
Using Signatures in Type Theory
to Represent Situations⋆

Stergios Chatzikyriakidis and Zhaohui Luo

Department of Computer Science
Royal Holloway, University of London

stergios.chatzikyriakidis@cs.rhul.ac.uk

zhaohui.luo@hotmail.co.uk

Abstract. Signatures have been introduced to represent situations in
the formal semantics based on modern type theories. In this paper, we
study the notion of signature in more details, presenting it formally and
discussing its use in representations of situations. In particular, the new
forms of signature entries, the subtyping entries and the manifest entries,
are formally studied and the corresponding extensions are shown to en-
joy the nice meta-theoretical properties. Besides being signature entries,
these two forms of entries may be introduced to form contextual entries
as well and this may have interesting implications in applications of the
notion of context to, for example, belief contexts.

1 Introduction

Signatures are introduced to represent situations (or incomplete possible worlds)
by the second author in [13], where it has been argued that, with the new forms of
subtyping entries and manifest entries, signatures are very useful in representing
situations in a formal semantics based on modern type theories (MTTs). In this
paper, we shall study the notion of signature in a more formal and detailed way.

The notion of signature has been used in describing algebraic structures. Its
use in type theory can be found in the Edinburgh Logical Framework [7].There,
signatures are used to describe constants (and their types) in a logical system.
This is in contrast to contexts in type theory that describe variables (and their
types) which can be abstracted by means of quantification or λ-abstraction. We
shall study the notion of signature in MTTs by extending the logical framework
LF (Chapter 9 of [8]) with signatures to obtain the system LFΣ , which can be
used similarly as LF in specifying type theories such as Martin-Löf’s type theory
[16] and UTT [8].

Signatures as proposed in [13] may contain two new forms of entries: subtyp-
ing entries and manifest entries. A subtyping entry A <κ B declares that A is
a subtype of B via. coercion κ. This localises a coercive subtyping relationship
as studied in the coercive subtyping framework [9,15] that was developed for

⋆ This work is partially supported by the research grant F/07-537/AJ of the Lever-
hulme Trust in U.K.

type theory based proof assistants. Subtyping has been proved useful in formal
semantics and, specifically for MTT-semantics, it is crucial partly because CNs
are interpreted as types rather than predicates (as in Montague semantics). It
is very useful to introduce subtyping entries in signatures when they are used
to represent situations. Also, we shall explain that the introduction of coherent
subtyping entries to signatures preserves the nice properties of the original type
theory.

The other new form of signature entries is that of manifest entries. These
have the form c ∼ a : A, which introduces the constant c and assumes that it
behaves exactly like the object a of type A.1 Formally, a manifest entry is just the
abbreviation of an ordinary membership entry together with a subtyping entry.
The latter enforces the abbreviation: c ∼ a : A abbreviates c : 1A(a), where
1A(a) is the inductive unit type, together with the subtyping entry 1A(a) <ξA,a

A with the coercion ξA,a that maps the object of the unit type to a. Such
an extension with manifest entries is sound: meta-theoretically, the extension
preserves all of the nice properties of the original type theory. We shall make
this clear in more detail in the paper.

Both subtyping and manifest entries can be considered as contextual entries
for declaring variables. This makes contributions to the application of contexts.
One such example can be found in Ranta’s treatment of belief contexts [19]. We
show how to extend this notion of belief context with these new entries and how
they allow belief contexts to express infinitely many beliefs among others. We
shall also point out that, if we introduce these to form contextual entries, we
should allow the corresponding move to the right of the turnstile: by quantifica-
tion and λ-abstraction for manifest entries and by local coercions for subtyping
entries. In particular, for subtyping entries, this requires the introduction of the
new form of terms, coercion A <c B in M , to express local coercions2 and this
may make the meta-theoretical study more sophisticated.

The notion of signature is formally introduced in §2, where we present the
system LFΣ and give an example to illustrate its use in representations of situ-
ations. In §3, the subtyping and manifest entries in signatures are studied: they
are shown to be useful in expressing situations and the extensions with them
preserve the nice meta-theoretic properties. The potential of adding such new
forms of entries as contextual entries is considered in §4, where we use belief
contexts as an example to illustrate that this can be useful.

1 Contextual manifest entries were first proposed by the second author in [10], where
they are studied in a different context, focussing on its intensional nature, as com-
pared with traditional extensional definition entries in proof assistants.

