
Monotonicity Reasoning in Formal Semantics
Based on Modern Type Theories

G. E. Lungu and Z. Luo⋆

Royal Holloway, University of London
Egham, Surrey TW20 0EX, U.K.

Georgiana.Lungu.2013@live.rhul.ac.uk

zhaohui.luo@hotmail.co.uk

Abstract. Modern type theories (MTTs) have been developed as a pow-
erful foundation for formal semantics. In particular, it provides a useful
platform for natural language inference (NLI) where proof assistants can
be used for inference on computers. In this paper, we consider how mono-
tonicity reasoning can be dealt in MTTs, so that it can contribute to NLI
based on the MTT-semantics. We show that subtyping is crucial in mono-
tonicity reasoning in MTTs because CNs are interpreted as types and
therefore the monotonicity relations between CNs should be represented
by the subtyping relations. In the past, monotonicity reasoning has only
been considered for the arrow-types in the Montagovian setting of sim-
ple type theory. In MTT-semantics, richer type constructors involving
dependent types and inductive types are employed in semantic represen-
tations. We show how to consider monotonicity reasoning that involve
such type constructors and how this offers new useful mechanisms in
monotonicity reasoning in MTTs.

1 Introduction

Natural Logic arose from the observation that monotonicity plays an important
role in natural language reasoning. Its early studies were conducted in different
fields including, for example, Sommers [23] in philosophy, van Benthem [24,25]
in logic, Purdy [20] in computer science and Dowty [8] in linguistics. In general,
the studies have been based on the Montague semantics (and hence Church’s
simple type theory) and influenced by the research on generalised quantifiers.

Formal semantics in Modern Type Theories (MTTs), or MTT-semantics for
short, was first studied by Ranta in Martin-Löf’s type theory [22] and, more
recently, developed by the second author and his colleagues in a series of papers
such as [14,6]. It provides us with not only a viable alternative to the Montague

⋆ This work is partially supported by the research grant F/07-537/AJ of the Lever-
hulme Trust in U.K.



Semantics, but potentially an attractive full-blown semantic tool with advantages
in many respects. In particular, it provides a useful platform for natural language
inference (NLI) where the proof technology provided by proof assistants can be
used for inference on computers; for example, there has been work on NLI in the
Coq proof assistant based on the MTT-semantics [5].

In this paper, we study monotonicity reasoning in MTTs and this will provide
the basis for monotonicity reasoning in NLI based on MTT-semantics. Since
CNs are interpreted as types (not as predicates) in MTT-semantics, the notion
of monotonicity between CNs needs to be expressed by a relationship between
types – here, the subtyping relation plays a crucial role. More precisely, the
logical inclusion relationship between CNs N1 and N2 is represented by means
of the subtyping judgement N1 ≤ N2.

1 We spell out some of the rules with NLI
examples for explanation.

In the past, monotonicity reasoning has only been considered for the arrow-
types (non-dependent function types) in the Montagovian setting of simple type
theory. In MTT-semantics, richer type constructors are employed in semantic
representations, examples of which include various dependent types and induc-
tive types such as dependent sum types, dependent product types, disjoint union
types, among others. Some other type constructors not in the traditional type
theories are also used – an example of this is the dot-types used to represent
copredication [14,28]. We show how to consider monotonicity reasoning that
involves such type constructors and how this offers new useful mechanisms in
monotonicity reasoning in MTTs.

The main contribution of the current paper is two-fold: It shows how to deal
with monotonicity reasoning in MTTs, on the one hand, and studies monotonic-
ity reasoning for various type constructors in MTTs and shows that this brings
new power of monotonicity reasoning, on the other. We shall start with the intro-
duction of monotonicity reasoning in MTTs in the following section, showing how
coercive subtyping is used essentially in monotonicity reasoning in MTTs. Then,
in §3, based on a typing of generalised quantifiers in MTTs, we analyze the left
(right) increasing (decreasing) monotonicity rules, as it is defined in Montague’s
grammar but from the perspective of MTTs. Monotonicity involving various type
constructors are studied in §4, where we consider as examples Σ-types, Π-types,
disjoint union types and vector-types, showing the corresponding rules and NLI
reasoning examples involving them. In the concluding remarks, future and some
related work is discussed.

