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Abstract. A type-theoretic framework for formal reasoning with differ-
ent logical foundations is introduced and studied. With logic-enriched
type theories formulated in a logical framework, it allows various log-
ical systems such as classical logic as well as intuitionistic logic to be
used effectively alongside inductive data types and type universes. This
provides an adequate basis for wider applications of type theory based
theorem proving technology. Two notions of set are introduced in the
framework and used in two case studies of classical reasoning: a predica-
tive one in the formalisation of Weyl’s predicative mathematics and an
impredicative one in the verification of security protocols.

1 Introduction

Dependent type theories, or type theories for short, are powerful calculi for
logical reasoning that provide solid foundations for the associated theorem prov-
ing technology as implemented in various ‘proof assistants’. These type the-
ories include Martin-Löf’s predicative type theory [NPS90,ML84], as imple-
mented in ALF/Agda [MN94,Agd00] and NuPRL [C+86], and the impredicative
type theories [CH88,Luo94], as implemented in Coq [Coq04] and Lego/Plastic
[LP92,CL01]. The proof assistants have been successfully used in formalisation of
mathematics (e.g., the formalisations in Coq of the four-colour theorem [Gon05])
and in reasoning about programs (e.g., the analysis of security protocols).

The current type theories as found in the proof assistants are all based on
intuitionistic logic. As a consequence, the type theory based proof assistants
are so far mainly used for constructive reasoning. Examples that require or use
other methods of reasoning, say classical reasoning, would have to be done by
‘extending’ the underlying type theory with classical laws by brute force and
praying for such an extension to be OK.

We believe that the type theory based theorem proving technology is not
(and should not be) limited to constructive reasoning. In particular, it should
adequately support classical reasoning as well as constructive reasoning. To this
end, what one needs is a type-theoretic framework that supports the use of a
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wider class of logical systems and, at the same time, keeps the power of type
theory in formal reasoning such as inductive reasoning based on inductive types.

In this paper, we introduce such a type-theoretic framework where logic-
enriched type theories are formulated in a logical framework such as LF [Luo94]
and PAL+ [Luo03]. Logic-enriched type theories with intuitionistic logic have
been proposed by Aczel and Gambino in studying type-theoretic interpretations
of constructive set theory [AG02,GA06]. They are studied here from the an-
gle of supporting formal reasoning with different logical foundations. We show
that it is possible to provide a uniform framework so that type theories can be
formulated properly to support different methods of reasoning. The structure
of our framework promotes a complete separation between logical propositions
and data types. It provides an adequate support to classical inference as well as
intuitionistic inference, in the presence of inductive types and type universes.

Two notions of set are introduced in the type-theoretic framework: a pred-
icative one and an impredicative one. They are used in two case studies: one
in the formalisation of Weyl’s predicative mathematics [Wey18,AL06] and the
other in the formalisation and analysis of security protocols. Both case studies
use classical reasoning – we have chosen to do so partly because how to use type
theory in constructive reasoning has been extensively studied and partly because
we want to show how classical logic can be employed in a type-theoretic setting.

The proof assistant Plastic [CL01] has been extended (in an easy and straight-
forward way) by Paul Callaghan to implement the type-theoretic framework as
described in this paper. The case studies have been done in the extended Plastic
and help to demonstrate that type theory and the associated proof assistants
can be used to support formal reasoning with different logical foundations.

2 Logic-enriched type theories in a logical framework

The type-theoretic framework formulates logic-enriched type theories (LTTs for
short) in a logical framework. It consists of two parts, the part of logical proposi-
tions and the part of data types. Both parts are formulated in a logical framework
and linked by the induction rules (see below).

We start with the logical framework LF [Luo94] or PAL+ [Luo03], where the
kind Type represents the world of types. Now, we extend the logical framework
with a new kind Prop that stands for the world of logical propositions and, for
every P : Prop, a kind Prf(P ) of proofs of P .

The logic of an LTT is specified in Prop by declaring constants for the log-
ical operators and the associated rules (as logics are introduced in Edinburgh
LF [HHP93]). The data types are introduced in Type as in type theories such
as Martin-Löf’s type theory [NPS90] and UTT [Luo94]. Different LTTs can be
formulated in the framework for formal reasoning with different logical foun-
dations. Instead of considering LTTs in general, we shall present and study a
typical example – the LTT with the classical first-order logic, abbreviated as
LTT1, to illustrate how an LTT is formulated in our type-theoretic framework.



