
Coherene and transitivity in oerive subtyping

Yong Luo and Zhaohui Luo

?

Department of Computer Siene,

University of Durham,

South Road, Durham, DH1 3LE , U.K.

E-mail: fYong.Luo, Zhaohui.Luog�durham.a.uk

Abstrat Coerive subtyping is a general approah to subtyping, inher-

itane and abbreviation in dependent type theories. A vital requirement

for oerive subtyping is that of oherene { omputational uniqueness

of oerions between any two types. In this paper, we develop tehniques

useful in proving oherene and its related result on admissibility of tran-

sitivity and substitution. In partiular, we onsider suitable subtyping

rules for �-types and �-types and prove its oherene and the admis-

sibility of substitution and transitivity rules at the type level in the

oerive subtyping framework.

1 Introdution

Coerive subtyping, as studied in [Luo97,Luo99,SL01℄, represents a novel general

approah to subtyping and inheritane in type theory. In partiular, it provides a

framework in whih subtyping, inheritane, and abbreviation an be understood

in dependent type theories where types are understood as onsisting of anonial

objets.

In this paper, we onsider the issue of oherene in the framework of oerive

subtyping; in partiular, we develop tehniques useful for proving oherene in

oerive subtyping. The oherene onditions are the most basi requirement

for the subtyping rules. In essene, it says that any two oerions between two

types must be the same, whih ensures the uniqueness of oerions (if any).

Among other things, oherene is the basis for the whole oerive subtyping

framework to be onsistent and for it to be implemented in a orret way. A

related important issue is that of admissibility of transitivity and substitution,

whih apart from its relationship with oherene, is essential for implementation

of the theory.

We shall develop methods to prove oherene and the admissibility results. In

partiular, we onsider suitable subtyping rules for � and �-types as examples

to demonstrate these proof tehniques. Although some important meta-theoreti

results suh as the onservativity result have been obtained for oerive subtyp-

ing, the urrent paper is the �rst attempt to prove oherene and admissibility

?

The �rst author thanks the support of the ORS Award and the Durham University

studentship. This work by the seond author is partly supported by the UK EPSRC

grant GR/M75518 and the EU grant on the TYPES projet.

results at the type level in the framework. The tehniques developed here have

wider and further appliations.

In Setion 2, we give an overview of oerive subtyping, presenting the formal

framework and giving informal explanations of the oherene problem. In Se-

tion 3, a general strategy for proving oherene and the admissibility results is

onsidered, and a formal de�nition of the so-alled well-de�ned oerions is given

as the basis for the proof tehniques to be onsidered in the following setions.

In Setions 4 and 5, we prove oherene and the admissibility of substitution and

transitivity rules, respetively. Disussions are given in the onluding setion

(Setion 6), where we disuss issues suh as deidability and weak transitivity,

the latter of whih is important for the oerive subtyping framework and its

appliations.

2 Coerive subtyping and the oherene problem

In this setion, we give a brief introdution to oerive subtyping, explain the

notion of oherene and its importane, and lay down the neessary formal details

to be used in the following setions.

2.1 Coerive subtyping

The basi idea of oerive subtyping, as studied in e.g., [Luo99℄, is that A is

a subtype of B if there is a (unique) oerion from A to B, and therefore,

any objet of type A may be regarded as objet of type B via , where is a

funtional operation from A to B in the type theory.

A oerion plays the role of abbreviation. More preisely, if is a oerion

from K

0

to K, then a funtional operation f with domain K an be applied to

any objet k

0

of K

0

and the appliation f(k

0

) is de�nitionally equal to f((k

0

)).

Intuitively, we an view f as a ontext whih requires an objet of K; then

the argument k

0

in the ontext f stands for its image of the oerion, (k

0

).

Therefore, one an use f(k

0

) as an abbreviation of f((k

0

)).

The above simple idea, when formulated in the logial framework, beomes

very powerful. The seond author and his olleagues have developed the frame-

work of oerive subtyping that overs variety of subtyping relations inluding

those represented by parameterised oerions and oerions between parame-

terised indutive types. See [Luo99,Bai99,CL01,LC98,CLP01℄ for details of some

of these development and appliations of oerive subtyping.

Some important meta-theoreti aspets of oerive subtyping have been stud-

ied. In partiular, the results on onservativity and on transitivity elimination

for subkinding have been proved in [JLS98,SL01℄. The onservativity result says,

intuitively, that every judgement that is derivable in the theory with oerive

subtyping and that does not ontain oerive appliations is derivable in the

original type theory. Furthermore, for every derivation in the theory with oer-

ive subtyping, one an always insert oerions orretly to obtain a derivation

2

in the original type theory. The main result of [SL01℄ is essentially that oher-

ene of basi subtyping rules does imply onservativity. These results not only

justify the adequay of the theory from the proof-theoreti onsideration, but

also provide the proof-theoreti basis for implementation of oerive subtyping.

(However, how to prove oherene and admissibility of transitivity at the type

level has not been studied; this is the subjet of this paper.)

Coerion mehanisms with ertain restritions have been implemented both

in the proof development system Lego [LP92℄ and Coq [B

+

00℄, by Bailey [Bai99℄

and Saibi [Sai97℄, respetively. Callaghan of the Computer Assisted Reasoning

Group at Durham has implemented Plasti [CL01℄, a proof assistant that sup-

ports logial framework and oerive subtyping with a mixture of simple oer-

ions, parameterised oerions, oerion rules for parameterised indutive types,

and dependent oerions [LS99℄.

A formal presentation Here, before disussing further the problems of o-

herene and transitivity, we �rst give a formal presentation of the framework of

oerive ubtyping, whih is also the basis for our development in latter setions.

We shall be brief in this paper (for details and more explanations, see [Luo99℄).

