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Abstract. Donkey sentences are among the challenging examples that
present a difficult problem in compositional logical semantics. Their se-
mantic treatment is one of the early applications of dependent type the-
ory to linguistic semantics, where the type constructor X' is used to play
a double role, both as the existential quantifier and as the subset con-
structor. However, it is known that this method is inadequate because it
fails to deal with counting properly — this is also called the cardinality
problem. In this paper, we analyse this problem to explicate that it orig-
inates from the use of X to play the double role and propose to consider
the semantics of donkey sentences in a type theory with both X and a
traditional existential quantifier. It is shown that, with both operators,
donkey sentences can be given adequate semantic interpretations which,
in particular, take care of counting properly.

1 Introduction

Donkey sentences, as first studied by Geach [14] and exemplified in (1), where an
anaphoric expression refers to an existentially quantified entity, are among the
challenging examples that present a difficult problem in compositional logical
semantics.

(1) Every farmer who owns a donkey beats it.

Their studies (and that of trans-sentential anaphora) have led to the development
of dynamic semantics such as Discourse Representation Theory (DRT) [22, 23,
17] and Dynamic Predicate Logic (DPL) [16], which are widely accepted by
linguistic semanticists as a framework with proper means to deal with anaphora
and, however, require us to consider substantial changes of the underlying logical
systems for formal semantics.! (See [3], among others, for a recent summary of
the dynamic approach to donkey anaphora.)

In the mid-80s, as one of the early applications of dependent type theory in
logical semantics, researchers such as Monnich [32] and Sundholm [39] have pro-
posed to use Martin-Lof’s type theory [30] to deal with donkey anaphora, where

* This work is partially supported by the EU research network EUTypes (COST Ac-
tion CA15123).

! For example, DPL is a rather non-standard logical system: among other things,
it is non-monotonic and the notion of dynamic entailment fails to be reflexive or
transitive [16, 15].



X -types are employed to play a double role, representing the existential quanti-
fier as well as the subset constructor. X-types Yz:A.P(x) are also called strong
sums, as opposed to the traditional existentially quantified formulas Jz:A.P(x)
which are called weak sums. They are called so because, from an object of the
strong sum, one can obtain its witness by means of a projection operation, while
this is not possible for the weak sum. It is because of the availability of witness
projection that an anaphoric reference can be obtained from an object of a X-
type, while this is not possible for an existential quantification in the traditional
case (and hence the problem in the first place). However, it is known that this
method of using X-types to deal with donkey anaphora suffers from a problem
of counting [40, 41], also called the cardinality problem, and fails to provide us
an adequate solution (see §2 for more details).

In this paper, we contend that the cardinality problem of the above type-
theoretical approach has come from a double role played by X', as an existential
quantifier, on the one hand, and as a structural mechanism to represent col-
lections (subsets) of objects, on the other. These two roles should be separated
and played by different type constructors. But in traditional logics (for exam-
ple, first-order logic or simple type theory) or in Martin-Lof’s type theory, only
either 3 or X exists, not both, and therefore there is no way to consider such a
separation of labour. We show that, in a type theory with both strong and weak
sums, donkey sentences can be given adequate semantics in which counting is
taken into proper account.

Our proposal is also linked to the research on different readings of donkey
sentences and, in particular, the strong and weak readings as studied by Chier-
chia and others [7, 8, 24]. Also, donkey anaphora are closely related to (and, for
some researchers, they are examples of) the so-called E-type anaphora, as first
studied by Evans [12,13], which may be interpreted by means of descriptions
(see, for example, [34] for a recent discussion). It is not surprising that X-types
are essentially useful in semantic interpretations of donkey sentences since they
have close links to descriptions [30, 5, 31] and we shall give some brief discussions
about this.

Combining strong and weak sums in type theory is a subtle matter that needs
us to tread carefully, for otherwise we may easily slip into inconsistency or other
problems. Although there are already some results in this respect [25], they are
not widely known, partly because of their technical nature. We shall discuss this
issue briefly, explaining both possibilities and potential problems.

