.2

The CNs-as-types paradigm has led to the use of type-theoretic judgements,
as well as logical propositions, as semantic interpretations of NL sentences. In
type theory, a most basic form of judgement is that of membership judgements:
a : A is a judgement stating that a is of type A. As an example, (4) can be
interpreted as the judgement (5), where Student is a type. Note that this is
different from the Montagovian interpretation (6) where (4) is interpreted as
a logical formula with ‘Bob’ as an entity b : e and ‘student’ as a predicate
student : e→ t.

(4) Bob is a student.

(5) bob : Student

(6) student(b)

There are several notable advantages when CNs are interpreted as types.
A straightforward one is that selectional restriction can naturally be enforced

1 In the literature on linguistic semantics, the formula in (3) is usually written as
∀x. teacher(x) ∧ talk1(x) without the domain e because, in most of the cases in the Mon-
tagovian setting, quantifications are always over e of all entities.

2 For example, the rich type structure in MTTs has been used to interpret a wide range
of modifications – see (Chatzikyriakidis and Luo, 2020) (especially its §3.3) for a recent
account based on earlier treatments as reported in (Chatzikyriakidis and Luo, 2013, 2017a).
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automatically by means of decidable type-checking. For example, consider the
following sentence (9), which contains a category error and, in normal cir-
cumstances, most people would regard as meaningless. One may consider that
meaningfulness is captured semantically as being well-typed, while meaning-
lessness as being ill-typed (Asher, 2012). For example, for talk : Human →
Prop, the semantic interpretation (10) of the sentence (9) would not be well-
typed, since table t is not a human. As another example, the interpretation
(12) of (11) is also ill-typed because eat : Animal → Food → Prop requires
its first argument to be an animal, while the table t0 is not and, therefore,
there is a semantic type mismatch and the function application is impossible.3

(9) (#) Tables talk.

(10)(#) ∀t : Table. talk(t)

(11)(#) The table ate the egg.

(12)(#) eat(t0, e0)

In a type theory, it is decidable whether an expression such as (10) or (12)
is well-typed (i.e., it can be checked by the computer) and, therefore, link-
ing meaningfulness with well-typedness gives a nice solution to selectional
restriction and, therefore, modern type theories with their rich type structures
provide a powerful framework in this respect. It is necessary to note that, to
adopt the CNs-as-types approach, there must be a compatible subtyping mech-
anism in the type-theoretical framework for, otherwise, the approach would
not be viable. For instance, in the semantics (2) of (1), Teacher is a subtype
of Human and this subtyping relationship makes the application talk(x) in
(2) well-typed. Fortunately, there is a subtyping mechanism called coercive
subtyping (Luo, 1999; Luo et al., 2013; Xue, 2013) that is suitable for modern
type theories and makes the CNs-as-types approach viable (Luo, 2010, 2012b).

It is important to emphasise the fact that a judgement in a type theory
is not a logical proposition. When interpreting some sentences as judgements,
one would want to turn a judgemental interpretation into a proposition so
that composite sentences can be interpreted properly by logical compositions,
especially when it occurs negatively in negative sentences or conditionals. For
instance, the conjunction connective ‘and’ is used in (13) and one might use
(14) to interpret (13). But (14) is not a well-formed formula (or, equivalently,
ill-typed as a proposition) because the judgement bob : Student is not a logical
proposition and cannot be used as a conjunct.

(13)Bob is a student and he is happy.

3 Note that this is different from Montague semantics: the Montagovian interpretations (7)
and (8) are well-formed formulas of type t because table, talk1 and eat1 are all predicates
with domain e and t1 and e1 are entities of type e. Put in another way, they are legal
formulas, although their intended interpretations should usually be false.

(7) ∀x : e. table(x) ∧ talk1(x)

(8) eat1(t1, e1)
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(14)(#) (bob : Student) ∧ happy(bob)

As another example, although (9) is usually regarded as meaningless, its nega-
tion (15) is meaningful. However, (16), the intuitive interpretation of (15), is
ill-typed, just like (10), because table t is not a human.

(15)Tables do not talk.

(16)(#) ∀t : Table. ¬talk(t)

In order to give proper semantic interpretations to such sentences as (13)
and (15), one would need to turn those interpretations like (14) and (16) that
involve judgemental or ill-typed interpretations into acceptable propositional
forms so that they can occur meaningfully in logical compositions or nega-
tive contexts. In this paper, we shall introduce such propositional forms, show
that their addition to the underlying type theory preserves the good properties
such as logical consistency, and study how to prevent potential over-generation
because of such extra propositions. For example, a propositional form corre-
sponding to a membership judgement a : A may be the proposition is(A, a)
which intuitively expresses that a is of type A. If so, the conjunctive sen-
tence (13) can be interpreted as (17). Similarly, the ill-typed talk(t) would
correspond to a proposition do(talk, t) and the negative sentence (15) can be
interpreted as (18).

(17)is(Student, bob) ∧ happy(bob)

(18)∀t : Table. ¬do(talk, t)

We shall propose an operator not for constructing propositional forms of
judgemental or ill-typed interpretations. In particular, both operators is and
do can be defined by means of not to deal with negative sentences and con-
ditionals in satisfactory ways. not and its associated axiomatic laws can be
justified by means of the heterogeneous equality for type theories (McBride,
2002) and, in particular, it is shown that the extension by not is logically con-
sistent. Furthermore, we’ll also study how to avoid over-generation by means
of the operators is and do. This shows that our proposal offers a satisfac-
tory solution so that the semantics of negative sentences and conditionals can
be properly considered in the extended type theory. Logical expressions are
provided together with Coq codes in this work.

The rest of the paper is organised as follows. In the following subsection
§1.1, we shall give a summary of the related work, especially about formal
semantics based on type theories. In §2, we informally discuss the issue of
judgemental and ill-typed interpretations and the idea of introducing their
propositional forms. Formally proposing the solution, we introduce not in §3,
where its axiomatic rules are studied and NL examples are given to illustrate
how the operators is and do, defined by means of not, can be used in se-
mantic interpretations. §4 uses the heterogeneous equality JMeq to justify the
introduction of not (and hence is and do) and, in §5, we study how to avoid
over-generation when is and do are used for semantic interpretations.
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1.1 Related Work: Formal Semantics Based on Type Theories

The application of type theory to formal semantics has been initiated by
Montague’s pioneering work (Montague, 1974). Montague employed Church’s
simple type theory STT (Church, 1940) (and Henkin’s model theory of STT
(Henkin, 1950)) as the foundational language for formal semantics. This has
since become the dominant approach in this field. An enormous amount of
work based on Montague’s original system IL, or its variations, have been
produced since then. One such work is Gallin’s study of TY2, a reformula-
tion of Church’s STT with an extra base type (concerning intensions), and his
translation of Montague’s IL into TY2 which establishes a solid foundation for
Montague’s semantics (Gallin, 1975).There are many other related research on
NL semantics in type theory including, for instance, research relating the dy-
namic frameworks such as dynamic predicate logic (Groenendijk and Stokhof,
1991) and Discourse Representation Theory (Kamp and Reyle, 1993) to simple
type theory (Groenendijk and Stokhof, 1990; Muskens, 1996).

