
Type Theory

Zhaohui Luo

Department of Computer Science

Royal Holloway, University of London

Lecture slides & distribution files:

http://www.cs.rhul.ac.uk/home/zhaohui/TTlectures.html

April 2011 2

Type theory:

a foundational and practical language

for the working computer scientist.

� Logic + Computation

� Two fundamental features in single language

� Rich structural mechanisms

� Abstraction and modularisation

� Nice properties

� Basis for simple semantics and implementations

April 2011 3

Type theories as …

� Logical systems

� propositional, first-order, higher-order, …

� intuitionaistic, classical, ...

�Programming languages

� Functional programming (via λ-functions and computation)

� Modular programming (via rich type structures)

�Mathematical modelling calculus

� Formalisation of mathematics

� Natural language semantics

April 2011 4

Some applications of type theory

� Proof assistants for interactive theorem proving

� ALF/Agda (Sweden), Coq (France), Lego/Plastic (UK),
Matita (Italy), NuPRL (USA), ...

� Formalisation of mathematics (eg, four-colour theorem)

� Verification (eg, of security protocols)

� Dependently-typed programming
� Agda/Cayenne (Sweden), DML (USA), Epigram (UK), …

� Dependent, richer types in programming languages

� Modelling in type theories

� Eg, linguistic reasoning with type-theoretical semantics
(Leverhulme research project at Royal Holloway)

April 2011 5

Historical remarks

� Early development (from early 1900’s)

� Logical paradoxes (eg, S∈S if S = { x | x ∉ x }?)

� Ramified type theory (Russell)

� Simple type theory (Ramsay 1926 & Church 1940)

� Modern development (since 1970’s)

� Martin-Löf’s predicative type theory (Martin-Löf 1973, 1984)

� Impredicative type theories (with type Prop of all propositions)

� Polymorphic λ-calculi (F & F
ω
, Girard 1972, Reynolds 1974)

� Calculus of Constructions (CC, Coquand & Huet 1988)

� Unifying Theory of dependent Types (ECC/UTT, Luo 1989/1994)

� Calculus of Inductive Constructions (CIC, implemented in Coq)

April 2011 6

This lecture series

�Basics of type theory

� Introduction

� Embedded logics in type theories

� Inductive data types and universes

�Subtyping in type theory

� Coercive subtyping – theory and implementation

� Applications (eg, in proof development and linguistic
semantics)

We shall start from the simplest TT – the simply typed λ-calculus.

April 2011 7

I. Typed λ-calculi

�Type-free v.s. typed λ-calculi

� Type-free λ-calculus (Barendregt 1980)
� Type-free terms: x, λx.M, MN

� eg, Ω ≡ (λx.xx)(λx.xx) and Ω >β Ω.

� Typed λ-calculi
� Only well-typed terms are “legal” (eg, λx:A.x : A→A).

� eg, Self-applications such as (λx:A.xx)(λx:A.xx) are not well-typed.

�Typed λ-calculus – basis of type theory

� Example calculi: function types, dependent types, … …

April 2011 8

Simply typed λ-calculus: syntax

� Types ::= σ | A→B
� Intuitively, an object of A→B is a function from A to B (eg, λ-functions).

� Terms ::= x | λx:A.b | f(a)

� Judgement

Γ├ a : A

means “a is an object of type A under assumptions Γ”, where
Γ, called a context, is a finite set of entries of the form x:T.
� Eg, ∅├ λx:Nat.x : Nat→Natx:Nat├ x+2 : Natf : Nat→Nat├ f(0) : Nat(?) f : Nat→Nat├ f(f) : Nat

Here, the first three are correct, not the fourth – governed by the rules.

April 2011 9

Simply typed λ-calculus: inference rules

� Inference rules

� Correctness is given by derivability.
� A judgement J is derivable if there is a sequence of judgements J1, …, Jn

with Jn ≡ J such that, for 1 ≤ i ≤ n, Ji is the conclusion of some instance of a
rule whose premises are all in {Jj | j < i }.

� Eg, f : Nat→Nat├ f(0) : Nat is derivable;f : Nat→Nat├ f(f) : Nat is not derivable.
April 2011 10

Computation: β-reduction

� Compatible relation >:
� If M > N, then λx:A.M > λx:A.N, M(a) > N(a), and f(M) > f(N).

� β-reduction >β is the reflexive and transitive closure of the least
compatible relation satisfying (β):

(β) (λx:A.b)(a) >β [a/x]b
� Eg, (λx:A. x+2)(3) >β 3+2

� β-conversion =β is the corresponding equivalence.

April 2011 11

Meta-theoretic properties

�Properties of typing, computation and their
relationship.

�Remarks:

� Properties held for all “well-behaving” calculi, but only
illustrated here for the simply typed λ-calculus.

� These properties are the basis for

�Simple operational semantics (see “canonical objects” later)

� Implementations (of, eg, proof assistants)

We now explain some example properties.

April 2011 12

Church-Rosser (CR)

� If M =β N, then ∃ P. M >β P and N >β P.

� Diamond property: an alternative formulation

� Equivalence between the two formulations

�Uniqueness of values (if they exist)!

�Remark:

� CR as a property of “raw terms”

� For some calculi, CR only holds for well-typed terms.