In the following section §2, we shall explain the concepts of strong and weak
sums, define the notion of cardinality for finite types, and illustrate the count-
ing/cardinality problem of the X-type interpretation of donkey sentences. §3
describes our proposed solution with both strong and weak sums: in §3.1, we
first briefly describe the type structure of type theory UTT which has both X
and 3, followed by §3.2 to explain how donkey sentences may be interpreted in
UTT, and then by §3.3 which considers E-type anaphora and the use of X-types
for descriptions. In §4, we shall briefly explain the possibilities and potential
problems in having both strong and weak sums in a type theory, followed by



some concluding remarks, including that about considering dynamics in type
theory.

2 Strong and Weak Sums in Type Theory

In this section, we explicate the concepts of weak sums (for example, traditional
existential quantifiers), to illustrate the original problem of using existentially
quantified variables to interpret donkey anaphora, and strong sums (X-types),
to explain the counting problem when using X-types to play a double role in
interpreting donkey sentences, as proposed by Monnich [32] and Sundholm [39].

Weak sums (existential quantifiers). Under the Curry-Howard propositions-as-
types principle [11,21], traditional existentially quantified formulas are exam-
ples of weak sum types of the form Jz.P(z). In first-order logic, depending on
whether it is intuitionistic or classical, the existential quantifier can be intro-
duced directly or defined by means of the universal quantifier together with
negation, respectively. In higher-order logic (or simple type theory) as used in
Montague’s semantics, where there is an impredicative type t of all formulas, it
can be either directly introduced or defined by means of the universal quantifier
as in (2), where  ranges over entities and X over formulas of type t.2

(2) Jz.P(z) =VX. (Va.(P(z) = X)) = X.

It is known that, given a proof of 3z.P(z), although one knows that there is
an entity such that P holds, in the logical calculus one cannot find out which
entity it is. It is because of this that an anaphoric reference to an existentially
quantified entity becomes problematic. For example, in a traditional composi-
tional semantics, the donkey sentence (1) would obtain (3) as its interpretation,
where the free variable y in beat(z,y) is out of the scope of the existential quan-
tifier 3 and is different from the bound variable y bounded by 3.

(3) (#) Y. [farmer(z) & Jy.(donkey(y) & own(z,y))] = beat(z,y)

This illustrates the original problem in interpreting donkey sentences, as men-
tioned at the beginning of Introduction.

Strong sums (X-types). X is a dependent type constructor. If A is a type and B
is a family of types that depend on objects of type A, then Yz:A.B(x) is a type,
consisting of pairs (a,b) such that a is of type A and b is of type B(a). X-types
are associated with the projection operators m; and 7y so that, for (a,b) of type
Yx:A.B(zx), m(a,b) = a and m3(a,b) = b. Formally, X-types are governed by
the inference rules in Appendix A.

2 The fact that other logical operators can be defined in higher-order logical systems
by means of universal quantifier was discovered in the 60s by Prawitz [35] (and
several others, independently) and, this is the same in an impredicative type theory
— see definitions in (8-9) and Appendix C.



Besides being useful mechanisms to organise structures in various applica-
tions, X-types may also play other roles. For example, in Martin-Lof’s type
theory [30], X also plays the role of existential quantifier in its logic.® This is the
basis for Ménnich [32] and Sundholm [39] to propose using X-types to interpret
donkey sentences.* For instance, the donkey sentence (1) can be interpreted as
(4), in which Fy, as defined in (5), is the type intended to represent the col-
lection of donkey-owning farmers, where F' and D are the types that interpret
farmer and donkey, respectively.

(4) Vz : Fy. beat(my(2), m1(ma(2)))
(5) Fyx = Yx:F Yy:D. own(z,y)

Y-types are strong in the sense that from a proof of Yz:A.P(x) one can
preform the first projection operation to obtain the witness of this ‘existentially’
quantified formula and it is because of this, if X is used as existential quantifier,
one can project out its witness from a proof term of the X-type, even outside
the X-type concerned (the terms m(z) and m(m2(z)) in (4) are such examples).

