 III. Computational meaning and inductive types

+» Semantics
+ How to give meanings to (logical) sentences?
+ Model-theoretic semantics v.s. proof-theoretic semantics
+ (More later)
+* For type theories:
+ How to understand the judgements in a proof-theoretic
semantics?
+ Eg, how to understand the basic judgement “a : A"?
« Ie, when is “a : A” a correct judgement?

April 2011 1

~Canonical objects: values of computation

<+ “a:A” is correct if a computes to a canonical object (value) v
such that v:A.

objects

Examples:
= A= Nat, a=3+4, v=7.
= A = NatxNat, a = (Ax:Nat.(x,x+1))(2), v =(2,3).

April 2011

~Inductive types

** Typical types in type theory
+ Logical propositions (as explained before)
+ Inductive types
+ Universes
+» Examples of inductive types
« Finite types (0, 1, 2, ...)
+ Types of nats, lists, vectors, trees, ...
« Types of dependent pairs/tuples (modules)
+ Types of ordinals, well-orderings, ...

April 2011 3

Type of natural numbers

Formation —_
' Nat : Type

Introducti n: Nat
ntroduction 0 Nat n T T Nat

Elimination
c:C(0) f(n):Cn) = Cln+1)[n: Nat]
Recle, f) © Hx: Nat. Clx)

Computation (behaviour of Rec, omitted)

April 2011

~Elimination rule explained

Elimination
c:C(0) f(n):C(n) = C(n+1)[n:Nat]
Rec(e, f) « Ha: Nat. C(x)

Elimination and induction:
C()y C(n)>C(n+1)[n: Nat]
Y. Clx)

“If C holds for all canonical nats, then C holds for every nat.”
<» General pattern (for all inductive types):

C holds for all canonical objects of ...
C holds for every object of ...

April 2011 5

~More inductive types: the Boolean type 2

Formation o
2: Type

Introduction F—" m
Elimination
¢y Cltrue) ¢ C(false)
Egler,e2) @ M 2. C(x)

Computation (omitted)

April 2011

More inductive types: List(A) & Vect(A,n)

< List(A) — type of lists of objects of type A
=+ nil(A) : List(A)
« cons(A,a,l) : List(A)
< Vect(A,n) — type of lists of length n
= nil,(A) : Vect(A,0)
+ cons(A,n,a,l) : Vect(A,n+1)
<» Simple example:
« Head of a list — what about hd(nil)? (to make it total ...)
+ Head of a vector:
hd(n) : Vect(A,n+1) - A
hd(n,[a;,..,a.1]) = a;

Type universes: a reflection principle

+ Collecting (the names of some) types into a type
called a universe.

«» How to define a type-valued function? For example,
f(0) = Nat
f(n+1) = f(n) x Nat
But the “type” of Nat is nota type!
« Introduce a type universe U such that Nat : U, then
f:Nat—> U
This is now “legal”.

April 2011 7 April 2011 8
~More inductive types: >-types ~Computation and logic in different languages:
< > -types — types of pairs/tuples
+ Intuitively, —
- . i /
Z(AB) = {(xy) | x: A&y :B(X)} Computation }—~ Programming Languages
+ Type of modules NG 9% (cg. Pascal)
X[S:U,id:S—>S,+:S-5S5->5, ...]
where U is a universe.
e
‘\ Logic ‘ = Inference & Verification
\ ,/’ (eg. Hoare Logic)
April 2011 9 April 2011 10

~ Computation and logic in type theory:

Type Theory

e
| Computation)——~ Functional Programming
\ _

| Logic —— Inference & Verification
N (Embedded Logic)

April 2011

~ Computational meanings

*» Semantics

+ Model-theoretic semantics
<+ Meanings of logical sentences are given by truth values in models.
< Tarski, ...

+ Proof-theoretic semantics
«+ Meanings of logical sentences are given by canonical proofs and

computation.

<+ Gentzen, Prawitz, Dummett, Tait, Girard, Martin-L6f, Schroeder-Heister.

April 2011 12

~Data types v.s. logical propositions

<» Natural separation between

« Logical propositions

+ Inductive data types (eg, Nat, List(A), ...)
<+ Philosophy behind the development of

» ECC/UTT (Luo 1989/1994)

« Logic-enriched TTs (Gambino & Aczel 2006, Luo 2006)
«» Combining data types with propositions

« Eg, X-types:
2(Nat, positive) -- type of positive nats
2(Man, handsome) -- type of handsome men
April 2011 13

~Revision Questions

+“»What kinds of types are there in modern TTs?

<» What is a type universe? What is the difference
between a universe and an inductive type?

«» Data types v.s. logical propositions

» In what sense may one identify them in a TT? What are the
caveats?

+« How can one separate them in TTs? What are the
advantages?

April 2011 14

Selected References

% T. Coquand C. Paulin-Mohring. Inductively defined types. Proc of the Inter Conf on
Computer Logic (COLOG-88). LNCS 417, 1990.

“ M. Dummett. The Logical Basis of Metaphysics. Harvard University Press, 1993.
% Z. Luo. Computation and Reasoning: A Type Theory for Computer Science. OUP, 1994.
* P. Martin-Lof. Intuitionistic Type Theory. Bibliopolis, 1984.

% B. Nordstrom, K. Petersson, and J. Smith. Programming in Martin-L6f's Type Theory. OUP,
1990.

April 2011 15

