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Abstract Type theories have been used as foundational languages for formal se-
mantics. Under the propositions-as-types principle, most modern type systems have
explicit proof objects which, however, cause problems in obtaining correct identity
criteria in semantics. Therefore, it has been proposed that some principle of proof
irrelevance should be enforced in order for a type theory to be an adequate semantic
language. This paper investigates how proof irrelevance can be enforced, particu-
larly in predicative type systems. In an impredicative type theory such as UTT, proof
irrelevance can be imposed directly since the type Prop in such a type theory repre-
sents the totality of logical propositions and helps to distinguish propositions from
other types. In a predicative type theory, however, such a simple approach would
not work; for example, in Martin-Löf’s type theory (MLTT), propositions and types
are identified and, hence, proof irrelevance would have implied the collapse of all
types. We propose that Martin-Löf’s type theory should be extended with h-logic, as
proposed by Veovodsky and studied in the HoTT project, where proof irrelevance is
built-in in the notion of logical proposition. This amounts to MLTTh , a predicative
type system that can be adequately employed for formal semantics.

1 Introduction

Formal semantics in modern type theories (MTT-semantics for short) [26, 8] is a
framework for natural language semantics, in the tradition of Montague’s semantics
[33]. The development of MTT-semantics is a part of a wider research endeavour
by many researchers who have recognised the potential advantages of rich type
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structures in constructing formal semantics [37, 35, 28, 5, 10, 13, 36, 3, 18]. While
Montague’s semantics is based onChurch’s simple type theory [9, 15] (and itsmodels
in set theory), MTT-semantics is based on dependent type theories, which we call
modern type theories (MTTs), to distinguish them from the simple type theory.

One of the key differences between MTTs and simple type theory is that MTTs
have rich type structures with many types, much richer than those in simple type
theory. Because of this, in such a rich type system, common nouns can be inter-
preted as types rather than predicates (see, for example, Ranta’s proposal on this in
Martin-Löf’s type theory [35]). We can call this the CNs-as-types paradigm: it is
different fromMontague’s semantics, which adopts the CNs-as-predicates paradigm.
For instance, consider the CN ‘book’: it is interpreted in Montague’s semantics as a
predicate of type e→ t, while in MTT-semantics, it is interpreted as a type Book. It
has been argued that interpreting CNs as types rather than predicates has several ad-
vantages including, for example, better treatment of selectional restriction by typing,
compatible use of subtyping in semantic interpretations and satisfactory treatment of
some advanced linguistic features such as copredication (see, for example, [24, 26]
for further details).2

Another feature of MTTs is that their embedded logics are all based on the
principle of propositions as types [12, 21] and, in particular, there are proof terms
whose types are logical propositions: a logical formula P is true if, and only if,
there exists a proof term p of type P. Such formulations with proof terms are rather
natural for constructive proof systems: type theories such as Martin-Löf’s type
theory [30, 31] are such examples which were originally designed for describing
constructive mathematics such as that described by Bishop in [4]. However, MTTs
can also be applied in applications other than constructive mathematics: their use in
MTT-semantics for natural language is such an example. In particular, MTTs provide
a semantic framework which is both model-theoretic and proof-theoretic [27] and
have many advantages as foundational languages for formal semantics, as compared
with the model-theoretic framework of Montague’s semantics. MTT-semantics also
provides useful mechanisms for successful treatments of various linguistic features
such as copredication with subtyping [24, 26] that have been found difficult to be
dealt with in the traditional setting.

However, proof terms that inhabit propositions are not completely innocent: when
we employ type theories for formal semantics, they cause problems. In particular,
their presence makes it difficult, if not impossible, for one to obtain correct identity
criteria of CNs. For example, in a dependent type theory, one may use dependent
types of pairs3 to represent CNsmodified by intersective adjectives [35]: for instance,
a handsome man is a pair of a man and a proof that the man is handsome. Then,