In the last two decades or so, researchers have worked on employing rich
type theories for formal semantics. In his seminal work, Ranta (Ranta, 1994)
proposed to study various aspects of NL semantics using Martin-Löf’s inten-
sional type theory (a typical Modern Type Theory4). Many other researchers
have also recognised the potential advantages of rich type structures for for-
mal semantics including, for example, (Mönnich, 1985; Sundholm, 1989; Luo
and Callaghan, 1998; Boldini, 2000; Cooper, 2005; Dapoigny and Barlatier,
2009; Bekki, 2014; Retoré, 2014). More recently, there has been a move to
develop Modern Type Theories as a full-blown setting for formal semantics
(MTT-semantics – see (Luo, 2012b; Chatzikyriakidis and Luo, 2020) among
other papers). It has been argued (Luo, 2014, 2019a) that MTT-semantics
has the advantage of being both proof-theoretic and model-theoretic: being
proof-theoretic as discussed in (Kahle and Schroeder-Heister, 2006), it pro-
vides direct support of practical applications of computer-assisted reasoning
with proof assistants; and being model-theoretic, their rich type structures
deliver a wide semantic coverage of various linguistic features.5

The fact that MTTs are proof systems with proof-theoretic semantics
has a significant and practical consequence in NL reasoning based on MTT-
semantics. In particular, this makes it possible for MTTs to be implemented

4 By Modern Type Theories (MTTs), we refer to the family of formal systems such as
Martin-Löf’s intensional type theory (MLTT) (Martin-Löf, 1975; Nordström et al., 1990),
the Calculus of Inductive Constructions (pCIC) (Coq, 2010) and the Unifying Theory of
dependent Types (UTT) (Luo, 1994). Martin-Löf’s type theory MLTT can be employed as
an adequate foundational language for MTT-semantics when it is extended with h-logic –
see (Luo, 2019b) for more details.

5 Another important property of MTTs is decidability, which is necessary for an internal
logical system based on the propositions-as-types principle (Curry and Feys, 1958; Howard,
1980). Note that, given a proof candidate a and a proposition A, it should be decidable
whether a : A is correct (i.e., type checking should be decidable), because we are dealing
with a finite proof system and, in particular, both a and A are finite. Please also note that
this is different from provability of a proposition, which is undecidable because, without a
proof candidate, one has to try to find out whether a proof exists.
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in proof assistants such as Agda (Agda 2008, 2008), Coq (Coq, 2010) and
Lego/Plastic (Luo and Pollack, 1992; Callaghan and Luo, 2001) – computer-
assisted reasoning systems that computer scientists have developed and suc-
cessfully used for the formalisation of mathematics and verification of com-
puter programs. Therefore, MTT-semantics can be directly implemented in
proof assistants that implement MTTs: for example, the MTT-semantics in
type theory UTT has been implemented in Coq (Chatzikyriakidis and Luo,
2014; Luo, 2011) and Plastic (Callaghan and Luo, 2001; Xue and Luo, 2012)
and used for NL reasoning (Chatzikyriakidis and Luo, 2016). In this paper,
we shall use the Coq system in checking the proposed semantics etc. The
interested reader can also find a short introduction to Coq in Appendix A.

2 Judgemental Interpretations and Their Propositional Forms

In Modern Type Theories (MTTs, see Footnote 4), judgements and their deriv-
ability are basic concepts: for example, a judgement a : A asserts that object
a is of type A. In MTT-semantics, we allow judgemental interpretations: sen-
tences can be interpreted by means of judgements as well as logical propo-
sitions. For example, (19) can be given the judgemental interpretation (20),
while (21) can be interpreted as the logical proposition talk(j) of type Prop.

(19)John is a human.

(20)j : Human

(21)John talks.

(22)talk(j)

Some judgements are derivable, representing correct assertions. For in-
stance, the above interpretation (20) is derivable with j : Man and Man ≤
Human. Some judgements are non-derivable and, as judgemental interpre-
tations, they indicate that the interpreted NL sentences are meaningless in
usual situations. For example, (23) is usually considered meaningless (unless
in some fictional or special setting) and its semantic interpretation (24) is
non-derivable.

(23)(#) John is a table.

(24)j : Table

Although it is straightforward to see that (20) is derivable, the non-derivability
of (24) is not: with j : Man, it assumes that the types Man and Table have no
common objects (formally, they are disjoint, i.e., they do not have non-empty
common subtypes – see §5).

Besides derivable and non-derivable judgements, some judgements are only
potentially derivable because one does not have the full information to make the
determination, or put in another way, whether it is derivable depends on the
environment to be fixed. For example, for the sentence (25), its judgemental
interpretation (26) is potentially derivable since, intuitively, John may be a
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male student or may not be a student at all: (26) is derivable in the former
situation but non-derivable in the latter.6

(25)John is a student.

(26)j : Student

Since judgements are not propositions, they cannot be directly used in
semantic compositions with other propositional interpretations. For instance,
consider the sentence (27) with the conjunction connective ‘and’. The expres-
sion (28), that one might use to interpret (27), is not a well-formed formula
(or, equivalently, ill-typed as a proposition) because the judgement j : Human
is not a logical proposition and cannot be used as a conjunct.

(27)John is a human and he is happy.

(28)(#) (j : Human) ∧ happy(j)

How can a judgemental interpretation be turned into a proposition in order to
compose with other propositional interpretations? For instance, can we find a
proposition P that corresponds to the judgement j : Human so that (27) can
be interpreted as P ∧ happy(j)? The answer to this question is positive – let’s
consider the different categories of judgements in turn, starting with derivable
judgements.

When derivable, a judgemental interpretation has a simple corresponding
proposition: if a : A is derivable, its corresponding proposition is pA(a), where
pA : A→ Prop is defined as in (29), the constant predicate of type A→ Prop
that is always true for any object of type A. For instance, the judgemental
interpretation j : Human corresponds to pHuman(j) and, therefore, the com-
posite sentence (27) can be interpreted as (30). In other words, we obtain
(30) from (28) by using the proposition pHuman(j) to replace the judgement
(j : Human).

(29)pA(x) = true, for any x : A.

(30)pHuman(j) ∧ happy(j)

Note that, although pA is a simple constant predicate, it is non-trivial in that
the well-typedness of pA(a) presupposes that a is of type A. In other words,
the truth of pA(a) is (meta-theoretically) equivalent to the correctness (deriv-
ability) of the judgement a : A. For example, pHuman(j) is true if, and only
if, j : Human is derivable. That is why we can use pA(a) as the propositional
form of a derivable judgement a : A:

a : A (derivable) ! pA(a)

A non-derivable judgemental interpretation indicates that the interpreted
sentence is meaningless, as exemplified by (23-24). However, the negation of

6 Formally, (26) is derivable if, for example, j : Σx:Student.male(x), which is a subtype of
both Student and Man with Student ≤ Human and Man = Σx:Human.male(x). Under
many other environments, the judgement j : Student is non-derivable.
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such a sentence is usually meaningful, as shown in (31), which negates (23).
If such a sentence is used as a premise of a conditional, the whole sentence is
meaningful as well: see (32) for an example.

