
Mathematical Vernacular and Conceptual

Well-formedness in Mathematical Language

?

Zhaohui Luo and Paul Callaghan

Department of Computer Science, University of Durham,

South Road, Durham DH1 3LE, U.K.

fZhaohui.Luo, P.C.Callaghang@durham.ac.uk

Abstract. This paper investigates the semantics of mathematical con-

cepts in a type theoretic framework with coercive subtyping. The type-

theoretic analysis provides a formal semantic basis in the design and

implementation of Mathematical Vernacular (MV), a natural language

suitable for interactive development of mathematics with the support of

the current theorem proving technology.

The idea of semantic well-formedness in mathematical language is moti-

vated with examples. A formal system based on a notion of conceptual

category is then presented, showing how type checking supports our no-

tion of well-formedness. The power of this system is then extended by

incorporating a notion of subcategory, using ideas from a more general

theory of coercive subtyping, which provides the mechanisms for mod-

elling conventional abbreviations in mathematics. Finally, we outline how

this formal work can be used in an implementation of MV.

1 Introduction

By mathematical vernacular (MV), we mean a mathematical and natural lan-

guage which is suitable for developing mathematics, has a formal semantics, and

is implementable for interactive mathematical development based on the tech-

nology of computer-assisted formal reasoning and Natural Language Processing.

In a research project on MV at the University of Durham, a type-theoretic ap-

proach is being considered: we are developing an MV language together with its

type-theoretic semantics and the associated techniques to implement MV based

on existing theorem proving technology. Such technology is represented by type

theory based proof development systems such as ALF [MN94], Coq [Coq96], and

Lego [LP92].

One of the motivations of our work reported here is to study the linguistic

structure of mathematical language based on which MV is to be designed and

implemented. In particular, we are interested in how various linguistic aspects

?

This work is supported partly by the Durham Mathematical Vernacular project

funded by the Leverhulme Trust (see http://www.dur.ac.uk/~dcs7ttg/mv.html)

and partly by the project on Subtyping, Inheritance, and Reuse funded by UK EP-

SRC (GR/K79130, see http://www.dur.ac.uk/~dcs7ttg/sir.html).

of mathematical language, such as its conceptual structure, may be analysed in

a framework of constructive type theory. Note that, though being a semantic

language in our discussion, a type theory is a syntactic language manipulated by

a proof development system. Therefore, a type-theoretic analysis of the linguistic

structure is an important step in the development and implementation of MV.

In this paper, we study the conceptual structure of mathematical language by

studying a notion of conceptual category [NPS90, Luo94]. An important issue

in this analysis is that of well-formedness and meaningfulness of expressions

in MV. Mathematicians attach importance to the criterion of semantic well-

formedness, as well as to grammatical well-formedness. Conceptual categories

play an important role not only in correctness checking (ie, deciding whether an

expression or a sentence is well-formed and meaningful) but also in capturing

the generative nature of concept composition in MV.

Focussing on the conceptual structure re
ected in the use of substantives (or

common noun phrases) and adjectives { the key linguistic entities used to repre-

sent mathematical concepts (cf., [dB94]), we consider �ne-structured categories

that allow advanced treatment of deciding whether an expression is well-formed.

With our type-theoretic semantics, checking semantic well-formedness is sup-

ported by type-checking (MV will be implemented around a type-checker) on

the one hand, and helps to produce proof obligations in the interactive process

of using MV, on the other.

Another contribution of this paper in studying the conceptual structure of

MV is the treatment of the inheritance relation between conceptual categories

based on coercive subtyping { a general theory of subtyping and inheritance in

type theory [Luo97, Luo98, SL98]. It is interesting to see that coercive subtyping,

a theory developed in a rather di�erent context, can be successfully applied to

understanding the linguistic structure of MV.

In Section 2, we shall brie
y elaborate the background of this work, giving

a general discussion of informal mathematical language and MV, and outlining

the approach to developing MV based on type theory. Then, in Section 3, con-

ceptual well-formedness is informally discussed. In Section 4, a formal notion

of conceptual category is discussed and used to give a type-theoretic analysis

of the issues of syntactic and semantic correctness in MV. Section 5 introduces

coercive subtyping and discusses how its abbreviational mechanisms can be used

in studying the conceptual structure of MV and providing mechanisms such as

overloading for more
exible and productive analysis of meaningfulness of ex-

pressions. Section 6 considers some implementation issues of MV, and discusses

related work.

2 Developing Mathematical Vernacular: a Type-theoretic

Approach

In the following, we consider the idea of informal mathematical language, and

then our notion of a mathematical vernacular, ending with background informa-

tion on type theory and its automation.

2.1 Informal Mathematical Language

Mathematicians communicate with a mixture of natural language and symbols.

However, the NL used is restricted, and certain idioms appear frequently. We

call it \Informal Mathematical Language" (IML). IML has important di�erences

from unrestricted natural language: many complications from the unrestricted

natural language, such as tense and metaphor, do not occur. Furthermore, there

are problems which are speci�c to, or assume a greater importance in the context

of, IML. Note that IML has never been de�ned: it is not a formal language

in any sense. It arose in an ad hoc way as a means to describe mathematical

development in a convenient fashion. Consequently, there is no \universal" IML.

However, one can identify many important characteristics; these include

{ Correctness: Applications must not make mistakes. Users must not be

allowed to believe they have proved a false theorem, and likewise must not

be prevented from proving a true one.

{ Introduction of New Concepts: Much mathematics consists of de�ning

new concepts and investigating the consequences of the de�nitions. Concepts

are usually referenced by NL phrases which are chosen to convey some of the

meaning of the concept. Such phrases are not always used as �xed entities,

eg one may understand \�nite Abelian group" having only seen de�nitions

of the individual concepts. This introduction of new phrases and their link

to underlying meaning is a key part of IML.

{ Informality: Proofs in IML do not contain the low-level detail that a formal

mathematician or proof checker would require. Such steps are considered

obvious, and hence often omitted, to concentrate on the important steps.

