
1

IV. Subtyping in type theory

�Compare with set theory:
a ∈ A ------ a : A

A ⊆ B ------ A ≤ B

But, this is superficial, because typing and subtyping
can only be more restrictive.

�Traditional notion: “subsumptive subtyping”
a : A A ≤ B

===========================

a : B

April 2011 1

Subtyping: motivations

�TTs in programming languages, eg,

� More concise and readable programs (eg, subtype
polymorphism in OO-languages)

�TTs for proof assistants, eg,

� Abbreviations (eg, more readable terms/scripts)

�TTs as modelling languages, eg,

� More powerful modelling languages

April 2011 2

Subtyping: basics

�Fundamental principle

If A≤B and, wherever a term of type B is required,
we can use a term of type A instead.

For example, the subsumption rule realises this.

�Basic laws

� Reflexivity: A≤A

� Transitivity: A≤B & B≤C ⇒ A≤C

April 2011 3

Subtyping: examples (informal)

�Base examples

� Nat ≤ Int

� Book ≤ Phy, where Phy is the type of physical objects

�Examples for type constructors

� A ≤ A’ & B ≤ B’ ⇒ A×B ≤ A’×B’

� A’ ≤ A & B ≤ B’ ⇒ A→B ≤ A’→B’ (contravariance)

� A ≤ B ⇒ List(A) ≤ List(B)

� 〈 l1 : A1, …, ln : An 〉 ≤ 〈 l1 : A1, …, ln-1 : An-1 〉 (record types)

April 2011 4

Question:

Is subsumptive subtyping adequate for

type theories with canonical objects?

Answer:

No: why and then what?

April 2011 5

Two different views of types

�Recall: Curry-style v.s. Church-style presentations

�Type assignment systems (TASs) v.s.

TTs with canonical objects
� Type assignment: Objects exist first and λ-terms are

overloaded with more than one type. Eg, λx.x : α→α.

Examples: type systems in PLs such as ML, Haskell, ...

� Canonical objects: Types and their objects co-exist (one
does not without the other) and a λ-term has unique typing,
among others.

Examples: Martin-Lof’s TT, CIC, UTT, ...

April 2011 6

2

Two corresponding views of subtyping

�Subsumptive subtyping is suitable for type
assignment:
� A term can be overloaded (has more than one type).

� Subsumption is simply another rule for type assignment.

�What about TTs with canonical objects?

April 2011 7

Views on types Views on subtyping

type assignment systems subsumptive subtyping

TTs with canonical objects ???

Incompatibility of subsumption & canonicity

�Subsumption rule:

a : A A ≤ B
==============================

a : B

Incompatible with the view of canonical objects

Q: If A≤B and a:A is canonical in A, is it canonical in B?

April 2011 8

Canonicity

�Definition

Any closed object of an inductive type is
computationally equal to a canonical object of
that type.

�This is a basis of TTs with canonical objects.

� This is why the elimination rule is adequate.

� Eg, Elimination rule for List(T):

“For any family C, if C is inhabited for all canonical T-lists
nil(T) and cons(T,a,l), then so is C for all T-lists.”

April 2011 9

�Canonicity is lost in subsumptive subtyping.

� Eg,

� nil(A) : List(B), by subsumption;

� But nil(A) ≠ any canonical B-list nil(B) or
cons(B,b,l).

� The elim rule for List(B) is inadequate: it does not
cover nil(A) … …

April 2011 10

Amending the elimination rule?

�Generalise it to cover all subtypes …

� to take care of the objects introduced by subsumptive
subtyping.

�But

� This requires “bounded quantification” to quantify over all
subtypes (of the form ∀Α≤Β …)

� Troublesome …

� If not, then what?

April 2011 11 April 2011 12

3

Coercive subtyping

�Basic idea

� A≤B if there is a coercion c from A to B:

� Coercions are “implicit” – they can be omitted!

�Subtyping as abbreviation

April 2011 13

Coercive subtyping: formal rules

� Formal presentation (Luo 1997/1999) includes

f : B → D a : A A ≤c B
===

f(a) = f(c(a)) : D

a : A ≤c B � “a” can be regarded as an object of type B

� fB[a] = fB[c(a)], ie, “a” stands for “c(a)”

April 2011 14

Coherence

�Coherence: a key requirement

� Coercions between any two types are unique.