�Eg, for dependent types with type labels and βη-reduction,
λx:A.(λy:B.y)(x) is not CR as a raw term, but CR if well-typed.

April 2011 13

Subject reduction (SR)

�If a : A and a >β b, then b : A.

�Computation preserves typing!

� When performing computation, there is no need to
check well-typedness.

� Important for implementation

April 2011 14

Strong normalisation (SN)

�If a : A, then a is strongly normalisable.

� Every reduction sequence starting from any well-
typed term is finite.

� Proof in Appendix 2 of (Hindley & Seldin 1986)

�Every computation terminates!

�Implications

� Usually implying logical consistency, ie, false is not
provable. (cf, in FP languages: no consistent logic)

� Decidability and others

April 2011 15

Decidability

�Decidability of
� Type checking: Γ├ a : A ?

� Type inference: Γ├ a : ?

Basis for implementations (of, eg, proof assistants)

Remarks

� Compare this with the undecidability of a∈A in set theory.

� For dependent TTs, the above two problems are equivalent
– type checking requires type inference.

April 2011 16

More sophisticated types: higher-order

�Higher-order types

� System F – 2nd-order polymorphic λ-calculus
(Girard 1972, Reynolds 1974)

�2nd-order type ∀X.X (or ∀X:Type.X/∀X:Prop.X), where X
ranges over all types/propositions)

�Logical constant “false”

� System Fω (Girard 1972)

�Higher-order types: quantifications over connectives as
well as propositions (eg, ∀C:Prop→Prop→Prop. …)

April 2011 17

Remark

� For (non-dependent) higher-order types, we still have

� Separation (syntactically) between terms and types (terms
cannot occur in types/propositions).

� Eg, we cannot have ∀P:Nat→Prop.P(m)⊃P(n) (ie, m and n
are Leibniz equal.) To do this, we need dependent types.

April 2011 18

More sophisticated types: dependency

� Families of types – types dependent on terms

� Per Martin-Löf 1970s-1980s (1973, 1984)

�Examples

� Vect(n) – type of lists of exactly n elements, a type
depending on n : Nat

� m≤n – proposition that depends on m, n : Nat.

April 2011 19

Π-types

� Informally,

Πx:A.B(x) = { f | for any a : A, f(a) : B(a) }

(formal rules later)

�Examples

� λx:Nat.[1,…,x] : Πx:Nat.Vect(x)

� ∀x:Nat.0≤x

� Combining dependency & higher-order, we can have:
∀P:Nat→Prop.P(m)⊃P(n).

April 2011 20

Σ-types

� Informally,

Σx:A.B(x) = { (a,b) | a : A & b : B(a) }

�Examples

� Types of modules such as

〈 S : type, f : S→S→S 〉 : ΣS:type. S→S→S,

where “type” is a type of types (“universe” – see later)

April 2011 21

Curry-style typed λ-calculus

� So far: Church-style

� Curry-style: an equivalent presentation for simply typed λ-
calculus
� Terms ::= x | λx.b | f(a)

� (Var)(App) are the same, except

� Type assignment

� Eg, λx.x can be assigned α→α for any type α

(cf, in Church-style, λx:A.x must be of type A→A.)

� Terms can be assigned many types or “overloaded”.

� Adopted in various programming languages such as ML/Haskell/…

These are two very different styles.

� Only equivalent for simpler calculi, not for others …

April 2011 22

Church-style v.s. Curry-style

� In appearance, only a syntactic difference of type labels:
between λx:A.b and λx.b.

� In fact, much deeper – two different views of types!

� Curry-style – type assignment systems
� Objects exist first – types are then assigned to objects.

� Overloading λ-terms, which may reside in different types.

� Church-style – type theories with canonical objects
� Types and their objects co-exist.

� This is the kind of TTs we are about to study … …

April 2011 23

Revision Questions

�What are

� Simple types?

� Higher-order types?

� Dependent types?

�What are the meta-theoretic properties such CR, SR
and SN? What are their theoretical and practical
implications?

�What are the differences between

� type-free λ-calculus and typed λ-calculi?

� Church-style and Curry-style λ-calculi?

April 2011 24

Selected References

� H.P. Barendregt. The Lambda Calculus, Its Syntax and Semantics. Studies in Logic and the
Foundations of Mathematics, Volume 103. 1980.

� H.P. Barendregt. Lambda-calculus with types. In Handbook of Logic in Computer Science.
OUP, 1992.

� Th. Coquand and G. Huet. The calculus of constructions. Infor and Comp 76(2-3). 1988.

� J.-Y. Girard. PhD thesis,1972.

� J. Hindley and J. Seldin. Introduction to Combinators and λ-Calculus. CUP, 1986.

(2nd edition in 2008 with a slightly different title)

� Z. Luo. Computation and Reasoning: A Type Theory for Computer Science. OUP, 1994.

� P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.

� J.C. Reynolds. Towards a theory of type structure. LNCS 19, 1974.

� M. Sorensen and P. Urzyczyn. Lectures on the Curry-Howard Isomorphism. Studies in Logic

and the Foundations of Mathematics, Vol 149. Elsevier, 2006.

April 2011 25