2 It may be interesting to remark that, recognising that interpreting CNs as types has several
advantages, some researchers have suggested that both paradigms need be considered including,
for instance, Retoré’s idea in this respect [36]. A related issue in type-theoretical semantics is
how to turn judgemental interpretations into corresponding propositional forms, as studied in [41]
which proposes an axiomatic solution for such transformations that can be justified by means of
heterogenous equality of type theory.
3 Technically, Σ-types are used – see §2.2 and Footnote 7 for a further description of Σ-types.
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for such representations, one can ask: what is the identity criterion for handsome
man? An obvious answer should be that it is the same as that for man: two handsome
men are the same if, and only if, they are the same man. But this is not what the
formal interpretation gives us since it also requires that the proofs of the man being
handsome be the same. Obviously, this would not be a correct identity criterion for
the modified CN handsome man. How to solve this problem? It has been proposed
that some principle of proof irrelevance should be adopted [25]: i.e., any two proofs
of the same logical proposition should be the same. In the above example, it implies
that any two proof terms of aman being handsome should be the same. In §2, we shall
introduce the issue of identity criteria for CNs and illustrate that proof irrelevance
provides a nice solution to this problem.

A type theory can either be predicative or impredicative. Examples of the former
include Martin-Löf’s type theory [34] as implemented in the proof assistant Agda
[1] and those for the latter include the type theory UTT [23] as implemented in
Lego/Plastic [29, 6] and pCIC as implemented in Coq [11]. A notable difference
is that, in impredicative type theories, there is usually a type Prop of all logical
propositions, while in a predicative type theory, we usually do not have such a type.
This difference is significant when we consider a proof irrelevance principle. For
impredicative type theories, imposing proof irrelevance is pretty straightforward: we
simple stipulate that, for any proposition of type Prop, any two proof terms of type P
are the same [25] (more details can be found in §2.3). However, how to consider proof
irrelevance in a predicative type theory is not a simple matter anymore: for example,
in Martin-Löf’s type theory, people usually follow Martin-Löf to identify types with
propositions. In this case, it would be quite absurd to impose proof irrelevance for
all propositions because that would have meant to identify objects of all types! It
is unclear whether and how proof irrelevance can be enforced in a predicative type
theory, a point of view expressed in the following quotation, taken from [25]:

It is also worth noting that, although proof irrelevance can be considered for impredicative
type theories directly as above, it is unclear how this can be done for predicative type
theories. For instance, in Martin-Löf’s type theory [30, 31], propositions are identified with
types. Because of such an identification, one cannot use the above rule to identify proofs,
for it would identify the objects of a type as well. Put in another way, proof irrelevance is
incompatible with the identification of propositions and types. In order to introduce proof
irrelevance, one has to distinguish logical propositions and types (see, for example, [23]).

The above-mentioned identification of types and propositions gives rise to a logic
based on the principle of propositions as types – the usual logic in Martin-Löf’s type
theory – let’s call it the PaT logic4. In other words, one cannot enforce a principle
of proof irrelevance in Martin-Löf’s type theory (MLTT) with PaT logic. Therefore,
to use MLTT with PaT logic for formal semantics suffers of the problem we have
described above: one cannot (or at least, would be very difficult to) obtain correct
identity criteria in semantic interpretations of CNs, among other things.5

4 PaT stands for ‘propositions as types’.
5 See the second paragraph of the Conclusion section for another potential issue in this respect, but
this is out of the scope of the current paper.
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The main contribution of the current paper is to solve this problem of how to con-
sider proof irrelevance forMartin-Löf’s type theory. Recently, based onMartin-Löf’s
type theory, researchers have developed Homotopy Type Theory (HoTT) [40] for the
study of foundation and formalisation of mathematics. One of the developments in
the HoTT project is its logic (sometimes called h-logic), developed by Voevodsky,
based on the idea that a logical proposition, called a mere proposition, is a type that
is either a singleton or empty. In other words, proof irrelevance is built-in in h-logic
and this, among other things, has given rise to a logic with a type of all (small)
propositions. Our proposed solution is that MLTT should be extended with h-logic
and the resulting language, MLTTh , can then be used adequately as a foundational
language for MTT-semantics. MLTTh is a proper extension of Martin-Löf’s type
theory, although it is a subsystem of type system for HoTT as described in [40]. In
§3, we shall first discuss the above problem briefly and then describe h-logic and
MLTTh and illustrate how to use MLTTh in formal semantics.

2 Identity Criteria and Proof Irrelevance

2.1 Identity Criteria of Common Nouns

As first observed by Geach [16] and later discussed by many others, common nouns
are associated with their criteria of identity. Intuitively, a CN represents a concept
that does not only have a criterion of application, to be employed to determine
whether the concept applies to an object, but a criterion of identity, to be employed
to determine whether two objects of the concept are the same. It has been argued
that CNs are distinctive in this since other lexical terms like verbs and adjectives do
not have such criteria of identity (cf, Baker’s arguments in [2]).