Coerive subtyping is formally formulated as an extension of (type theories

spei�ed in) the logial frameworkLF [Luo94℄, whose rules are given in Appendix

A. In LF, Type represents the oneptual universe of types and (x : K)K

0

rep-

resents the dependent produt with funtional operations f as objets (e.g.,

abstration [x : K℄k) whih an be applied to objets of kind K to form appli-

ation f(k). LF an be used to speify type theories, suh as Martin-L�of's type

theory [NPS90℄ and UTT [Luo94℄.

For example, �-types, types of dependent funtions, an be spei�ed by in-

troduing the onstants for (1) formation: �(A;B) is a type for any type A and

any family of types B, (2) introdution: �(A;B; f) is a funtion of type �(A;B)

if f is a funtional operation of kind (x : A)B(x), and (3) elimination, from whih

we an de�ne the appliation operator app(A;B; F; a). Similarly, we an intro-

due �-types �(A;B) with introdution operator to form pair(A;B; a; b) and

an elimination operator from whih the projetions �

1

(A;B; p) and �

2

(A;B; p)

an be de�ned.

Notation We shall use the following notations:

� We shall often omit the El-operator in LF to write A for El(A) when no

onfusion may our and may write (K)K

0

for (x : K)K

0

when x does not

our free in K

0

.

� We sometimes use M [x℄ to indiate that variable x may our free in M and

subsequently write M [N ℄ for [N=x℄M , when no onfusion may our.

� Funtional omposition: for f : (K

1

)K

2

and g: (y : K

2

)K

3

[y℄, de�ne gÆf =

df

[x :

K

1

℄g(f(x)): (x : K

1

)K

3

[f(x)℄, where x does not our free in f or g.

� Context equality: for � � x

1

: K

1

; :::; x

n

: K

n

and �

0

� x

1

: K

0

1

; :::; x

n

: K

0

n

,

we shall write ` � = �

0

for the sequene of judgements ` K

1

= K

0

1

, ...,

x

1

: K

1

; :::; x

n�1

: K

n�1

` K

n

= K

0

n

.

3

A system with oerive subtyping, T[R℄, is an extension of any type theory

T spei�ed in LF by a set of basi subtyping rules R. It an be presented in two

stages: �rst we formulate the intermediate system T[R℄

0

with subtyping judge-

ments of the form � ` A <

B:Type, and then add the subkinding judgements

of the form � ` K <

K

0

and rules onerning oerions between kinds.

T[R℄

0

is an extension of T (only) with the subtyping judgement form � `

A <

B:Type and the following rules:

� A set R of basi subtyping rules whose onlusions are subtyping judgements

of the form � ` A <

B:Type.

� The following ongruene rule for subtyping judgements

(Cong)

� ` A <

B:Type

� ` A = A

0

:Type � ` B = B

0

:Type � ` =

0

: (A)B

� ` A

0

<

0

B

0

:Type

In the presentation of oerive subtyping in [Luo99℄, T[R℄

0

also has the fol-

lowing substitution and transitivity rules:

(Subst)

�; x : K;�

0

` A <

B:Type � ` k:K

�; [k=x℄�

0

` [k=x℄A <

[k=x℄

[k=x℄B:Type

(Trans)

� ` A <

B:Type � ` B <

0

C:Type

� ` A <

0

Æ

C:Type

Sine we onsider in this paper how to prove that the substitution and transi-

tivity rules are admissible, we do not inlude them as basi rules.

Remark 1. We have the following remarks.

� T[R℄

0

is obviously a onservative extension of the original type theory T ,

sine the subtyping judgements do not ontribute to any derivation of a

judgement of any other form.

� The set of basi oerion rules is supposed to be oherent; we shall give

de�nition and disussions of this in the next subsetion.

The system T[R℄, the extension of T with oerive subtyping with respet to

R, is the system obtained from T[R℄

0

by adding the new subkinding judgement

form � ` K <

K

0

and the rules in Appendix B. Note that the substitution

rule and the transitivity rule for kinds (the last two rules in Appendix B) an

be eliminated under the assumption that the set of basi subtyping rules R is

oherent [SL01℄.

Notation Sine we are not muh onerned with the subkinding judgements

and are mainly onerned with the subtyping judgements, we shall simply write

� ` A <

B for � ` A <

B:Type, when there is no onfusion may our.

Sometimes, we shall also write � ` A = B for � ` A = B:Type.

4

2.2 Coherene of the basi subtyping rules

The basi subtyping rules are the basis for the oerive subtyping system. Ex-

amples of suh rules inlude

� simple oerion delarations suh as those between basi indutive types:

Even is a subtype of Nat;

� parameterised oerions representing (point-wise) subtyping (or subfamily

relation) between two families of types indexed by objets of the same type;

for example, eah vetor type V e(A; n) an be taken as a subtype of that of

lists List(A), parameterised by the index n, where the oerion would map

the vetor < a

1

; :::; a

n

> to the list [a

1

; :::; a

n

℄.

� oerions between parameterised indutive type: e.g., �(A;B) is a subtype

of �(A

0

; B

0

) if A is a subtype of A

0

and B is a subfamily of B

0

.

The most basi requirement for suh basi subtyping rules is that of oher-

ene, given in the following de�nition, whih essentially says that basi oerions

between any two types must be unique.

De�nition 1 (oherene ondition). We say that the basi subtyping rules

are oherent if T[R℄

0

has the following oherene properties:

1. If � ` A <

B:Type, then � ` A:Type, � ` B:Type, and � ` : (A)B.

2. � 6` A <

A:Type for any � , A and .

3. If � ` A <

B:Type and � ` A <

0

B:Type, then � ` =

0

: (A)B.

Remark 2. This is a weaker notion of oherene as ompared with that given in

[Luo99℄, sine there the rules (Subst)(Trans) are inluded in T[R℄

0

. In general,

when parameterised oerions and substitutions are present, oherene is unde-

idable. This is one of the reasons one needs to onsider proofs of oherene in

general.