1 Note that, in MTTs, the subtyping relationship N1 ≤ N2 is not a logical proposition
(of type Prop). Rather N1 ≤ N2 is a judgement, at the same level as typing judge-
ments like a : A. Coercive subtyping [11,17], implemented in the proof assistants
Coq [7], Lego [16], Matita [19] and Plastic [2], is an adequate subtyping mechanism
for MTTs and is employed here for monotonicity reasoning as well.



2 Monotonicity Reasoning in MTTs: an Introduction

In order to conduct monotonicity reasoning in MTTs and the associated proof
assistants, we need to spell out how monotonicity should be formulated in MTTs.
The original idea of monotonicity reasoning (see, for example, [25]) is to gen-
eralise the notion of logical consequence to arbitrary types in the simple type
theory to arrive at a partial order =⇒ for each type. Notationally, we write

X =⇒A Y

to mean that X =⇒ Y for X and Y of type A. For instance, for arrow types, one
can define that, for e, e′ : A → B, e =⇒A→B e′ if, and only if, e(x) =⇒B e′(x)
for all x : A. We shall extend this to other types in MTTs and, in this paper, we
shall work in the type theory UTT [10].

The basic laws for monotonicity reasoning are:

X =⇒A Y F : A → B F ↑
F (X) =⇒B F (Y )

X =⇒A Y F : A → B F ↓
F (Y ) =⇒B F (X)

where F ↑ and F ↓ mean that F is =⇒-preserving and =⇒-reversing, respec-
tively.

For some types, the monotonicity order is specialised. For instance, mono-
tonicity on propositions is identified with logical consequence/implication; in
symbols,2

p =⇒Prop q is defined to be p ⊃ q.

From this and based on the above rules, it is rather straightforward to derive
the following:

– For predicates P and P ′ of the same domain type A (formally, P, P ′ : A →
Prop), P =⇒A→Prop P ′ if, and only if, P (a) ⊃ P ′(a) for every a : A.

In an MTT with subtyping, monotonicity on types is identified with the
subtyping relation: for types A and B,

A =⇒ B if and only if A ≤ B,

where A ≤ B means that A ≤c B for some functional operation from A to B.
For instance, let cn be the type universe of (the interpretations of) common
nouns.3 Then, for N1 and N2 in cn, N1 =⇒cn N2 if, and only if, N1 ≤ N2.

2 In UTT, Prop is the impredicative universe of logical propositions. For those unfa-
miliar with MTTs, it may also be good to know that every proposition in Prop is a
type and this fact is used, for example, to form the Σ-type Σ([[man]], [[handsome]])
where [[handsome]] is a predicate, i.e., a proposition-valued function and hence a
type-valued function.

3 In the MTT-semantics, CNs are interpreted as types. This is different from the
Montague semantics, where CNs are interpreted as predicates. See [13] for more
information about this.



The above has set up the basic framework for monotonicity reasoning in
MTTs. Here are some examples, which are mostly taken from [26] after slight
modifications. They are examples that can already be done in simple type theory,
though we consider them in the MTT setting. Further examples about binary
quantifiers and other MTT type constructors can be found in §3. (We ignore the
syntax/semantics difference in the examples.)

– Adverbs as sentence modifiers. For example, when gracefully is considered
as a sentence modifier, we have: (34) and (35) imply (3). (Such explanations
are omitted below.)

(1) Mary dances =⇒Prop Mary moves

(2) gracefully : Prop → Prop is =⇒-preserving.

(3) Mary dances gracefully =⇒Prop Mary moves gracefully

– Alternatively, one may say that gracefully actually modifies verbs such as
dance and move. If analysed like this, we have:

(4) dance =⇒Human→Prop move

(5) gracefully : (A : cn)(A → Prop) → (A → Prop) and gracefully(A)
is =⇒-preserving for each A.

(6) dance gracefully =⇒Human→Prop move gracefully

Note that, from (6), we obtain (3) as a consequence as well.

– Sentence modifiers such as negation.

(7) Mary dances =⇒Prop Mary moves

(8) no : Prop → Prop is =⇒-reversing.

(9) Mary does not move =⇒Prop Mary does not dance

– Order-preserving quantifiers.

(10) dance =⇒Human→Prop move

(11) everyone : (Human → Prop) → Prop and is =⇒-preserving.

(12) Everyone dances =⇒Prop Everyone moves

– Order-reversing quantifiers.

(13) dance =⇒Human→Prop move

(14) nobody : (Human → Prop) → Prop and is =⇒-reversing.