2 Local coercions are useful in formal semantics based on MTTs. See, for example,
[12] for discussions.

2

2 Signatures for Representing Situations

Situations, or incomplete possible worlds, are proposed to be represented by
signatures in MTT-semantics, i.e., when modern type theories are used to give
formal semantics [13].

The use of possible worlds in set theory has been a central mechanism within
Montagovian approaches of formal semantics, especially, in dealing with in-
tensional phenomena including, for example, belief intensionality among other
things. However, the use of set-theoretical possible worlds has given rise to the
well-known hyperintensional problem, with various paradoxes associated with
it (e.g., the Paris Hilton paradox and the woodchuck-groundhog paradox) [18].
When intensional type theories are employed for formal semantics, types rather
sets are used to interpret CNs and significantly different mechanisms are available
in representing and dealing with such phenomena. Using signatures to represent
situations is such a proposal.

We shall describe the notion of signature formally, compare it with that
of context, and give a simple example of its use in representing situations. In
this section. we shall only describe signatures with the traditional membership
entries. Contexts with such traditional entries have been used by Ranta [19]
and others [3,6] to represent situations, where they do not consider the issue of
difference between variables and constants. We consider signatures rather than
contexts here. Note that signatures may contain other forms of entries which are
studied in the next section §3.

2.1 Signatures in Type Theory: a Formal Presentation

Type theories can be specified in a logical framework such as Martin-Löf’s logical
framework [16] or its typed version LF [8]. We shall extend LF with signatures
to obtain LFΣ .

Informally, a signature is a sequence of entries of several forms, one of which
is the form of membership entries c : K, which is the traditional form of entries as
occurred in contexts (we shall add two other forms of entries in the next section).
If a signature has only membership entries, it is of the form c1 : K1, ..., cn : Kn.

LF is a dependent type theory whose types are called kinds in order to be
distinguished from types in the object type theory. It has the kind Type of all
types of the object type theory and dependent Π-kinds of the form (x:K)K ′ (we
omit their details here – see [8]). In LF, there are five forms of judgements:

– ⊢ Γ (or written as ‘Γ valid’), which asserts that Γ is a valid context.
– Γ ⊢ K kind, which asserts that K is a kind in Γ .
– Γ ⊢ k : K, which asserts that k is an object of kind K in Γ .
– Γ ⊢ K1 = K2, which asserts that K1 and K2 are equal kinds in Γ .
– Γ ⊢ k1 = k2 : K, which asserts that k1 and k2 are equal objects of kind K

in Γ .

To extend LF with signatures, we amend each form of judgement with a signature
Σ and add another form of judgements saying that a signature is valid. In other
words, LFΣ has the following six forms of judgements:

3

Signature Validity and Assumptions

⟨⟩ valid
⟨⟩ ⊢Σ K kind c ̸∈ dom(Σ)

Σ, c : K valid

⊢Σ,c:K,Σ′ Γ

Γ ⊢Σ,c:K,Σ′ c : K

Context Validity and Assumptions

Σ valid

⊢Σ ⟨⟩
Γ ⊢Σ K kind x ̸∈ dom(Γ)

⊢Σ Γ, x : K

⊢Σ Γ, x : K,Γ ′

Γ, x : K,Γ ′ ⊢Σ x : K

Fig. 1. Rules for signatures/contexts in LFΣ .

– Σ valid, which asserts that Σ is a valid signature.
– ⊢Σ Γ , which asserts that Γ is a valid context under Σ.
– Γ ⊢Σ K kind, which asserts that K is a kind in Γ under Σ.
– Γ ⊢Σ k : K, which asserts that k is an object of kind K in Γ under Σ.
– Γ ⊢Σ K1 = K2, which asserts that K1 and K2 are equal kinds in Γ under

Σ.
– Γ ⊢Σ k1 = k2 : K, which asserts that k1 and k2 are equal objects of kind K

in Γ under Σ.