Any competent mathematician should be able to provide the missing details.

Some of this inference would be needed in interpreting IML, in the form of

automated reasoning. Note that informality includes use of abbreviations

like \�nite group".

{ Idioms: Certain set phrases exist with de�nite meanings, for example those

used in statements of quanti�cation (\for all X such that Y, P holds"). In a

sense, such phrases have acquired a meaning independent of the constituent

words, and are most easily analysed as phrases rather than word by word.

{ Mix with Symbolic Expressions: Expressions using mathematical sym-

bols must be understood to some degree, in order to understand the sur-

rounding IML. These expressions may themselves be informal, compared to

the detail required in a completely formal language. For example, in \f(x; y)

is �nite", we must know what f(x; y) produces, so we can understand the

whole sentence.

2.2 Mathematical Vernacular

In order to mechanise any aspect of mathematics which involves IML, such as

our long-term aim to implement an interactive system based on MV, we need a

good formal understanding of the language. As mentioned above, there are quite

a lot of interesting and novel problems attached to IML. Given the prime need for

correctness in implementing IML, we believe it is necessary to identify successful

parts of IML together with good practices suggested by our experience of formal

mathematics, and fully formalise that, rather than attempt to formalise \all" of

IML, a concept which we �nd hard to de�ne precisely.

We therefore characterise this language as one which has a formal, type-

theoretic semantics, and is implementable with current CAFR. Naturally, the

language should be as close as possible to good IML, in the sense of allowing the

richness of IML without having too many restrictions. For convenience, we will

call it \mathematical vernacular" (MV). This term underlines the informality of

the language relative to formal mathematics, but reminds that formality is still

important. Similarly to IML, note that there is no \universal" MV: naturally

there will be limitations of applicability for this MV language.

Our view is that MV will be developed by formalising the essential `core' of

mathematical language, without which no useful mathematics may be done {

even if the means of expression are cumbersome, then by extending this core

to make the language more
exible without losing the formal properties. The

material in section 4 considers one part of this core: the \well-formedness" of

mathematical concepts.

A further constraint on MV is the limits of type theory and its associated

technology, which we introduce below. But MV can also make new demands on

them, and show new ways of looking at them. One need we have identi�ed is

for better `meta-variable' facilities, which will allow a user to omit parts of his

proofs temporarily { such as details he considers trivial. This `feedback' of ideas

can also occur for IML: studying it in order to create MV will help to identify

good parts and bad parts, showing a way to improvements in IML.

Thus, we can regard development of MV as a constraint satisfaction problem

{ MV sits between mathematics and its realisation in IML, and mathematics and

its realisation in type theory and its implementations; MV will have implications

for all of those areas.

Related work includes that of de Bruijn [dB94], the Mizar group [Miz], and

Ranta [Ran94, Ran96]; see section 6.2.

2.3 Type-theoretic Approach

Our type-theoretic approach to the study of MV builds on existing work on

computer-assisted formal reasoning, represented by the use of proof assistants

based on type theory in the formal development of mathematical theories and

proofs. One motivation in studying MV is to investigate how to implement a

suitable natural language interface for interactive development of mathematics

with the support of such mechanised theorem proving. We give a brief intro-

duction to formalising and checking mathematics using type theory, and to its

associated proof assistants.

Type theory was chosen because of its properties of decidable checking and

exible representation. (This decidability was also a consideration in our decision

to produce a type-theoretic semantics for MV.)

Proof Checking with Type Theory A type theory is a language which allows

representation of types and objects, with a judgement form of when an object

belongs to a certain type, and inference rules for constructing judgements. The

notion of dependent types, and the addition of types to represent logic and data

structures allows complex reasoning. Propositions are represented by types, and

a proof of a proposition as a term which inhabits the type representing the

proposition. Theorems are typically expressed as propositions, and proved by a

term of suitable type; this term can then be used as a function in proofs of other

propositions. We can also have algebraic structures, eg groups { which can be

represented as a (dependent) tuple of a set, a binary operator over that set, an

identity element, and an inverse function over the set, plus a proof that the data

items satisfy the axioms

2

.

Type theory and its associated technology is a developing �eld. Novel ways

of using and presenting type theory are being investigated, and aspects of rep-

resentation are being studied: equality is a particular issue that needs careful

consideration. A lot of serious mathematics has already been done based on

type theory, eg Ruys' work on the Fundamental Theorem of Algebra [Ruy],

or the formalism of type checking of certain type systems [vBJMP93], or Alex

Jones' work on the Decidable Dependency Theorem in Linear Algebra [Jon95].

A good source of further information is Bailey's thesis [Bai98], which contains

much discussion on how to formalise maths with type theory and how to make

the formalised version more understandable, followed by the formalisation of a

substantial example (parts of Galois Theory).

Mechanised Type Theory Here we outline the current \tool support" for

type theory. This is in the form of proof assistants, such as Lego [LP92] or

Coq [Coq96], which help with several aspects of proof production: managing

the details of representing a piece of maths (de�nitions of concepts); storing

proved theorems and assumptions (which comprise a `context', together with

the de�nitions); guiding the process of proof construction; and checking whether

a given term proves the statement it is claimed to.

Construction of proofs is by `re�nement'. For example, a proof of A ^ B is

achieved by �nding proofs of A and of B separately, at which point the proof

assistant will combine them appropriately to prove the main goal. There is cur-

rently little automation in these proof assistants: most of the work is done by the

user, although there are some simple mechanisms to prove basic propositions, eg

simple logic or to help with repetitive operations in induction proofs.

There are obviously quite a few di�erences between doing conventional maths

and using a proof assistant. Some of these will need attention to support interac-

tive work with MV, most importantly to allow holes or meta-variables in proof

development that will allow representation of statements from the user that are

incomplete in a formal sense. We discuss this further in section 6.