Examples of basi oerion rules inlude those mentioned above, among whih

one an �nd the lifting operators between type universes, overloading oerions,

et. Also, for example, for parameterised �-types and �-types, we an have

their subtyping rules as given in Figure 1 and Figure 2. Note that these rules

are suitable ones for whih we an show that transitivity is admissible. If one

hose indutively de�ned oerions, strong transitivity would not be admissible

(see Setion 6.2 for disussions.)

3 Well-de�ned oerions

As mentioned above, unless the oerions an be represented as a �nite graph,

oherene is in general undeidable, espeially when we have parameterised o-

erions. So we need to onsider how to prove oherene and the related admis-

sibility results.

A general strategy we adopt is to onsider suh proofs in a stepwise way.

That is, if we know that some existing oerions (possibly generated by some

5

Domain rule

� ` A

0

<

A � ` B : (A)Type

� ` �(A;B) <

d

1

�(A

0

; B Æ)

where d

1

= [f : �(A;B)℄�(A

0

; B Æ ; app(A;B; f) Æ).

Codomain rule

� ` B : (A)Type � ` B

0

: (A)Type �; x : A ` B(x) <

e[x℄

B

0

(x)

� ` �(A;B) <

d

2

�(A;B

0

)

where d

2

= [f : �(A;B)℄�(A;B

0

; [x : A℄e[x℄(app(A;B; f; x))).

Domain-Codomain rule

� ` A

0

<

A � ` B : (A)Type � ` B

0

: (A

0

)Type

�; x : A

0

` B((x)) <

e[x℄

B

0

(x)

� ` �(A;B) <

d

3

�(A

0

; B

0

)

where d

3

= [f : �(A;B)℄�(A

0

; B

0

; [x : A

0

℄e[x℄(app(A;B; f; (x)))).

Figure1. Basi subtyping rules for �-types.

First Component rule

� ` A <

A

0

� ` B : (A

0

)Type

� ` �(A;B Æ) <

d

1

�(A

0

; B)

where d

1

= [x : �(A;B Æ)℄pair(A

0

; B; (�

1

(A;B Æ ; x)); �

2

(A;B Æ ; x)).

Seond Component rule

� ` B : (A)Type � ` B

0

: (A)Type �; x : A ` B(x) <

e[x℄

B

0

(x)

� ` �(A;B) <

d

2

�(A;B

0

)

where d

2

= [x : �(A;B)℄pair(A;B

0

; �

1

(A;B; x); e[�

1

(A;B; x)℄(�

2

(A;B; x))).

First-Seond Component rule

� ` A <

A

0

� ` B : (A)Type � ` B

0

: (A

0

)Type

�; x : A ` B(x) <

e[x℄

B

0

((x))

� ` �(A;B) <

d

3

�(A

0

; B

0

)

where d

3

= [x : �(A;B)℄pair(A

0

; B

0

; (�

1

(A;B; x)); e[�

1

(A;B; x)℄(�

2

(A;B; x))).

Figure2. Basi subtyping rules for �-types.

6

existing rules) are oherent and have good admissibility properties, and we add

some more subtyping rules, an we show that the newly extended system is still

oherent and has good admissibility properties? This has led us to de�ne the

following onept of well-de�ned oerions. We shall then use subtyping rules

for � and �-types to demonstrate how oherene et an be proved.

De�nition 2 (Well-de�ned oerions). If C is a set of subtyping judgements

of the form � `M <

d

M

0

:Type whih satis�es the following onditions, we say

that C is a well-de�ned set of judgements for oerions, or briey alled well-

de�ned oerions (WDC):

1. (Coherene)

(a) � ` A <

B 2 C implies � ` A : Type , � ` B : Type and � ` : (A)B.

(b) � ` A <

A =2 C for any � , A , and .

() � ` A <

1

B 2 C and � ` A <

2

B 2 C imply � `

1

=

2

: (A)B.

2. (Congruene) � ` A <

B 2 C, � ` A = A

0

, � ` B = B

0

and � ` =

0

: (A)B imply � ` A

0

<

0

B

0

2 C.

3. (Transitivity) � ` A <

1

B 2 C and � ` B <

2

A

0

2 C imply � ` A <

3

A

0

2 C for some

3

suh that � `

3

=

2

Æ

1

: (A)A

0

.

4. (Substitution) �; x : K;�

0

` A <

B 2 C implies for any k suh that � ` k :

K, �; [k=x℄�

0

` [k=x℄A <

0

[k=x℄B 2 C for some

0

suh that �; [k=x℄�

0

`

0

= [k=x℄: ([k=x℄A)[k=x℄B.

5. (Weakening) � ` A <

B 2 C, � � �

0

and �

0

is valid imply �

0

` A <

B

2 C.

Remark 3. A WDC an be thought of as a set of oerions generated from some

basi oerions, some basi subtyping rules, and the rules (Cong)(Subst)(Trans)

and that of weakening.

We have the following properties of WDCs.

Lemma 1.

1. If � ` A <

1

B 2 C, � ` B

0

<

2

A

0

2 C and � ` B = B

0

, then � ` A <

3

A

0

2 C for some

3

and � `

3

=

2

Æ

1

: (A)A

0

.

2. If �; x : K;�

0

` A <

B 2 C, � ` K = K

0

, then �; x : K

0

; �

0

` A <

B 2 C.

3. If � ` A <

B 2 C, ` � = �

0

, then �

0

` A <

B 2 C.

4. If � ` A <

B 2 C, �

0

` A

0

<

0

B

0

2 C, ` � = �

0

, � ` A = A

0

and

� ` B = B

0

, then � ` =

0

: (A)B.

In the following setions, we shall onsider the system of oerive subtyping

whose basi subtyping rules (R) onsist of the following rule, where C is a WDC:

(C)

� ` A <

B:Type 2 C

� ` A <

B:Type

and the � and �-subtyping rules in Figures 1 and 2. Furthermore, we assume

that for any judgement � ` A <

B 2 C, neither A nor B is omputationally

7

equal to a �-type or a �-type. We denote the derivable subtyping judgements

of this system by C

M

. We also assume that the original type theory T has good

properties, in partiular the Churh-Rosser property and the property of ontext

replaement by equal kinds. In the following two setions, we shall show that

C

M

is also a WDC.