All of the inference rules of LF (those in Figures 9.1 and 9.2 of Chapter 9
of [8]) become inference rules of LFΣ after replacing ⊢ by ⊢Σ (and changing
the judgement form ‘Γ valid’ to ‘⊢Σ Γ ’). For instance, the following rule for
λ-abstraction3 in LF

Γ, x : K ⊢ b : K ′

Γ ⊢ [x:K]b : (x:K)K ′

becomes, in LFΣ ,

Γ, x : K ⊢Σ b : K ′

Γ ⊢Σ [x:K]b : (x:K)K ′

In addition, in LFΣ , we have the rules in Figure 1 for signatures (and contexts),
concerning their validity and their roles of making basic assumptions, where ⟨⟩ is
the empty sequence and dom(p1 : K1, ... pn : Kn) = {p1, ..., pn}. Note that the
assumptions in a signature or in a context can be derived – this is characterised
by the third rule and the last rule in Figure 1, respectively.

Remark 1. The membership entry c : K in a signature declares that c is a
constant of kind K. This is different from a contextual entry x : K that declares
x to be a variable. Note that a variable can be abstracted by, for example,
quantification or λ-abstraction as exemplified by a rule like the one below, where
Prop is the universe of logical propositions:

Γ, x : K ⊢Σ P : Prop

Γ ⊢Σ ∀x:K.P : Prop

3 In LF, we use the notation [x:K]b for λx:K.b and (x:K)K′ for Πx:K.K′.

4

However, constants in signatures can never be abstracted in this way – that is
why they are called constants. Therefore, signatures can adequately be used to
represent situations. Also, because the constants in signatures cannot be ab-
stracted, it is easier meta-theoretically to add new forms of entries to signatures
than to contexts (see later).

2.2 Use of Signatures to Represent Situations: a Simple Example

Signatures can adequately be used to represent situations, or incomplete possible
worlds, in the MTT-semantics. This possibility can easily be understood when-
ever one realises that types represent collections of objects just like sets, although
types are syntactic (or, better, proof-theoretic) entities different from sets in set
theory. Intuitively, the similarity between types and sets is one of the crucial rea-
sons that MTT-semantics can be viewed as model-theoretic, while the differences
between types and sets and, especially that the former are proof-theoretically
defined, are why MTT-semantics can be also viewed as proof-theoretic (see [13]
for more details).

That signatures can be used to represent situations is the other facet that
the MTT-semantics is model-theoretic. Here, we use an example given in [13] to
illustrate how signatures can be used to represent situations.

Example 1. The example, taken from Chapter 10 of [20], is about an (imag-
ined) situation in the Cavern Club at Liverpool in 1962 where the Beatles were
rehearsing for a performance. This situation can be represented as follows.

1. The domain of the situation consists of several peoples including the Beatles
(John, Paul, George and Ringo), their manager (Brian) and a fan (Bob).
This can be represented be means of the following signature Σ1:

Σ1 ≡ D : Type,

John : D, Paul : D, George : D, Ringo : D, Brian : D, Bob : D

2. The assignment function assigns, for example, predicate symbols such as B
and G to the propositional functions expressing ‘was a Beatle’ and ‘played
guitar’, respectively. We can introduce the following in our signature to rep-
resent such an assignment function:

Σ2 ≡ B : D → Prop, bJ : B(John), ..., bB : ¬B(Brian), b′B : ¬B(Bob),

G : D → Prop, gJ : G(John), ..., gG : ¬G(Ringo), ...

The signature that represents the situation will be of the formΣ ≡ Σ1, Σ2, ..., Σn.
We shall then have, for instance,

⊢Σ G(John) true and ⊢Σ ¬B(Bob) true.

whereG(John) andB(Bob) are the semantic interpretations of John played Guitar

and Bob was a Beatle, respectively.

5

⊢Σ A : Type ⊢Σ B : Type ⊢Σ c : (A)B

Σ,A <c B valid

⊢Σ,A<cB,Σ′ Γ

Γ ⊢Σ,A<cB,Σ′ A <c B

Fig. 2. Rules for subtyping entries in signatures.

3 Subtyping and Manifest Entries in Signatures

In the last section, we introduced signatures with only traditional membership
entries. In this section, we consider two other forms of entries – the subtyping
entries and manifest entries: introducing them into signatures, discussing meta-
theoretic implications and illustrating their uses in representing situations.

In earlier work, these forms of entries were considered contextual entries:
contextual manifest entries were first studied in [10] and contextual subtyping
entries (in so-called coercion contexts) in [12]. Here in this section, we consider
them as entries in signatures, as proposed in [13]. For this reason, they are not
only useful in representing situations, but are also simpler meta-theoretically,
since they are introducing constants rather than variables and, as a consequence
of the subtyping entries, one does not need to introduce corresponding terms
for the purpose of making abstraction operations possible (see §4 for further
discussion in this last respect).