(15) Nobody moves =⇒Prop Nobody dances



3 Binary Quantifiers in Monotonicity Reasoning

Generalised quantifiers have been studied extensively in the Montagovian setting
(see, for example, [1,27]). In the MTT-semantics, similar considerations can be
taken where, for example, a binary quantifier is of the following type:

ΠA : cn. (A → Prop) → Prop.

In other words, a binary quantifier is an operator Q that takes a common noun
N and a predicate P over N to form a proposition Q(N,P ). For instance, every
is a binary quantifier whose semantics [[every]] is of the above type. Therefore,
the following sentence (16) has its interpretation (17):

(16) Every student talks.

(17) [[every]]([[student]], [[talk]])

where the formula in (17) is well-typed because [[student]] is of type cn and
[[talk]] is of type [[human]] → Prop which is a subtype of [[student]] → Prop.

In the Montagovian setting, a generalised quantifier Q of type ⟨1, 1⟩ is said
to be right (or left) monotone increasing if ∀A ⊆ A′, B ⊆ B′ ⊆ M , QM (A,B) ⊃
QM (A,B′) (or QM (A,B) ⊃ QM (A′, B)), where M is the universe we relate
to. It is said to be right (left) monotone decreasing if QM (A,B′) ⊃ QM (A,B)
(respectively QM (A′, B) ⊃ QM (A,B)).

The binary quantifiers in MTTs can be studied similarly (see also the discus-
sion in 5). A binary quantifier Q of type ΠA : cn. (A → Prop) → Prop takes a
‘left’ (first) argument A and a ‘right’ (second) argument B to form a proposition
Q(A,B). We can then consider:

– monotonicity (or the reverse monotonicity) in its first argument as expressed
by the relation =⇒CN , which is the subtyping relation ≤; and

– monotonicity (or the reverse monotonicity) in its second argument as ex-
pressed by the relation =⇒A→Prop, which is the predicate inclusion relation
⊆ (i.e., B ⊆ B′ =df ∀x : A. B(x) ⊃ B′(x)).

Treated like this, we have the derived rules in Figure 1, which can be viewed as
defining properties of the following notions, for any binary quantifier Q:

– Q is said to be right increasing if the rule (MON ↑) holds.
– Q is said to be right decreasing if the rule (MON ↓) holds.
– Q is said to be left increasing if the rule (↑ MON) holds.
– Q is said to be left decreasing if the rule (↓ MON) holds.

Here are some examples for the monotonicity rules (we only spell out the
semantic interpretations in the first example):

– An example of left decreasing monotonicity i.e. =⇒-reversing in the first
argument is ∀, which satisfies (↓ MON); because of (18), we have (19) implies
(20) (i.e., (19) =⇒Prop (20)).

(18) Scientists are human. (semantics: [[scientist]] =⇒cn [[human]])



(MON ↑) A : cn B, B′ : A → Prop B =⇒A→Prop B′

Q(A,B) =⇒Prop Q(A,B′)
(Q is MON ↑)

(MON ↓) A : cn B, B′ : A → Prop B′ =⇒A→Prop B

Q(A,B) =⇒Prop Q(A,B′)
(Q is MON ↓)

(↑ MON)
A, A′ : cn B′ : A′ → Prop A =⇒cn A′

Q(A,B′) =⇒Prop Q(A′, B′)
(Q is ↑ MON)

(↓ MON)
A, A′ : cn B : A → Prop A′ =⇒cn A

Q(A,B) =⇒Prop Q(A′, B)
(Q is ↓ MON)

Fig. 1. Derived reasoning rules for binary quantifiers.

(19) Every human is mortal. (semantics: [[every]]([[human]], [[mortal]]))

(20) Every scientist is mortal. (semantics: [[every]]([[scientist]], [[mortal]]))

– Examples of right increasing binary quantifiers include ∀, ∃ and Most, which
are =⇒-preserving w.r.t. its second argument and satisfy (MON ↑).

(21) Humans are mortal.

(22) Most scientists are human.

(23) Most scientists are mortal.

– Examples of left increasing binary quantifiers include ∃, which is =⇒-preserving
w.r.t. its first argument and satisfy (↑ MON).

(24) Scientists are human.

(25) Some scientists are mortal.

(26) Some humans are mortal.