(31)John is not a table.

(32)If John were a table, Mary would be happy.

How to interpret such sentences? 7 For instance, consider how to interpret
the negative sentence (31). First, we cannot use the logical connective ¬ to
negate the judgemental interpretation j : Table – the resulting expression
(33) is illegitimate because j : Table is not a proposition. Secondly, we cannot
simply negate the judgement j : Table meta-theoretically: what it would result
in, (34), is only a meta-level statement. Thirdly, we cannot use the predicate
pTable, either: if we did so as in (35), we would have assumed the well-typedness
of pTable(j), which is equivalent to the derivability of j : Table.

(33)(#) ¬(j : Table)

(34)(#) (j : Table) is not derivable.

(35)(#) ¬pTable(j)

In other words, in order to interpret composite sentences like (31) and (32),
we’d need to have a propositional form of the judgement j : Table. Fortunately,
such a proposition exists: we have a proposition is(Table, j) which intuitively
means that ‘j is of type Table’. So, (31) and (32) can now be interpreted as
(36) and (37), respectively.

(36)¬is(Table, j)
(37)is(Table, j)⇒ happy(m)

In general, for any type T and any object a : A, if a : T is non-derivable, its
propositional form is is(T, a) and can be used in a negative context adequately
in a semantic interpretation (see §5):

a : T (non-derivable and occurring negatively) ! is(T, a)

When a judgemental interpretation is only potentially derivable, the is-
proposition may tentatively be used as its propositional form. For instance, the
propositional form of j : Student of the sentence (25) may be is(Student, j)
and the composite sentences (38-40) may be interpreted as (41-43), respec-
tively.

(38)John is a student and he is happy.

7 The second author is grateful to several researchers who have discussed with him about
how to interpret negative sentences in MTT-semantics, including Glyn Morrill (during ESS-
LLI 2011), Nicholas Asher (in an email communication about a paper in LACL 2014) and
Koji Mineshima (during ESSLLI 2014 and subsequent communications with the second
author when he was writing (Chatzikyriakidis and Luo, 2017b), where a preliminary NOT-
operator was studied – see Footnote 8 in §3.2.)
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(39)John is not a student.

(40)If John is a student, he is happy.

(41)is(Student, j) ∧ happy(j)

(42)¬is(Student, j)
(43)is(Student, j)⇒ happy(j)

But note that such interpretations with the is-operator are only tentative
because, whence the environment is fully fixed, some of them might be in-
adequate. If j : Student is derivable, is(Student, j) is logically equivalent to
pStudent(j) (by an axiomatic law of not – see §3). If j : Student is non-
derivable, the interpretations (42) and (43) are OK, but (41) is inadequate
(or ‘over-generates’, as some would put it) because sentence (38) is usually
regarded as meaningless.

Besides judgemental interpretations, some NL sentences may also be diffi-
cult to be interpreted straightforwardly because their logical semantics would
seem to involve ill-typed applications (or potentially ill-typed expressions).
Such situations often occur for negative sentences or conditionals. For instance,
consider (15), repeated below as (44), which is a negative sentence about a
general verb ‘talk’. First note that, unlike the positive sentence ‘Tables talk’
which is regarded as meaningless in usual situations, its negation (44) is mean-
ingful. However, to interpret it, one cannot use (45) since it involves talk(x)
which is ill-typed (talk’s arguments are humans and it cannot be applied to a
table). Fortunately, we have a proposition do(talk, x) that intuitively means
that ‘x talks’. Therefore, the negative sentence (44) can be interpreted as (46).
Similarly, the conditional (47) cannot be interpreted as (48), but rather (49).

(44)Tables do not talk.

(45)(#) ∀x:Table. ¬talk(x)

(46)∀x:Table. ¬do(talk, x)

(47)If a table talked, Mary would be surprised.

(48)(#) ∃x:Table. talk(x) ⇒ surprised(m)

(49)∃x:Table. do(talk, x) ⇒ surprised(m)

In general, when an ill-typed application p(a) occurs negatively, its correspond-
ing propositional form do(p, a) can be used in semantic interpretations:

p(a) (ill-typed and occurring negatively) ! do(p, a)

Technically, both propositional operators is and do can be defined by
means of a more generic operator not, which has been proposed and studied
in (Xue et al., 2018) (and preliminarily in (Chatzikyriakidis and Luo, 2017b)).
Adding not to a modern type theory amounts to a proper extension and
needs be justified to show, for example, that logical consistency is preserved.
not (and is and do) will be studied below: we shall show how they can be
introduced, how they may be employed in semantic interpretations, how their
introduction to type theory can be justified and how to avoid over-generation
in their use.
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3 Propositional Forms: A Formal Treatment

As explained above, in MTT-semantic interpretations, one may need to turn a
judgemental interpretation or an ill-typed application into a well-typed propo-
sition. This can be illustrated by examples whose interpretations involve the
following, where the examples are all from the above §2:

– Derivable judgements – exemplified by (20) that interprets (19).
– Non-derivable judgements (in negative occurrences) – when interpreting

sentences like (31-32).
– Ill-typed applications (in negative occurrences) – when interpreting sen-

tences like (44) and (47).

There are propositional forms corresponding to such judgemental or ill-typed
interpretations and, in this section, we’ll study them in a more formal and
precise way. We shall first introduce the true predicate pA, used to give propo-
sitional forms for derivable membership judgements, and then the operator
not that can be used to define is and do that provide propositional forms
for non-derivable judgements or ill-typed applications, respectively, when used
in negative contexts. The not-operator will be introduced axiomatically and
examples are given to show how these operators can be used in semantic con-
structions. In §4, it is shown that the axiomatic laws for not can all be jus-
tified by means of the heterogeneous equality in type theory (McBride, 2002;
McBride and McKinna, 2004) and in §5 we shall study conditions under which
is and do can be used without resulting in over-generation.

In this section, we shall work in the impredicative type theory UTT (Luo,
1994), one of the modern type theories. For a predicative type theory, one
may replace the totality Prop by means of some predicative universe (see, for
example, the system MLTTh in (Luo, 2018)) and then similar results can be
obtained.

3.1 Propositional Forms of Derivable Judgements

As described in §2, when a judgemental interpretation of the form a : A is
derivable, its propositional form is given as pA(a) where, for any type A, pA
is the ‘true predicate’ defined as in (29), repeated as follows: for any type A,

(50)pA : A→ Prop

(51)pA(x) = true, for any x : A.

