
Coercive subtyping and lexical semantics

�

(Extended Abstract)

Zhaohui Luo and Paul Callaghan

Department of Computer Science, University of Durham

fZhaohui.Luo, P.C.Callaghang@durham.ac.uk

1 Introduction

This paper investigates the use of constructive type theory in lexical semantics. Our intention is to explore

how a rich language of types with subtyping can be used to express lexical knowledge, both as an application

of type theory and as an alternative to current approaches. In particular, we show that coercive subtyping

[Luo97, Luo98a], provides a formal framework with useful mechanisms for lexical semantics.

Coercive subtyping extends constructive type theories (eg, Martin-L�of's intensional type theory [NPS90]

and the type theory UTT [Luo94]) with a simple abbreviational mechanism. It provides elegant and
exible

means of representing inheritance and overloading. In our earlier paper on the structure of Mathematical Ver-

nacular [LC98], coercive subtyping is used to represent the inheritance relationships between mathematical

concepts and to model some common abbreviations used in mathematical language.

Building on some of the ideas in [LC98], we consider in this paper how coercive subtyping can be

applied in modelling of word meanings in natural language and their semantic compositions. We show that

the abbreviational mechanisms of coercive subtyping provide interesting and useful tools to represent and

analyse di�erent modes of semantic composition that involve type shifting, reference transfer, and multiple

sense selection. Relating the use of coercive subtyping to Pustejovsky's work on the Generative Lexicon

Theory [Pus95] and Jackendo�'s work on Enriched Composition [Jac97], we discuss how some forms of

logical polysemy and enriched composition may be analysed in this framework.

The motivation of this work is twofold. Firstly, it is our hope that the use of coercive subtyping will

provide lexical semantic studies with useful tools based on a solid proof-theoretic (or type-theoretic) founda-

tion. Secondly, we believe that this will shed light on how lexical semantics of full mathematical vernacular

should be formally understood.

2 Coercive subtyping in constructive type theories

We give a brief and informal introduction to coercive subtyping. For more detailed presentation and expla-

nation, see [Luo97, Luo98a], and for the related proof-theoretic results, see [JLS97, SL98].

The basic idea and the coercion mechanism The basic idea of coercive subtyping is to consider sub-

typing as an abbreviational mechanism. A is a subtype of B, notation A � B, if either A = B (computational

equality) or A is a proper subtype of B such that there is a unique implicit coercion c from A to B (in this

latter case, we use the judgement form A <

c

B).

The key proof-theoretic mechanism to realise coercive subtyping is the following coercive application rule

and coercive de�nition rule, where (x:K)K

0

[x] is a dependent functional kind in a typed logical framework

for specifying type theories (see [Luo94]):

� ` f : (x:K)K

0

[x] � ` k

0

: K

0

� ` K

0

<

c

K

� ` f(k

0

) : K

0

[c(k

0

)]

� ` f : (x:K)K

0

[x] � ` k

0

: K

0

� ` K

0

<

c

K

� ` f(k

0

) = f(c(k

0

)) : K

0

[c(k

0

)]

In general, if A <

c

B, these rules allow one to use an object a of type A in a context C

B

[] where an

object of type B is expected: C

B

[a] is well-typed (by the �rst rule), and furthermore, we have that C

B

[a] is

�

Logical Aspects of ComputationalLinguistics (LACL'98), Grenoble, Dec 1998. This work is supportedpartly by UK EPSRC

project GR/K79130 (see http://www.dur.ac.uk/~dcs7ttg/sir.html) and partly by the Durham Mathematical Vernacular

project funded by the Leverhulme Trust (see http://www.dur.ac.uk/~dcs7ttg/mv.html).

1

computationally equal to C

B

[c(a)] (by the second rule). This gives the direct (computational) meaning of the

abbreviation introduced by the coercion mechanism, and conforms with and coherently extends Martin-L�of's

meaning theory for constructive type theories.