– Examples of right decreasing binary quantifiers include none, which is =⇒-
reversing w.r.t. its second argument and satisfy (MON ↓).

(27) Humans are mortal.

(28) No philosophers are mortal.

(29) No philosophers are human.

4 Monotonicity Reasoning with MTT Type Constructors

MTTs have a rich type structure and, in an MTT-semantics, these types are
proved to be very useful in interpretations of various linguistic features. Here



we study monotonicity in this rich type structure and consider some of the type
constructors with respect to monotonicity reasoning.4

Dependent sums (Σ-types). An example of dependent types is dependent sums or
Σ-types which have been employed in the MTT-semantics to interpret modified
CNs. For example, ”handsome men” can be interpreted as Σ(Man, handsome)
(or Σm:Man. handsome(m) in a more traditional notation), where handsome :
Human → Prop. There are two natural subtyping relationships that can be
considered.

– In the first place, Σ(Man, handsome) ≤π1 Man because a handsome man
is a man. In general, we have

Σ(A,B) ≤π1 A.

In other words, when A interprets a CN and Σ(A,B) a modified CN, we
have

Σ(A,B) =⇒cn A.

For example, we have that (30) implies (31).

(30) John is a handsome man.

(31) John is a man.

– Another subtyping relationship for Σ-types describes its structural relation-
ships of its parameters. Informally, if A is a subtype of A′ and B is a ‘subtype’
of B′, then Σ(A,B) is a subtype of Σ(A′, B′). Formally, we have (for simplic-
ity, we omit some premises), where we assume that A, A′ : cn, B : A → Prop
and B′ : A′ → Prop:

(∗) A =⇒cn A′ B =⇒A→Prop B′

Σ(A,B) =⇒cn Σ(A′, B′)

For example, we have that (32) implies (33):

(32) John is a smart and diligent student.

(33) John is a smart human.

When [[smart and diligent students]] and [[smart human]] are interpreted
as Σ(Student, S&D) and Σ(Human, S), respectively, the reasoning from
(32) to (33) follows from the above rule. Note that, in this example, both
premises involve strict monotonicity relations and are used essentially.

4 Since the monotonicity relationship =⇒ over types is expressed by the subtyping
relation ≤, the reader may be interested in the general study of the latter and, if so,
please consult the papers [11,15].



Disjoint union types. When A and B are types, we can form the disjoint union
type A + B. This is employed in [4] to interpret privative adjectives like fake.
Let us consider the type Car and the classification ”fake cars” and ”real cars”.
A car exclusively belongs to one of these two categories. In this case we say
Car = Carfake+Carreal. By disjoint union types are used to interpret privative
adjectives, as the above example illustrates, both of the injections inl : A →
A+ B and inr : B → A+ B are declared as coercions. For instance, we regard
either a real car or a fake car as a car.

For disjoint union types, we can consider the following rule:

A ≤ A′ B ≤ B′

A+A′ ≤ B +B′

One may think that a real (fake) car is a real (fake) vehicle and hence, if we
define V ehicle = V ehiclefake + V ehiclereal, we have from the above rule that

Car = Carfake + Carreal ≤ V ehiclefake + V ehiclereal = V ehicle.

Dependent products (Π-types). Dependent Π-types are a basic form of depen-
dent types. In MTT-semantics, it is employed for many purposes and has proved
very useful. For instance, it is used in [14] which models adverbs acting as verb
modifiers. In general, in MTT-semantics, a verb-modifying adverb is of the fol-
lowing type:

ΠA : cn. (A → Prop) → (A → Prop).

For example, the adverb gracefully in the examples in §2 is interpreted as of
the above type.

For Π-types, we can introduce the following monotonicity rule, where A, A′ :
cn, B : A → Type and B′ : A′ → Type:5

A =⇒cn A′ B =⇒A→Type B
′

Π(A,B) =⇒Type Π(A′, B′)

Vector types. For A : CN and n : Nat, V ec(A,n) is the inductive type of vectors
whose lengths are n. Vector types may be used to deal with some linguistic
features such as those involve collective verbs [3]. For instance, we may interpret
meet as of the following type:

[[meet]] : Πn : Nat. V ec([[human]], n+ 2) → Prop.

The vector-types are monotone increasing for every n with the following rules:

A =⇒cn A′ n : Nat

V ec(A,n) =⇒Type V ec(A′, n)

For instance, we have (34) implies (35).

(34) Three men met.

