IV. Subty	/ping in ty	pe theory	l
Compare Com	re with set th	eory:	
	a ∈ A		
	A ⊆ B	A ≤ B	
	is is superficie ly be more re		ping and subtyping
Traditio	nal notion: " a : A	subsumptive A ≤ B	subtyping"
	a :	В	

* Т	Ts in programming languages, eg,
•	More concise and readable programs (eg, subtype polymorphism in OO-languages)
¢Т	Ts for proof assistants, eg,
*	Abbreviations (eg, more readable terms/scripts)
¢Т	Ts as modelling languages, eg,
	More powerful modelling languages

*Fund	lamental principle
	A≤B and, wherever a term of type B is required e can use a term of type A instead.
For e	example, the subsumption rule realises this.
Basic	laws
Re	flexivity: A≤A
* Tra	ansitivity: A \leq B \leq B \leq C \Rightarrow A \leq C

* D	
	ase examples Nat ≤ Int
	Book \leq Phy, where Phy is the type of physical objects
	kamples for type constructors
	$A < A' \& B < B' \implies A \times B < A' \times B'$
	$A \le A & B \le B' \Rightarrow A \rightarrow B \le A' \rightarrow B'$ (contravariance)
	$A \le B \Rightarrow List(A) \le List(B)$
	$\langle I_1 : A_1,, I_n : A_n \rangle \leq \langle I_1 : A_1,, I_{n-1} : A_{n-1} \rangle$ (record types)

Quest	ion:
	Is subsumptive subtyping adequate for
	type theories with canonical objects?
Answ	er:
	No: why and then what?

 Recall: Curry-style v.s. Church-style p Type assignment systems (TASs) v.s. TTs with canonical objects Type assignment: Objects exist first and overloaded with more than one type. Eg 	
TTs with canonical objects • Type assignment: Objects exist first and	• • • • • • • • • • • • • • • • • • • •
 Type assignment: Objects exist first and 	
 Type assignment: Objects exist first and overloaded with more than one type. Eq 	
Examples: type systems in PLs such as M	, λx.x : α→α.
 Canonical objects: Types and their object does not without the other) and a λ-term among others. 	
Examples: Martin-Lof's TT, CIC, UTT,	

Views o	n types	Views on subtyping
type assig	nment systems	subsumptive subtyping
TTs with ca	anonical objects	???
assignmen	n t: an be overloa	ng is suitable for type ded (has more than one type). another rule for type assignment.

Canor	NCITY
*De	finition
	Any closed object of an inductive type is
	computationally equal to a canonical object of that type.
Th	s is a basis of TTs with canonical objects.
*	This is why the elimination rule is adequate.
*	Eg, Elimination rule for List(T):
	For any family C, if C is inhabited for all canonical T-lists nil(T) and cons(T,a,I), then so is C for all T-lists."

nonicity is lost in subsumptive subtyping.
Eg, $A \le B$
$\overline{List(A)} \le List(B)$
nil(A) : List(B), by subsumption;
But nil(A) ≠ any canonical B-list nil(B) or cons(B,b,I).
The elim rule for List(B) is inadequate: it does not cover nil(A)

[1] A set and the backup of a first state of the set of a set of the set o	
 to take care of the objects introduced by subsumptive subtyping. 	е
* But	
 This requires "bounded quantification" to quantify over subtypes (of the form ∀A≤B) 	er all
♦ Troublesome	
If not, then what?	

Basic i	dea					
	if there is a	coercio	n c from	A to B		
· / 20	A	000.00	В			
			\square			
	a	с	. c(a)			
. Coo	cions are "in) aplicit"	thou	an ha a	mittodl	
		- hanna		an be u	mitteu:	
••• Subtyp	ing as abb	reviau				

 Forma 	al presentation	(Luo 1997)	(1999) includ	les	
	$f:B\to D$	a:A	A≤ _c B		
	f(a) =	f(c(a)) : D			
	A	В	D		
	a	c(a)f	f(a)		
	- ()	$\bigcup_{i=1}^{n}$	~		
a : A	≤ B → "a″	can be reg	arded as an	object of ty	pe B

Coherence		
Coherence: a l	ey re	quirement
 Coercions bet 	veen a	ny two types are unique.
 Think of an in does not know 		ntation: if more than one, the compute n to choose
 Incoherence l inconsistency 		non-conservativity (and in most cases
Formal defn of	cohe	rence:
A <,	В	A < _{c'} B
	= c' :	A→B
where = is the c	omput	ational equality.