Remark 4. The above system is equivalent to T[R℄

0

where R onsists of (C)

and the �/� subtyping rules.

4 Coherene

In this setion, we give a proof of oherene of basi subtyping rules of �-types

and �-types.

Lemma 2. If � `M

1

<

d

M

2

2 C

M

, then one of the following holds:

� � `M

1

<

d

M

2

2 C;

� Both M

1

and M

2

are omputationally equal to �-types; or

� Both M

1

and M

2

are omputationally equal to �-types.

Proof. By indution on derivations. If � `M

1

<

d

M

2

=2 C, its derivation must

end with a �-subtyping rule, a �-subtyping rule, or the ongruene rule. If it is

one of the � or �-subtyping rules, then we know both M

1

and M

2

are �-types

or �-types. If the last rule is the ongruene rule (Cong),

� ` M

0

1

<

d

0

M

0

2

:Type � ` M

1

= M

0

1

: Type � ` M

2

=M

0

2

: Type � ` d

0

= d: (M

0

1

)M

0

2

� ` M

1

<

d

M

2

then by indution hypothesis, the lemma holds for � `M

0

1

<

d

0

M

0

2

. If both M

0

1

and M

0

2

are omputationally equal to �-types or �-types, so are M

1

and M

2

.

If � `M

0

1

<

d

0

M

0

2

2 C, then � `M

1

<

d

M

2

2 C beause C is a WDC, whih is

losed under ongruene. ut

Lemma 3.

1. If � ` �(A;B) <

d

�(A

0

; B

0

) 2 C

M

then � ` A = A

0

or � ` A

0

<

A 2 C

M

for some .

2. If � ` �(A;B) <

d

�(A

0

; B

0

) 2 C

M

then � ` A = A

0

or � ` A <

A

0

2 C

M

for some .

3. If � ` �(A;B) <

d

�(A

0

; B

0

) 2 C

M

and � ` A = A

0

then �; x : A `

B(x) <

e[x℄

B

0

(x) 2 C

M

for some e.

4. If � ` �(A;B) <

d

�(A

0

; B

0

) 2 C

M

and � ` A = A

0

then �; x : A `

B(x) <

e[x℄

B

0

(x) 2 C

M

for some e.

5. If � ` �(A;B) <

d

�(A

0

; B

0

) 2 C

M

and � ` A

0

<

A 2 C

M

then �; x : A

0

`

B((x)) = B

0

(x) or �; x : A

0

` B((x)) <

e[x℄

B

0

(x) 2 C

M

for some e.

6. If � ` �(A;B) <

d

�(A

0

; B

0

) 2 C

M

and � ` A <

A

0

2 C

M

then �; x : A `

B(x) = B

0

((x)) or �; x : A ` B(x) <

e[x℄

B

0

((x)) 2 C

M

for some e.

8

Proof. By indution on derivations. We only onsider the �rst statement; the

proofs of the others are similar. For the �rst, a derivation of the judgement

� ` �(A;B) <

d

�(A

0

; B

0

) must be of the form

:

:

one of three � � subtyping rules

� ` �(A

1

; B

1

) <

d

0

�(A

2

; B

2

)

:

:::(Congruene rules):::

:

� ` �(A;B) <

d

�(A

0

; B

0

)

where � ` �(A

1

; B

1

) = �(A;B):Type, � ` �(A

2

; B

2

) = �(A

0

; B

0

):Type, and

� ` d

0

= d: (C)C

0

for some C and C

0

omputationally equal to �(A;B) and

�(A

0

; B

0

), respetively. Hene, by the Churh-Rosser theorem of the original

type theory T and onservativity of T[R℄

0

over T, � ` A

1

= A, � ` B

1

= B,

� ` A

2

= A

0

and � ` B

2

= B

0

. So � ` A = A

0

or � ` A

0

<

A by the

ongruene rule. ut

Lemma 4. If � `M

1

<

M

2

2 C

M

, then � 6`M

1

=M

2

.

Theorem 1 (Coherene). If � ` M

1

<

d

M

2

2 C

M

, �

0

` M

0

1

<

d

0

M

0

2

2 C

M

,

` � = �

0

, � `M

1

=M

0

1

, and � `M

2

=M

0

2

then � ` d = d

0

: (M

1

)M

2

.

Proof. By indution on derivations. By Lemma 2, we only have to onsider the

following ases.

� � ` M

1

<

d

M

2

2 C. Then, none of M

1

and M

2

is omputationally equal

to a �-type or �-type. Therefore, nor is M

0

1

or M

0

2

. So, by Lemma 2, �

0

`

M

0

1

<

d

0

M

0

2

2 C. Now, by Lemma 1(2), we have � ` d = d

0

: (M

1

)M

2

.

� BothM

1

andM

2

are omputationally equal to�-types. Then any derivation

of � `M

1

<

d

M

2

ontains a subderivation whose last rule is one of the �-

subtyping rules followed by ongruene rules. We only onsider the ase the

�-subtyping rule onerned is the third rule in Figure 1; i.e., the derivation

is of the form

:

:

:

� ` A

2

<

A

1

:

:

:

�; x : A

2

` B

1

((x)) <

e[x℄

B

2

(x)

� ` �(A

1

; B

1

) <

d

1

�(A

2

; B

2

)

:

:::(Congruene rules):::

:

� `M

1

<

d

M

2

where � ` �(A

1

; B

1

) = M

1

, � ` �(A

2

; B

2

) = M

2

, and � ` d

1

=

d: (M

1

)M

2

.