2

Actually, dependent tuples are represented with a � type constructor. �(A;B) is the

type of dependent pairs whose �rst element is of type A, and whose second element

is of type B(x) where x is the �rst element. Other representations are possible.

3 Mathematical concepts and meaningfulness of

expressions

3.1 Meaningfulness of expressions

Meaningfulness, or semantic acceptability, as opposed to syntactic acceptability,

can be illustrated by Chomsky's example, \Colourless green ideas sleep furi-

ously". His observation is that this sentence is perfect as far as (pure) syntax is

concerned, and that its unacceptability lies in the domain of conceptualisation

(although it can be meaningful in some imaginative context).

In mathematics, semantic acceptability presumes a distinguishably important

role. Semantically ill-formed expressions and meaningless sentences are strictly

unacceptable. This is partly because that rigour and correctness are the basic

requirements for mathematical development. A formal analysis of mathematical

concepts is important in understanding how to exclude ill-formed constructions

such as \Abelian set" on the one hand, and why we should accept the more

exible uses such as \�nite group" and the generative uses such as \�nite Abelian

group" even if no explicit de�nitions of such phrases have been given, on the

other.

In the development of mathematical vernacular, such an analysis (a type-

theoretic analysis in our case) gives us guidance to the design and implementa-

tion of MV. For example, checking semantic acceptability involves type-checking,

veri�cation of presuppositions, generation of proof obligations; these can trigger

proof search and system-user interactions. (See Section 6 for a further discus-

sion.)

3.2 Mathematical Concepts: an Informal Discussion

Before considering a formal treatment in the next two sections, we �rst give an

informal discussion of mathematical concepts, their formation, and relationships

between them

3

.

Objects, Basic Classes, and Properties A starting point is to observe that

in IML, as in NL, the terms of description are oriented towards human think-

ing. Mathematical objects, including primitive ones, are naturally organised into

di�erent basic classes, objects in each of which may share common structures.

These basic classes correspond to primitive types in type theory (eg, the induc-

tive type of natural numbers). Objects have properties and a property is de�ned

over a class of objects. In logical terms, properties are expressed by means of

predicates over objects of a type (eg, `even' and `odd' over natural numbers).

3

Our discussion on mathematical concepts is largely independent of surface linguistic

details. For example, the phrases \group which is Abelian" and \Abelian group" are

just regarded as di�erent ways of describing the same conceptual entity. Note that

we only use natural language phrases to denote concepts as a matter of convenience.

Mathematical Concepts Denoting Classes of ObjectsMathematical con-

cepts, typically represented by means of substantives (common noun phrases)

such as `group' and \�nite set", denote classes of objects. Introduction of a new

mathematical concept is done by giving an explicit de�nition. For example, \A

semigroup is a set together with an associative binary operation over the set."

Forming a class of objects introduces abstraction in the sense that one can as-

sume a hypothetical member of the class, and de�ne and study properties of the

objects in the class (eg, by means of quanti�cation and generalisation).

Existing concepts may be combined to form new concepts. Typical ways to

do this include structural composition (eg, set together with a binary operation)

and speci�cation of logical properties or constraints (eg, associativity) shared

by the objects in the class denoted by the concept. The distinction between

structure and logical constraints is usually conceptually clear, though it may

sometimes be blurred in practice.

4

Logical constraints alone result in concepts

denoting more restricted classes, often labelled by a quali�ed name (eg \�nite

set"). In some cases, especially when new structure is postulated, the new class

is treated as a distinguished concept with a new name (eg, `semigroup' obtained

from `set', `�eld' de�ned by means of `ring'), rather than being quali�ed by some

property.

Generative Formation of Concepts Because of the generative nature of IML,

not every concept used in mathematics has to be introduced by explicit de�ni-

tion, and our study of MV should re
ect this.

5

De�ning a concept also introduces

many other composite concepts by linguistic convention. Linguistic mechanisms

for this include, at the surface level of IML, the use of adjectives and their

combinations in syntactically valid constructs to form substantives representing

concepts. For instance, having de�ned `cyclic' and `Abelian' over groups, we can

also use \cyclic Abelian group" without having to de�ne it explicitly; having to

do so would be unproductive at least.

Inheritance between mathematical concepts In general, it is semantically

invalid to use a property to qualify a concept over whose objects the property is

unde�ned. For example, just as \green ideas" is unacceptable, so is \odd group",

if `odd' is a property de�ned over natural numbers rather than groups.

However, though naturally rejecting obviously meaningless constructions,

mathematicians do allow a considerable
exibility into their practice in com-

municating mathematical ideas and proofs. Many of these are based on special

4

Sometimes, especially in classical mathematics, a property can suggest additional

structure of objects through existential statements, especially those with uniqueness

property. A good example is of an element in a group which is an identity of the

associated operator; this can easily be proven unique, so one usually refers to `the'

identity element.

5

This is a di�erent view from that taken by Prof de Bruijn in his study of MV, where

he correctly identi�es the importance of de�nitions in mathematical development,

but considers that everything should be introduced by explicit de�nitions [dB94].

relationships between di�erent mathematical concepts. Examples of such rela-

tionship include concept implication (or class inclusion), structural inheritance,

and their combinations. For instance, although `�nite' is a property de�ned over

sets, \�nite group" is usually regarded as valid in expressing \group whose carrier

set is �nite". As another example, one often says \for all elements in [the carrier

set of] group G, ...", with the phrase in the bracket omitted. Such abbreviations

are regarded as tacit conventions and are not expected to cause problems.

Other issues concerning mathematical concepts

{ Transformations between Concepts. Expressions that denote transformations

or operations between concepts (eg, union of two sets) constitute an impor-

tant class of entities to be studied. An interesting issue is to study what

properties they preserve and how we represent such a notion of preservation

of properties, eg as in the union of two �nite sets being automatically �nite.

{ Non-restrictive adjective-noun modi�cation. Not every use of an adjective

to modify a concept results in a more restricted concept. A good example is

\left monoid". (A left monoid is a similar structure to a monoid which has

only a left identity.) A left monoid is not a monoid (cf, a fake gun is not

a gun.) General analysis and treatment of such phenomena are out of the

scope of this paper.