	cts
öf's TT, CIC and UTT	
and in the second s	- description of the second
	rties (Soloviev & Luo 2002)
	proof (TYPES 2010)
	Plastic (Callaghan & Luo
	ompatibility problem of

 Example – structural subtyping for lists: A ≤_c B List(A) ≤_{map(c)} List(B) Structural subtyping for all inductive types Σ-types, types of vectors, General rules and transitivity elimination [Luo & Adams 08, Luo & Luo 05] 	Structural subtyping i	
List(A) ≤map(c) List(B) Structural subtyping for all inductive types Σ-types, types of vectors, General rules and transitivity elimination	Example – structural	subtyping for lists:
 Structural subtyping for all inductive types Σ-types, types of vectors, General rules and transitivity elimination 		
 Σ-types, types of vectors, General rules and transitivity elimination 	$List(A) \leq_{map}$	$_{p(c)} List(B)$
 General rules and transitivity elimination 	Structural subtyping f	or all inductive types
	 Σ-types, types of vect 	ors,
[Luo & Adams 08 Luo & Luo 05]	 General rules and trans 	sitivity elimination
	[Luo & Adams 08, Luc	8 Luo 05]

Non-s	tructural subtyping – examples
Property	ojective subtyping (c.f. record subtyping)
•	From Σ -types or record types to component types • First projection as a coercion: Σ (Nat, positive) \leq_{π_1} Nat • Projections of (dependent) record types Very useful in proofs/modelling
	 Proof development [Bailey 1998,]
	Type-theoretic model of linguistic semantics [Luo 2010]

$\frac{\Gamma \vdash A: Type \ \Gamma \vdash a: A}{\Gamma \vdash 1(A, a) \leq_{\xi_{A,a}} A: Type}$ where $\xi_{A,a}(x) = a$ for any $x: 1(A, a)$.	Coer	cion ξ concerning unit types
$\overline{\Gamma \vdash 1(A,a)} \leq_{\boldsymbol{\xi}_{A,a}} A: Type$		
where $\xi_{A,a}(x) = a$ for any $x : 1(A, a)$.		
	when	$e \xi_{A,a}(x) = a \text{ for any } x : 1(A, a).$
 Useful in various applications 	Us	eful in various applications
 Eg, representation of manifest fields in module types (Σ- types or dependent record types) [Luo 08] 		

Coe	cive subtyping is		
	an adequate theo	ory of subtyping	
	for type theories	with canonical objects.	
	Views on types	Views on subtyping	
	Views on types type assignment systems	Views on subtyping subsumptive subtyping	
	type assignment systems	subsumptive subtyping	
	type assignment systems	subsumptive subtyping	
	type assignment systems	subsumptive subtyping	
	type assignment systems	subsumptive subtyping	

HIS	storical remarks
*	Semantic interpretations for subtyping in PLs
	 Early papers: eg,
	 (Mitchell 1983/1991) for the simply typed λ-calculus
	 Both subsumptive and coercive interpretations, called subset interpretation and coercion interpretation, resp.
	 Later papers, eg,
	(Breazu-Tannen et al 1991) for recursive & record types in PLs.
*	Subsumptive subtyping for dependent types
	 Subtyping for Edinburgh LF (Aspinall & Campagnoni 2001)
*	Remarks on our previous treatment in coercive subtyping
	 Proof-theoretic
	✤ For TTs with canonical objects

How can subtyping be useful in Programming languages? Proof assistants? Modelling?	
♦ Proof assistants?	
Modellina?	
What are two different views of types/subtyping?	
What is subsumptive subtyping?	
What is coercive subtyping?	
How are they related to the views of types?	

-	lected References
\$	D. Aspinall and A. Compagnoni. Subtyping dependent types. Theoretical Computer Science, 266(1-2). 2001.
*	A. Bailey. The Machine-checked Literate Formalisation of Algebra in Type Theory. PhD thesis, University of Manchester, 1999.
*	V. Breazu-Tannen, T. Coquand, C. Gunter and A. Scedrov. Inheritance and explicit coercion. Information and Computation, 93. 1991.
*	P. Callaghan and Z. Luo. An implementation of LF with coercive subtyping and universes. Journal of Automated Reasoning, 27(1), 2001.
	Z. Luo. Coercive subtyping in type theory. CSL'96, LNCS 1258. 1996.
	 Z. Luo. Coercive subtyping. J. of Logic and Computation, 9(1). 1999. J. Mitchell. Type inference with simple subtypes. J. of Functional Programming, 1(3). 1991.
\$	A. Saibi. Typing algorithm in type theory with inheritance. POPL'97, 1997.