Generality and
exibility The power of coercive subtyping comes from its uniform generalisation of the

traditional notions of subtyping and inheritance, including the inclusion-based subtyping (eg, between the

types of men and humans), represented as injective coercions, and that of inheritance-based subtyping (eg,

between record types), represented as projective coercions. In fact, any function fromA to B can be speci�ed

as a coercion, as long as the coherence property holds for the overall system (see below). With the rich type

structure in constructive type theory (eg, dependent function types, types of dependent pairs or �-types,

and other inductive types), the simple idea of coercive subtyping provides surprisingly powerful mechanisms

in a uniform way. Di�erent forms of coercion mechanisms have been implemented in proof systems such as

Lego [LP92] and Coq [Coq96], and have been successfully applied to large proof developments [Bai98] among

other applications.

Coherence and conservativity Given the generality of possible coercions, one must set conditions so

that the resulting type theory with coercive subtyping has nice proof-theoretic properties. A key condition is

that of coherence, which says that there can be no computationally distinct coercions between any two types

(ie, if A <

c

B and A <

c

0

B, then c and c

0

are computationally equal). An important meta-theoretic result

about coercive subtyping is that, for coherent subtyping relations, the extension with coercive subtyping is

a conservative extension of the original type theory (see [SL98] for a proof of this for subtyping between

parameterised inductive types.)

Remark Although developed independently from completely di�erent formal frameworks and motivations,

coercive subtyping shares some basic ideas (cf, [BCGS91]) with, for example, Pustejovsky's use of coercions in

his Generative Lexicon Theory [Pus95]. However, the techniques and representational mechanisms provided

by coercive subtyping are much more general and
exible. As a theory of subtyping and inheritance for type

theories with rich type structure and solid proof-theoretic foundation, it is extremely interesting to see how

it can be applied in lexical semantics in relation to existing work.

3 Using coercive subtyping in lexical semantics

We assume that lexical semantics is described in a typed language. Semantic typing gives restrictions on

(semantic) well-formedness of phrases and sentences. For example, the semantics of a class-denoting common

noun (eg, car) is a type (eg, Car) and that of an adjective is a predicate over a domain type. Under the

standard typing discipline (without subtyping), for example, the semantic composition of an adjective with

a common noun requires that the domain of the adjective is the same as the type associated with the

common noun. With the coercive subtyping mechanisms, when appropriate coercions are speci�ed, semantic

composition gives
exibility and produces the expected meaning constructions. In this section, we sketch

how coercive subtyping may be used in modelling some phenomena of lexical semantics and explain the ideas

with fairly standard examples.

3.1 Homonymy and multiple sense selection

We consider in this section semantic modelling of homonymy as an example to see how the coercion mecha-

nism supports multiple sense selection (or in general, ad hoc polymorphism).

Homonymy { the simple cases First, consider homonymies whose di�erent meanings have distinct

semantic types (eg, run). In general, assume that there are n words in a (�nite) type W = fw

1

; :::; w

n

g and

each word w

i

has k

i

unrelated meanings m

ij

of types A

ij

(j = 1; :::; k

i

and k

i

� 1), and there is no type

A such that A

ij

1

� A and A

ij

2

� A for any j

1

6= j

2

. For instance, one of the words may be run with two

meanings run

1

of type Person ! S and run

2

of type Person � Institution ! S, where S is the type of

propositions.

Now, let Unit : (W)Type be the family of unit types, where each Unit(w

i

) only contains (the name of)

w

i

as its object. De�ne c(i; j) : (Unit(w

i

))A

ij

such that c(i; j)(w

i

) = m

ij

. Then the family of coercions c (a

parameterised coercion) gives a description for the above sense selection model.

This description is adequate. In particular, in any context C[], if the required meaning of w

i

is of type

A

ij

, then we have C[w

i

] = C[c(i; j)(w

i

)] = C[m

ij

] (computational equality), as expected. For instance, we

2

have by the coercive de�nition rule, John runs quickly = John runs

1

quickly and John runs a bank

= John runs

2

a bank.