� Think of an implementation: if more than one, the computer
does not know which to choose ...

� Incoherence leads to non-conservativity (and in most cases,
inconsistency).

�Formal defn of coherence:

A <c B A <c’ B
==

c = c’ : A→B

where = is the computational equality.

April 2011 15

Coercive subtyping

� Adequate for TTs with canonical objects

� Eg, Martin-Löf’s TT, CIC and UTT

� Solves the incompatibility problem of subsumption

� Preserves good meta-theoretic properties (Soloviev & Luo 2002)

� Canonicity, Normalisation, Logical consistency, … …

� Work by Xue on a new conservativity proof (TYPES 2010)

� Coercions in proof assistants

� Coq (Saïbi 1997), Lego (Bailey 1998), Plastic (Callaghan & Luo
2001), Matita (2008)

April 2011 16

�Coercive subtyping generalises/subsumes

� Injective/subset subtyping: Even ≤ N; Man ≤ Human.

� Projective/inheritance subtyping: ∑(Man, handsome) ≤ Man.

Applications of coercive subtyping, including

� Proof development

� Dependently-typed programming

� Type-theoretical semantics in linguistics

�

April 2011 17

Structural subtyping in coercive subtyping

Example – structural subtyping for lists:

Structural subtyping for all inductive types
� Σ-types, types of vectors, …

� General rules and transitivity elimination

[Luo & Adams 08, Luo & Luo 05]

April 2011 18

4

Non-structural subtyping – examples

Projective subtyping (c.f. record subtyping)
� From Σ-types or record types to component types

� First projection as a coercion: ∑(Nat, positive) ≤π1
Nat

� Projections of (dependent) record types

� Very useful in proofs/modelling

� Eg,
� Proof development [Bailey 1998, …]

� Type-theoretic model of linguistic semantics [Luo 2010]

April 2011 19

Non-structural subtyping – examples (cont’d)

Coercion ξ concerning unit types

� Useful in various applications

� Eg, representation of manifest fields in module types (Σ-
types or dependent record types) [Luo 08]

April 2011 20

Coercive subtyping is

an adequate theory of subtyping

for type theories with canonical objects.

April 2011 21

Views on types Views on subtyping

type assignment systems subsumptive subtyping

TTs with canonical objects coercive subtyping

Historical remarks

� Semantic interpretations for subtyping in PLs

� Early papers: eg,

� (Mitchell 1983/1991) for the simply typed λ-calculus

� Both subsumptive and coercive interpretations, called subset

interpretation and coercion interpretation, resp.

� Later papers, eg,

� (Breazu-Tannen et al 1991) for recursive & record types in PLs.

� Subsumptive subtyping for dependent types

� Subtyping for Edinburgh LF (Aspinall & Campagnoni 2001)

� Remarks on our previous treatment in coercive subtyping

� Proof-theoretic

� For TTs with canonical objects

April 2011 22

Revision Questions

�How can subtyping be useful in

� Programming languages?

� Proof assistants?

� Modelling?

�What are two different views of types/subtyping?

� What is subsumptive subtyping?

� What is coercive subtyping?

� How are they related to the views of types?

April 2011 23

Selected References

� D. Aspinall and A. Compagnoni. Subtyping dependent types. Theoretical Computer Science,

266(1-2). 2001.

� A. Bailey. The Machine-checked Literate Formalisation of Algebra in Type Theory. PhD

thesis, University of Manchester, 1999.

� V. Breazu-Tannen, T. Coquand, C. Gunter and A. Scedrov. Inheritance and explicit coercion.

Information and Computation, 93. 1991.

� P. Callaghan and Z. Luo. An implementation of LF with coercive subtyping and universes.

Journal of Automated Reasoning, 27(1). 2001.

� Z. Luo. Coercive subtyping in type theory. CSL’96, LNCS 1258. 1996.

� Z. Luo. Coercive subtyping. J. of Logic and Computation, 9(1). 1999.

� J. Mitchell. Type inference with simple subtypes. J. of Functional Programming, 1(3). 1991.

� A. Saïbi. Typing algorithm in type theory with inheritance. POPL'97, 1997.

April 2011 24