3.1 Subtyping Entries and Their Uses

Coercive subtyping has been studied for subtyping and abbreviations in MTTs
and the associated proof assistants [9,15].4 Introducing subtyping entries (to
either signatures or contexts) is to localise the coercive subtyping mechanism,
which has been studied globally in earlier research.

Syntactically, the system LFΣ is extended with the judgement forms Γ ⊢Σ

A <κ B : Type (we shall often just write A <κ B even when A and B are
types) and Γ ⊢Σ K <κ K ′. A subtyping entry to signatures can be introduced
by means of the first rule in Figure 2, where (A)B is the kind of functional op-
erations from A to B. The second rule in Figure 2 expresses that the subtyping
assumptions in a signature are derivable. Then the rules for coercive subtyping
[15], albeit extended for judgements with signatures, are all applicable. For in-
stance, if signature Σ contains A <κ B and B <κ′ C, we can derive A <κ′◦κ C
under Σ.

It is worth pointing out that validity of a signature is not enough anymore
when we consider subtyping entries in signatures. For signature Σ to be legal,

4 The word ‘coercion’ has been used for related but maybe different things including
coercions in programming languages and coercions in linguistics. See Asher and Luo
[1] for a use of coercive subtyping in modelling linguistic coercions and Retoré et al
[2] for another proposal of using coercions to deal with some linguistic coercions in
lexical semantics.

6

we need the subtyping assumptions in Σ to be coherent in the sense that, infor-
mally, all coercions between any two types are equal, i.e., in some appropriate
subsystem,5 if Γ ⊢Σ A <κ B and Γ ⊢Σ A <κ′ B, then Γ ⊢Σ κ = κ′ : (A)B.

We can then show that the conservativity result in [15] can be carried over
to the current setting and, in particular, if the original type theory is strongly
normalising, so is the type theory extended with the subtyping entries. As a
consequence, the extension with subtyping entries preserves logical consistency
– a basic requirement for a type theory to be employed for formal semantics.

Introducing subtyping entries makes using type theory for formal semantics
much more convenient. First of all, it is now possible for one to localise subtyping
assumptions. In some specific situations, some special subtyping relations may
reasonably be assumed, which may not be reasonable in general. For instance,
only in a cafe or restaurant would it be reasonable to say

(1) The ham-sandwich left without paying the bill.

In representing a situation in a cafe, we might reasonably assume the following
subtyping entry:

Ham-sandwich < Human,

which will then allow the sentence (1) to be semantically interpreted as intended.
Such reference transfers are studied by Nunberg [17] among others.

3.2 Manifest Entries and Their Uses

A manifest entry is of the form

c ∼ a : A (2)

Informally, it assumes that c behaves exactly like a of type A. Alternatively, one
can think that in any place that we could use an object of type A, we could use
c which actually plays the role of a. Signatures can be extended with manifest
entries:

(∗) ⊢Σ A : Type ⊢Σ a : A c ̸∈ dom(Σ)

Σ, c ∼ a : A valid

where Type is the kind of all types (in the object type theory). In fact, such
manifest entries can be introduced by means of special membership entries with
the help of the coercive subtyping mechanism. We now proceed with its formal
description.

Manifest entries can be regarded as abbreviations of special membership
entries [10] with the help of the coercive subtyping mechanism [9,15]. Formally,

5 It is important that the condition is not stated for the whole system of coercive sub-
typing, for otherwise it would become trivial. Here we do not detail the description
of the subsystem because we would then have to make explicit some technical details
we feel unnecessary for this paper. An interested reader may look at [15] for details
how coherence is defined in a global case.

7

to add the above manifest entry (2) to a signature is to add the following two
entries:

c : 1A(a), 1A(a) <ξA,a
A (3)

where 1A(a) is the inductive unit type parameterised by A : Type and a : A,
whose only object is ∗A(a), and ξA,a(x) = a for every x : 1A(a). It is now easy
to see that, if an expression has a hole that requires a term of type A, we can
use c to fill that hole; then the whole expression is equal to that with the hole
filled by a. For example, if the expression is f(), then f(c) is equal to f(a).