As exemplified in the above §2, the composite sentence (27) can be interpreted
as (30), where pHuman(j) acts as the propositional form of j : Human. Note
that pA(a) is only equivalent to true if a is of type A – that is, the well-typed
pA(a) carries more information than true: it presumes that a is of type A.
This is why pA(a) can play the role of being the propositional form of the
derivable judgement a : A.
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3.2 The not-Operator and Definitions of is and do

Non-derivable judgemental interpretations and ill-typed applicational inter-
pretations may be meaningfully used when they occur negatively – see §2 for
examples such as (31)(32) for the former and (44)(47) for the latter. Their
propositional forms can be represented by means of the is and do operators,
as in (36)(37) for the former and (46)(49) for the latter. Both operators is and
do can be defined by means of a more general operator not.8

The type of not is given in (52): it takes four arguments to form a propo-
sition not(A, p,B, b), where A and B are common nouns in cn, p : A→ Prop
is a predicate over A, and b is an object of type B.

(52)not : ΠX:cn Πp : X → Prop ΠY :cn Πy : Y. Prop

Intuitively, not(A, p,B, b) means that ‘b does not p’ and, in particular, when
p is the true predicate pA as defined above, it means that ‘b is not an A’.
Abbreviations can be made to define the operators is and do: 9

(53)isB : cn→ B → Prop, for any B : cn;

(54)isB(A, b) = ¬not(A, pA, B, b), for any A,B : cn and b : B,

where pA is the true predicate defined in (51), and

(55)doA,B : (A→ Prop)→ B → Prop, for any A,B : cn;

(56)doA,B(p, b) = ¬not(A, p,B, b), for A,B : cn, p : A→ Prop and b : B.

Sometimes (and usually in examples), we omit the subscripts to write is(A, b)
and do(p, b) for isB(A, b) and doA,B(p, b), respectively. Intuitively, is(A, b)
and do(p, b) mean that ‘b is an A’ and ‘b does p’, respectively. Examples of
how to use the operators is and do include those mentioned above in §2 – to
repeat: (36) for (31), (37) for (32), (46) for (44) and (49) for (47).

3.3 Axiomatic Laws for not

The operator not is introduced axiomatically. In particular, it should satisfy
the laws (A1-A5) in Figure 1, where A,B,C : cn and A � B means that
A ≤c B for some injective coercion c (i.e., in coercive subtyping (Luo, 1999;
Luo et al., 2013), A is a subtype of B via the coercion c from A to B that is
injective.10)

Using the operator do defined in (55-56), we can rewrite the laws (A1-A5)
in Figure 1 as (Ad1-Ad5) in Figure 2, and it is straightforward to verify that each
(Adi ) is logically equivalent to (Ai), for i = 1, ..., 5: Arguably, for i = 1, ..., 5,

8 A preliminary NOT-operator was studied by the second and third authors in (Chatzikyr-
iakidis and Luo, 2017b), which is a special case for the not-operator proposed above. The
study of the preliminary NOT-operator was limited in its scope – it assumed that there be
a top type for all types in cn, its axiomatic laws were not general enough, their justification
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(A1) ∀p:A→ Prop.∀x:A. ¬not(A, p,A, x)⇔ p(x).
(A2) ∀p, q:A→ Prop. [∀x:A. p(x)⇒ q(x)]⇒ [∀y:B. not(A, q,B, y)⇒ not(A, p,B, y)].
(A3) If A � B, then ∀p:B → Prop.∀z:C. not(B, p, C, z)⇒ not(A, p, C, z).
(A4) If A � B, then ∀p:C → Prop. [∀y:B.not(C, p,B, y)]⇒ [∀x:A.not(C, p,A, x)].
(A5) If A � B, then ∀p:C → Prop. [∃x:A.not(C, p,A, x)]⇒ [∃y:B.not(C, p,B, y)].

Fig. 1 Axiomatic Laws for not.

(Ad
1) doA,A(p, x)⇔ p(x).

(Ad
2) [∀x:A. p(x)⇒ q(x)]⇒ [∀y:B. do(p, y)⇒ do(q, y)].

(Ad
3) If A � B, then doA,C(p, z)⇒ doB,C(p, z).

(Ad
4) If A � B, then ∀y:B.¬doC,B(p, y)⇒ ∀x:A.¬doC,A(p, x).

(Ad
5) If A � B, then ∃x:A.¬doC,A(p, x)⇒ ∀y:B.¬doC,B(p, y).

Fig. 2 Rewritten Axiomatic Laws for not.

each (Adi ) gives an intuitively more understandable reading of the correspond-
ing law (Ai).

Natural language examples and their semantics interpretations will be
given in the following subsection §3.4 to illustrate the laws. Before then, we
shall first give some remarks.

Remark 1 Some remarks are in order to explain the laws informally and elab-
orate on the restriction on injectivity in (A3-A5).

1. Informal readings. In order to understand the laws (A1-A5) in Figure 1, one
may first rewrite them as (Ad1-Ad5) by means of do or use is to instantiate
their special cases, where one can informally read is(A, b) as ‘b is of type A’
and do(p, b) as ‘b does p’. For instance, the first law, (Ad1) or (A1), says that,
when x : A (and hence p(x) is well-typed), do(p, x) = ¬not(A, p,A, x) is
logically equivalent to p(x) and, as a special case when p = pA, is(A, x) =
¬not(A, pA, A, x) is logically equivalent to pA(x). As another example, the
second law (A2) or (Ad2) says that, if predicate p is stronger than q, then
‘b does p’ implies ‘b does q’, for any b.

2. Injectivity. In laws (A3), (A4) and (A5), we require that A be a subtype
of B not just in general (injectivity is not necessarily required in coercive
subtyping), but must be due to some injective coercion, which intuitively
implies that the ‘size’ of A is not bigger than that of B. For example,
consider a Σ-type Σx:A.P , where P is a proposition. Then, with proof

was not given, and the issue of over-generation was not studied (for the study of these for
the not-operator proposed here, see §3.3, §4 and §5).

9 In (Xue et al., 2018), we have defined the proposition PA,B : B → Prop. In the current
notation, we have PA,B(t) = isB(A, t).
10 A function c : A → B is injective if, for all x1, x2 : A, c(x1) = c(x2) implies that
x1 = x2. For instance, the identity function that maps any object to itself is injective. In
a coercive subtyping relation A ≤c B, if c from A to B is an injection function, then c is
called an injective coercion.
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irrelevance (Luo, 2012a, 2019b), as represented by the following rule (∗):

(∗) Γ ` P : Prop Γ ` p1 : P Γ ` p2 : P

Γ ` p1 = p2 : P

the first projection π1 : (Σx:A.P )→ A is injective because, for any (a1, p1)
and (a2, p2) of type Σx:A.P , if a1 = a2, then (a1, p1) = (a2, p2) since we
have p1 = p2 by proof irrelevance.11

3.4 Examples and Their Semantic Interpretations

To explain our laws more clearly and intuitively, we are going to provide
some examples for each law. As we have mentioned above, do(p, b) means
that ‘b does p’ and, in particular, when p is pA, it means ‘b is an A’. Hence,
the examples in this subsection will cover both special cases ‘b is an A’ and
general cases ‘b does p’ for each law. For each example, we will provide logical
expressions as well as the Coq codes for each expression12.