2.1 LTT1: an example

The system LTT1 consists of the classical first-order logic, the inductive data
types, and type universes. Each of the components is described below.

Logic of LTT1 The logical operators such as ⊃, ¬ and ∀ are introduced by
declaring as constants the operators and the direct proofs of the associated
inference rules. For instance, for universal quantification ∀, we declare (where
we write ‘f [a1, ..., an]’ for applications and ‘f [x1, ..., xn] : A where xi : Ai’ for
f : (x1:A1, ..., xn:An)A):

∀[A,P ] : Prop, ∀I [A,P, f ] : Prf(∀[A,P ]) and ∀E [A,P, a, p] : Prf(P [a])

where A : Type, P [x:A] : Prop, f [x:A] : Prf(P [x]) and p : Prf(∀[A,P ]).
Note that ∀ can only quantify over types; that is, for a formula ∀[A,P ],

or ∀x:A,P [x] in the usual notation, A must be a type (of kind Type). Since
Prop is not a type (it is a kind), one cannot form a proposition by quantifying
over Prop. Higher-order logical quantifications such as ∀X:Prop.X, as found
in impredicative type theories, are not allowed. Similarly, since propositions are
not types (Prf(P ) is a kind, not a type), one cannot quantify over propositions,
either.

As another example, we declare the classical negation operator ¬P : Prop
for P : Prop and the corresponding double negation rule DN [P, p] : Prf(P )
where P : Prop and p : Prf(¬¬P )]. Other logical operators can be introduced
in a similar way or defined as usual. For instance, an equality operator can be
introduced to form propositions a =A b, for A : Type and a, b : A.

Inductive data types in LTT1 The system LTT1 (and every LTT) contains
(some or all of) the inductive types as found in Martin-Löf’s type theory [NPS90]
or UTT [Luo94], which include those of natural numbers, dependent pairs, lists,
trees, ordinals, etc. For example, the type N : Type of natural numbers can be
introduced by first declaring its constructors 0 : N and s[n] : N where n : N ,
and then its elimination operator ET [C, c, f, n] : C[n], for C[n] : Type with n : N ,
and the associated computation rules

ET [C, c, f, 0] = c : C[0]
ET [C, c, f, s[n]] = f [n, ET [C, c, f, n]] : C[s[n]]

For each inductive type, there is an associated induction rule for proving
properties of the objects of that type. For example, the induction rule for N is

EP [P, c, f, n] : P [n] for P [n] : Prop [n : N ]

Note that the elimination operator over types, ET , has associated computational
rules, while the elimination operator over propositions, EP , does not.

The induction rules are crucial in connecting the world of logical propositions
(formally represented by Prop) and that of the data types (formally represented
by Type). Quantifications over types allow one to form propositions to express
logical properties of data and the induction rules to prove those properties.



Type universes in LTT1 The system LTT1 (and every LTT) may contain
type universes, types consisting of (names of) types as objects. For example, a
universe of ‘small types’ can be introduced as

type : Type and T [x] : Type [x : type].

Some of the inductive types have names in a type universe. For example, we can
have nat as a name of N in type by declaring nat : type and T [nat] = N : Type.
The general way of introducing type universes can be found in [ML84] and see,
e.g., [Luo94] for universes containing inductive types generated by schemata.

We remark that, if we have introduced a type universe that contains the
names of N and ∅ (the empty type), we can prove Peano’s fourth axiom for
natural numbers (∀x:N.(s[x] 6=N 0)) internally in the type-theoretic framework.
This is similar to Martin-Löf’s type theory, where Peano’s fourth axiom is not
provable internally without a type universe [Smi88].

Logical consistency of LTT1 The system LTT1 is logically consistent in the
sense that there are unprovable propositions. If one is not satisfied with the
‘simple minded consistency’ [ML84], a meta-mathematical consistency can be
proved – it can be shown that LTT1 is relatively consistent w.r.t. ZF.

Theorem 1 (consistency). The type system LTT1 is logically consistent.

