IV. Subtyping in type theory

+» Compare with set theory:
aeA - a:A
AcB - A<B

But, this is superficial, because typing and subtyping
can only be more restrictive.

+ Traditional notion: “subsumptive subtyping”
a:A A<B

April 2011 1

Subtyping: motivations

«»+TTs in programming languages, eg,
« More concise and readable programs (eg, subtype
polymorphism in OO-languages)

“TTs for proof assistants, eg,

« Abbreviations (eg, more readable terms/scripts)
«+TTs as modelling languages, eg,

« More powerful modelling languages

April 2011 2

Subtyping: basics

“*Fundamental principle

If A<B and, wherever a term of type B is required,
we can use a term of type A instead.

For example, the subsumption rule realises this.
“»*Basic laws

+ Reflexivity: A<A

+ Transitivity: A<B & B<C = A<C

Subtyping: examples (informal)

+» Base examples
« Nat < Int
= Book < Phy, where Phy is the type of physical objects
«» Examples for type constructors
« ASA &B<B = AxB < A%B’
+ A"<A &B < B = A-B < A'>B’ (contravariance)
» A<B = List(A) < List(B)
w (lyr Ay ey ALY Syt Ay g 2 Ay) (record types)

April 2011 3 April 2011 4
Two different views of types
Questi ++ Recall: Curry-style v.s. Church-style presentations
uestion.”

Is subsumptive subtyping adequate for
type theories with canonical objects?

Answer:
No: why and then what?

April 2011 5

+* Type assignment systems (TASs) v.s.
TTs with canonical objects

+ Type assignment: Objects exist first and A-terms are
overloaded with more than one type. Eg, Ax.x : a—a.
Examples: type systems in PLs such as ML, Haskell, ...

« Canonical objects: Types and their objects co-exist (one
does not without the other) and a A-term has unique typing,
among others.

Examples: Martin-Lof's TT, CIC, UTT, ...

April 2011 6

Two corresponding views of subtyping

Views on types Views on subtyping

type assignment systems | subsumptive subtyping

TTs with canonical objects 7??

«» Subsumptive subtyping is suitable for type
assignment:

Incompatibility of subsumption & canonicity

+» Subsumption rule:
a:A A<B

a:B
Incompatible with the view of canonical objects

Q: If A<B and a:A is canonical in A, is it canonical in B?

B
« Aterm can be overloaded (has more than one type). A @ eanonical in B?
« Subsumption is simply another rule for type assignment. 0 -
+» What about TTs with canonical objects?
April 2011 7 April 2011 8
Canonicity

+»Definition
Any closed object of an inductive type is
computationally equal to a canonical object of
that type.

“»*This is a basis of TTs with canonical objects.

«»Canonicity is lost in subsumptive subtyping.

s Eg, A < B
List(A) < List(B)
+ nil(A) : List(B), by subsumption;
+ But nil(A) # any canonical B-list nil(B) or

+ This is why the elimination rule is adequate. cons(B,b,l).
=+ Eg, Elimination rule for List(T): + The elim rule for List(B) is inadequate: it does not
“For any family C, if C is inhabited for all canonical T-lists cover nil(A)
nil(T) and cons(T,a,1), then so is C for all T-lists.”
April 2011 9 April 2011 10
Amending the elimination rule?
+* Generalise it to cover all subtypes ...
« to take care of the objects introduced by subsumptive Eliat A:Type)(Ay < A: Type)

subtyping.
+“» But
« This requires “bounded quantification” to quantify over all
subtypes (of the form VA<B ...)
= Troublesome ...

+ If not, then what?

April 2011 11

C:(List(Aqn))Type)
C(nil(Aa)))
FrlazAg) (IList(49)) (C(1))C cons(Ay, a. 1))

(
(
(e

(
(z:List(Ap))C(z)

April 2011 12

Coercive subtyping

+*» Basic idea
« A<B if there is a coercion c from A to B:
A B

p

a c e(a)

« Coercions are “implicit” — thTey can be omitted!
+* Subtyping as abbreviation

April 2011 13

Coercive subtyping: formal rules

++ Formal presentation (Luo 1997/1999) includes
f:B—>D a:A A<.B

f(a) = f(c(a)) : D

A B D

f f(a)

a c _cla)

. N

a:A<.B = “a”can be regarded as an object of type B
> fy[a] = fz[c(a)], ie, "a” stands for “c(a)”

April 2011 14

Coherence

+» Coherence: a key requirement
= Coercions between any two types are unique.