The type Fyx in (5) contains two occurrences of X' and they play two different
roles: the first acts as a structural mechanism to represent the collection of the
farmers who own donkeys and the second as the existential quantifier to say
that there exists a donkey owned by the farmer concerned. As we shall see
below, using X' to play this double role is problematic. In particular, Fx is in
fact representing a collection whose cardinality (the number of its objects) is
different from that of the collection of donkey-owning farmers and, therefore,
the semantic interpretation (4) of (1) is inadequate [40, 41].

Counting and cardinality of finite types. When a type A is finite in the sense
that it has finitely many objects, it is possible to define its cardinality |A| as the
number of its objects. Formally, a type is finite if, for some n, it is isomorphic
to Fin(n), the type with exactly n objects — see Appendix B. For example, the
cardinality of a finite X-type is the number of pairs in the type.

The problem of counting (or the cardinality problem) can be illustrated by
considering the sentence in (6), where the quantifier Every in (1) is replaced by
Most. Its formal semantics by means of Y-types in Martin-Lof’s type theory,
as proposed by Ménnich [32] and Sundholm [39], is given in (7), which can be
seen as obtained by replacing V by the quantifier Mostg. Here, Mostgs is defined
by Sundholm in [40] (S in Mostg for Sundholm) so that, for a finite type A,
Mostg x:A.P(x) is true if, and only if, more than half of the objects in A satisfy
P.

(6) Most farmers who own a donkey beat it.

3 This is concerned with intuitionistic philosophy — a strongly minded intuitionist may
believe that the witness of a proven existentially quantified formula can be obtained
internally in a logical calculus. We omit further discussions here.

4 In formal semantics based on modern type theories, CNs such as ‘farmer’ and ‘don-
key’ are interpreted as types (rather than predicates). This was first proposed by
Monnich [32] and Sundholm [39] and further elaborated in [36, 26].



Data types:

N, 1T, X,
Typeo, Typei, ...

Logic: V, Prop

Fig. 1. The type structure in UTT.

(7) Mostg z : Fx. beat(m(z), m1(m2(2))), where Fx is defined in (5).

Let us now consider the cardinality of Fx, as defined in (5). Because of the
second X' in Fy, |Fx| is not that of the collection of donkey-owning farmers;
instead, to calculate |Fx|, we’d have to count every triple (z,y,p) of farmers z,
donkeys y and proofs p that x owns y. For example, if there are ten farmers,
one of whom owns twenty donkeys and beats all of them, and the other nine
own one donkey each and do not beat their donkeys. Then, |Fx| > 29 (it is an
inequality because, if farmer x owns donkey y, there may be more than one proof
that x owns y), but the number of farmers who do not beat their donkeys is 9.
Therefore, the above semantics (7) of (6) would be true in such a case, which is
obviously incorrect.?

3 Donkey Anaphora: Type-Theoretical Semantics with
Both Strong and Weak Sums

In this section, we shall first introduce the dependent type theory UTT (Unifying
Theory of dependent Types) [25], which has both strong and weak sums, and
then show how donkey sentences like (1) and (6) can be interpreted in UTT,
giving adequate treatments for different readings and taking care of counting in
a proper way as well.

3.1 UTT: an impredicative type theory

The type structure of UTT consists of two parts: the world of data types and
that of logical propositions (see Fig. 1). It contains various types such as de-
pendent product types (II-types), strong sum types (X-types), the type N of
natural numbers, the predicative universes T'ype; (i € w), and many others.

® This is similar to the ‘proportion problem’ when one uses DRT to interpret such
donkey sentences, where one counts farmer-donkey pairs rather than the donkey-
owning farmers. See [24] and [3], among others, for discussions.



UTT also contains an impredicative type universe Prop of logical propositions
which provide means to describe logical properties of objects of any type (see Ap-
pendix C). Formally, UTT can be considered as the combination of Martin-Lof’s
(intensional) type theory [29, 33] with Coquand-Huet’s Calculus of Constructions
[10]. In computer science, type theories such as UTT have been implemented in
theorem proving systems (called proof assistants) for formalisation of mathemat-
ics and verification of programs, and recently, they have been used for formal
reasoning based on linguistic semantics (see, for example, [6]).°

Note that UTT contains both strong sums Yz:A.B(x) (X-types) as ‘data
types’ and weak sums Jz: A. P(z) (existentially quantified types) as logical propo-
sitions, and this is essential when considering semantic interpretations of donkey
sentences in §3.2 below.