Before presenting the examples, we recall the type of not (57/58) and the
definitions of predicate pA (59/60), isB(A, b) (61/62) and doA,B(p, b) (63/64),
together with the corresponding codes in the Coq proof assistant.

(57) not : ΠA:cn Πp:A→ Prop ΠB:cn Πb:B. Prop

(58) NOT : forall A:CN, (A->Prop) -> forall B:CN, B->Prop

(59) pA(x) = true, for any x : A.

(60) pr (A:CN)(a:A) := True

(61) isB(A, b) = ¬not(A, pA, B, b), for any b : B.

(62) IS(B:CN)(A:CN)(b:B) := ~(NOT A (pr A) B b)

(63) doA,B(p, b) = ¬not(A, p,B, x), for any p : A→ Prop and b : B.

(64) DO(A:CN)(B:CN)(p:A->Prop)(b:B) := ~(NOT A p B b)

3.4.1 Examples for Law (A1/A
d
1)

Law (Ad1) states that, when A and B are the same, doA,B(p, b) is logically
equivalent to p(b). It is repeated here together with its Coq code:

(65) ∀p:A→ Prop.∀x:A. doA,A(p, x)⇔ p(x)

(66) (p:A->Prop)(x:A),(DO A A p x)<->(p x).

In the special case when p is pA, it says that isA(A, b) is equivalent to pA(b).

11 We have proved this in the proof assistant Coq (Coq, 2010): the Coq code for this can be
found in Appendix B, where we have assumed the propositional version of proof irrelevance,
which can be proved by means of the above (∗)-rule.
12 In Coq ‘,’ is used as a ‘separator’ instead of ‘.’
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Example 1

(67)John is not a man.

(68)¬pMan(j), where j : Man.

(69)~(pr Man j)

By (A1) and the definition of is, we have ¬pMan(j)⇔ ¬¬not(Man, pMan,Man, j) =
¬is(Man, j).

Example 2

(70)It is not the case that the animal does not eat.

(71)¬¬eat(a), where eat : Animal→ Prop and a : Animal.

(72)~~(eat a)

By (Ad1) and the definition of do, we have ¬¬eat(a)⇔ ¬¬¬not(Animal, eat, Animal, a) =
¬¬do(eat, a).

3.4.2 Example for Law (A2/A
d
2)

Law (A2/A
d
2) states that, ‘if p is stronger than q, then that y does p implies

that y does q’. The law (Ad2) is repeated here together with its Coq code:

(73)∀p, q:A→ Prop. [∀x:A.p(x)⇒ q(x))]⇒ [∀y:B.do(p, y)⇒ do(q, y)]

(74) forall(p q:A->Prop),

(forall(x:A),(p x)->(q x))->forall(y:B),(DO A B p y)->(DO A B q y).

Example 3

(75)If a table doesn’t talk, then it doesn’t talk loudly.

(76)∀y:Table. ¬do(talk, y)⇒ ¬do(talk loudly, y)

(77) (y:Table)(~(DO Human Table talk y))->(~(DO Human Table talk_loudly y))

To explain the above example, we have: if we assume ∀x:Human. talk loudly(x)⇒
talk(x), then (76) (and (77) in Coq) can be proved by means of (A2/A

d
2).

3.4.3 Example for Law (A3/A
d
3)

Law (A3/A
d
3) concerns with subtyping and states: if A is a subtype of B via

an injective coercion and if p : B → Prop and z : C, then that z does p (with
p : A → Prop) implies that z does p (with p : B → Prop). The law (Ad3) is
repeated here together with its Coq code:

(78)If A � B, ∀p:B → Prop.∀z:C. doA,C(p, z)⇒ doB,C(p, z)

(79) Variable cAB:A->B. Coercion cAB:A>->B.

Inj cAB -> (forall (p:B->Prop)(z:C), DO A C p z -> DO B C p z).

In the special case for the is-operator, the above law becomes: if A � B, then
is(A, z)⇒ is(B, z) for any z : C.
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Example 4 In this example, we consider a toy bear, Teddy, whose semantics
is Teddy : Toy. Then, the semantics (81) of sentence (80) is intuitively true
with this law since we usually have Man � Human. To elaborate, we may
define Man as Man = Σ(Human,male), where male : Human → Prop.
Then, we have Man = Σ(Human,male) ≤π1

Human, where the coercion π1
is injective because of proof irrelevance (see the remark on injectivity in §3.3)
and, therefore, Man � Human. As a consequence, (81) can be easily proved
by means of (A3/A

d
3).

(80)If Teddy is a man, then Teddy is a human.

(81)is(Man, Teddy)⇒ is(Human, Teddy), where Teddy : Toy.

(82)(IS Toy Man Teddy) -> (IS Toy Human Teddy)

Remark 2 Note that, when considering (Ad3) (and (Ad4) and (Ad5) below), one
needs to show that the subtyping relation is through an injective coercion. For
instance, the above example uses the first projection as the coercion which
can be shown to be injective when the second parameter of the Σ-type is a
proposition (a subtyping relation often occurring in MTT-semantics). For the
sake of simplicity, we shall skip the injectivity proof in the rest of this section.

3.4.4 Examples for Law (A4/A
d
4)

Law (A4/A
d
4) concerns with universal quantification and negation and states:

if A is a subtype of B via an injective coercion and p : C → Prop, then that
all objects of type B do not do p implies that all objects of type A do not do
p. The law (Ad4) is repeated here together with its Coq code:

(83)If A � B, ∀p:C → Prop.[∀y:B.¬doC,B(p, y)]⇒ [∀x:A.¬doC,A(p, x)]

(84) Variable cAB:A->B. Coercion A>->B.

Inj cAB -> forall(p:C->Prop),

(forall(y:B),~(DO C B p y)) -> (forall(x:A),~(DO C A p x))

In the special case for the is-operator, the above law says: if A � B, we have
∀y:B.¬is(C, y)⇒ ∀x:A.¬is(C, x).

Example 5

(85)If women are not men, beautiful women are not men either.

(86)∀y:Woman.¬is(Man, y)⇒ ∀x:BWoman.¬is(Man, x)

(87)(x:Woman)(~(IS Woman Man x))->(y:BWoman)(~(IS BWoman Man y))

where, in (86), BWoman = Σ(Woman,Beautiful) � Woman and, in (87),
we use the following record type in Coq to represent the Σ-type BWoman:

Record BWoman : CN := mkBWoman {bw :> Woman; _ : Beautiful bw}
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Example 6

(88)If tables do not talk, then red tables do not talk, either.