9

Now, it must be the ase that any derivation of �

0

` M

0

1

<

d

0

M

0

2

must

ontain a subderivation whose last rule is also the same �-subtyping rule as

above, followed by appliations of the ongruene rule; i.e., it must be of the

form

:

:

:

�

0

` A

0

2

<

0

A

0

1

:

:

:

�

0

; x : A

0

2

` B

0

1

(

0

(x)) <

e

0

[x℄

B

0

2

(x)

�

0

` �(A

0

1

; B

0

1

) <

d

0

1

�(A

0

2

; B

0

2

)

:

:::(Congruene rules):::

:

�

0

`M

0

1

<

d

0

M

0

2

where �

0

` �(A

0

1

; B

0

1

) = M

0

1

, �

0

` �(A

0

2

; B

0

2

) = M

0

2

, and �

0

` d

0

=

d

0

1

: (M

0

1

)M

0

2

. To see this is the ase, by Lemma 3, we only have to show

that

1. �

0

6` A

0

2

= A

0

1

, and

2. �

0

; x : A

0

2

6` B

0

1

(

0

(x)) = B

0

2

(x).

For the �rst ase, sine � ` M

1

= M

0

1

and � ` M

2

= M

0

2

, we have

� ` �(A

1

; B

1

) = �(A

0

1

; B

0

1

) and � ` �(A

2

; B

2

) = �(A

0

2

; B

0

2

). Hene, by

Churh-Rosser theorem in T and onservativity of T[R℄

0

over T, � ` A

1

=

A

0

1

, � ` B

1

= B

0

1

, � ` A

2

= A

0

2

and � ` B

2

= B

0

2

. As � ` A

2

<

A

1

, we

have by Lemma 4, � 6` A

2

= A

1

. So �

0

6` A

0

2

= A

0

1

.

For the seond ase, a similar argument suÆes, exept that we use the fat

that, by the argument of the �rst ase and indution hypothesis, � ` =

0

: (A

2

)A

1

.

Sine the derivations must be of the above forms, by indution hypothesis,

we have � ` =

0

: (A

2

)A

1

and �; x : A

2

` e[x℄ = e

0

[x℄: (B

1

((x)))B

2

(x).

Hene � ` d = d

0

: (M

1

)M

2

.

� Both M

1

and M

2

are omputationally equal to �-types. The proof of this

ase is similar to the above ase. ut

5 Admissibility of Substitution and Transitivity

In the presentation of oerive subtyping in [Luo99℄, substitution and transi-

tivity are two of the basi rules in the theoretial framework. However, in an

implementation of oerive subtyping, these rules are ignored simply beause

that they annot be diretly implemented. For this reason among others, prov-

ing admissibility of suh rules (or their elimination) is always an important task

for any subtyping systems.

In this paper, we do not take substitution and transitivity as basi rules, but

we prove that they are both admissible when we extend a WDC by the � and

�-subtyping rules. In order to prove admissibility of transitivity, we also need

to prove the theorem about weakening.

10

Theorem 2 (Substitution and weakening).

1. (Substitution) If �; x : K;�

0

` M

1

<

d

M

2

2 C

M

and � ` k : K, then

�; [k=x℄�

0

` [k=x℄M

1

<

d

0

[k=x℄M

2

2 C

M

for some d

0

suh that �; [k=x℄�

0

`

d

0

= [k=x℄d: ([k=x℄M

1

)[k=x℄M

2

.

2. (Weakening) If � ` M

1

<

d

M

2

2 C

M

, � � �

0

and �

0

is valid then �

0

`

M

1

<

d

M

2

2 C

M

.

Proof. By indution on derivations and using Lemma 2. ut

To prove the admissibility of transitivity, the usual measures (e.g., the size

of types onerned) do not seem to work (or even to be de�nable), sine types

essentially involve omputations. We use a measure developed by Chen in his

PhD thesis [Che98℄, whih only onsiders subtyping judgements in a derivation,

de�ned as follows.

De�nition 3 (depth). Let D be a derivation of a subtyping judgement of the

form � ` A <

B:Type. Then

1. If the last rule of D is

� ` A <

B : Type 2 C

� ` A <

B:Type

then depth(D) = 1.

2. If the last rule of D is

S

1

; :::; S

n

; D

1

; :::; D

m

� ` A <

B:Type

where S

1

, ..., S

n

are derivations of subtyping judgements of the form �

0

`

A

0

<

0

B

0

:Type and D

1

, ..., D

m

are derivations of other forms of judge-

ments, then depth(D) = maxfdepth(S

1

); :::; depth(S

n

)g+ 1.

The following lemma shows that, from a derivation D of a subtyping judge-

ment J one an always get a derivation D

0

of the judgement obtained from J

by ontext replaement suh that D and D

0

have the same depth.

Lemma 5.

1. If ` � = �

0

, � ` M

1

<

d

M

2

:Type 2 C

M

, and D is a derivation of � `

M

1

<

d

M

2

:Type, then

(a) �

0

`M

1

<

d

M

2

:Type 2 C

M

, and

(b) there is a derivation D

0

of �

0

`M

1

<

d

M

2

:Type suh that depth(D) =

depth(D

0

).

2. If �; x : El(A); �

0

` M

1

<

1

M

2

:Type 2 C

M

, � ` A

0

<

2

A : Type 2 C

M

,

and D is a derivation of �; x : El(A); �

0

`M

1

<

1

M

2

:Type, then

(a) �; y : El(A

0

); [

2

(y)=x℄�

0

` [

2

(y)=x℄M

1

<

3

[

2

(y)=x℄M

2

:Type 2 C

M

for some

3

suh that �; y : El(A

0

); [

2

(y)=x℄�

0

`

3

= [

2

(y)=x℄

1

:

([

2

(y)=x℄M

1

)[

2

(y)=x℄M

2

, and

11

(b) there is a derivation D

0

of �; y : El(A

0

); [

2

(y)=x℄�

0

` [

2

(y)=x℄M

1

<

3

[

2

(y)=x℄M

2

:Type suh that depth(D) = depth(D

0

).

