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II. Propositions-as-types

�Curry-Howard correspondence (1958,1969):

� Formulae as types

� Proofs as objects
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formula type example

P ⊃ Q P → Q If … then …

∀x:A.P(x) ∏x:A.P(x) Every man is handsome.         

Eg:  λx:P.x : P→P

Connectives in predicative TTs

�Correspondences between logical connectives in 
predicative TTs (eg, Martin-Löf’s TT)
� Implication P⊃Q – function type P→Q
� Conjunction P∧Q – product type P×Q
� Disjunction P∨Q – disjoint union type P+Q
� Universal quantification ∀x:A.P(x) – ∏-type ∏x:A.P(x)
� Existential quantification ∃x:A.P(x) – ∑-type ∑x:A.P(x)

Remarks: 
� “Correspondence” for ∃: ∑ not the same as the traditional ∃
(∑ is “strong” with witnesses, while traditional ∃ is “weak”).

� Logical equality?
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Curry-Howard correspondence: basic example

�Theorem. ├L
for the implicational intutionistic logic and├ for the simply typed λ-calculus.

Then,

� if Γ├ M : A, then e(Γ)├L
A, where e(Γ) maps x:A to A;

� if ∆├L
A, then Γ├ M : A for some Γ & M such that e(Γ) ≡ ∆.
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Implicational propositional logic
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Simply-typed λ-calculus (rules as before)
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Curry-Howard: further examples

�Predicative calculus with dependent types 
corresponds to the intuitionistic logic with 1st-order 
universal quantification.

� Impredicative calculus with dependent types 
corresponds to the higher-order intuitionistic logic.
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First-order universal quantification
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Predicative dependent types
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Higher-order logical systems

�Eg, Second-order propositional logic
� Formulas: propositional variables X, implication ϕ→ψ, and 
quantification over all propositions ∀X.ϕ.

� Rules: besides the usual rules for implication, we have
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Impredicative types

� Impredicative type systems

� F and F
ω
(Girard 1972, Reynolds 1974)

� CC (Coquand & Huet 1988)

� ECC/UTT (Luo 1989/1994)

� CIC (as implemented in Coq)

� Prop – impredicative universe
� F (2nd-order) allows quantification over all propositions.

� Eg, ∀X:Prop.X (the logical falsity)

� F
ω
(ω-order) allows quantification over connectives as well.

� Eg, ∀X:Prop→Prop→Prop. … (for all binary connectives, …)

� CC (ω-order + dependency) allows quantification over predicates 
as well.

� Eg, ∀P:Nat→Prop. P(m)→P(n)  (m and n are Leibniz equal)
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Prop – universe of logical propositions

Intuitively, 

Prop : Type and Prop ⊆ Type
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Π-types/universal quantification with Prop

Π
T
for Π-types and Π

P
for universal quantification

(cf, previous rules for predicative Π-types)
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Logical operators in, eg, UTT
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�Why are these definitions reasonable?

� Usual introduction/elimination rules are all derivable.

�Examples

� Conjunction
� If P and Q are provable, so is P & Q.

� If P & Q is provable, so are P and Q.

� Falsity 
� false has no proof in the empty context (logical consistency).

� false implies any proposition.
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Logic-enriched type theories

�Curry-Howard naturally leads to intuitionistic logics.
� What about, say, classical logics?

�But: 

� Type-checking and logical inference are orthogonal.

� They can be independent with each other.

� In particular, the embedded logic of a type theory is not 
necessarily intuitionistic.

� Type theories are not just for constructive mathematics.

�A possible answer to the above question: 
� Logic-enriched type theories (LTTs) 

� Some recent work: Gambino & Aczel 2006, Luo 2006, Adams & Luo 2010.
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LTTs in a logical framework

�An LTT consists of
� Logic: Connectives & rules declared as constants for Prop.

� Eg,  ⊃ : Prop→Prop→Prop

⊃I : (P,Q:Prop) P→Q→(P⊃Q)

⊃E : (P,Q:Prop) (P⊃Q)→P→Q

� Can be classical.  Eg, Peirce : (P,Q:Prop) ((P→Q)→P)→P

� Prop is a kind, not a type.  In particular, no quantification over Prop.

� Inductive data types: eg, Nat – elimination over Type, plus

� Induction rule: one associated with each inductive type; eg,

P : (Nat)Prop    p0 : P(0)    ps : (x:Nat)P(x)→P(x+1)
==============================================================================================

IndNat(P,p0,ps) : (x:Nat)P(x)

�Formally formulated in LF/PAL+
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Reduction and proof normalisation

� Two aspects of Curry-Howard correspondence

� Formulae-as-types (as explicated so far)

� Proofs-as-objects ??

� Eg, β-reduction corresponds to proof normalisation in natural 
deduction, where an intro rule is immediately followed by an 
elim rule.

(A)┆
B            (*) ������ (*)

======= ==       ┆ ┆
A→B A                                        A

================                                                ┆
B                                                  B
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Revision Questions

�What is the Curry-Howard correspondence?

� How to interpret the logical operators in a predicative TT?

� What are the two aspects in Curry-Howard correspondence?

�How to define all logical operators by means of ∀ in 
an impredicative TT?  

� Why are such definitions reasonable? 

� What are the differences between the interpretations of 
logical operators in predicative/impredicative TTs? 

�What is the basic idea behind a logic-enriched type 
theory?  
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