The notion of criteria of identity can be traced back to Frege [14] when he
considered abstractmathematical objects such as numbers or lines. Geach has noticed
that such criteria of identity exist for every common noun and are the basis for
counting [16, 19, 2].6 The idea can be illustrated by considering the following
examples (1) and (2), where the CNs ‘passenger’ and ‘person’ have different criteria
of identity, from which it is easy to see that (1) does not imply (2).

(1) EasyJet has transported 1 million passengers in 2010.
(2) EasyJet has transported 1 million persons in 2010.

Several formalisations of the CN ‘passenger’ are discussed in [25], some of which
give intended (correct) identity criteria while the others do not. In particular, when
we use logical propositions in formalisations, some principle of proof irrelevance
should be enforced.

6 In general, one may say that an interpretation of a CN should actually be a setoid – a type together
with an identity criterion, although in most cases, the situation is more straightforward and can be
simplified in that one does not have to mention the identity criterion anymore [7].
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2.2 Proof Terms and Proof Irrelevance

Based on the Curry-Howard principle of propositions as types [12, 21], modern type
theories contain proof terms of propositions. Let’s consider a simple example: the
logical proposition A in (3) can be proved by the term p in (4); in other words, (5) is
a correct judgement stating that p is a proof term of A (formally, one says that the
judgement (5) can be derived):

(3) A = ∀P : Nat → Prop ∀x : Nat . P(x) ⊃ P(x)
(4) p = λP : Nat → Prop λx : Nat λy : P(x). y
(5) p : A

A logical formula is true if, and only if, there exists a proof of the formula: in
the above example, A is true since there is p which is a proof of A. Note that a
logical proposition may have more than one proof; put in another way, proof terms
are not necessarily unique: for some propositions, there may be proofs of the same
proposition that are not the same.

Proof terms cause problems when we consider identity criteria of CNs. Their
presence makes it difficult, if not impossible, for one to obtain correct identity
criteria of CNs. For example, in a dependent type theory, one may use Σ-types of
pairs7 to represent CNs modified by intersective adjectives [35], as the following
example shows:

(6) [[handsome man]] = Σ(Man, handsome)

where Man is the type of men and handsome is a predicate over domain Man. If we
ask what the identity criterion for handsome man is, we would have a problem, since
the above interpretation (6) would not give us the intended identity criterion [25].
Obviously, the correct (or intended) identity criterion for handsome man should be
the same as that for man: two handsome men are the same if, and only if, they are
the same man. But this is not what the formal interpretation (6) gives us: an object
of type Σ(Man, handsome) is a pair (m, h) where m is of type Man and h of type
handsome(m) and, for two handsome men (m, h) and (m′, h′) to be the same, we
require that it is not only the case that m and m′ are the same, but also that h and
h′ are the same! In other words, two handsome men being the same would have
required that the proof terms that prove that they are handsome are the same as well.
If there are more than one proof, say h and h′, that a man m is handsome, then m

7 A Σ-type is an inductive type of dependent pairs. Here is an informal description of the basic laws
governing Σ-types (see, for example, [31] for the formal rules and further explanations).

• If A is a type and B is an A-indexed family of types, then Σ(A, B), or sometimes written as
Σx:A.B(x), is a type.

• Σ(A, B) consists of pairs (a, b) such that a is of type A and b is of type B(a).
• Σ-types are associated projection operations π1 and π2 so that π1(a, b) = a and π2(a, b) = b,

for every (a, b) of type Σ(A, B).

When B(x) is a constant type (i.e., always the same type nomatter what x is), the Σ-type degenerates
into the product type A× B of non-dependent pairs.
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as handsome man with proof h would be different from m with proof h′. Obviously,
this would not be a correct identity criterion for handsome man.

Some examples to illustrate the above problemare given byTanaka in a talk atOhio
[39], in the context of studying Sundholm’s approach to constructive generalised
quantifiers [38]. Consider the following sentence:

(7) Most persons who travelled by plane are happy.

where the semantics ofmost requires correct countingwhile the Σ-type interpretation
of the phrase ‘person who travelled by plane’ does not give correct counting since it
involves proof terms. To explain, we have:

(8) [[person who travelled by plane]] = Σx:PersonΣy:Plane. travel(x, y),

where travel(x, y) is a proposition expressing that x travelled by plane y. One of the
reasons that (8) may give incorrect counting results is that there could be more than
one proof of type travel(x, y) and, as a consequence, an interpretation of (7) based
on (8) would not be correct.