= Think of an implementation: if more than one, the computer
does not know which to choose ...

= Incoherence leads to non-conservativity (and in most cases,
inconsistency).
+» Formal defn of coherence:
A<.B A<.B

c=c:A-B
where = is the computational equality.

April 2011 15

Coercive subtyping

+“ Adequate for TTs with canonical objects
« Eg, Martin-Lof’s TT, CIC and UTT

«+ Solves the incompatibility problem of subsumption

«+ Preserves good meta-theoretic properties (Soloviev & Luo 2002)
« Canonicity, Normalisation, Logical consistency,
« Work by Xue on a new conservativity proof (TYPES 2010)

«+ Coercions in proof assistants

« Coq (Saibi 1997), Lego (Bailey 1998), Plastic (Callaghan & Luo
2001), Matita (2008)

April 2011 16

+» Coercive subtyping generalises/subsumes

« Injective/subset subtyping: Even < N; Man < Human.

« Projective/inheritance subtyping: 3 (Man, handsome) < Man.
Applications of coercive subtyping, including

« Proof development

+ Dependently-typed programming

+ Type-theoretical semantics in linguistics

April 2011 17

Structural subtyping in coercive subtyping

@ Example — structural subtyping for lists:

A<. B
List(A) <map(c) List(B)

4 Structural subtyping for all inductive types
= X-types, types of vectors, ...
= General rules and transitivity elimination
[Luo & Adams 08, Luo & Luo 05]

April 2011 18

~Non-structural subtyping — examples

Projective subtyping (c.f. record subtyping)

= From X-types or record types to component types
+ First projection as a coercion: ¥(Nat, positive) <, Nat
+ Projections of (dependent) record types

= Very useful in proofs/modelling

L] Eg ,
+ Proof development [Bailey 1998, ...]
+ Type-theoretic model of linguistic semantics [Luo 2010]

Non-structural subtyping — examples (cont'd)

4 Coercion & concerning unit types

I'FA:Type I'Fa:A
I'1(Aa) <¢,, A: Type

where £4 ,(z) = a for any z: 1(A4,a).

= Useful in various applications
= Eg, representation of manifest fields in module types (Z-
types or dependent record types) [Luo 08]

April 2011 19 April 2011 20
Historical remarks
Coercive subtyping is <+ Semantic interpretations for subtyping in PLs
+ Early papers: eg,
an adequate theory ofsubtyping « (Mitchell 1983/?991) for the»sin'{p\y typed .k-calculus
) i . . «» Both subsumptive and coercive interpretations, called subset
for type theories with canonical Ob_]E'C['S. interpretation and coercion interpretation, resp.
+ Later papers, eg,
«» (Breazu-Tannen et al 1991) for recursive & record types in PLs.
Views on types Views on subtyping «» Subsumptive subtyping for dependent types
type assignment systems | subsumptive subtyping + Subtyping for Edinb.urgh LF (Aspinalll& Camplagnoni 200.1)
«» Remarks on our previous treatment in coercive subtyping
TTs with canonical objects | coercive subtyping ;
+ Proof-theoretic
+ For TTs with canonical objects
21 April 2011 22

April 2011

~Revision Questions

«» How can subtyping be useful in
+ Programming languages?
+ Proof assistants?
« Modelling?
“» What are two different views of types/subtyping?
« What is subsumptive subtyping?
« What is coercive subtyping?
= How are they related to the views of types?

April 2011 23

Selected References

» D. Aspinall and A. Compagnoni. Subtyping dependent types. Theoretical Computer Science,
266(1-2). 2001.

» A. Bailey. The Machine-checked Literate Formalisation of Algebra in Type Theory. PhD
thesis, University of Manchester, 1999.

» V. Breazu-Tannen, T. Coquand, C. Gunter and A. Scedrov. Inheritance and explicit coercion.
Information and Computation, 93. 1991.

» P. Callaghan and Z. Luo. An implementation of LF with coercive subtyping and universes.
Journal of Automated Reasoning, 27(1). 2001.

% Z. Luo. Coercive subtyping in type theory. CSL'96, LNCS 1258. 1996.

¢ Z. Luo. Coercive subtyping. J. of Logic and Computation, 9(1). 1999.

< J. Mitchell. Type inference with simple subtypes. J. of Functional Programming, 1(3). 1991.

* A, Saibi. Typing algorithm in type theory with inheritance. POPL'97, 1997.

April 2011 24

