Type Theory

Zhaohui Luo
Department of Computer Science
Royal Holloway, University of London

| Lecture slides & distribution files:

http://www.cs.rhul.ac.uk/home/zhaohui/TTlectures.html

April 2011

Type theory:

a foundational and practical language
for the working computer scientist.

<+ Logic + Computation

+ Two fundamental features in single language
¢ Rich structural mechanisms

+ Abstraction and modularisation
<+ Nice properties

+ Basis for simple semantics and implementations

April 2011

~Type theories as ...

% Logical systems
« propositional, first-order, higher-order, ...
+ intuitionaistic, classical, ...
«» Programming languages
« Functional programming (via A-functions and computation)
+ Modular programming (via rich type structures)
«» Mathematical modelling calculus
+ Formalisation of mathematics
+ Natural language semantics

April 2011

Some applications of type theory

« Proof assistants for interactive theorem proving
« ALF/Agda (Sweden), Coq (France), Lego/Plastic (UK),
Matita (Italy), NUPRL (USA), ...
« Formalisation of mathematics (eg, four-colour theorem)
+ Verification (eg, of security protocols)
+» Dependently-typed programming
« Agda/Cayenne (Sweden), DML (USA), Epigram (UK), ...
« Dependent, richer types in programming languages
+* Modelling in type theories
« Eg, linguistic reasoning with type-theoretical semantics
(Leverhulme research project at Royal Holloway)

April 2011

Historical remarks

<+ Early development (from early 1900's)
+ Logical paradoxes (eg, SeSif S ={x | xe x }?)
+ Ramified type theory (Russell)
+ Simple type theory (Ramsay 1926 & Church 1940)
«» Modern development (since 1970's)
+ Martin-Lof’s predicative type theory (Martin-Lof 1973, 1984)
+ Impredicative type theories (with type Prop of all propositions)
= Polymorphic A-calculi (F & F, Girard 1972, Reynolds 1974)
= Calculus of Constructions (CC, Coquand & Huet 1988)
= Unifying Theory of dependent Types (ECC/UTT, Luo 1989/1994)
= Calculus of Inductive Constructions (CIC, implemented in Coq)

April 2011

~This lecture series

«» Basics of type theory
« Introduction
« Embedded logics in type theories
« Inductive data types and universes
«+ Subtyping in type theory
« Coercive subtyping — theory and implementation
« Applications (eg, in proof development and linguistic
semantics)

We shall start from the simplest TT — the simply typed A-calculus.

April 2011 7

1. Typed A-calculi

“* Type-free v.s. typed A-calculi
« Type-free A-calculus (Barendregt 1980)
< Type-free terms: x, Ax.M, MN
< eg, Q = (Ax.xx)(Ax.xx) and Q >p Q.
« Typed A-calculi
<+ Only well-typed terms are “legal” (eg, Ax:A.x : A—A).
«» eg, Self-applications such as (Ax:A.xx)(Ax:A.xx) are not well-typed.
<» Typed A-calculus — basis of type theory
« Example calculi: function types, dependent types,

April 2011 8

~Simply typed A-calculus: syntax

“» Types ::= o | A>B
= Intuitively, an object of A—B is a function from A to B (eg, A-functions).
« Terms ::= x | Ax:A.b | f(a)
% Judgement
r-a:A
means “a /s an object of type A under assumptions I, where
I, called a context, is a finite set of entries of the form x:T.
= Eg, @ b Ax:Nat.x : Nat—Nat
x:Nat | x+2 : Nat
£ : Nat—Nat | £(0) : Nat
(2) £ : Nat—Nat | £(f) : Nat
Here, the first three are correct, not the fourth — governed by the rules.

April 2011 9

~Simply typed A-calculus: inference rules

<+ Inference rules

(Var) T o AFa A
T o:AFb:B
THAr-Ab: A B
IFfASB Tra:A
TFfa):B

(Abs)
(App)

<+ Correctness is given by derivability.
+ A judgement J is derivable if there is a sequence of judgements J,, ..., J,
with J, = J such that, for 1 <i < n, J; s the conclusion of some instance of a
rule whose premises are all in {J; | j <7 }.

+ Eg, £ : Nat—Nat | £(0) : Nat is derivable;
£+ Nat—>Nat | £(f) : Nat is not derivable.

April 2011 10

~ Computation: B-reduction

+«» Compatible relation :
« If M > N, then Ax:A.M > Ax:A.N, M(a) > N(a), and f(M) > f(N).
«» B-reduction > is the reflexive and transitive closure of the least
compatible relation satisfying (B):
®B) (Ax:A.b)(a) v [a/x]b
+ Eg, (WA, x+2)(3) by 3+2
*» B-conversion =g is the corresponding equivalence.

April 2011 11

~Meta-theoretic properties

«» Properties of typing, computation and their
relationship.
«» Remarks:
« Properties held for all “well-behaving” calculi, but only
illustrated here for the simply typed A-calculus.
« These properties are the basis for
++ Simple operational semantics (see “canonical objects” later)
< Implementations (of, eg, proof assistants)

We now explain some example properties.

April 2011 12

~Church-Rosser (CR)

“IfM=¢N, then3P.M>;PandN >, P.
« Diamond property: an alternative formulation
+ Equivalence between the two formulations

«» Uniqueness of values (if they exist)!

«» Remark:
« CR as a property of “raw terms”

« For some calculi, CR only holds for well-typed terms.