(35) Three humans met

5 Here, Type is a type universe (and hence the formation of A → Type as a type is
legal). This is a technicality that we may ignore here.



Dot-types. These types are not inductive types found in traditional MTTs. They
were introduced to model the linguistic feature of copredication [12]. If A and B
are types do not share common components, then we can form a dot-type A •B
for which we have two coercions from A • B to A and from A • B to B. For
instance, in a sentence like

John picked up the book and mastered it,

book can be interpreted as of type Phy · Info, where Phy and Info are type
of physical objects and informational objects, respectively. Indeed, this sentence
implies both that ‘John picked up the book (as a physical object) and ‘John
mastered the book (as an informational object)’. The monotonicity rule for dot-
types is:

A ≤ A′ B ≤ B′

A •B ≤ A′ •B′

At the time of writing this paper, we have some rather artificial NL examples
for this and it would be interesting to find some real NLI examples concerning
dot-types.

5 Concluding Remarks

We have considered monotonicity reasoning in the MTT setting and developed
the corresponding rules for the relevant type constructors. An obvious future
work is to implement this, extending the NLI machinery in the Coq proof assis-
tant developed by Chatzikyriakidis [5]. It is expected that this would improve
the reasoning engine as a whole.

Reasoning in Natural Logic has been studied by several researchers, includ-
ing MacCartney’s work in implementing an NLI system based on monotonicity
reasoning [18]. Embedding monotonicity reasoning in MTTs allows simpler ways
of reasoning in many cases and its automation in proof assistants is expected.
We can then compare this to MacCartney’s work. In this respect, we should also
mention the recent work of implementing natural logic in the Coq system [9],
which is based on the Montagovian setting of simple type theory (without using
Coq’s MTT mechanisms in formal semantics).

In this paper, while analyzing monotonicity and the impact the coercive
subtyping relation has, we touched a couple of points that could be the basis
for further research. The work reported here is part of the development of a
theory of generalised quantifiers in the MTT framework, hopefully to offer an
richer alternative to than that in the Montagovian setting. For instance, when
considering a binary quantifier Q(A,B) in an MTT, the domain of the second
argument B needs to be a supertype of the first argument A (since DB →
Type ≤ A → Type if A ≤ DB). Furthermore, the quantifier properties such as



conservativity and extensibility are also closed related to the situations in which
these quantifiers are evaluated to see whether they are satisfied. This leads to the
current work of the second author on representing (possibly infinite) situations
or incomplete possible worlds by means of (finite) contexts in type theory. Some
promising results have been obtained in this direction (and are to be reported
elsewhere).

Another interesting direction is to study how to interpret mass nouns in
MTTs. In [13], the second author has taken a set/type-theoretic view (instead
of a mereological view as advocated by Quine [21] and others) and used the
intuition of languages with classifiers like Chinese to motivate some uses of mass
nouns: eg, in a bucket of water, the measure word (or classifier) is bucket,
that provides the criterion of equality associated with CNs in general. It would be
interesting to study this in connection with plurals and collective verbs, although
further work is called for about their interpretations in MTTs.

For some topics such as the study of proof rules for monotonicity, a categorical
framework may help to arrive at better understandings. For instance, it would
be interesting to look at the relationships between Σ(Human, handsome) and
Man, for Man ≤c Human, from a categorial perspective. Consider the following
two derivations (due to transitivity of the coercive subtyping relations and the
(∗) rule in §4):

Σ(Man, handsome) ≤π1 Man Man ≤c Human

Σ(Man, handsome) ≤c ◦ π1 Human

Σ(Man, handsome) ≤cΣ Σ(Human, handsome) Σ(Human, handsome) ≤π1
Human

Σ(Man, handsome) ≤π1 ◦ cΣ Human

where ◦ is the composition operator and cΣ is the coercion for the conclusion of
the rule (∗) in §4, where this coercion is omitted. Coherence in coercive subtyping
requires uniqueness of coercion and, in this example, we should have π1 ◦ cΣ =
c ◦ π1. This means that the following diagram should commute:6

Σ(Man, handsome)
π1−−−−→ Man

cΣ

y yc

Σ(Human, handsome) −−−−→
π1

Human

Furthermore, we may refine the type Man to be defined as, where male :
Human → Prop:

Man = Σ(Human,male),

6 Note that there is also the interesting difference between the intensional equality in
MTTs and the extensional equality in category theory, although the latter gives us
interesting clues on some of the research challenges.



and then the situation is linked to the following diagram:

Σ(Human,male ∧ handsome)
π1−−−−→ Human

handsome∗male

y yhandsome

Human −−−−→
male

Prop

which connects logical conjunctions to pullbacks in the category theory.