Logic and proof irrelevance. In UTT, a type is a logical proposition if it is of type
Prop. The type universe Prop is impredicative and, therefore, the other logical
operators can be defined by means of the operator V for universal quantifica-
tion (cf., Footnote 2). For example, the conjunction operator and the existential
quantifier 3 can be defined as in (8) and (9), respectively, and the definitions of
the other operators can be found in Appendix C.

8P ANQ=VX:Prop. P=Q=X)=X
(9) 3z : A.P(z) =VX:Prop.(Vz : A (P(z) = X)) = X

The principle of proof irrelevance says that any two proofs of the same logical
proposition should be the same. For instance, it implies that, for farmer = and
donkey y, any two proof terms of the proposition own(z,y) should be the same.
It has been shown that, when employing a type theory for natural language
semantics, proof irrelevance should be enforced [26,27]. Note that, because in
UTT there is a clear distinction between logical propositions and other types
(the former being those of type Prop), it is straightforward to introduce proof
irrelevance by means of the following rule [43, 26]:

P:Prop p:P ¢q:P
p=gq:P

Intuitively, it says that, if P is a logical proposition and if p and ¢ are proof
terms of P, then p and ¢ are the same. In particular, according to the above
rule, every proposition of type Prop is either an empty type or a singleton type.
In terms of cardinality, we have |P| < 1 for every P : Prop and, therefore, if A
is finite and @ : A — Prop is a predicate over A, then we have

(10) |[Z2:A.Q()] < |A].

5 There are several proof assistants based on type theories including Agda [1] based
on Martin-Lof’s type theory, Coq [9] implementing the type theory pCIC, and
Lego/Plastic [28, 4] implementing UTT. It may be worth remarking that Coq’s type
system pCIC is very similar to UTT — this is especially the case after Coq’s universe
Set became predicative in 2004 (it was impredicative in earlier versions).



3.2 Semantic interpretations of donkey anaphora in UTT

When a type theory has both strong and weak sums (X-types and 3-propositions
as in UTT), together with proof irrelevance, there is a new way to semantically
interpret donkey sentences, which takes care of counting adequately. We’ll use
the example (6), which is repeated as (11) below, to explain.

(11) Most farmers who own a donkey beat it.

In §2, we have shown that, because in Martin-Lof’s type theory X' is used to
play a double role, the semantic interpretation (7) of (11) is inadequate because
it gets counting wrong. In that definition, we have used quantifier Mostg defined
in Martin-Lof’s type theory and, here, we can define a semantic interpretation of
the quantifier ‘most’ in UTT in a similar fashion as in [40] but with a crucial dif-
ference: instead of X, we shall use 3 as defined in (9) as the existential quantifier
and, intuitively, for a finite A, Most x:A.P(z) also means that more than half
of the objects in A satisfy P. Note that, Mostg x:A.P(x) is a non-propositional
type, but Most x:A.P(x) is a logical proposition of type Prop (see Appendix D
for the formal definition).

Having defined Most in UTT, we can now interpret the donkey sentence (11)
as (12), in which F3 is defined in (13):

(12) Most z : F3. Vy' : Xy:D.own(m(2),y). beat(m1(2),m(y"))
(13) F3 = Ya:F. Jy:D.own(z,y)

Note that |Jy:D.own(x,y)| < 1, that is, if Jy:D.own(x,y) is true, the cardinality
of the proposition is 1. Therefore, the type F3 correctly represents the collection
of donkey-owning farmers, as intended, and the above semantics (12) is adequate
and, in particular, it deals with counting correctly.

Researchers have studied different readings (in particular, strong and weak
readings) of donkey anaphora, as studied by Chierchia [7,8] and others. For
instance, the strong and weak readings of (11) are (14) and (15), respectively:

(14) Most farmers who own a donkey beat the donkeys they own.

(15) Most farmers who own a donkey beat some donkeys they own.

