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IV. Subtyping in type theory

�Compare with set theory:
a ∈ A ------ a : A

A ⊆ B ------ A ≤ B 

But, this is superficial, because typing and subtyping 
can only be more restrictive.

�Traditional notion: “subsumptive subtyping”
a : A A ≤ B

===========================

a : B
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Subtyping: motivations

�TTs in programming languages, eg,

� More concise and readable programs (eg, subtype 
polymorphism in OO-languages)

�TTs for proof assistants, eg,

� Abbreviations (eg, more readable terms/scripts)

�TTs as modelling languages, eg,

� More powerful modelling languages
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Subtyping: basics

�Fundamental principle

If A≤B and, wherever a term of type B is required, 
we can use a term of type A instead.

For example, the subsumption rule realises this.

�Basic laws 

� Reflexivity: A≤A

� Transitivity: A≤B & B≤C ⇒ A≤C
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Subtyping: examples (informal)

�Base examples

� Nat ≤ Int

� Book ≤ Phy, where Phy is the type of physical objects

�Examples for type constructors

� A ≤ A’ & B ≤ B’ ⇒ A×B ≤ A’×B’

� A’ ≤ A & B ≤ B’ ⇒ A→B ≤ A’→B’ (contravariance)

� A ≤ B ⇒ List(A) ≤ List(B)

� 〈 l1 : A1, …, ln : An 〉 ≤ 〈 l1 : A1, …, ln-1 : An-1 〉 (record types)
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Question:  

Is subsumptive subtyping adequate for 

type theories with canonical objects?

Answer:

No: why and then what?
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Two different views of types

�Recall: Curry-style v.s. Church-style presentations 

�Type assignment systems (TASs) v.s. 

TTs with canonical objects
� Type assignment: Objects exist first and λ-terms are 

overloaded with more than one type.  Eg, λx.x : α→α.

Examples: type systems in PLs such as ML, Haskell, ...

� Canonical objects: Types and their objects co-exist (one 
does not without the other) and a λ-term has unique typing, 
among others.

Examples: Martin-Lof’s TT, CIC, UTT, ... 
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Two corresponding views of subtyping

�Subsumptive subtyping is suitable for type 
assignment: 
� A term can be overloaded (has more than one type).

� Subsumption is simply another rule for type assignment.

�What about TTs with canonical objects?
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Views on types Views on subtyping

type assignment systems subsumptive subtyping

TTs with canonical objects ???        

Incompatibility of subsumption & canonicity

�Subsumption rule:

a : A A ≤ B
==============================

a : B

Incompatible with the view of canonical objects

Q: If A≤B and a:A is canonical in A, is it canonical in B?
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Canonicity

�Definition

Any closed object of an inductive type is 
computationally equal to a canonical object of 
that type.

�This is a basis of TTs with canonical objects.

� This is why the elimination rule is adequate.

� Eg, Elimination rule for List(T): 

“For any family C, if C is inhabited for all canonical T-lists 
nil(T) and cons(T,a,l), then so is C for all T-lists.”
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�Canonicity is lost in subsumptive subtyping.

� Eg, 

� nil(A) : List(B), by subsumption;

� But nil(A) ≠ any canonical B-list nil(B) or 
cons(B,b,l).

� The elim rule for List(B) is inadequate: it does not 
cover nil(A) … … 
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Amending the elimination rule?

�Generalise it to cover all subtypes … 

� to take care of the objects introduced by subsumptive 
subtyping.

�But

� This requires “bounded quantification” to quantify over all 
subtypes (of the form ∀Α≤Β … )

� Troublesome … 

� If not, then what?
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Coercive subtyping

�Basic idea

� A≤B if there is a coercion c from A to B:

� Coercions are “implicit” – they can be omitted!

�Subtyping as abbreviation
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Coercive subtyping: formal rules 

� Formal presentation (Luo 1997/1999) includes

f : B → D       a : A        A ≤c B
===============================================================================

f(a) = f(c(a)) : D

a : A ≤c B � “a” can be regarded as an object of type B

� fB[a] = fB[c(a)], ie, “a” stands for “c(a)”
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Coherence

�Coherence: a key requirement

� Coercions between any two types are unique.

� Think of an implementation: if more than one, the computer 
does not know which to choose ... 

� Incoherence leads to non-conservativity (and in most cases, 
inconsistency).

�Formal defn of coherence:

A <c B A <c’ B
====================================================

c = c’ : A→B

where = is the computational equality.
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Coercive subtyping

� Adequate for TTs with canonical objects 

� Eg, Martin-Löf’s TT, CIC and UTT

� Solves the incompatibility problem of subsumption

� Preserves good meta-theoretic properties (Soloviev & Luo 2002)

� Canonicity, Normalisation, Logical consistency, … … 

� Work by Xue on a new conservativity proof (TYPES 2010)

� Coercions in proof assistants

� Coq (Saïbi 1997), Lego (Bailey 1998), Plastic (Callaghan & Luo 
2001), Matita (2008)
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�Coercive subtyping generalises/subsumes

� Injective/subset subtyping:  Even ≤ N; Man ≤ Human.

� Projective/inheritance subtyping: ∑(Man, handsome) ≤ Man.

Applications of coercive subtyping, including

� Proof development

� Dependently-typed programming

� Type-theoretical semantics in linguistics

� ... ... 
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Structural subtyping in coercive subtyping

Example – structural subtyping for lists:

Structural subtyping for all inductive types
� Σ-types, types of vectors, … 

� General rules and transitivity elimination 

[Luo & Adams 08, Luo & Luo 05]
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Non-structural subtyping – examples 

Projective subtyping (c.f. record subtyping)
� From Σ-types or record types to component types

� First projection as a coercion: ∑(Nat, positive) ≤π1
Nat

� Projections of (dependent) record types

� Very useful in proofs/modelling

� Eg, 
� Proof development [Bailey 1998, …]

� Type-theoretic model of linguistic semantics [Luo 2010]
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Non-structural subtyping – examples (cont’d)

Coercion ξ concerning unit types

� Useful in various applications

� Eg, representation of manifest fields in module types (Σ-
types or dependent record types) [Luo 08] 
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Coercive subtyping is

an adequate theory of subtyping

for type theories with canonical objects.
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Views on types Views on subtyping

type assignment systems subsumptive subtyping

TTs with canonical objects coercive subtyping        

Historical remarks

� Semantic interpretations for subtyping in PLs

� Early papers: eg, 

� (Mitchell 1983/1991) for the simply typed λ-calculus

� Both subsumptive and coercive interpretations, called subset 

interpretation and coercion interpretation, resp.

� Later papers, eg, 

� (Breazu-Tannen et al 1991) for recursive & record types in PLs.

� Subsumptive subtyping for dependent types

� Subtyping for Edinburgh LF (Aspinall & Campagnoni 2001)

� Remarks on our previous treatment in coercive subtyping

� Proof-theoretic

� For TTs with canonical objects
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Revision Questions

�How can subtyping be useful in

� Programming languages?

� Proof assistants?

� Modelling?

�What are two different views of types/subtyping?

� What is subsumptive subtyping?

� What is coercive subtyping?

� How are  they related to the views of types?
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