Proof. By indution on derivations. The key point is that, in the proofs briey

desribed below, the size of a derivation may hange, but the depth of a deriva-

tion, whih only ounts the subtyping judgements, does not.

1. For (1), in the base ase, we use Lemma 1(3), and in the step ases, the

theorem of ontext replaement by equal kinds in T and onservativity of

T[R℄

0

over T.

2. For (2), in the base ase, we use the fat that, if �; x : El(A); �

0

` M

1

<

1

M

2

:Type 2 C, then �; y : El(A

0

); [

2

(y)=x℄�

0

` [

2

(y)=x℄M

1

<

3

[

2

(y)=x℄M

2

:

Type 2 C for some

3

suh that �; y : El(A

0

); [

2

(y)=x℄�

0

`

3

= [

2

(y)=x℄

1

:

([

2

(y)=x℄M

1

)[

2

(y)=x℄M

2

. In the step ases, use of indution hypothesis suf-

�es. ut

Now, we an prove the admissibility of transitivity.

Theorem 3 (Transitivity). If � ` M

1

<

d

1

M

2

2 C

M

, � ` M

0

2

<

d

2

M

3

2

C

M

and � ` M

2

= M

0

2

, then � ` M

1

<

d

3

M

3

2 C

M

for some d

3

suh that

� ` d

3

= d

2

Æ d

1

: (M

1

)M

3

.

Proof. By indution on depth(D) + depth(D

0

), where D and D

0

are derivations

of � ` M

1

<

d

1

M

2

and � ` M

0

2

<

d

2

M

3

, respetively. In the base ase, we

have that the judgements � ` M

1

<

d

1

M

2

and � ` M

0

2

<

d

2

M

3

are both

in C. By Lemma 1(1), we have � ` M

1

<

d

3

M

3

2 C for some d

3

suh that

� ` d

3

= d

2

Æ d

1

: (M

1

)M

3

.

In the step ase, if � ` M

1

<

d

1

M

2

and � ` M

0

2

<

d

2

M

3

are both in C,

then a similar argument as the base ase suÆes. Otherwise, we have that either

� `M

1

<

d

1

M

2

or � `M

0

2

<

d

2

M

3

is not in C. Therefore, by Lemma 2 and the

assumption that � `M

2

=M

0

2

, all of M

1

, M

2

, M

0

2

and M

3

are omputationally

equal to �-types or �-types. We only onsider the ase that they are equal

to �-types. Suppose that the derivation D and D

0

be of the following forms

(we only onsider the only more diÆult example among the ombinations of

�-subtyping rules):

:

D

1

:

� ` A

2

<

1

A

1

:

D

2

:

�; x : A

2

` B

1

(

1

(x)) <

e

1

[x℄

B

2

(x)

� ` �(A

1

; B

1

) <

d

0

1

�(A

2

; B

2

)

:

:::(Congruene rules):::

:

� `M

1

<

d

1

M

2

12

where � ` �(A

1

; B

1

) = M

1

, � ` �(A

2

; B

2

) = M

2

, � ` d

0

1

= d

1

: (M

1

)M

2

and

d

0

1

= [f : �(A

1

; B

1

)℄�(A

2

; B

2

; [x : A

2

℄e

1

[x℄(app(A

1

; B

1

; f;

1

(x)))), and

:

D

0

1

:

� ` A

3

<

2

A

0

2

:

D

0

2

:

�; x : A

3

` B

0

2

(

2

(x)) <

e

2

[x℄

B

3

(x)

� ` �(A

0

2

; B

0

2

) <

d

0

2

�(A

3

; B

3

)

:

:::(Congruene rules):::

:

� `M

0

2

<

d

2

M

3

where � ` �(A

0

2

; B

0

2

) = M

0

2

, � ` �(A

3

; B

3

) = M

3

, � ` d

0

2

= d

2

: (M

0

2

)M

3

and

d

0

2

= [f : �(A

0

2

; B

0

2

)℄�(A

3

; B

3

; [x : A

3

℄e

2

[x℄(app(A

0

2

; B

0

2

; f;

2

(x)))). We obviously

have depth(D

1

) < depth(D), depth(D

2

) < depth(D), depth(D

0

1

) < depth(D

0

),

and depth(D

0

2

) < depth(D

0

).

Now, sine � ` M

2

= M

0

2

, we have by Churh-Rosser theorem of T and

onservativity of T[R℄

0

over T, � ` A

2

= A

0

2

and � ` B

2

= B

0

2

: (A

2

)Type. From

the former, � ` A

3

<

2

A

2

by the ongruene rule. By Lemma 5(2), �; x : A

3

`

B

1

(

1

(

2

(x))) <

e

3

[x℄

B

2

(

2

(x)) for some e

3

suh that �; x : A

3

` e

3

[x℄ = e

1

[

2

(x)℄

and there is a derivation D

3

of the judgement �; x : A

3

` B

1

(

1

(

2

(x))) <

e

3

[x℄

B

2

(

2

(x)) and depth(D

3

) = depth(D

2

) < depth(D).

Now, we have

depth(D

1

) + depth(D

0

1

) < depth(D) + depth(D

0

)

depth(D

3

) + depth(D

0

2

) < depth(D) + depth(D

0

)

By indution hypothesis, there is

3

suh that � ` A

3

<

3

A

1

2 C

M

and

� `

3

=

1

Æ

2

: (A

3

)A

1

. And beause �; x : A

3

` B

2

(

2

(x)) = B

0

2

(

2

(x)) (as we

have � ` B

2

= B

0

2

: (A

2

)Type), by indution hypothesis, there is e

4

suh that

�; x : A

3

` B

1

(

1

(

2

(x))) <

e

4

[x℄

B

3

(x) 2 C

M

�; x : A

3

` e

4

[x℄ = e

2

[x℄ Æ e

3

[x℄: (B

1

(

1

(

2

(x))))B

3

(x):

Hene �; x : A

3

` e

4

[x℄ = e

2

[x℄ Æ e

1

[

2

(x)℄: (B

1

(

1

(

2

(x))))B

3

(x). So by the

Domain-Codomain rule (the third rule in Figure 1), � ` �(A

1

; B

1

) <

d

3

�(A

3

; B

3

)

2 C

M

, where

d

3

=

df

[f : �(A

1

; B

1

)℄�(A

3

; B

3

; [x : A

2

℄e

4

[x℄(app(A

1

; B

1

; f;

3

(x))))

and we have d

3

= d

2

Æ d

1

. Finally, by the ongruene rule, we have � `M

1

<

d

3

M

3

2 C

M

. ut

Corollary 1. C

M

is a WDC.