The interpretation (8) has another problem: its use of (the second) Σ as existential
quantifier is also problematic in counting, as pointed out by Tanaka in her talk [39].
A more adequate interpretation would be (9), where the usual existential quantifier
∃ is used:

(9) [[person who travelled by plane]] = Σx:Person∃y:Plane. travel(x, y).

Note that, while Σ(A,P) is a type, ∃(A,P) is a logical proposition. Although the usual
existential quantifier ∃ exists in impredicative type theories such as UTT, it does not
exist in Martin-Löf’s type theory.

In order to solve the above problem, it has been proposed that some principle of
proof irrelevance should be adopted [25]: i.e., any two proofs of the same logical
proposition should be the same. In the above examples, it implies that, for any man
m, any two proof terms of handsome(m) should be the same (proof irrelevance
for proposition handsome(m)) and that, for any person x and any plane y, any two
proof terms of travel(x, y) should be the same (proof irrelevance for proposition
travel(x, y)). The interpretations (6) and (9) give correct counting results with proof
irrelevance.

Note that, in type theory, proof irrelevance for all logical propositions requires that
there be a clear distinction between the types standing for logical propositions (such
as that in (3)) and the other types (such as a type of humans and a type of numbers).
In an impredicative type theory, such a distinction can easily be made, while in a
predicative type theory, it is not clear how to do it. In the following subsection §2.3,
we discuss how this can be done for impredicative type theories and, in §3, we shall
investigate how it could be done for predicative type theories.
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2.3 Proof Irrelevance in Impredicative Type Theories

In impredicative type theories such as UTT [23] and pCIC [11], there is a type
Prop of all logical propositions. As a type, Prop represents the totality of all logical
propositions. For instance, a formula of the form ∃X : Prop. ... says that ‘there
exists logical proposition X such that ...’. As another example, the proposition in (3)
quantifies over all predicates P with domain Nat. With such a distinctive totality
Prop of logical propositions, it becomes straightforward to express a principle of
proof irrelevance that states that any two proofs of the same logical proposition be
the same. As proposed in [25], in the impredicative type theory UTT, this can be
captured by the following rule:

(∗)
Γ ` P : Prop Γ ` p : P Γ ` q : P

Γ ` p = q : P

Intuitively, it say that, if P is a logical proposition (i.e., P is of type Prop) and if p
and q are two proof terms of P, then p and q are the same.8

Consider the semantic interpretation of handsome man in (6). With proof irrel-
evance, two handsome men are the same if, and only if, they are the same man
because, for any man m, any two proofs of proposition handsome(m) are the same,
according to rule (∗) that expresses proof irrelevance.

As noted above, in order to state the principle of proof irrelevance, there must
be a clear distinction between logical propositions and other types so that proof
irrelevance can be imposed for the former (and not for the latter). This is the case for
impredicative type theories, as the (∗) rule illustrates. However, a rule like (∗) would
not be available for predicative type theories such as Martin-Löf’s type theory with
PaT logic, as to be explained in the following section.9

2.4 Most: Counting and Anaphoric Reference

Anaphora representation was an early application of dependent type theory, first
studied by Sundholm [37], as an alternative to dynamic semantics [22, 20, 17].
Consider the simple donkey sentence (10), whose interpretation in Martin-Löf’s

8 Here, the equality = is the definitional equality in type theory. In §3, when we consider h-logic,
the equality will be the propositional equality. We shall not emphasise the differences of these two
equalities in the current paper, partly because it would not affect our understandings of the main
issues.
9 A reviewer has asked the question whether ‘one should use impredicative type theories rather
than predicative ones for studying logics of natural language’ (and maybe others would ask similar
questions.) Some people would have drawn this conclusion and, in particular, those (including the
author himself) who do not think that impredicativity is problematicwould have agreed so.However,
some others may think otherwise, believing that impredicativity is problematic in foundations of
mathematics (or even in general); if so, predicative type theories would then have their merits and
should be considered.
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type theory would be (11), where Σ acts as the existential quantifier and F and D
are the types that interpret farmer and donkey, respectively. Note that the use of Σ as
existential quantifier is the key to the solution here: if the second Σ in (11) is changed
into a traditional (weak) existential quantifier, the interpreting sentence would not
be well-formed because the term π1(π2(z)) would be ill-typed.