Homonymous common nouns Common nouns are given types as their meanings. A homonymous

common noun (eg, bank) has several unrelated meanings, which cannot be distinguished in contexts solely

by typing as above. The disambiguation is dependent on further linguistic information, such as reference to

�nancial matters. This information is arbitrarily distributed (ie, it need not occur in the same sentence),

so we need a mechanism for representing underspeci�cation and for removing it when su�cient constraints

appear.

First, we represent the meaning of a homonymous common noun as a family of types, each of which

represents a particular meaning. For example, bank can be represented as a family of types Bank(i), where

Bank(1) is the type of banks as �nancial institutions, Bank(2) that of banks as river sides, etc. In general,

if a common noun has di�erent senses as types W (i) indexed by i ranging over �nite type I, the type family

W : (I)Type gives the meaning of the common noun.

1

An underspeci�ed expression such as a bank can then be represented as a variable of type W (m) (eg,

b : Bank(m)), where m:I is a meta-variable. This meta-variable represents the initial lack of knowledge as

to which exact sense of Bank is intended; further constraints, such as use of b in a context where a �nancial

Bank is required, will result in instantiation of the meta-variable with the appropriate index from I. For

instance, assuming that lend takes an argument, among others, which must be of type FInst (�nancial

institution) and Bank(1) < FInst, then a bank in A bank lends me some money, can be interpreted as of

type Bank(1), with the meta-variable instantiated as 1 in this case.

3.2 Type-theoretic accounts of enriched composition

In natural language, there are many phenomena which cannot be analysed with a simple notion of compo-

sition (ie, using a simple typing discipline). For example, interpreting Adjective-Noun constructions as a

predicate on the noun clearly produces wrong results in the examples below. Jackendo� introduces a notion

of enriched composition when analysing such examples [Jac97]. It is related to Pustejovsky's uses of qualia

structure and his notions of coercion and dot objects, as in Generative Lexicon Theory [Pus95]. We explain

below how the
exible mechanisms of coercive subtyping helps to analyse the examples.

\fast car" Intuitively, the semantics of `fast' is to indicate that some process is done quickly. We assume

`fast' is a predicate with domain Process. Therefore the adjective must act in some way on the semantic

representation of the noun to determine which aspect of the noun is a process. We do not specify here how

`car' should be represented; at minimum,Car can be understood as a process, hence Car <

c

Process. Under

coercive subtyping, for any car x:Car we have the computational equality fast(x) = fast(c(x)) (`x travels

fast') and hence fast car = car that travels fast.

\ham sandwich" (reference transfer) Consider The ham sandwich shouts. The act of shouting provides a

context where the argument is human, ie shout:Human! S. Clearly, the literal referent of an expression is

not the intended referent; a reference transfer is required. But \ham sandwich" clearly is not human and there

is nothing about the semantics which suggests the required subtyping relation, Ham sandwich <

c

Human.

In certain contexts, however, it is acceptable to distinguish entities on the basis of some salient property.

Here, it is the property of having ordered a ham sandwich, in the context of a caf�e etc. This is clearly

dependent on the extralinguistic context of an utterance, so we introduce the notion of such coercions being

part of a wider context. In particular, there are contexts where this kind of coercion is invalid. In this aspect,

a notion of coercion context is called for in the type-theoretic framework. We shall not elaborate this here.

3.3 Pustejovsky's qualia structures and dot objects

Pustejovsky's \Generative Lexicon Theory" [Pus95] includes a notion of qualia structure to represent the

semantics of a word so that logical polysemy can be dealt with via enriched composition. The qualia

structures encode aspects of meaning, such as part-whole relationships, how something came in to being,

and what the purpose of something is.