{ Lexical ambiguity. In mathematics, truly ambiguous expressions and sen-

tences are regarded as unacceptable, or a bad practice at the best. However,

overloading of terminology and notation does occur quite often for the sake

of abbreviation or simplicity.When this happens, a term is used to have mul-

tiple meanings with contrasted ambiguity (homonymy). For example, `�nite'

in \�nite set" and \�nite sequence" may have formally di�erent (though

informally related) meanings.

{ Redundant information. Whether expressions such as \�nite �nite set" are

semantically acceptable is debatable. It is certainly desirable to avoid but

it seems di�cult to �nd logical disciplines to deal with it. A more interest-

ing example is \Abelian left monoid", which is logically a monoid because

commutativity implies that the left and right identities are the same.

4 Conceptual categories: a type-theoretic analysis

In this section, we introduce and study a notion of category. This is used to

investigate the semantics of expressions denoting mathematical concepts. We

do not consider syntactic issues at this stage; the semantic details are studied

independently of such issues

6

. We also ignore (for the moment) issues concerning

instances of mathematical concepts, such as the meaning of the claim that a

particular object x is an instance of concept C.

6

Moreover, the work here does not force a particular approach to syntax, so any

comments we make would be provisional, and not add to the theoretical content of

this paper. The same applies to other related issues.

The basic formal theory we use has been studied in several contexts, including

the subset theory developed by Nordstr�om, Petersson and Smith in Martin-L�of's

type theory [NPS90], the speci�cation calculus by Luo in the Extended Calculus

of Constructions and UTT [Luo93], and the related (but di�erent) framework on

deliverables [BM92, McK92] and mathematical theories [Luo91a]. Here, we apply

this theory to mathematical concepts and the related well-formedness issues. In

the next section, we shall extend this to introduce a notion of subcategory based

on the theory of coercive subtyping.

Our presentation below will be precise but informal in that type theory is

used informally as the semantic language to de�ne the meanings of categories

and category constructors. The underlying type theory is UTT, which consists

of an impredicative type universe of logical propositions (Prop), predicative

type universes, inductive types including type constructors for functional types

A! B, dependent functional types �(A;B), types of dependent pairs �(A;B),

and types of natural numbers, lists, trees, etc. (See [Luo94] for details.) UTT is

implemented in the proof system Lego [LP92].

4.1 Conceptual categories

A (conceptual) category represents a mathematical concept. We shall use the

judgement form C : Cat to denote that C is a category.

In general, a category C consists of two components: the syntactic category

of C, Syn(C), and the logical constraint of C, Log(C). The syntactic category

Syn(C) is a type, representing the structure of the objects of the represented

concept and the logical constraint Log(C) is a predicate over the syntactic

structures (ie, Log(C) is of type Syn(C)! Prop).

Another form of judgement is e : C, asserting that the expression e is of

category C. The meaning of this judgement is de�ned as:

{ e : C if, and only if,

� e is of type Syn(C), and

� Log(C)(e) is true (provable in the type theory).

We introduce the following notions of well-formedness and logical correctness.

De�nition (well-formedness and logical correctness)

{ M is well-formed (more precisely, an expression that denotes M is well-

formed) if either M : Cat or M : Syn(C) for some C : Cat.

{ e is logically correct wrt C if Log(C)(e) is true.

Note that logical correctness of an object e wrtC presupposes the well-formedness

of category C and the well-formedness of e itself. Since type checking is decidable,

we can automatically check whether an expression, either denoting a category

or an object, is well-formed. Of course, this is not the case for logical correctness

of objects.

We note that many of the cases traditionally discussed for semantic (un)accept-

ability are incorporated into the notion of well-formedness and some require

checking logical correctness. For example, \odd group" is not well-formed, while

\�nite set" and \�nite group" are (see below). Therefore, checking semantic ac-

ceptability (meaningfulness in the traditional sense, as discussed in section 3) can

be helped by (decidable) type-checking. In addition, checking logical correctness

incorporates veri�cation obligations (eg, veri�cation of presuppositions).

Remark. We have taken the view that proof terms (proofs of logical proposi-

tions) should not be regarded as explicit objects. E�ectively, an object of the

category denoted by \�nite set" (we name it FSet) is just a set that is �nite,

as opposed to a set together with a proof of its �niteness. This allows a direct

analysis of sentences such as \If A is a �nite set, then ...", where A denotes an

object of category set. Note that the hypothesis of the sentence corresponds to

the judgement A : FSet. If an object of FSet were required to be a structure

which contains the set and a proof term rather than just a set, the if-clause

would have been trivially false (ie, ill-typed and not derivable)

7

. We omit fur-

ther speci�c discussion of how objects and proof terms will be treated under this

strategy (see [CL98] for more information).

4.2 Category Constructors

Categories can either be base categories or the result of applying a category

constructor. A category or a category constructor is de�ned by giving only its

formation rule and de�nitions of its syntactic category and logical constraints.

Category of Logical SentencesAn example of base category is S, the category

of logical sentences. The syntactic category of S is the type of logical propositions

and the logical constraint of S is the true predicate:

{ Syn(S) = Prop

{ Log(S)(e) = true, for any e : Syn(S).

A base category is isomorphic to its syntactic category, since its logical part is

always true (ie, there are no logical constraints). In the following, for notational

convenience, we shall just write S for the syntactic category of S.

Syntactic categories Besides the other category constructors, one can consider

Syn as a category constructor as well. We have:

{ Syn(Syn(C)) = Syn(C)

{ Log(Syn(C))(e) = true, for any e : Syn(C)

7

To manipulate structures that contain proof terms requires some non-trivial opera-

tions to ensure that expressions remain well-typed. For example, if a binary relation

R is said to be symmetric, re
exive, and transitive, then to show that it is transitive

and symmetric requires some unpacking and rebuilding of R.