The above interpretation (12) of (11) is a strong one, interpreting (14) directly:
most donkey-owning farmers beat all donkeys they own. A weaker interpretation
of its weak reading (15) would be (16), obtained from (12) by changing V into 3:

(16) Most z : F5. 3y : Zy:D.own(m1(2),y). beat(mi(z),m1(y"))

People have also considered more sophisticated examples with donkey anaphora.
For example, (17) is one of them, taken from Brasoveanu’s thesis [2, 3], in which
the readings for the donkey anaphora are different (‘a TV’ having a strong read-
ing and ‘a credit card’ a weak one). Its type-theoretical semantics with both
strong and weak sums is given in (18).

(17) Every person who buys a TV and has a credit card uses it to pay for it.



(18) Vz : Xx:Person. Jy1:TV. buy(xz,y1) A Jyz:Card. own(x,ys2)
Vy : Dy TV. buy(mi(2), y1)
Fy' : Yyo:Card. own(m(2), y2).
pay(mi(2), 71(y), m1(y"))

One may change the quantifier Every in (17) into Most (and make other minor
changes in the sentence to make it grammatically correct by changing, for ex-
ample, ‘person/buys/has/uses’ into ‘persons/buy/have/use’) and, in that case,
we can use the quantifier Most defined in UTT (see Appendix D) to interpret
the sentence and the resulting interpretations take care of counting correctly as
well.

3.3 E-type anaphora

Here, we discuss, albeit rather briefly, the so-called E-type anaphora to which
donkey anaphora are closely related (and, for some researchers, donkey anaphora
are examples of E-type anaphora).” E-type anaphora are first studied by Evans
[12,13], and further discussed by many, including [18] among others. They can be
interpreted by means of descriptions [37, 38] (see, for example, [34] for a recent
discussion). An example, due to Evans, is (19). Note that the pronoun ‘they’
in (19) is not bound by ‘Few’ for otherwise the semantic interpretation of the
sentence would be incorrect. A common conceptual answer, proposed by Evans,
is that these pronouns are descriptive in that they can be paraphrased by means
of descriptions as exemplified in (20) that paraphrases (19).

(19) Few congressmen admire Kennedy, and they are very junior.

(20) Few congressmen admire Kennedy, and the congressmen that do admire
Kennedy are very junior.

As pointed out by Martin-Lof [30], strong sum types (X-types) are related
to descriptions, because he regards them as logical propositions as well. If one
considers Yx:A.B(x) as the existentially quantified formula and because it is
strong, therefore its first projection operator m; gives us an internal means of
obtaining the witness from a proof of the existentially quantified formula. As
explained in §2, this is stronger than the traditional existential operator 3 for
which such a projection operator does not exist, and it is exactly because of this
that X offers a form of description, as pointed out by Martin-Lof and further
studied by Carlstrém [5] and Mineshima [31]. For example, the E-type example
(19) may be interpreted as (21), either in Martin-Lo6f’s type theory or in UTT,
where we assume that the quantifier Flew has been defined and C is the type
that interprets ‘congressman’:

(21) Few z:C.admire(x, K) AVz:[Xz:C.admire(x, K)|.junior(m (z))

" Here, 1 use the term ‘E-type’ for a kind of anaphora, rather than an approach to
solving anaphora (‘the E-type approach’ as people often put it).



However, it should be made clear that, since Y-types are not the same as
traditional existentially quantified formulas, it is unclear how far one may go
in analysing E-type anaphora by means of X-types. Actually, it would not go
very far since, as analysed above, using X as existential quantifier does cause
problems such as counting, which would show up in context of E-type anaphora
as well.

4 Combining Strong and Weak Sums in Type Theories

It is worth mentioning that combining both strong and weak sums at the same
time in a type theory is a subtle matter and, if not careful, it is easy to get into
problems. We summarise some of the known results in this section so that the
readers can become aware of them. However, because of the technical nature of
the results (and their proofs), we will only be brief and sketch some of them
briefly and informally.