+ Eg, for dependent types with type labels and n-reduction,
Ax:A.(Ly:B.y)(x) is not CR as a raw term, but CR if well-typed.

April 2011 13

~Subject reduction (SR)

“*Ifa:Aandawcyb, thenb: A
«»*Computation preserves typing!

+ When performing computation, there is no need to
check well-typedness.

« Important for implementation

April 2011 14

~Strong normalisation (SN)

“If a: A, then a is strongly normalisable.

+ Every reduction sequence starting from any well-
typed term is finite.

+ Proof in Appendix 2 of (Hindley & Seldin 1986)
“»Every computation terminates!
+“*Implications
+ Usually implying logical consistency, ie, false is not
provable. (cf, in FP languages: no consistent logic)
+ Decidability and others

April 2011 15

Decidability

+*Decidability of

+ Type checking: Tl a:A?

« Typeinference: Tl a:?
Basis for implementations (of, eg, proof assistants)
% Remarks

« Compare this with the undecidability of acA in set theory.

« For dependent TTs, the above two problems are equivalent
— type checking requires type inference.

April 2011 16

~More sophisticated types: higher-order

“*Higher-order types
+ System F — 2"d-order polymorphic A-calculus
(Girard 1972, Reynolds 1974)
«2nd-order type VX.X (or VX:Type.X/VX:Prop.X), where X
ranges over all types/propositions)
<+ Logical constant “false”
+ System F* (Girard 1972)
+»Higher-order types: quantifications over connectives as
well as propositions (eg, VC:Prop—Prop—Prop. ...)

April 2011 17

Remark

++ For (non-dependent) higher-order types, we still have
« Separation (syntactically) between terms and types (terms
cannot occur in types/propositions).
+ Eg, we cannot have VP:Nat—Prop.P(m)>P(n) (ie, m and n
are Leibniz equal.) To do this, we need dependent types.

April 2011 18

More sophisticated types: dependency

++ Families of types — types dependent on terms
+ Per Martin-L6f 1970s-1980s (1973, 1984)
<» Examples
+ Vect(n) — type of lists of exactly n elements, a type
depending on n : Nat
+ m<n — proposition that depends on m, n : Nat.

April 2011 19

II-types

+ Informally,
IIx:A.B(x) = { f | forany a : A, f(a) : B(a) }
(formal rules later)
+“» Examples
+ Ax:Nat.[1,...,x] : TIx:Nat.Vect(x)
+ Ux:Nat.0<x

« Combining dependency & higher-order, we can have:
VP:Nat—Prop.P(m)=>P(n).

April 2011 20

X-types

+ Informally,
Ix:AB(x) ={(a,b) |a: A&b:B(a)}
+“» Examples
« Types of modules such as
(S :type, f: S55-S) : £S:type. S-55-S,
where “type” is a type of types (“universe” — see later)

April 2011 21

Curry-style typed A-calculus

« So far: Church-style
« Curry-style: an equivalent presentation for simply typed A-
calculus

« Terms = x | Ax.b| f(a)

« (Var)(App) are the same, except ~ (Abs')
«» Type assignment

« Eg, Ax.x can be assigned o—o. for any type a

(cf, in Church-style, Ax:A.x must be of type A—A.)

« Terms can be assigned many types or “overloaded”.

« Adopted in various programming languages such as ML/Haskell/...
These are two very different styles.

« Only equivalent for simpler calculi, not for others ...

I e:AFb:B
THAb: A= B

April 2011 22

~Church-style v.s. Curry-style

<+ In appearance, only a syntactic difference of type labels:
between Ax:A.b and Ax.b.
¢+ In fact, much deeper — two different views of types!
<+ Curry-style — type assignment systems
= Objects exist first — types are then assigned to objects.
« Overloading A-terms, which may reside in different types.
«+ Church-style — type theories with canonical objects
« Types and their objects co-exist.
« This is the kind of TTs we are about to study

April 2011 23

~Revision Questions

“ What are
= Simple types?
= Higher-order types?
= Dependent types?

“» What are the meta-theoretic properties such CR, SR
and SN? What are their theoretical and practical
implications?

“» What are the differences between

« type-free A-calculus and typed A-calculi?
« Church-style and Curry-style A-calculi?

April 2011 24

~Selected References

H.P. Barendregt. The Lambda Calculus, Its Syntax and Semantics. Studies in Logic and the
Foundations of Mathematics, Volume 103. 1980.

H.P. Barendregt. Lambda-calculus with types. In Handbook of Logic in Computer Science.
OUP, 1992.

Th. Coquand and G. Huet. The calculus of constructions. Infor and Comp 76(2-3). 1988.
J.-Y. Girard. PhD thesis, 1972.

J. Hindley and J. Seldin. Introduction to Combinators and A-Calculus. CUP, 1986.

(2" edition in 2008 with a slightly different title)

Z. Luo. Computation and Reasoning: A Type Theory for Computer Science. OUP, 1994.

P. Martin-Lof. Intuitionistic Type Theory. Bibliopolis, 1984.

J.C. Reynolds. Towards a theory of type structure. LNCS 19, 1974.

M. Sorensen and P. Urzyczyn. Lectures on the Curry-Howard Isomorphism. Studies in Logic
and the Foundations of Mathematics, Vol 149. Elsevier, 2006.

April 2011 25