That is, the syntactic category of Syn(C) is itself and the logical constraint is

always true, ie, there are no logical conditions on a plain syntactic object.

�-categoriesThe �-operator creates a new category by attaching to a category

C a logical predicate on the syntactic structure of C. Its formation rule is:

C : Cat p : Syn(C)! S

�(C; p) : Cat

The syntactic category of �(C; p) is the same as that of C and its logical con-

straint is the logical conjunction of that of C and the extra constraint p.

{ Syn(�(C; p)) = Syn(C)

{ Log(�(C; p))(e) = Log(C)(e) ^ p(e)

For example, if set is the category of sets and finite is the �niteness predicate

de�ned over sets, the category of �nite sets can be represented by �(set; finite).

Similarly, with Abelian and cyclic de�ned over group structures, \cyclic Abelian

group" can be represented as�(�(group;Abelian); cyclic). Note that, conversely,

the calculus does not allow the ill-formed concepts such as \Abelian set" or

\transitive group" since their representations fail to type-check.

�-categories The formation rule for �-categories is

C : Cat f(x) : Cat [x:Syn(C)]

�(C; f) : Cat

which says that, if C is a category and f is a family of categories indexed by

C-structures, then �(C; f) is a category. The de�nitions of the corresponding

syntactic category and logical constraint are:

{ Syn(�(C; f)) = �(Syn(C);Syn � f)

{ Log(�(C; f))(e) = Log(C)(�

1

e) ^ Log(f(�

1

e))(�

2

e)

where � on the RHS of the �rst equation is the �-type constructor (types of

dependent pairs) with the projection operators �

1

and �

2

, and Syn � f is the

composition of Syn and f . The above de�nitions indicate that the syntactic

component of an object of a �-category is a pair of the base structure and

its extension, and that the logical component is a combination of those from

the base with those from the extension. Note that we have overloaded � for

both the type constructor and the category constructor (this is for notational

convenience).

As �-types can be used to represent types of structures (tuples), �-categories

can be used to represent mathematical structures of algebraic theories etc. Note

that properties of such structures can only be added by using the � constructor

(otherwise, explicit proof terms will appear in the system, which we wish to

avoid). A simple example of structure is the formation of the concept of monoid

from that of set by adding a binary operator and an identity with their prop-

erties. A more sophisticated example would be to form the concept of ring by

combining the concepts of group and monoid by adding extra logical constraints;

this involves sharing of the common carrier set, and we omit the details here (see

[Luo93, Luo91a]).

Functional categoriesWe can form the functional category of two categories:

C : Cat D : Cat

C) D : Cat

The corresponding syntactic category and logical constraint are de�ned as:

{ Syn(C) D) = Syn(C)! Syn(D)

{ Log(C) D)(f) = 8c:Syn(C): Log(C)(c) � Log(D)(f(c))

That is, the objects of a functional category are the functions that preserve the

logical constraints.

Objects of a functional category represent operations or transformations be-

tween concepts. Here is an example. Let B be a set, the concept \subset of B"

can be represented as Sub(B) = �(set; sub

B

), where sub

B

(A) = A � B. Then,

\complement of ... wrt B", the operation that takes a subset of B and returns

its complement, is de�ned to be of category Sub(B)) set. Note that the logical

correctness of \complement of A wrt B" requires that A be a subset of B { a

presupposition to be veri�ed. If A is not a subset of B, the phrase is logically

incorrect.

There are other category constructors that can be introduced and used to

analyse well-formedness and logical correctness of expressions and sentences, but

we omit their discussion here.

4.3 Equivalence between categories

Another important notion is the equivalence between categories. A category C

is equivalent to category D if Syn(C) = Syn(D) (computational equality) and

Log(C) and Log(D) are equivalent, ie, 8x:Syn(C): Log(C)(x) , Log(D)(x)

is true. For example, the concept of symmetric, transitive relation is equivalent

to that of transitive, symmetric relation.

Note that this notion of equivalence between categories is extensional. This

re
ects the fact that a mathematical concept can be de�ned in intensionally

di�erent ways. For example, the concept of \prime number smaller than 3" is

equivalent to that of \number that is equal to 2".

5 Coercive subtyping, subcategories, and sense selection

As discussed in Section 3, structural inheritance and conceptual implication are

important relationships between mathematical concepts. Many linguistic con-

ventions, in particular, abbreviational conventions, are based on them. In this

section, we extend our study of conceptual categories to investigate such rela-

tionships between categories.

In particular, we shall study how coercive subtyping [Luo97, Luo98], a new

theory of subtyping and inheritance in type theory, can be applied in our type-

theoretic analysis of mathematical language. The bene�ts are to provide ade-

quate abbreviational mechanisms, to understand the inheritance relationships

between mathematical concepts, and to deal with contrastive lexical ambiguity

by means of the overloading mechanism.

5.1 Coercive subtyping

We �rst give an informal introduction to the underlying theory of coercive sub-

typing and then show how it allows abbreviations such as \�nite group".

The basic idea is to consider subtyping as an abbreviational mechanism.A is

a subtype of B, notation A � B, if either A = B (computational equality) or A

is a proper subtype of B (notation A < B) such that there is a unique implicit

coercion from A to B. Any function from A to B can be speci�ed as a coercion,

as long as the coherence property holds for the overall system (in particular,

there cannot be two di�erent coercions from any A to any B).

This idea generalises both the traditional notion of inclusion-based subtyping

(eg, between types of natural numbers and integers) and that of inheritance-

based subtyping (eg, between record types). Anthony Bailey has implemented

coercion mechanisms in Lego (and Saibi in Coq [Sai97]), and considered its

applications to formal development of mathematics (Galois theory) based on

type theory [Bai98]. For some meta-theoretic results of coercive subtyping, see

[JLS97, SL98].