Proof sketch Let T be Martin-Löf’s intensional type theory extended with
Excluded Middle (i.e., extending it with assumed proofs of A + (A → ∅) for all
types A). Then T is logically consistent w.r.t. ZF. Now, consider the mapping
] : LTT1 → T that maps the types and propositions of LTT1 to types of T so
that A] = A for A : Type and, e.g., ∀[A, P ]] = Π[A], P ]] and (¬P )] = P ] → ∅.
Then, by proving a more general lemma by induction, we can show that if
Γ ` a : A in LTT1, then Γ ] ` a] : A] in T . The logical consistency follows. ut

Although there are other ways to prove the meta-mathematical consistency,
the above proof sketch raises an interesting question one may ask: if Martin-Löf’s
type theory extended with a classical law (say Excluded Middle) is consistent,
why does one prefer to use LTT1 rather than such an extension directly?

One of the reasons for such a preference is that the LTT approach preserves
the meaning-theoretic understanding of types as consisting of their canonical
objects (e.g., N consists of zero and the successors). Such an adequacy property
would be destroyed by a direct extension of Martin-Löf’s type theory with a
classical law, where every inductive type contains (infinitely many) non-canonical
objects. Therefore, in this sense, it is inadequate to introduce classical laws
directly to Martin-Löf’s type theory or other type theories.

In our type-theoretic framework, there is a clear distinction between logical
propositions and data types. For example, the classical law in LTT1 does not
affect the data types such as N . It hence provides an adequate treatment of
classical reasoning on the one hand and a clean meaning-theoretic understanding
of the inductive types on the other.



This clear separation between logical propositions and data types is an impor-
tant salient feature of the type-theoretic framework in general. In Martin-Löf’s
type theory, for example, types and propositions are identified. The author has
argued, for instance in the development of ECC/UTT [Luo94] as implemented in
Lego/Plastic and the current version of Coq1, that it is unnatural to identify logi-
cal propositions with data types and there should be a clear distinction between
the two. This philosophical idea was behind the development of ECC/UTT,
where data types are not propositions, although logical propositions are types.

Logic-enriched type theories, and hence our framework as presented in this
paper, have gone one step further – there is a complete separation between
propositions and types. Logical propositions and their totality Prop are not
regarded as types. This has led to a more flexible treatment of logics in our
framework.

2.2 Implementation

The type-theoretic framework has been implemented by Callaghan by extending
the proof assistant Plastic [CL01]. Plastic implements the logical framework LF.
The extension is to add the kind Prop and the operator Prf , as described at the
beginning of this section. Logical operators such as those of LTT1 are introduced
by the user. Plastic already supports the inductive types in the kind Type.
However, it does not automatically generate the induction rules (represented
above by EP for N) which, at the moment, are entered by the user (this is
possible because EP does not have associated computation rules.) We should also
mention that Plastic supports adding computation rules of certain form and this
allows one to add universes and the associated computation rules. The system
LTT1 has been completely implemented in Plastic and so have the notions of
set and the case studies to be described in the following two sections.

3 Typed sets

When we consider sets in our type-theoretic framework, the objects of a set are
all ‘similar’ in the sense that every set is a typed set. In other words, every set has
a base type from which every element of the set comes. For instance, a set with
N as base type contains only natural numbers as its elements. We believe that
such a notion of typed set is natural and much closer to the practice of everyday
mathematical reasoning than that in the traditional set theory where there is no
distinction between types. Sometimes, mathematicians use the word ‘category’
for what we call types and consider sets with elements of the same category (see,
e.g., [Wey18]). Here, types are formal representations of categories.

In the following, we consider two notions of (typed) set: an impredicative
notion and a predicative notion.

1 The current type structure of Coq (version 8.0) [Coq04], after the universe Set be-
comes predicative, is very similar to (if not exactly the same as) that of ECC/UTT.



Impredicative notion of set Impredicative sets can be introduced as follows.

– Set[A:Type] : Type (Set[A] is the type of sets with base type A.)
– set[A:Type, P [x:A]:Prop] : Set[A] (Informally, set[A,P ] is {x : A | P [x] }.)
– in[A:Type, a:A,S:Set[A]] : Prop (Informally, in[A, a, S] is a ∈ S.)
– in[A, a, set[A,P ]] = P [a] : Prop (Computational equality)

Note that this notion of set is impredicative. For example, the powerset of S :
Set[A] can be defined as {S′:Set[A] | ∀x:A. x ∈ S′ ⊃ x ∈ S } of type Set[Set[A]].