1

One may give a type as the meaning for bank by integrating the types in the family W together into the disjoint union

type [

i2I

W (i). One can also declare a dependent coercion [Luo98b] of kind (x: [

i2I

W (i))W (f(x)), where f(intro

i

(w)) = i,

which would be useful in analysing phrases involving fully speci�ed expressions such as Barclays Bank. However, this union

type does not seem to be a logically accurate model of the unresolved homonymy.

3

Formalisation of qualia structure It is possible to formalise the notion of qualia structure (and the

related components) in Pustejovsky's theory by means of �-types or record types in type theory, which

provide the necessary sharing mechanisms. For instance, the semantics of car may be formalised as a record

type. Then, the coercion from Car to Process considered above can be de�ned as a function (rather than

just as declared constant), which extracts the relevant process of travelling from the qualia structure of car.

Similar examples that can be dealt with include begin the book etc.

Pustejovsky uses the language of Typed Feature Structures in his treatment of qualia structure etc.

Usually, uni�cation is the primary operation on such structures. Further research is needed to see whether

uni�cation is essential in a type-theoretic setting and if so, how the corresponding operations can be treated.

Dot objects Pustejovsky has also introduced a notion of dot object in his theory to explain cospeci�cation.

For example, book has at least two aspects { as information and as physical object; to read a book can be

regarded as concerned with both, while understanding a book would select the information aspect. Therefore,

one needs a semantic entity that encompasses both these aspects. In his work, Pustejovsky has only sketched

(but did not precisely de�ne) what a dot object is, though the motivation and the intended use is clear.

We believe that a more adequate account for the notion of dot object is the following. Consider two

types A

1

and A

2

. Then the so-called dot type is in fact the product type A

1

� A

2

together with the two

projections �

i

: A

1

� A

2

! A

i

(i = 1; 2) as coercions. More details of this with examples and its use in our

setting will be discussed in the full paper.

References

[Bai98] A. Bailey. The Machine-checked Literate Formalisation of Algebra in Type Theory. PhD thesis,

University of Manchester, 1998.

[BCGS91] V. Breazu-Tannen, T. Coquand, C. Gunter, and A. Scedrov. Inheritance and explicit coercion.

Information and Computation, 93, 1991.

[Coq96] Coq. The Coq Proof Assistant Reference Manual (version 6.1). INRIA-Rocquencourt and CNRS-

ENS Lyon, 1996.

[Jac97] R. Jackendo�. The Architecture of the Language Faculty. MIT, 1997.

[JLS97] A. Jones, Z. Luo, and S. Soloviev. Some proof-theoretic and algorithmic aspects of coercive

subtyping. Proc. of the Annual Conf on Types and Proofs (TYPES'96), 1997.

[LC98] Z. Luo and P. Callaghan. Mathematical vernacular and conceptual well-formedness in mathe-

matical language. Proc of LACL97., 1998. To appear in LNCS series.

[LP92] Z. Luo and R. Pollack. LEGO Proof Development System: User's Manual. LFCS Report ECS-

LFCS-92-211, Department of Computer Science, University of Edinburgh, 1992.

[Luo94] Z. Luo. Computation and Reasoning: A Type Theory for Computer Science. Oxford University

Press, 1994.

[Luo97] Z. Luo. Coercive subtyping in type theory. Proc. of CSL'96, the 1996 Annual Conference of the

European Association for Computer Science Logic, Utrecht. LNCS 1258, 1997.

[Luo98a] Z. Luo. Coercive subtyping. Journal of Logic and Computation, 1998. To appear.

[Luo98b] Z. Luo. Dependent coercions, 1998.

[NPS90] B. Nordstr�om, K. Petersson, and J. Smith. Programming in Martin-L�of's Type Theory: An

Introduction. Oxford University Press, 1990.

[Pus95] J. Pustejovsky. The Generative Lexicon. MIT, 1995.

[SL98] S. Soloviev and Z. Luo. Coercion completion and conservertivity in coercive subtyping. Talk

given at and paper submitted to TYPES'98, 1998.

4