The mechanism with which coercive subtyping works can be explained infor-

mally as follows. If A is a proper subtype of B with coercion c, a : A, and C[]

is a context where an object of type B is required, then a can be used in that

context | C[a] stands for (more precisely, is computationally equal to) C[c(a)].

For example, based on the usual formalisation of algebraic structures in type

theory, the types of structures of groups and sets (ie, Syn(group) and Syn(set)

in our notation) are �-types, with the former having the latter as a substruc-

ture. One can de�ne a coercion carrier from groups to sets which extracts the

type corresponding to the carrier set of a group. Then, if G : Syn(group), the

logical proposition 8(G;P) (ie, 8x:G: P (x) in a more usual notation), which

is not well-typed without subtyping, is well-formed and actually stands for

8(carrier(G); P), because 8 requires a type as its �rst argument.

Similarly, if we interpret the conceptual categories of the previous section in

UTT, and assume that Syn(group) is a proper subtype of Syn(set) with the

forgetful map � as coercion, then the category Delta(group; finite) (for \�nite

group") is well-formed because

{ finite : Syn(set)! S

{ (Syn(set)! S) � (Syn(group)! S)

8

8

Note that we have lifted the coercion between group and set to the function level;

hence the use of function composition � as part of the coercion applied to �nite.

In particular, we have the following computational equality: �(group; finite) =

�(group; finite � �). With the coercion made explicit, \�nite group" means

literally \group whose carrier set is �nite".

Coercions may be propagated over data structures, extending the usefulness

of simple coercions. More technically, subtyping relations can generalise to var-

ious type constructors by default rules, unless the defaults are overridden. For

example, if A

0

� A and B � B

0

, then (A ! B) � (A

0

! B

0

) (ie, subtyping

is contravariant wrt functional types). The subtyping relation generalises to �-

types (types of dependent pairs): if A � A

0

and B(x) � B

0

(x) for x : A, then

�(A;B) � �(A

0

; B

0

). The expected composite coercions with respect to these

generalisations can be easily constructed from the component coercions, but we

omit the details here (see [Luo98]).

5.2 The subcategory relation

We can use the notion of coercion directly in the calculus of section 4 by develop-

ing a notion of subcategory relation as a lifted version of the subtyping relation.

We say C is a subcategory of D, written C � D, if and only if:

{ Syn(C) � Syn(D), and

{ 8x:Syn(C): Log(C)(x) � Log(D)(x) is true (provable in type theory).

In other words, C is a subcategory ofD if Syn(C) is a subtype of Syn(D) and the

corresponding coercion preserves the logical constraints. Structural inheritance

is re
ected in the subtyping relationship between the syntactic categories, and

conceptual implication in the relationship between logical constraints.

Also, we introduce the following terminology and notations.

{ If C � D and Syn(C) < Syn(D) with coercion c, we say that C is a proper

subcategory of D (with coercion c), notation C � D.

{ If C � D and the syntactic categories of C and D are computationally equal,

we say that C implies D, notation C � D.

Note that, because we require the subtyping relation to be coherent, if C � D

and D � C, then it must be the case that C and D are equivalent.

It is easy to check that the subcategory relation is re
exive and transitive,

and furthermore it has the expected properties concerning various category con-

structors. For instance, assuming the default coercive subtyping rules concerning

�-types and functional types and the well-formedness of the categories con-

cerned, the following are derivable judgements or rules that represent the typi-

cal subcategory relationships concerning the category constructors discussed in

Section 4.2.

{ C � Syn(C).

Furthermore, subtyping is contrapositive over functions, ie A � A

0

; B � B

0

, then

B

0

! A

0

� A! B.

{ �(C; p) � C.

{ �(C; p

0

) � �(C

0

; p

0

), if C � C

0

.

{ �(C; f) � �(C

0

; f

0

) if C � C

0

and f(x) � f

0

(x) for all x : Syn(C).

{ (C) D) � (C

0

) D

0

) if C

0

� C and D � D

0

.

Therefore, the mechanisms for abbreviation and inheritance provided by coercive

subtyping are lifted to categories in a uniformway. For instance, if f is of category

D) D

0

, c is of category C and C � D, then f(c) is of category D

0

.

5.3 Lexical ambiguity, overloading and sense selection

As discussed in Section 3, ambiguity is not desirable in mathematical texts.

However, forms of local ambiguity which are resolvable in a wider (linguistic)

context do occur frequently and naturally, thus should be allowed in MV. An

example is of contrasted ambiguity, eg, \�nite" in \�nite

1

set" and \�nite

2

se-

quence". Coercive subtyping allows a satisfactory treatment of this phenomenon

through overloading of unit types (types containing only one object). This idea

�rst appeared in [Luo97], where overloading pairs of �-types and product types

is considered, and is further developed in Bailey's thesis [Bai98], where he makes

extensive use of coercions and overloading.

The technique is to use several coercions from a unit type Unit (inductive

type with only one object) to encode the multiple senses of an expression. The

expression (eg, \�nite") is represented by the object in the unit type, while the

images of the coercions are its di�erent senses (eg, \�nite

1

" and \�nite

2

"). When

the expression is used in a context, its appropriate sense is selected, according to

the coercive subtyping mechanism. For example, we shall have \�nite sequence"

= \�nite

2

sequence" and, \�nite set" = \�nite

1

set".

Note that in using this mechanism, coherence must be maintained. So one

must ensure that coherence is maintained (by having acceptable coercions) when

the types of two di�erent senses are related by the subtyping relation

9

. In our

example concerning \�nite

1

set" and \�nite

2

sequence", we have that finite

1

:

set) S and finite

2

: sequence) S, and overloading coercions �

1

: Unit !

Syn(set) S) and �

2

: Unit! Syn(sequence) s). If, for example, sequence �

set with some coercion, then we have (set) S) � (sequence) S) by some

coercion �; in this case, we have to ensure � � �

1

= �

2

to preserve coherence.