Adding strong sums to impredicative type theories. First, let’s consider how
to add strong sums (X-types) to an impredicative type theory, where one al-
ready has the weak sum (3-propositions). Note that, as briefly described in §3.1,
although it has both X-types (as data types) and 3-propositions (as logical
formulas), UTT does not have ‘X-propositions’ because the so-called ‘large Y-
propositions’ would lead to inconsistency and the so-called ‘small X-propositions’
would make the weak sum types become strong. Consider, for example, to add
large X -propositions into the impredicative universe Prop by means of the fol-
lowing rule (together with those for introduction and eliminations that we omit):

(%) Atype P:A— Prop
Yx:A.P(x) : Prop

It turns out that such X-propositions cannot be consistently added — if they
were added using the above rule (x) (and related ones), the resulting type theory
would be inconsistent in the sense that even the false proposition would become
provable [19, 25].

One may want to add X-propositions (so-called small Y-propositions) by a
rule like the following, this time restricting A to be a proposition of type Prop:

A:Prop P:A— Prop
Yx:A.P(x) : Prop

Although the resulting type theory may be consistent?, there is another problem:
the addition of such small strong sum as propositions in Prop would make the

8 These results, except that about MLT T}, are discussed by the author in [25] (§2.3.2
of [25], in particular), from which the interested reader may obtain more information.

9 This consistency is a folklore — most researchers, including the author, believe that
it is the case, although the author has not seen a proof of it.



weak sum proposition Jz:A.P(x) become strong (rather unexpectedly!) in the
sense that there is now an internal function in the type theory that, from a
proof of Jz:A.P(z), returns an object a : A such that P(a) holds. That would
mean that the traditional existential quantifier is not weak anymore — such a side
effect is of course problematic and, in particular, would make the interpretation
method we proposed above in §3.2 fail to deal with counting correctly.

Therefore, neither of the above large or small Y-propositions is a viable
possibility and, put in another way, the approach taken in UTT seems to be the
only viable approach to adding ' to an impredicative type theory.

Adding weak sums to predicative type theories. Now, let’s consider how to add
weak sums to a predicative type theory such as Martin-Lof’s type theory MLTT
[29, 33],10 where we already have strong sum types (X-types).

We first remark that defining a form of ‘weak sum types’ in a similar way
as the definition in (9), but with the difference of replacing the impredicative
universe Prop by a predicative universe U; in MLTT, would not work. This
would amount to the definition in (22), where A: U; and B : A — U;:

(22) J;2:A.B(x) = IX:U;. (ITx:A.(B(z) = X)) = X

The above definition (22) does not work because it fails to deliver a weak sum
type — 3;a:A.B(z) thus defined is actually strong (!) and, in fact, it is equivalent
to the strong sum type Xz:A.B(z) (see §2.3.2 of [25] for a proof).

Therefore, it seems that the only possible way to add a weak sum type to
MLTT is to consider MLTT}, as proposed by the author in [27], where MLTT
is extended with the h-logic for the HoTT type theory [20]. In MLTT}, in par-
ticular, the existentially quantified formula is defined to be the truncation of
the corresponding X-type, as in (23). (We omit the details here and interested
readers may consult [27] and the references about HoTT [20] there.)

(23) J2:A.B(z) = || Yx:A.B(z)||

The existential quantifier J is a weak sum and, therefore, can be used to de-
fine the semantic interpretations of donkey sentences as proposed in §3.2. For
example, employing MLTT), (instead of UTT) for our formal semantics, the
donkey sentence (11) can be interpreted as (24), where Most), is defined as in
Appendix D, but in MLTT},, with 3 to replace 3 in the definition.

(24) Mosty, z : Fy. Yy : Zy:D.own(m(2),y). beat(m(2), m1(y'))

(25) Fy = Ya:F. Jy:D.own(z, )

5 Concluding Remarks

In this paper, we have studied how to consider donkey anaphora in type theory,
pointing out that the cardinality problem in the proposed type-theoretic seman-
tics in Martin-Lof’s type theory is due to the fact that strong sums (X-types)

10 We use MLTT to denote Martin-Lof’s intensional type theory as described in [29]
or Part III of [33], not his extensional type theory [30].
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are used to play a double role in the representation. We then show that, in a
type theory (like UTT) with both strong and weak sums, donkey sentences can
be given adequate semantics which, in particular, does not suffer from the cardi-
nality problem. The paper then briefly discussed the issue of how to incorporate
both strong and weak sums in type theory: it explains that, for impredicative
type theories, it seems that UTT provides the only viable approach and, for
predicative type theories, a proposal of studying MLTT}, provides a promising
way forward.