(10) If a farmer owns a donkey, he beats it.
(11) Πz : (Σx:FΣy:D. own(x, y)). beat(π1(z), π1(π2(z)))

However, as explained above in §2.2 with (7) and (8), using Σ as existential quantifier
in this simple way causes problems in counting. This can be made clear by the
following example (12)10 and its interpretation (13) in Martin-Löf’s type theory,
where most is interpreted by means of the quantifier Most defined in [38].

(12) Most farmers who own a donkey beat it.
(13) Most z : (Σx:FΣy:D. own(x, y)). beat(π1(z), π1(π2(z)))

The semantic interpretation (13) fails to respect correct counting which becomes
important for the truth of (12): because of the second Σ, the proofs of own(x, y)
contribute to counting in a wrong and unintended way. This was already realised by
Sundholm himself, who proposed some ad hoc method to deal with this (see, for
example, [39]).

Unlike MLTT, in some type theories there exist both the strong Σ and a weak
existential quantifier. For example, in UTT, we have both Σ and ∃, the latter being the
traditional existential quantifier in its embedded higher-order logic. This has opened
a new possibility of using both in a semantic interpretation. For instance, (12) can
be interpreted in UTT as (14), where, with proof irrelevance, counting is correctly
dealt with in (14), and so is anaphoric reference as well.

(14) Most z : [Σx:F∃y:D. own(x, y)].
∀y′ : [Σy:D.own(π1(z), y)]. beat(π1(z), π1(y

′))

The above interpretation (14) is a strong one – most donkey-owning farmers beat
all donkeys he owns. A weaker interpretation would mean that most donkey-owning
farmers beat some donkeys he owns, which would be interpreted as (15), obtained
from (14) by changing ∀ into ∃, which deals with counting correctly as well.

(15) Most z : [Σx:F∃y:D. own(x, y)].
∃y′ : [Σy:D.own(π1(z), y)]. beat(π1(z), π1(y

′))

Remark 1 Here, we have considered how to use both strong and weak sum types in
dealing with counting and anaphora in type theories such as UTT. In this respect,
instead of doing this, one might consider extending a type theory to become a
‘dynamic type theory’, in the same way as extending FOL to becomes dynamic
predicate logic [17]. The author believes, however, that this is too much a price
to pay: like dynamic predicate logic, such a dynamic type theory completely loses
its standard logical properties and would become a rather strange logical system.

10 Thanks to Justyna Grudziñska for a discussion about this example.
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For instance, dynamic predicate logic is very much a non-standard logical system:
among other things, it is non-monotonic and the notion of dynamic entailment fails
to be reflexive or transitive. The author does not think that an underlying logic for
NL semantics should be too far from a usual system that is well understood.

3 Formal Semantics in Martin-Löf’s Type Theory with H-logic

In this section, we first discuss the problem of imposing proof irrelevance in Martin-
Löf’s type theory (MLTT) with PaT logic and then detail our proposal of extending
MLTT with h-logic, as studied and developed by Voevodsky in the HoTT project
[40], and employing the extension MLTTh as a foundational language for formal
semantics.

Homotopy Type Theory (HoTT) is a new research field in the study of founda-
tions of mathematics, among other related things. It was first initiated by Vladimir
Voevodsky who, with others, has organised a special year about this at the Institute
of Advanced Study in Princeton that has resulted in the HoTT book [40], among
other things. HoTT extends MLTT with two things: the univalence axiom and higher
inductive types. In particular, as a part of a larger development, Voevodsky has stud-
ied a notion of proposition as a type whose objects are all the same, which is later
on coined in the HoTT project as mere propositions.

What we shall propose and study is a subsystem of the HoTT type theory: the
system will be called MLTTh – it only extends MLTT with the logic of mere
propositions, called h-logic. We shall briefly show, by giving simple examples, that
MLTTh may adequately be used for MTT-semantics.