Note that the subtyping entries involving ξ form coherent signatures; in par-
ticular, if for two manifest entries c ∼ a : A and d ∼ b : B we have 1A(a) = 1B(b)
and A = B, then ξA,a = ξB,b, as coherence requires. Put in another way, if the
subtyping entries in a signature are coherent, the signature is coherent since its
manifest entries do not cause incoherence. Therefore, the extension with mani-
fest entries in signatures preserves the nice properties of the original type theory
such as strong normalisation and logical consistency.

Manifest entries can considerably reduce the complexity of representation, as
the following example shows.

Example 2. With manifest entries, the situation in Example 1 can be represented
as the following signature:

D ∼ aD : Type, B ∼ aB : D → Prop, G ∼ aG : D → Prop, (4)

where

– aD = {John, Paul, George, Ringo, Brian, Bob} is a finite type,
– aB : D → Prop, the predicate ‘was a Beatle’, is an inductively defined

function such that aB(John) = aB(Paul) = aB(George) = aB(Ringo) =
True and aB(Brian) = aB(Bob) = False, and

– aG : D → Prop, the predicate ‘played guitar’, is an inductively defined
function such that aG(John) = aG(Paul) = aG(George) = True and
aG(Ringo) = aG(Brian) = aG(Bob) = False.

In other words, Σ1 in Example 1 is now expressed by the first entry of (4) and
Σ2 in Example 1 by the second and third entries of (4).

Manifest entries in signatures can be used to represent infinite situations such
as those with infinite domains. With traditional membership entries (as in the
traditional notion of context), we can only describe finite domains as we have
done in Example 1. What if the domain D is infinite? This can be done by using
a manifest entry – as in Example 2, we can assume that

D ∼ Inf : Type,

where Inf is some inductively defined type with infinitely many objects. Simi-
larly, one can assume an infinite predicate over the domain, represented as:

P ∼ P-defn : D → Prop,

where P-defn is also inductively defined.

8

4 Subtyping and Manifest Entries in Contexts

The subtyping or manifest entries may be introduced in contexts as well. If this
were done, it would further widen the uses of contexts in their applications.
However, before introducing them and illustrating their uses be means of belief
contexts, we should make clear that introducing contextual subtyping entries
(and manifest entries, which have associated subtyping entries via ξ) compli-
cates meta-theoretic studies. Until now, although the proposal of introducing
contextual subtyping entries was already made in 2009 [11], the corresponding
meta-theoretic studies have not been carried out in detail (for an initial study
of this, see [14]) and further studies are needed.

Because a contextual entry should be able to be abstracted or moved to the
right of turnstile (see Remark 1), it is necessary to introduce a new form of terms
so that subtyping assumptions in a context can be represented as local coercions
in terms. An term with a local coercion is of the form

coercion A <κ B in M,

which indicates that the scope in which subtyping A <κ B takes effects is term
M – it does not take effect outside M . Local coercions are introduced the rules
like the following:

Γ,A <κ B ⊢Σ k : K

Γ ⊢Σ (coercion A <κ B in k) : (coercion A <κ B in K)

where the parentheses are there for readability, but not necessary.
Ranta [19] has proposed an account of belief intensionality in which he uses

contexts to model agents’ beliefs as a sequence of membership entries.6 The idea
is simple and it is based on the assumption that contexts can be seen as the
equivalent type theoretic notion of a (partial) world as found in the traditional
Montagovian semantics. Ranta introduces an agent’s belief context: for agent p,
p’s belief context may be:

Γp = x1 : A1, ..., xn : An.

A belief operator is then introduced: for a proposition A, Bp(A) is true just in
case that A is true in p’s belief context Γp, which is equivalent to saying that
Πx1:A1...Πxn:An.A is true.7

In a case like (5):

(5) John believes that all woodchucks are woodchucks ⇒ John believes all wood-
chucks are groundhogs.

6 Similar ideas have been put forth in [5] and [4] to deal with intensional adjectives
and adverbs.

7 Here, we do not discuss the issue whether such a proposal is adequate to represent
intensional beliefs. For instance, one might argue against such proposals simply by
arguing that ordinary logical inference does not capture the intended inference con-
cerning beliefs. We are simply take this as an example to show that the usefulness
of subtyping/manifest entries in contexts.