Proof. By Lemma 4 and Theorems 1, 2, and 3. ut

13

6 Disussions

In this setion, we briey disuss several issues of interest suh as those onern-

ing deidability and transitivity, and related work.

6.1 Deidability

One we have proven oherene and admissibility of substitution and transitivity

(as we have done for � and �-subtyping rules), we an be sure that oerion

searhing is deidable for C

M

if it is deidable for C; in other words, it is deidable

whether � ` A <

B:Type is derivable. One an give a sound and omplete

algorithm to do this. We omit the details here. This is of ourse important in

implementations.

6.2 Weak transitivity

The transitivity rule (Trans) states that

0

Æ is a oerion from A to C if

and

0

are oerions from A to B and from B to C, respetively. In fat, this

transitivity rule is very strong. For instane, if we introdue subtyping rule for

lists:

� ` A <

B : Type

� ` List(A) <

d

List(B) : Type

where d is de�ned indutively suh that d(nil(A)) = nil(B) and d(ons(A; a; l)) =

ons(B; (a); d(l)), then the rule (Trans) fails to be admissible.

A weaker version is

(WTrans)

� ` A < B � ` B < C

� ` A < C

where the judgement � ` A < B means that `� ` A <

B for some '. In

fat, this weaker version of transitivity seems to be better suited to the wider

appliations. Furthermore, if the type theory T has a propositional equality =

A

(e.g., Leibniz's equality or Martin-L�of's equality type), we an prove that

� If � ` A <

B, � ` B <

d

C, and � ` A <

e

C, then e is extensionally equal

to d Æ in the sense that the proposition 8x : A:e(x) =

C

d((x)) is provable

in the type theory.

The admissibility of weak transitivity and the above extensional justi�ation will

be disussed in a forthoming paper [LLS01℄. And the admissibility of (Trans)

rule and (WTrans) rule in extensional type theory needs futhur study.

6.3 Related work

Besides those mentioned above, the related work inludes previous meta-theoreti

studies about oerive subtyping. One of the future tasks to be done is to on-

sider how the onservativity result and related work at the kind level [SL01℄ an

14

be related to the urrent development and hene to obtain an overall better un-

derstanding of the framework. We should mention again Chen's work [Che98℄, in

partiular his development of the depth measure, whih seems to be very useful

in proving admissibility of transitivity.

AknowledgementsWe would like to thank Jianming Pang and Sergei Soloviev

for their helpful omments and orretions on an earlier draft of this paper,

and the members of the Computer-Assisted Reasoning Group at Durham for

disussions of the issues onerned. Thanks also go to the LPAR'01 referees who

made helpful omments on the paper.

Referenes

[B

+

00℄ B. Barras et al. The Coq Proof Assistant Referene Manual (Version 6.3.1).

INRIA-Roquenourt, 2000.

[Bai99℄ A. Bailey. The Mahine-heked Literate Formalisation of Algebra in Type

Theory. PhD thesis, University of Manhester, 1999.

[Che98℄ G. Chen. Subtyping, Type Conversion and Transitivity Elimination. PhD

thesis, University of Paris VII, 1998.

[CL01℄ P. Callaghan and Z. Luo. An implementation of LF with oerive subtyping

and universes. Journal of Automated Reasoning, 27(1):3{27, 2001.

[CLP01℄ P. C. Callaghan, Z. Luo, and J. Pang. Objet languages in a type-theoreti

meta-framework. Workshop of Proof Transformation and Presentation and

Proof Complexities (PTP'01), 2001.

[JLS98℄ A. Jones, Z. Luo, and S. Soloviev. Some proof-theoreti and algorithmi as-

pets of oerive subtyping. Types for proofs and programs (eds, E. Gimenez

and C. Paulin-Mohring), Pro. of the Inter. Conf. TYPES'96, LNCS 1512,

1998.

[LC98℄ Z. Luo and P. Callaghan. Coerive subtyping and lexial semantis (extended

abstrat). LACL'98, 1998.

[LLS01℄ Y. Luo, Z. Luo, and S. Soloviev. Weak transitivity in oerive subtyping. In

preparation, 2001.

[LP92℄ Z. Luo and R. Pollak. LEGO Proof Development System: User's Manual.

LFCS Report ECS-LFCS-92-211, Department of Computer Siene, Univer-

sity of Edinburgh, 1992.

[LS99℄ Z. Luo and S. Soloviev. Dependent oerions. The 8th Inter. Conf. on Category

Theory and Computer Siene (CTCS'99), Edinburgh, Sotland. Eletroni

Notes in Theoretial Computer Siene, 29, 1999.

[Luo94℄ Z. Luo. Computation and Reasoning: A Type Theory for Computer Siene.

Oxford University Press, 1994.

[Luo97℄ Z. Luo. Coerive subtyping in type theory. Pro. of CSL'96, the 1996 Annual

Conferene of the European Assoiation for Computer Siene Logi, Utreht.

LNCS 1258, 1997.

[Luo99℄ Z. Luo. Coerive subtyping. Journal of Logi and Computation, 9(1):105{130,

1999.