3.1 MLTT with PaT Logic: a Problem

Although the basic idea of MLTT with PaT logic is based on the propositions-as-
types principle, Martin-Löf has gone a step further: not only every proposition is
a type, but vice versa: every type is also a proposition. In other words, with the
standard PaT logic of MLTT, propositions and types are identified. As explained
in the introduction, this identification has caused a problem in incorporating proof
irrelevance. If proof irrelevance were imposed for every proposition in MLTT, then
unfortunately every type, which is also a proposition (in Martin-Löf’s sense), would
collapse as well: if a and b are two objects of type A, we’d have that a and b are the
same because type A is a proposition. This is obviously absurd and unacceptable..

As we saw in §2.3, in an impredicative type theory such as UTT, the distinction
between propositions and types is clear: in such a type theory, there is the type Prop
of all logical propositions: a type is a logical proposition if, and only if, it is an
object of type Prop. Therefore, a principle of proof irrelevance can be stated and
imposed in a straightforward way by a rule like (∗) in §2.3. Such a rule cannot be
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formulated, and hence unavailable, in MLTT with PaT logic. As pointed out in [25],
Martin-Löf’s type theory with PaT logic is inadequate for MTT-semantics, because
it is impossible for one to impose a principle of proof irrelevance and, as explained,
proof irrelevance would be needed to obtain correct identity criteria for CNs.

3.2 H-logic in HoTT

In HoTT, a logical proposition is a type whose objects are all propositionally equal
to each other. To distinguish them from other types, which in MLTT are also called
propositions, they are sometimes called mere propositions.

Definition 1 (mere proposition [40])A type A is amere proposition if for all x, y : A
we have that x and y are equal.

Formally, let U be the smallest universe in MLTT and A : U. Then A is a mere
proposition in h-logic if the following is true:

isProp(A) = Πx, y:A. IdA(x, y),

where Id is the propositional equality (called Id-type) in MLTT. We can define the
type of mere propositions in U to be the following Σ-type:

PropU = ΣX:U. isProp(X).

In the following, we shall omit U and write Prop for PropU . Note that Prop is
different from Prop in an impredicative type theory like UTT: Prop contains all
logical propositions in the type theory while Prop does not – it only contains the
mere propositions in the predicative universe U; sometimes, we say that Prop is the
type of small mere propositions. Another thing to note is that an object of Prop is
not just a type – it is a pair (A, p) such that A is a type in U and p is a proof of
isProp(A) (i.e., A is a mere proposition).

The traditional logical operators can be defined and some of these definitions
(e.g., those for disjunction and existential quantifier) use the following truncation
operation that turns a type into a mere proposition.

• Propositional Truncation. Let A be a type. Then, there is a higher inductive type
‖A‖ specified by the following rules, where the elimination operator κA satisfies
the definitional equality κA( f , |a|) = f (a):

Γ ` a : A
Γ ` |a| : ‖A‖

Γ valid
Γ ` isProp(‖A‖) true

Γ ` isProp(B) Γ ` f : A→ B
Γ ` κA( f ) : ‖A‖ → B

Note that ‖A‖ is a higher inductive type and, in particular, in turning a type A
into a mere proposition ‖A‖, one imposes that there is a proof of isProp(‖A‖), i.e.,
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‖A‖ is a mere proposition – in other words, every two proofs of ‖A‖ are equal
(propositionally).11

The traditional logical operators can now be defined for h-logic as follows, where
we denote them by means of an extra dot-sign: for example, Û∧ for the conjunction
connective in h-logic.

• true = 1 (the unit type).
• f alse = ∅ (the empty type).
• P Û∧ Q = P ×Q.
• P Û⊃ Q = P→ Q.
• Û¬ P = P→ ∅.
• Û∀x:A.P(x) = Πx:A.P(x).
• P Û∨ Q = ‖P +Q‖.
• Û∃x:A.P(x) = ‖Σx:A.P(x)‖.

Please note that the typing operators on the right hand side are those used in MLTT
to define the corresponding logical operators.

The reader may have noticed that the truncation operation is only used in the
last two cases (disjunction and existential quantification), but not for defining the
other logical connectives: for example, the logical conjunction P Û∧ Q is directly
defined as the product type P × Q, rather than ‖P × Q‖. The reason is that ×, the
product typing operator, preserves the property of being mere propositions: if P and
Q are mere propositions, so is P × Q. This property of preservation also holds for
the operators such as implication and universal quantification. However, it does not
hold for disjunction or existential quantification: for example, even when P and Q
are mere propositions, P +Q is not a mere proposition and, therefore, the truncation
operator has to be used to turn P +Q into a mere proposition ‖P +Q‖.