Acknowledgement We’d like to thank Nicholas Asher, Stergios Chatzikyri-
akidis and the anonymous LACL reviewers for helpful comments to an earlier
version, which have helped a lot in improving the paper.

References

1. J. Barwise and R. Cooper. Generalized quantifiers and natural language. Linguis-
tics and Philosophy, 4(2):159–219, 1981.

2. P. Callaghan and Z. Luo. An implementation of LF with coercive subtyping and
universes. Journal of Automated Reasoning, 27(1):3–27, 2001.

3. S. Chatzikyriakidis and Z. Luo. An account of natural language coordination in
type theory with coercive subtyping. Lecture Notes in Computer Science, 8114:31–
48, 2012.

4. S. Chatzikyriakidis and Z. Luo. Adjectives in a modern type-theoretical setting.
Formal Grammar 2013, Lecture Notes in Computer Science 8036:159–174, 2013.

5. S. Chatzikyriakidis and Z. Luo. Natural language inference in Coq. EACL Work-
shop on Type Theory and Natural Language Semantics. Goteborg, 2013. Submitted
manuscript.

6. S. Chatzikyriakidis and Z. Luo. Natural language reasoning using proof assistant
technology: Rich typing and beyond. EACL Workshop on Type Theory and Natural
Language Semantics. Goteborg, 2014.

7. The Coq Development Team. The Coq Proof Assistant Reference Manual (Version
8.1), INRIA, 2007.

8. D. Dowty. The role of negative polarity and concord marking in natural language
reasoning. Proc of the 4th SALT Conference, 1994.

9. Rutger Huijben. A Coq module for natural logic. Master’s thesis, Technische
Universiteit Eindhoven, 2013.

10. Z. Luo. Computation and Reasoning: A Type Theory for Computer Science. Oxford
University Press, 1994.

11. Z. Luo. Coercive subtyping. Journal of Logic and Computation, 9(1):105–130,
1999.

12. Z. Luo. Type-theoretical semantics with coercive subtyping. Semantics and Lin-
guistic Theory 20 (SALT20), Vancouver, 2010.

13. Z. Luo. Common nouns as types. In D. Bechet and A. Dikovsky, editors, Logical
Aspects of Computational Linguistics (LACL’2012). LNCS 7351, 2012.



14. Z. Luo. Formal semantics in modern type theories with coercive subtyping. Lin-
guistics and Philosophy, 35(6):491–513, 2012.

15. Z. Luo and R. Adams. Structural subtyping for inductive types with functorial
equality rules. Mathematical Structures in Computer Science, 18(5), 2008.

16. Z. Luo and R. Pollack. LEGO Proof Development System: User’s Manual. LFCS
Report ECS-LFCS-92-211, Dept of Computer Science, Univ of Edinburgh, 1992.

17. Z. Luo, S. Soloviev, and T. Xue. Coercive subtyping: theory and implementation.
Information and Computation, 223, 2012.

18. B. MacCartney. Natural Language Inference. PhD thesis, Stanford Universisty,
2009.

19. The Matita proof assistant. Available from: http://matita.cs.unibo.it/, 2008.
20. W. C. Purdy. A logic for natural language. Notre Dame Journal of Formal Logic,

32, 1991.
21. W. Quine. Word & Object. MIT Press, 1960.
22. A. Ranta. Type-Theoretical Grammar. Oxford University Press, 1994.
23. F. Sommers. The Logic of Natural Language. Cambridge Univ Press, 1982.
24. J. van Benthem. Essays in Logical Semantics. Reidel, 1986.
25. J. van Benthem. Language in Action: Categories, Lambdas and Dynamic Logic.

Elsevier, 1991.
26. J. van Eijck. Natural logic for natural language. LNCS 4363, 2007.
27. D. Westerstahl and S. Peters. Quantifiers in Language and Logic. Oxford Univer-

sity Press, 2006.
28. T. Xue and Z. Luo. Dot-types and their implementation. Logical Aspects of Com-

putational Linguistics (LACL 2012). LNCS 7351, 2012.