5.4 Related work on lexical semantics and remarks

It is not surprising that some of the phenomena discussed above have their

counterpart in ordinary natural language. For example, one can consider the

similarity between the following two examples:

9

One possibility in an implementation is to suspend the subtyping relations that are

oriented towards checking well-formedness of categories when performing the type

checking necessary for sense disambiguation on the input text.

{ a �nite group = a group whose carrier set is �nite

6= an algebraic structure that is a group and that is �nite

{ a fast typist = someone who types fast

6= someone who is a typist and who is fast

However, the NL example is defeasible { further information may a�ect which

interpretation is chosen (eg a race between typists and accountants, [CB96]).

This situation does not occur in IML: mathematical terms must have been given

precise de�nitions, and the same meaning must result in all contexts.

Very recently, the work by Pustejovsky [Pus95] on generative lexicon and the

work by Jackendo� on enriched composition [Jac97] have come to our attention.

They have studied the conceptual structure and lexical semantics of natural

language based on an idea of coercion. It would be interesting to study the

connections of their work and the work reported here; in particular, we believe

that the theory of coercive subtyping may have its application in the wider

context as well.

A remark on methodology of our research may be worth making. We have

taken an approach of componential analysis in our study of the conceptual struc-

ture (and lexical semantics). We argue that this is a suitable approach to the

study of MV (and IML in general). This is partly because terms in mathematics

are (or, can be) precisely de�ned and partly because mathematical terms can

be considered to be de�ned from some basic concepts such as those in a foun-

dational language. For these reasons, the traditional arguments against compo-

nential analysis in lexical semantics (cf, [Lyo95]) do not apply to mathematical

language.

6 Implementing MV: Discussion and Related Work

As stated in Section 2, one of our research objectives is to develop the imple-

mentation technology of MV based on type theory. The long-term research aims

include development of interactive systems with MV as the user language, that

support productive communications between the user and the system. We are

currently studying basic but crucial techniques such as more advanced treatment

of meta-variables and multi-thread proof development techniques. A prototype

is being developed for exploring these ideas; it is based on the typed logical

framework LF introduced in Chapter 9 of [Luo94], which allows speci�cation

of di�erent type theories suitable for di�erent applications (such as the formal

system of section 4).

In the following, we �rst consider how the type-theoretic analysis of mathe-

matical concepts considered above can be used in implementingMV, and discuss

related work.

6.1 Applications of Conceptual Categories in Implementation

In implementing MV based on type theory, the formal analysis reported in this

paper supplies not only important theoretical ideas, but practical guidance on

how to represent and reason about mathematical concepts, and how to check

well-formedness and logical correctness of expressions and sentences in MV. In

fact, we regard this analysis as one of the key steps in developing and imple-

menting MV as it deals with objects, classes, and properties in mathematics.

First, the formal framework of conceptual categories is a basis for a type-

theoretic semantics of MV (ie, how to translate MV expressions and sentences

into type theory). Although working in a type-theoretic framework, we believe

that explicit use of proof terms (or expressions of proofs) in mathematical lan-

guage is unnatural to most of the mathematicians (even for constructive math-

ematicians doing informal mathematics). The system of conceptual categories

provides a suitable framework based on type theory that allows direct and nat-

ural interpretations of MV expressions and sentences.

Secondly, the framework not only relates checking of well-formedness and

correctness to type-checking, but provides a basis for more intelligent system-

user interaction. For example, the categories of expressions such as \complement

of ... wrt B" (of category Sub(B)) set) capture the presuppositions of sentences

involving such expressions (eg, the logical correctness of \complement of A wrt

B" presupposes that \A is a subset of B"). Among other things, this would enable

a system that implements MV to make use of the subtle di�erence between

presuppositions and unproven claims (eg, `facts' explicitly claimed by the user

without proof, and which can't always be proven automatically by the system)

to produce more reasonable response in system-user interaction. Claims will

be left as gaps in the development, while phrases or sentences with unveri�ed

presuppositions would require justi�cation, by a mixture of automatic reasoning

and further interaction with the user.

Furthermore, combined with coercive subtyping, the formal framework gives

exible mechanisms that allow a systematic treatment of abbreviations, direct

inheritance, and multiple sense selection. For example, dealing with words such

as \�nite" that can be used to qualify many di�erent but related concepts (set,

group, ...), a system based on coercive subtyping does not have to consider all of

these possible meanings when processing a text, but just consider very few essen-

tially di�erent meanings of the word, with the rest subsumed by the subtyping

relations. Another practical bene�t is that the abbreviational mechanisms allow

compression of formal expressions (semantic denotations in type theory of MV

expressions) and hence promote clearer communication with the user.

The notion of conceptual category is de�ned by interpretation into the under-

lying type theory (UTT in our case), which is a relatively sophisticated system.

It would be very interesting to see whether it is possible to design an indepen-

dent but simpler system of categories that can be used to capture the need in

correctness checking of MV. The bene�t of such a system is twofold. In theory,

it would make it clear what basic mechanisms are needed for checking well-

formedness and correctness for MV. In practice, it may provide simpler ways to

perform independent well-formedness checking without having to consider un-

necessary details of formalisation. We can both study and implement this using

the implementation of LF mentioned above.

6.2 Related Work on Mathematical Vernacular

There have been several research e�orts to study, to design, and to implement

mathematical vernaculars in the general sense of the term. Some of them are

more closely related to our research in their objectives and methods than others;

among the more related are de Bruijn's work on mathematical vernacular [dB94],

Ranta's work on type-theoretic grammar [Ran94] and his research on informal

mathematical language based on type theory [Ran95] and its implementation

[Ran97]

10

, Coscoy's work on proof explanation in Coq [CKT95], and the Mizar

project [Miz], where a mathematical vernacular has been de�ned and imple-

mented in a batch system whose logic is based on set theory, and subsequently

used to formalise an impressive amount of mathematics.