9

the sentences are evaluated against the agent’s belief context. If, from John’s be-
lief context, one cannot derive the belief that ‘all woodchucks are groundhogs’,8

the unwanted entailment (5) does not go through.
If we introduce subtyping entries and manifest entries into contexts, we would

then be able to make the above mechanism for beliefs more powerful. Here are
some examples:

– In one’s belief context, there can be subtyping entries like Man < Human
(or even unreasonably Human < Man).

– Infinite beliefs can be expressed by manifest entries. In particular, we can use
inductive definitions to capture infinitely many entries by means of finitely
many entries.

Formally, when contexts are extended with subtyping (and manifest) entries,
the belief operator Bp(P) can be defined as follows.

Definition 1 First, define BΓ for arbitrary context Γ as follows.

1. If Γ = ⟨⟩, then BΓ (P) = P .
2. If Γ = x : A,Γ0, then BΓ (P) = Πx:A. BΓ0(P).
3. If Γ = A <κ B,Γ0, then BΓ (P) = coercion A <κ B in BΓ0(P).

Then, let p be an agent and P a Γp-proposition. Define the belief operator as

Bp(P) = BΓp(P).

Remark 2. In the above definition, we have not considered manifest entries be-
cause a manifest entry can be represented by an ordinary membership entry
together with a subtyping entry and, therefore, the above definition covers man-
ifest entries as well.

References

1. N. Asher and Z. Luo. Formalisation of coercions in lexical semantics. Sinn und
Bedeutung 17, Paris, 2012.

2. C. Bassac, B. Mery, and C. Retoré. Towards a type-theoretical account of lexical
semantics. Journal of Logic, Language and Information, 19(2), 2010.

3. P. Boldini. Formalizing contexts in intuitionistic type theory. Fundamenta Infor-
maticae, 4(2), 2000.

4. S. Chatzikyriakidis. Adverbs in a modern type theory. In LACL 2014, 2014.
5. S. Chatzikyriakidis and Z. Luo. Adjectives in a modern type-theoretical setting.

In G. Morrill and J.M Nederhof, editors, Proceedings of Formal Grammar 2013.
LNCS 8036, pages 159–174, 2013.

6. R. Dapoigny and P. Barlatier. Modelling contexts with dependent types. Funda-
menta Informaticae, 104, 2010.

8 For example, using the heterogenous equality Eq, this belief can be expressed as
∀x:G∀y:W.Eq(G,W, x, y). We do not get into the formal details here.

10

7. R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal
of the Association for Computing Machinery, 40(1):143–184, 1993.

8. Z. Luo. Computation and Reasoning: A Type Theory for Computer Science. Oxford
University Press, 1994.

9. Z. Luo. Coercive subtyping. Journal of Logic and Computation, 9(1):105–130,
1999.

10. Z. Luo. Manifest fields and module mechanisms in intensional type theory. In
S. Berardi, F. Damiani, and U. de’Liguoro, editors, Types for Proofs and Programs,
Proc. of Inter. Conf. of TYPES’08, LNCS 5497., 2009.

11. Z. Luo. Type-theoretical semantics with coercive subtyping. Semantics and Lin-
guistic Theory 20 (SALT20), Vancouver, 2010.

12. Z. Luo. Formal semantics in modern type theories with coercive subtyping. Lin-
guistics and Philosophy, 35(6):491–513, 2012.

13. Z. Luo. Formal Semantics in Modern Type Theories: Is It Model-theoretic, Proof-
theoretic, or Both? Invited talk at Logical Aspects of Computational Linguistics
2014 (LACL 2014), Toulouse. LNCS 8535, pages 177–188, 2014.

14. Z. Luo and F. Part. Subtyping in type theory: Coercion contexts and local coercions
(extended abstract). TYPES 2013, Toulouse, 2013.

15. Z. Luo, S. Soloviev, and T. Xue. Coercive subtyping: theory and implementation.
Information and Computation, 223:18–42, 2012.

16. B. Nordström, K. Petersson, and J. Smith. Programming in Martin-Löf’s Type
Theory: An Introduction. Oxford University Press, 1990.

17. Geoffrey Nunberg. Transfers of meaning. Journal of Semantics, 12(2):109–132,
1995.

18. C. Pollard. Hyperintensions. Journal of Logic and Computation, 18(2), 2008.
19. A. Ranta. Type-Theoretical Grammar. Oxford University Press, 1994.
20. J. Saeed. Semantics. Wiley-Blackwell, 1997.

11