(89)∀x:Table.¬doHuman,Table(talk, x)⇒ ∀y:RTable.notHuman,RTable(talk, y),
where RTable = Σ(Table, red).

(90)(x:Table)(~(DO Human Table talk x))->(y:Redtable)(~(DO Human Redtable talk y))

where, in (89), RTable = Σ(Table,Red) � Table and, in (90), we use the
following record type in Coq to represent the Σ-type RTable:

Record Redtable : CN := mkRedtable{rt :> Table; _ : Red rt}.

3.4.5 Examples for Law (A5/A
d
5)

Law (A5/A
d
5) concerns with existential quantification and negation and states:

if A is a subtype of B via an injective coercion and p : C → Prop, then that
some object of type A does not do p implies that some object of type B does
not do p. The law (Ad5) is repeated here together with its Coq code:

(91)If A � B, ∀p:C → Prop.[∃x:A.¬doC,A(p, x)]⇒ [∃y:B.¬doC,B(p, y)]

(92) Variable cAB:A->B. Coercion A>->B.

Inj cAB -> forall(p:C->Prop),

(exists x:A,~(DO C A p x))->(exists y:B,~(DO C B p y))

In the special case for the is-operator, the above law says: if A � B, we have
∃x:A.¬is(C, x)⇒ ∃y:B.¬is(C, y).

Example 7

(93) Since not every linguist is a logician, not every human is a logician.

(94) ¬∀l:Linguist.(is(Logician, l))⇒ ¬∀h:Human.(is(Logician, h))

(95) not (forall l:Linguist, IS Linguist Logician l)

-> not (forall h:Human, IS Human Logician h)

By using (Ad5) in the special case for is, (94) can be proved to be true.

Example 8

(96) It is not the case that every man works, so it is not the case that every
human works.

(97) ¬∀l:Man.(doHuman,Man(work, l))⇒
¬∀l:Human.(doHuman,Human(work, l)).

(98) not (forall l:Man,DO Human Man work l)

-> not (forall l:Human,DO Human Human work l)

By using (Ad5), (97) can be proved to be true.
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4 Justification of NOT

In the above, not has been introduced axiomatically to extend the underly-
ing modern type theory. Is such an extension OK (for instance, is it logically
consistent)? The answer to this question is positive; put in another way, this
extension can be justified. There can be rather different ways to provide such
a justification. For instance, one could go ahead to prove the meta-theoretic
properties of the extended system, showing directly that the extension is con-
sistent, among other things. However, this would have been an overkill, as
anyone who has done such meta-theoretic proofs knows that they are rather
tedious and require a lot of effort. Another solution is to consider a known
consistent extension E of the underlying type theory T and perform the fol-
lowing:

1. Known: T + E is consistent.
2. Define not (by means of E) in T + E.
3. Using the definition, prove that (Ai) (i = 1, ..., 5) are theorems in T + E.
4. Then, we know that T + not is consistent.

The question is: what is a suitable notion E for the above? Luckily, there is
such a notion E: we can use JMeq, the heterogeneous equality that has been
studied by McBride (McBride, 2002; McBride and McKinna, 2004). not can
be defined by means of JMeq and the extension by means of JMeq is logically
consistent, so is our extension by the not-operator, as to be studied in this
section.

4.1 Heterogeneous Equality JMeq

Usually, in a type theory, equalities are homogeneous one can only form an
equality proposition between two objects of the same type. The equality judge-
ments, written as a = b : A, presumes that a and b are of type A. Similarly,
a logical proposition, like the Leibniz equality a =A b in UTT or the identity
type Id(A, a, b) in Martin-Löf’s type theory, that states that a and b are the
same, also assumes that a and b are of the same type A. If a : A, b : B, and A
and B are different types, we usually cannot talk about whether a and b are
equal – they cannot even be compared with each other.

A heterogeneous equality, however, allows one to talk about equality be-
tween arguments of different types. JMeq is such a heterogenous equality,13

whose type is given in (99). Intuitively, JMeq(A, a,B, b) means that a and b
are equal, although their types A and B may be different.

(99) JMeq : ΠA:Type Πx:A ΠB:Type Πy:B. Prop.

Reflexivity holds for JMeq: for any x : A, we always have JMeq(A, x,A, x).
One can prove the lemmas that JMeq satisfies symmetry and transitivity and,

13 JMeq is proposed and named ‘John Major equality’ by McBride (McBride, 2002).
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therefore, it is an equivalence relation. The extension of the underlying MTT
(e.g., UTT) with JMeq has been proved to be logically consistent (McBride,
2002).

In the standard library of the Coq proof assistant, JMeq is defined as
follows:

Inductive JMeq (A:Type)(x:A) : forall B:Type, B->Prop

:= JMeq_refl : JMeq x x .

We shall use it in our Coq development below.

4.2 Justification of not by JMeq

not can be defined by means of JMeq as (100), which intuitively defines ‘b
does not p’ as meaning that, for any x in A, if x equals b, then p(x) is not
true. Note that, although p(b) may be ill-typed (because b’s type B may not
be the same as the domain A of p), p(x) is well-typed since x : A.

(100) not(A, p,B, b) = ∀x:A. JMeq(A, x,B, b)⇒ ¬p(x).

We shall prove a theorem to show that the axiomatic laws for not are all
theorems in an MTT with JMeq and, as a corollary, since the extension with
JMeq is logically consistent (McBride, 2002), so is the extension by not.

To justify not by JMeq, we will prove the axiomatic laws (A1-A5) (and
their equivalent (Ad1-Ad5)) as theorems when not is defined by JMeq as in (100).
To prove (A3), (A4) and (A5), we need to employ an axiom about injective
coercions: for any A,B : cn such that A � B, we have ∀x:A, JMeq(A, x,B, x).
Note that this last formula actually stands for ∀x:A.JMeq(A, x,B, c(x)) for
some injective coercion c. Then, for any x1, x2:A, if c(x1) = c(x2), we have
JMeq(B, c(x1), B, c(x2)). Hence we can derive that JMeq(A, x1, A, x2) with
symmetry and transitivity rules of JMeq, which gives us x1 = x2 in JMeq.
This matches the injectivity of c.

Theorem 1 If not is defined as in (100), (Ai) in Figure 1 or (Adi ) in §3.3
(i = 1, ..., 5) are all provable in the type theory extended by JMeq.

Proof With the definition (100) of not and properties of JMeq, we can prove
the theorem without any difficulty.14 ut

5 Avoiding Over-Generations

Usually, a sentence whose semantic interpretation is a non-derivable judge-
ments or involves ill-typed applications can be regarded as meaningless. But, as
illustrated above in §2, when they occur as sub-sentences and negatively, such

14 The proof of Theorem 1 has been done in the Coq proof assistant as well – see Ap-
pendix C for the Coq statements for (Ad

1-Ad
5) and their proofs.
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sentences may be used meaningfully. Therefore, we have introduced and stud-
ied the is/do-operators (which can be defined by means of not) to interpret
such sentences. However, it is obvious that we cannot use them without any re-
striction for, otherwise, over-generation may occur. For instance, usually Table
and Human do not share objects and, therefore, (103) is non-derivable (since
j : Human) and talk(t) in (104) is ill-typed (since talk : Human → Prop).
We do not use (105) and (106) to interpret (101) and (102).