Our work on mathematical vernacular has been substantially in
uenced and

improved by general discussions in the works above, and by communications with

Aarne Ranta. In particular, Prof de Bruijn's pioneering work on MV (and Au-

tomath [dB80]) has signi�cantly in
uenced the research �eld and our work. His

work on MV o�ers many insights in designing mathematical vernaculars, which

we very much believe are deserving of further investigation and development.

Acknowledgements

We would like to thank the following for many useful discussions: Peter Aczel,

James McKinna, Aarne Ranta, and members of the Computer Assisted Reason-

ing Group in Durham.

References

[Bai98] A. Bailey. The Machine-checked Literate Formalisation of Algebra in Type

Theory. PhD thesis, University of Manchester, 1998.

[BM92] R. Burstall and J. McKinna. Deliverables: a categorical approach to pro-

gram development in type theory. LFCS report ECS-LFCS-92-242, Dept

of Computer Science, University of Edinburgh, 1992.

[CB96] A. Copestake and T. Briscoe. Semi-productive polysemy and sense exten-

sion. In J. Pustejovsky and B. Boguraev, editors, Lexical Semantics: The

Problem of Polysemy. Clarendon, 1996.

[CKT95] Y. Coscoy, G. Kahn, and L. Th�ery. Extracting texts from proofs. Techni-

cal Report 2459, INRIA, Sophia-Antipolis, 1995.

[CL98] P. Callaghan and Z. Luo. Mathematical vernacular in type theory-based

proof assistants. In R. Backhouse, editor, User Interfaces for Theorem

Proving, UITP '98, July 1998.

[Coq96] Coq. The Coq Proof Assistant Reference Manual (version 6.1). INRIA-

Rocquencourt and CNRS-ENS Lyon, 1996.

10

One function of this system is to translate simple expressions in mathematical lan-

guage to expressions in a type theory. We have adapted this system to produce

expressions in the Lego type theory (UTT): this involved working around a few

important technical di�erences in the type theories concerned.

[dB80] N.G. de Bruijn. A survey of the project AUTOMATH. In J. Hindley and

J. Seldin, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda

Calculus and Formalism. Academic Press, 1980.

[dB94] N. G. de Bruijn. The mathematical vernacular, a language for mathemat-

ics with typed sets. In R. P. Nederpelt, J. H. Geuvers, and R. C. de Vrijer,

editors, Selected Papers on Automath. North Holland, 1994.

[Jac97] R. Jackendo�. The Architecture of the Language Faculty. MIT, 1997.

[JLS97] A. Jones, Z. Luo, and S. Soloviev. Some proof-theoretic and algorithmic

aspects of coercive subtyping. Proc. of the Annual Conf on Types and

Proofs (TYPES'96), 1997. To appear.

[Jon95] A. Jones. The formalization of linear algebra in LEGO: The decidable

dependency theorem. Master's thesis, University of Manchester, 1995.

[LP92] Z. Luo and R. Pollack. LEGO Proof Development System: User's Man-

ual. LFCS Report ECS-LFCS-92-211, Department of Computer Science,

University of Edinburgh, 1992.

[Luo91a] Z. Luo. A higher-order calculus and theory abstraction. Information and

Computation, 90(1), 1991.

[Luo91b] Z. Luo. Program speci�cation and data re�nement in type theory. Proc.

of the Fourth Inter. Joint Conf. on the Theory and Practice of Software

Development (TAPSOFT), LNCS 493, 1991. Also as LFCS report ECS-

LFCS-91-131, Dept. of Computer Science, Edinburgh University.

[Luo93] Z. Luo. Program speci�cation and data re�nement in type theory. Math-

ematical Structures in Computer Science, 3(3), 1993. An earlier version

appears as [Luo91b].

[Luo94] Z. Luo. Computation and Reasoning: A Type Theory for Computer Sci-

ence. Oxford University Press, 1994.

[Luo97] Z. Luo. Coercive subtyping in type theory. Proc. of CSL'96, the 1996 An-

nual Conference of the European Association for Computer Science Logic,

Utrecht. LNCS 1258, 1997.

[Luo98] Z. Luo. Coercive subtyping. Journal of Logic and Computation, 1998. To

appear.

[Lyo95] J. Lyons. Linguistic Semantics. Cambridge University Press, 1995.

[McK92] J. McKinna. Deliverables: a categorical approach to program development

in type theory. PhD thesis, Department of Computer Science, University

of Edinburgh, 1992.

[Miz] Mizar. Mizar home page. http://mizar.uw.bialystok.pl/.

[MN94] L. Magnusson and B. Nordstr�om. The ALF proof editor and its proof

engine. In Types for Proof and Programs, LNCS, 1994.

[NPS90] B. Nordstr�om, K. Petersson, and J. Smith. Programming in Martin-L�of's

Type Theory: An Introduction. Oxford University Press, 1990.

[Pus95] J. Pustejovsky. The Generative Lexicon. MIT, 1995.

[Ran94] A. Ranta. Type-theoretical Grammar. Oxford University Press, 1994.

[Ran95] A. Ranta. Type-theoretical interpretation and generalization of phrase

structure grammar. Bulletin of the IGPL, 1995.

[Ran96] Aarne Ranta. Context-relative syntactic categories and the formalization of

mathematical text. In S. Berardi and M. Coppo, editors, Types for Proofs

and Programs. Springer-Verlag, Heidelberg, 1996.

[Ran97] A. Ranta. A grammatical framework (some notes on the source �les), 1997.

[Ruy] Mark Ruys. Formalizing Mathematics in Type Theory. PhD thesis, Com-

puting Science Institute, University of Nijmegen. (to be submitted).

[Sai97] A. Saibi. Typing algorithm in type theory with inheritance. Proc of

POPL'97, 1997.

[SL98] S. Soloviev and Z. Luo. Coercive subtyping: coherence and conservativity,

1998. In preparation.

[vBJMP93] L. van Benthem Jutting, James McKinna, and Robert Pollack. Type-

checking in pure type systems. submitted for publication, 1993.

This article was processed using the L

A

T

E

X macro package with LLNCS style