Predicative notion of set The notion of predicativity has been studied by
many people, most notably by Feferman in a series of papers, including [Fef05].
Intuitively, the definition of a set {x | p(x) } is predicative if the predicate p(x)
does not involve any quantification over the totality that contains the entity
being defined. If the set-forming predicate p does not involve any quantification
over sets at all, then the definition of the set is predicative.

In our type-theoretic framework, predicative sets can be introduced by first
introducing a propositional universe of small propositions:

prop : Prop, V [p : prop] : Prop

Intuitively, a small proposition contains only quantifications over small types
(with names in type). This can be seen from the quantifier rules for prop:

∀̄[a, p] : prop [a:type, p[x:T [a]] : prop]
V [∀̄[a, p]] = ∀[T [a], [x:T [a]]V [p[x]]] : Prop

where p[x] must be a small proposition for any object x in the small type a.
Formally, predicative sets can be introduced as follows:

– Set[a:type] : Type (Set[a] is a type if a is a small type in universe type.)
– set[a:type, p[x:T [a]]:prop] : Set[a] (Informally, p in {x : A | p[x] } must be a

small propositional function.)
– in[a:type, x:T [a], S:Set[a]] : prop (Informally, x ∈ S is a small proposition.)
– in[a, x, set[a, p]] = p[x] : prop (Computational equality)

Note that a type of sets is not a small type. Therefore, quantification over sets
is not allowed when stating a set-forming condition.

Remark 1. Aczel and Gambino [AG02,GA06] have considered a type universe P
of small propositions in the world of types (formally, P : Type). Such a universe
has played an important role in their study of the type-theoretic interpretation
of constructive set theory. However, it seems that this has the effect of putting
logical propositions directly ‘back’ to the world of types. In our case, the propo-
sitional universe prop is of kind Prop, not of kind Type. ut

We argue that the notions of set introduced above are adequate in support-
ing ‘mathematical pluralism’.2 With these notions, the type-theoretic framework
can be used to formalise, in the classical setting, the ordinary (classical and
impredicative) mathematics and Weyl’s predicative mathematics and, in the in-
tuitionistic setting, the predicative and impredicative constructive mathematics.
2 The philosophical view of mathematical pluralism is to be elaborated elsewhere.



4 Case studies

Formalisation of Weyl’s predicative mathematics As is known, the or-
dinary mathematics is impredicative in the sense that it allows impredicative
definitions that some people might regard as ‘circular’ and hence problematic.
Such people would believe that the so-called predicative mathematics is safer,
where impredicative or circular definitions are regarded as illegal. For instance,
in the early quarter of the last century, the mathematician Hermann Weyl has
developed a predicative treatment of the calculus (in classical logic) [Wey18],
which has been studied and further developed by Feferman and others [Fef05].

The formalisation of Weyl’s work [Wey18] has been done in the type-theoretic
framework (more specifically, in LTT1 with predicative sets) in Plastic [AL06].

Formalisation and analysis of security protocols Security protocols have
been extensively studied in the last two to three decades. Besides other interest-
ing research, theorem provers have been used to formalise security protocols and
prove their properties. For instance, Paulson has studied the ‘inductive approach’
[Pau98] in Isabelle [Pau94] to verify properties of security protocols.

As a case study of classical impredicative reasoning in the type-theoretic
framework, we have formalised in Plastic several security protocols in LTT1

with impredicative sets. The examples include simple protocols such as the
Needham-Schroeder public-key protocol [NS78,Low96] and the Yahalom protocol
[BAN89,Pau99]. Our formalisation has followed Paulson’s inductive approach
closely, in order to examine how well the power of inductive reasoning in the
type-theoretic framework matches that in Isabelle. Our experience shows that
the answer is positive, although more automation in some cases would be de-
sirable. In our formalisation, agents, messages and events are all modelled as
inductive types (rather than as inductive sets as in Isabelle). The operations
such as parts, analz and synth are defined as maps between sets of messages. A
protocol is then modelled as a set of traces (a set of lists of events). One can then
show that various properties are satisfied by the protocol concerned, including
the secrecy properties such as the session key secrecy theorem.

5 Concluding remarks on future work

Future work includes comparative studies with other existing logical systems and
the associated theorem proving technology. For example, it would be interesting
to compare the predicative notion of set with that studied by Feferman and
others [Fef00,Sim99] and to consider a comparison with that of Martin-Löf’s type
theory [NPS90,ML84] to study the relationship between the notion of predicative
set and that of predicative type.
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