(101) (#) John is a table.

(102) (#) Tables talk.

(103) (#) j : Table

(104) (#) ∀t : Table. talk(t)

(105) is(Table, j)

(106) ∀t : Table. do(talk, t)

In this section, conditions are studied so that the is/do-operators can be
employed without risking over-generation. We shall study two notions: the
first being type disjointness and the second negative occurrence (Luo and Xue,
2020), both important for adequate use of is and do so that over-generation
would not occur.

5.1 Type Disjointness: Judgemental Derivability and Ill-Typed Applications

When j : Man, the judgements such as j : Table and j : Woman are non-
derivable. This non-derivability is not trivial: it assumes that the types Man
be disjoint with Table and Woman. When non-derivable, a judgemental in-
terpretation signals that the NL sentence is meaningless (at least usually so,
unless in some fictional or special settings). Similarly, some propositional appli-
cations are ill-typed. For instance, with talk : Human→ Prop and t : Table,
talk(t) is ill-typed. Such ill-typed propositions usually represent meaningless
sentences as well.

Here is a definition of the notion of type disjointness.

Definition 1 (disjointness) Let A and B be types without free variables. A
and B are disjoint if there is no non-empty type C such that C ≤ A and
C ≤ B (i.e., if ` c : C, then either 6` C ≤ A or 6` C ≤ B). ut

It is important to find out whether two types are disjoint in order to de-
termine (in)correctness of judgements and well-typedness of terms, especially
those involving is/do-operators. Put in another way, the disjointness of A and
B is a necessary condition for the use of isB(A, b) or doA,B(p, b) in semantic
interpretations:

1. If b is of type B and A and B are disjoint, then the judgement b : A is
incorrect; therefore, it may be possible to use isB(A, b) to describe the
semantics of b : A.
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2. If b is of type B and A is the domain of predicate p, and A and B are dis-
joint, then p(b) is ill-typed; therefore, it may be possible to use doA,B(p, b)
to describe the semantics of p(b).

For example, usually Table and Human are disjoint and this is a necessary
condition for us to use is(Table, j) and do(talk, t) to interpret the incorrect
judgement j : Table and the ill-typed term talk(t), where j : Human and
t : Table.

5.2 Negative Occurrences

In semantic interpretations, the type disjointness as discussed above, is only
a necessary condition, but not a sufficient condition, to use is/do-operators.
Even when A and B are disjoint, it may not be reasonable to use isB(A, b)
(doA,B(p, b)) to interpret the incorrect judgement b : A or the ill-typed p(b)
– we also need them to ‘occur negatively ’ (or to occur in a negative context),
for otherwise, over-generations can occur.

The notion of negative occurrence is defined using an auxiliary notion of
not-expression, inductively defined as follows:

1. isB(A, b) and doA,B(p, b) are not-expressions.
2. A∧B and A∨B are not-expressions, if either A or B is an not-expression.
3. ∀x:T.A and ∃x:T.A are not-expressions, if A is an not-expression.

Definition 2 (negative occurrence) 15 Let A, B and C be of the form P1⊕
...⊕ Pn, where Pi’s are atomic, ⊕ ∈ {∧,∨} and n ≥ 1. Then,

1. A and its subformulas occur negatively in ¬A.
2. A and its subformulas occur negatively in A⇒ B.
3. B and its subformulas occur negatively in A⇒ B if A is a not-expression.
4. A subformula of A occurs negatively in ∀x:T.A and ∃x:T.A if it occurs

negatively in A.
5. A formula occurs negatively in A ⇒ B ⇒ C if it occurs negatively in

A ∧B ⇒ C.

The operators is/do can be used to occur negatively in semantic construc-
tions, without causing over-generation. Here are some examples.

(107) Women are not men.

(108) Tables do not talk.

(109) It is not the case that tables don’t talk.

(110) If tables talk, so do chairs.

The semantics of the above sentences are as follows, with explanations:

(111) ∀x:Woman. ¬is(Man, x)
This is semantics of (107) in which, according to (1) and (4) in Definition 2,
is(Man, x) occurs negatively.

15 Please note that the notion of ‘negative occurrence’ here is different from that of the
term usually used in the literature.
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(112) ∀x:Table. ¬do(talk, x)
This is semantics of (108) in which, according to (1) and (4) in Definition 2,
do(talk, x) occurs negatively.

(113) ¬∀x:Table. ¬do(talk, x)
This is semantics of (109). The only difference with the above semantics
(112) of (108) is that we have one more negation in front. According to (1)
and (4) in Definition 2, do(talk, x) occurs negatively.

(114) [∀x:Table. do(talk, x)]⇒ [∀y:Chair. do(talk, y)]
This is semantics of (110) in which, according to (2) and (3) in Definition 2,
do(talk, x) and do(talk, y) both occur negatively.

In the above, the semantics (113) of (109) shows that, different from the usual
notion of negative occurrence in the literature (c.f., Footnote 15), even ‘double
negation’ may not change the status of being a negative occurrence.

Also, we remark that the last clause in Definition 2 is saying that, in the
world of semantics, the negative occurrences in the formula A ⇒ B ⇒ C
are the same as those in A ∧ B ⇒ C (that is, they have the same negative
occurrences).

6 Conclusion

In this paper, we have proposed several operators for constructing proposi-
tional forms of judgemental interpretations and ill-typed applicational seman-
tic interpretations. It has been shown that the introduction of these operators
can be justified by means of the heterogeneous equality in type theory. Fur-
thermore, we have studied conditions that these operators may be employed in
semantic constructions without risking over-generation. Future work includes
further studies of more extensive uses of such operators in semantic construc-
tions.
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Mönnich U (1985) Untersuchungen zu einer konstruktiven Semantik fur ein
Fragment des Englischen. Habilitation. University of Tübingen
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A A Short Introduction to Coq

The rationale behind Coq, and proof-assistants in general, can be roughly summarized as
follows: you use Coq in order to check whether propositions based on statements previously
pre-defined or user-defined (definitions, parameters, variables) can be proven or not. Coq is a
dependently typed proof assistant and implements the Calculus of Inductive Constructions
(pCIC) (Coq, 2010), which is a modern type theory, very similar to the type theory UTT
(Luo, 1994); thus, Coq ‘speaks’ so to say the language we use to interpret linguistic semantics
in this paper. Coq is a reasoning engine and there are at least ways that can be used in
studying linguistic semantics, to an extent overlapping with each other: a) as a formal checker
for the semantic validity of proposed accounts in NL semantics and b) Natural Language
Inference (NLI), i.e. reasoning with NL.