[NPS90℄ B. Nordstr�om, K. Petersson, and J. Smith. Programming in Martin-L�of's

Type Theory: An Introdution. Oxford University Press, 1990.

[Sai97℄ A. Saibi. Typing algorithm in type theory with inheritane. Pro of POPL'97,

1997.

15

[SL01℄ S. Soloviev and Z. Luo. Coerion ompletion and onservativity in oerive

subtyping. To be published in Annals of Pure and Applied Logi, 2001.

Appendix A

The following gives the rules of the logial framework LF.

Contexts and assumptions

hi valid

� ` K kind x 62 FV (�)

�; x : K valid

�; x : K; �

0

valid

�; x : K;�

0

` x:K

Equality rules

� ` K kind

� ` K = K

� ` K = K

0

� ` K

0

= K

� ` K = K

0

� ` K

0

= K

00

� ` K = K

00

� ` k:K

� ` k = k:K

� ` k = k

0

:K

� ` k

0

= k:K

� ` k = k

0

:K � ` k

0

= k

00

:K

� ` k = k

00

:K

� ` k:K � ` K = K

0

� ` k:K

0

� ` k = k

0

:K � ` K = K

0

� ` k = k

0

:K

0

Substitution rules

�; x : K;�

0

valid � ` k:K

�; [k=x℄�

0

valid

�; x : K; �

0

` K

0

kind � ` k:K

�; [k=x℄�

0

` [k=x℄K

0

kind

�; x : K;�

0

` K

0

kind � ` k = k

0

:K

�; [k=x℄�

0

` [k=x℄K

0

= [k

0

=x℄K

0

�; x : K;�

0

` k

0

:K

0

� ` k:K

�; [k=x℄�

0

` [k=x℄k

0

: [k=x℄K

0

�; x : K;�

0

` k

0

:K

0

� ` k

1

= k

2

:K

�; [k

1

=x℄�

0

` [k

1

=x℄k

0

= [k

2

=x℄k

0

: [k

1

=x℄K

0

�; x : K;�

0

` K

0

= K

00

� ` k:K

�; [k=x℄�

0

` [k=x℄K

0

= [k=x℄K

00

�; x : K;�

0

` k

0

= k

00

:K

0

� ` k:K

�; [k=x℄�

0

` [k=x℄k

0

= [k=x℄k

00

: [k=x℄K

0

The kind Type

� valid

� ` Type kind

� ` A:Type

� ` El(A) kind

� ` A = B:Type

� ` El(A) = El(B)

Dependent produt kinds

� ` K kind �; x : K ` K

0

kind

� ` (x : K)K

0

kind

� ` K

1

= K

2

�; x : K

1

` K

0

1

= K

0

2

� ` (x : K

1

)K

0

1

= (x : K

2

)K

0

2

�; x : K ` k:K

0

� ` [x : K℄k: (x : K)K

0

� ` K

1

= K

2

�; x : K

1

` k

1

= k

2

:K

� ` [x : K

1

℄k

1

= [x : K

2

℄k

2

: (x : K

1

)K

� ` f : (x : K)K

0

� ` k:K

� ` f(k): [k=x℄K

0

� ` f = f

0

: (x : K)K

0

� ` k

1

= k

2

:K

� ` f(k

1

) = f

0

(k

2

): [k

1

=x℄K

0

�; x : K ` k

0

:K

0

� ` k:K

� ` ([x : K℄k

0

)(k) = [k=x℄k

0

: [k=x℄K

0

� ` f : (x : K)K

0

x 62 FV (f)

� ` [x : K℄f(x) = f : (x : K)K

0

16

Appendix B

The following are the inferene rules for the oerive subkinding extension T[R℄

(not inluding the rules for subtyping).

New rules for appliation

� ` f : (x : K)K

0

� ` k

0

:K

0

� ` K

0

<

K

� ` f(k

0

): [(k

0

)=x℄K

0

� ` f = f

0

: (x : K)K

0

� ` k

0

= k

0

0

:K

0

� ` K

0

<

K

� ` f(k

0

) = f

0

(k

0

0

): [(k

0

)=x℄K

0

Coerive de�nition rule

� ` f : (x : K)K

0

� ` k

0

:K

0

� ` K

0

<

K

� ` f(k

0

) = f((k

0

)): [(k

0

)=x℄K

0

Basi subkinding rule

� ` A <

B:Type

� ` El(A) <

El(B)

Subkinding for dependent produt kinds

� ` K

0

1

= K

1

�; x : K

0

1

` K

2

<

K

0

2

�; x : K

1

` K

2

kind

� ` (x : K

1

)K

2

<

[f :(x:K

1

)K

2

℄[x:K

0

1

℄(f(x))

(x : K

0

1

)K

0

2

� ` K

0

1

<

K

1

�; x : K

0

1

` [(x)=x℄K

2

= K

0

2

�; x : K

1

` K

2

kind

� ` (x : K

1

)K

2

<

[f :(x:K

1

)K

2

℄[x:K

0

1

℄f((x))

(x : K

0

1

)K

0

2

� ` K

0

1

<

1

K

1

�; x : K

0

1

` [

1

(x)=x℄K

2

<

2

K

0

2

�; x : K

1

` K

2

kind

� ` (x : K

1

)K

2

<

[f :(x:K

1

)K

2

℄[x:K

0

1

℄

2

(f(

1

(x)))

(x : K

0

1

)K

0

2

Congruene rule for subkinding

� ` K

1

<

K

2

� ` K

1

= K

0

1

� ` K

2

= K

0

2

� ` =

0

: (K

1

)K

2

� ` K

0

1

<

0

K

0

2

Transitivity and substitution rules for subkinding

� ` K <

K

0

� ` K

0

<

0

K

00

� ` K <

0

Æ

K

00

�; x : K; �

0

` K

1

<

K

2

� ` k:K

�; [k=x℄�

0

` [k=x℄K

1

<

[k=x℄

[k=x℄K

2

17