3.3 MLTTh and Its Adequacy for Formal Semantics

MLTTh extends Martin-Löf’s type theory (MLTT) (see Part III of [34] for its formal
description) with the h-logic in HoTT [40], as described above. MLTTh does not
include other extensions of MLTT in the HoTT project: in particular, it does not have
the univalence axiom or any other higher inductive types except those in h-logic.
Since it is a subsystem of the HoTT type theory, MLTTh has nice meta-theoretic
properties including logical consistency.

We claim thatMTT-semantics can be done adequately inMLTTh . Since inMLTTh

there is the totality Prop of (small) mere propositions, we can approximate the notion
of predicate as follows: a predicate over type A is a function of type A → Prop.
Therefore, we can interpret linguistic entities such as verb phrases, modifications by
intersective adjectives, etc. as we have done before based on UTT. For example, the
modified CN (16) can be interpreted as (17), where hs : Man→ Prop is a predicate

11 For people who are familiar with type theory, this implies that canonicity fails to hold for the
resulting type theory.
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in MLTTh expressing the property of being handsome:

(16) handsome man
(17) Σm:Man, π1(hs(m)))

More precisely, for any man m : Man, hs(m) is a pair (A, p) where A is a type
representing that m is handsome and p is a proof term showing that A is a mere
proposition. That is why we have to use the operator π1 of first projection to get the
first component of hs(m) to form the Σ-type.

Proof irrelevance is built-in in the notion of mere proposition. In h-logic as
described above, every two proofs of a mere proposition are equal (by definition,
for the propositional equality Id). In particular, this is imposed for ‖A‖ when a type
A, which may not be a mere proposition, is turned into a mere proposition ‖A‖.
For instance, considering the semantic interpretation (17) of (16), we have that two
handsome men are the same if, and only if, they are the same man, because any two
proof terms of the mere proposition π1(hs(m)) are the same. Therefore, the problem
described in §2.2 and §3.1 is solved satisfactorily in MLTTh .12

3.4 Most in MLTTh

MLTTh also contains a weak version of the existential quantifier – the operator Û∃
as defined above. Therefore, the sentence (12), repeated below as (18), can be given
the semantic interpretation (19) in MLTTh , where Û∃ is used as the weak existential
quantifier.

(18) Most farmers who own a donkey beat it.
(19) Most z : [Σx:F Û∃y:D. own(x, y)].

∀y′ : [Σy:D.own(π1(z), y)]. beat(π1(z), π1(y
′))

Note that the above interpretation (19) in MLTTh is similar to (14) in UTT, with the
only difference that ∃ in (14) is changed into Û∃ in (19).

4 Conclusion

In this paper, we have discussed that, in order to obtain adequate identity criteria
for CNs, a principle of proof irrelevance should be adopted in a type-theoretical
semantics. In particular, we showed that, unlike impredicative type theories like
UTT, this presents a problem for predicative type theories such as MLTT. The paper
then proceeds to show how one may extend MLTT by means of h-logic, the logic

12 Of course, we recognise that MLTTh is a proper extension of MLTT, although this seems to
be the best one could do (but further research may be needed to see whether it is possible to do
otherwise).
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of mere propositions studied in the HoTT project, to obtain MLTTh , which is then
claimed to be an adequate foundational language for MTT-semantics.

Usually, we have included Martin-Löf’s type theory as one of the MTTs employ-
able for MTT-semantics (just like impredicative type theories such as UTT). This
paper may be regarded as a justification for this practice. Of course, for this, MLTT
need be extended with h-logic, rather than using its original standard PaT logic.13 It
should be emphasised that further study is needed to justify our claim that MLTTh

can adequately deal with all the semantic matters as studied based on UTT, although
intuitively we do not see any serious problems. To mention a potential issue: in a
predicative type theory, formally there is no totality of all propositions (and hence
no totality of predicates) – one can only have relative totalities of propositions or
predicates using predicative universes (cf., Prop in §3.2). This is not ideal but it is
to be seen whether it causes any serious problems.

The existence of both strong and weak sums (Σ and ∃) in type theories like UTT
and MLTTh has brought a new light in semantic treatments for sentences involving
unbound anaphora [32], as some examples about most have illustrated in this paper.
However, a general study in this respect is still needed to see how far one can go.
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