We proceed by formulating a simple example of NLI in Coq. In effect, NLI is seen
as a theorem proving task, where a valid semantic entailment will very simply mean the
implication relation between the two semantic structures is a valid theorem. A very simple
case of semantic entailment, that of example (115), will be formulated as the following
theorem (named ex) in Coq (116):

(115) John walks ⇒ some man walks

(116) Theorem ex: John walks → some man walks

Then, depending on the semantics of the individual lexical items one may or may not be
able to prove the theorem in question. Inferences like the one shown in (115) are easy cases
to prove. Assuming a semantics of some specifying that given any A of type CN and a
predicate of type A → Prop, there exists an x : A such that P (x) : Prop, such cases are
straightforwardly proven.

A few notes about the lexical entries. We use Coq’s Prop type, corresponding roughly
to the type of truth-values (t) in Montague Semantics. We define CN to be Coq’s universe
Set and interpret common nouns like man, human as being of type CN (thus we have for
example Man,Human : CN). Verbs are defined as predicates requiring arguments of type
A : CN (the choice of A depends on the verb itself.) Coercive subtyping is supported in
Coq. Adjectives are defined as predicates, and adjectival modification as Σ types. Quantifiers
and VP adverbs are defined as types ranging over the universe CN . For the example we are
interested in, the following are declared:

CN:=Set.

Parameter Man Human Animal: CN.

Parameter John: Man.
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Axiom mh: Man->Human. Coercion mh: Man>->Human.

Axiom ha: Human->Animal. Coercion mh:Human>->Animal.

Definition some:= fun A:CN, fun P:A->Prop=> exists x:A, P(x).

Definition walk: Animal->Prop

We have introduced CN as Coq’s universe Set, declared Man, Human and Animal to
be of type CN , further introduced the relevant subtyping relations and lastly walk. With
walk as being of type Human → Prop and John as being of type Man with Man <
Human, we can prove the theorem in (116) easily. We first use the proof tactic intro to
move the premises to be hypotheses. Then, we apply the tactic unfold to some (unfold
some). Unfold does exactly what it promises: it unfolds the definition associated with a
lexical entry (if there is one):

ex < unfold some.

1 subgoal

============================

walk John -> exists x : Man, walk x

The intro tactic is then used, moving the antecedent to the list of premises. Now, one can
existentially instantiate x : Man with John : Man:

ex < intro.

1 subgoal

H : walk John

============================

exists x : Man, walk x

ex < exists John.

1 subgoal

H : walk John

============================

walk John

Finally, the tactic assumption finishes the proof.

B Coq Code for a Proof of Injectivity

Assuming proof irrelevance, one can show the injectivity of the first projection for a Σ-type
whose second component is a proposition.

Definition CN := Set.

Definition Inj{X Y:Type}(f:X->Y) := forall(x y:X), (f x)=(f y) -> x=y.

Axiom proof_irrelevance : forall (P:Prop) (p1 p2:P), p1 = p2.

Variable A : CN. Variable B : A -> Prop.

Record Sigma : CN := mkSigma {p1 :> A; _ : B p1}.

Lemma inj_p1 : Inj p1.

Proof.

cbv.

intros. destruct x. destruct y.

subst. cut (b=b0).

intros. subst. auto.

apply proof_irrelevance.

Qed.
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C Justification of NOT by JMeq: Coq Proofs

Here are the Coq proofs of the laws (Ad
1-Ad

5), where not is defined by means of the hetero-
geneous equality JMeq and do by means of not.

Require Import Coq.Logic.JMeq.

Require Import Classical_Prop.

Definition CN := Set.

(* NOT defined by means of JMeq and DO by NOT *)

Definition NOT (A:CN)(p:A->Prop)(B:CN)(b : B) := forall x:A, JMeq x b -> not (p x).

Definition DO (A:CN)(B:CN)(p: A -> Prop)(b:B) := not (NOT A p B b).

(* A1d: if x:A & p:A->Prop, DO(p,x) iff p(x) *)

Definition A1d := forall (A:CN)(x:A)(p:A->Prop), DO A A p x <-> (p x).

Lemma law1 : A1d.

unfold A1d. unfold DO. unfold NOT. intros A x p.

split.

(* proof -> *)

cut (~ (p x) -> forall x0 : A, JMeq x0 x -> ~ (p x0)).

intros.

cut (~ p x -> False).

apply NNPP. intros. apply (H0 (H H1)).

unfold not. intros. apply (H (JMeq_ind p H1 H0)).

(* proof <- *)

unfold not. intros.

apply (H0 x). apply JMeq_refl. apply H.

Qed.

(* A2d: if p is stronger than q then DO(p,b) => DO(q,b) *)

Definition A2d :=

forall (A B:CN)(p q:A->Prop),

(forall (x:A), (p x)->(q x)) -> forall (y:B), (DO A B p y) -> (DO A B q y).

Lemma law2 : A2d.

Proof.

cbv. intros. apply H0. intros.

apply (H1 x). apply H2. apply (H x H3).

Qed.

(* injectivity *)

Definition Inj{X Y:Type}(f:X->Y) := forall(x y:X), (f x)=(f y) -> x=y.

Variables A B C : CN.

Variable cAB : A->B. Coercion cAB : A >->B.

Axiom JMeq_inj : Inj cAB -> forall (x:A), (@JMeq A x B x ).

(* A3d: If A <=_c B with Inj(c) and z:C, then DO[A,C](p,z) => DO[B,C](p,z) *)

Definition A3d := Inj cAB -> (forall (p:B->Prop)(z:C), DO A C p z -> DO B C p z).

Lemma law3 : A3d.

Proof.

cbv. intros. apply H0. intros. apply (H1 x).

apply (JMeq_trans (JMeq_sym (JMeq_inj H x))). apply H2. apply H3.

Qed.

(* A4d: If A <=_c B with Inj(c), then

forall y:B.~DO[C,B](p,y) => forall x:A.~DO[C,A](p,x) *)

Definition A4d :=

Inj cAB ->

forall(p:C->Prop), (forall(y:B), ~(DO C B p y)) -> (forall(x:A), ~(DO C A p x)).
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Lemma law4 : A4d.

Proof.

cbv. intros. apply (H0 x). intros. apply H1. intros.

apply (H2 x0). apply (JMeq_trans H3). apply (JMeq_inj H). apply H4.

Qed.

(* A5d: If A <=_c B with Inj(c), then

(Exsits x:A. ~DO[C,A](p,x)) => Exists y:B. ~DO[C,B](p,y) *)

Definition A5d :=

Inj cAB ->

forall(p:C->Prop), (exists x:A, ~(DO C A p x))->(exists y:B, ~(DO C B p y)).

Lemma law5 : A5d.

Proof.

cbv. intros. destruct H0. exists x. intros.

apply H0. intros. apply H1. intros.

apply (H2 x0). apply (JMeq_trans H3). apply (JMeq_sym).

apply (JMeq_inj H). apply H4.

Qed.