It is worth pointing out that our analysis and proposal are given in a com-
pletely proof-theoretic fashion. This is rather different from the model-theoretic
approaches that have been considered in the literature (see, for example, [3]).
This work may be taken as a part of the more general endeavour of studying
a type-theoretic approach to dynamics in semantics. Two remarks are in order
here. The first is about a possible suggestion to extend a type theory into a ‘dy-
namic type theory’, just like extending the first-order logic to become dynamic
predicate logic [16]. We do not think that this is a right way forward partly
because, even if such a ‘dynamic type theory’ is possible (a big if), for type
theory to lose its standard properties to become a non-standard logical system
is too much a price to pay (cf., Footnote 1). Secondly, existing work on proof
theory of dynamic semantic systems like DPL (see, for example, [42]) has shown
the difficulties in doing proof theory for such non-standard systems. In logical
semantics, it would be preferable, if we can, to stay with more standard logical
systems.

Acknowledgement. I am very grateful to Justyna Grudzinska for a discus-
sion about (6), the example involving ‘most’, which has motivated me to start
the research reported in this paper. My thanks also go to the anonymous re-
viewers for their useful comments that have helped to improve the paper.
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A Rules for X-types

A type B type [x:A]

Yx:A.B type

a:A b:la/z]B B type [x:4]
(a,b): ¥x:A.B

p:Yr:A.B p: Yr:AB

mi(p): A m(p) : [mi(p)/2]B
a:A b:la/x]B Btype [v:A] a:A b:la/x]B B type [x:A]
mi(a,b)=a: A ma(a,b) =b: [a/x]B

B Cardinality of Finite Types

We give the formal definition of finite types. It will use the auxiliary type Fin(n)
for which we define first.

The type Fiin(n), indexed by n : N with N being the type of natural numbers,
consists of exactly n objects and can be specified by means of the following
introduction rules (we omit their elimination and computation rules):

n:N
zero(n) : Fin(n + 1)
n:N i:Fin(n)
suce(n, i) : Fin(n +1)
The cardinality of a finite type A, notation |A|, is defined to be n if, and only
if, A is isomorphic to Fin(n), that is, in the type theory concerned, there is a

bijective function between A and Fin(n). In particular, |Fin(n)| = n, since the
identity function over Fin(n) is bijective.
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C Logic in UTT

The logic in UTT!! consists of the impredicative universe Prop, specified by the

following rules:
P : Prop

Prop type P type
and the operator V for universal quantification, specified by

A type P : Prop [x:4]
Va:A.P : Prop

x:AEb: P P: Prop[z:A]
Ax:Ab VAP
f:Ve: AP a:A
f(a) : [a/z]P
P: Prop[z:A] b:P[z:4] a:A
(Az:Ab)(a) = [a/x]b: [a/x]P

In UTT, other logical operators can be defined by means of V and here are some
definitions (see, for example, §5.1 of [25]):

P=Q=Vz:P.Q
true =VX : Prop. X = X
false =VX : Prop. X

PAQ=VX:Prop. P=Q=X)=X

Pv QQ=VX:Prop. P=X)=(Q=X)=X

—-P = P = false
Jx: A.P(x) =VX : Prop. (Vz: A(P(z) = X)) = X
(a=ab)=VP:A— Prop. P(a) = P(b)

D Mostin UTT

Let A be a finite type with |A| = na, P : A — Prop a predicate over A, and
Fin(n) the types with n objects defined in Appendix B. Then, in UTT, the
logical proposition Most x:A.P(x) of type Prop is defined as follows, where
inj(f) is a proposition expressing that f is an injective function:

Most x:A.P(x) =3k : N. (k> |na/2] +1)
A 3f:Fin(k) — A. inj(f) AVz:Fin(k).P(f(x))

' One can find its definition in §9.2.1 of [25], where it is specified in terms of the logical
framework LF.
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