
Contextual Analysis of Word Meanings in

Type-Theoretical Semantics

Zhaohui Luo�

Dept of Computer Science, Royal Holloway, Univ of London
Egham, Surrey TW20 0EX, U.K.

zhaohui@cs.rhul.ac.uk

Abstract. Word meanings are context sensitive and may change in
different situations. In this paper, we consider how contexts and the
associated contextual meanings of words may be represented in type-
theoretical semantics, the formal semantics based on modern type theo-
ries. It is shown, in particular, that the framework of coercive subtyping
provides various useful tools in the representation.

1 Introduction

Word meanings are context sensitive. In any lexical semantics, it is important
to spell out how different word meanings may be disambiguated. In this pa-
per, we make proposals on how some word meanings may be represented in
type-theoretical semantics [34,21], the formal semantics based on modern type
theories, and how disambiguation can be done automatedly based on the repre-
sentation method. In particular, it is shown that coercive subtyping [20] provides
important tools for such a representation in type theory.

We start by dealing with homonymy, when the meanings of a homonym (e.g.,
‘run’) can be disambiguated by their typings in the type-theoretical semantics.
In such cases, overloading provides a suitable representation mechanism for sense
enumeration. We show how coercive subtyping supports the overloading of word
meanings and the automated sense selection.

As word meanings may change from context to context, some uses are only
meaningful in certain contexts, not in others. Since subtyping relations are cru-
cial in representing such informal contexts, we should extend the formal notion
of context (in type theory and other logical systems) to incorporate the assump-
tion of subtyping relations. We formally introduce coercion contexts and show
how they may be used in contextual analysis.

The meanings of some homonyms may not be distinguished by their typings.
For example, in the type-theoretical semantics, common nouns (e.g., ‘bank’) are
interpreted as types; therefore, the semantic typings of CNs are the same (differ-
ent types do not have different ‘typings’) and cannot be used in disambiguation.

� This work is partially supported by the research grant F/07-537/AJ of the Lever-
hulme Trust in U.K.

S. Pogodalla and J.-P. Prost (Eds.): LACL 2011, LNAI 6736, pp. 159–174, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

160 Z. Luo

For such disambiguation, we need to introduce local coercions (i.e., coercion
contexts for terms) so that semantic interpretations can be given as intended.

There are some proposals that words should be given complex and structured
meanings so that contributions to meaning generation can be made effectively
(cf., Pustejovsky’s work on Generative Lexicon Theory [31] and the opposing
views of lexical atomism [12,32]). Although the author does not take a philo-
sophical stand on this, it is worth stating that structured lexical entries have
the potential to contribute to a computational treatment of the semantics in,
for instance, building an inference engine based on a formal semantics. We shall
study how structured lexical meanings of CNs may be represented by Σ-types
and show that such representations are consistent with the successful treatment
of copredication in type-theoretical semantics [21].

For all of the proposals in this paper, experiments have been done in the proof
assistant Coq [9], which implements a modern type theory. This may serve to
verify the proposals, but more importantly, it can be seen as the first step towards
computer-assisted linguistic reasoning with proof engines that implement the
type-theoretical semantics.

In §2, we first give an introduction to type-theoretical semantics. The repre-
sentation of sense enumeration and selection by coercive subtyping is described
in §3. Coercion contexts and local coercions, and their uses in contextual analy-
sis, are studied in §4. In §5, we consider how some of the structured lexical entries
may be represented as Σ-types in the context of studying copredication. Finally,
we briefly describe our Coq experiments in §6, followed by the conclusion where
some future work is discussed.

2 Type-Theoretical Semantics

By a type-theoretical semantics, we mean a formal semantics of natural languages
based on modern type theories such as Martin-Löf’s predicative type theory
[25,29] and the impredicative type theory UTT [18]. Such a semantics is in the
tradition of the Montague grammar [27] but the powerful type structures in
a modern type theory provide new useful mechanisms for formal semantics of
various linguistic features, some of which have been found difficult to describe
in the Montagovian setting.

In this section, we give a brief overview of the basics of type-theoretical se-
mantics, partly to lay down the background and partly to set up notations and
terminologies.

2.1 A Brief Overview

The Montague grammar is based on Church’s simple type theory [6], which is a
single-sorted logic. In Montague grammar, there is a universal type e of entities:
a common noun is interpreted as a function of type e → t and a verb or an
adjective as a function of type (e → t) → (e → t), where t is the type of truth
values.

Contextual Analysis of Word Meanings in Type-Theoretical Semantics 161

In contrast, a modern type theory can be considered as a many-sorted logical
system, where there are many sorts called types that may be used to stand for
the domains to be represented. These types include:

– the propositional types (or logical propositions – see §2.2),
– the inductive types such as the type of natural numbers and Σ-types of

dependent pairs (see the latter in §2.3), and
– other more advanced type constructions such as type universes (see §2.5).

Because of this many-sortedness, it is natural to interpret the noun phrases
as types. Here are several basic interpretation principles one may adopt in a
type-theoretical semantics [34]:

– Common nouns are interpreted as types. For instance, the CNs ‘man’ and
‘human’ can be interpreted as types [[man]] and [[human]], respectively.

– An adjective is interpreted as a predicate over the type that interprets the
domain of the adjective. For instance, ‘handsome’ may be interpreted as a
predicate [[handsome]] : [[man]] → Prop, where Prop is the type of logical
propositions (see §2.2).

– Modified CNs are interpreted as Σ-types (see §2.3 for more details).

Furthermore, the framework of coercive subtyping provides us additional richer
means for type-theoretical semantics [20,21] (see §2.4).

2.2 Embedded Logic

A modern type theory has an embedded logic (or internal logic) based on the
propositions-as-types principle [10,14]. For example, in Martin-Löf’s predicative
type theory, the logical proposition A&B corresponds to the product type A×B
(a special case of Σ-type – see below) and a pair of a proof of A and a proof of
B corresponds to an object of the product type. Similarly, this correspondence
extends to other logical operators: the logical implication (⊃) corresponds to the
function types (→), the universal quantifier (∀) to the dependent Π-types, etc.

For Martin-Löf’s type theory, the embedded logic is first-order and, for im-
predicative type theories such as ECC/UTT [18], the embedded logics are second-
order or higher-order, where there is a type Prop of logical propositions. For-
mally, Prop is a totality and one can quantify over it to form other propositions
(and this process is regarded as ‘circular’ by predicativists [11] or ‘impredicative’,
in the technical jargon).1

In this paper, we shall use Prop in linguistic interpretations. In a type-
theoretical semantics, an assertive sentence is interpreted as a proposition of
type Prop and a verb or an adjective as a predicate of type A → Prop, where A
is the domain whose objects the verb or adjective can be meaningfully applied
to. For instance, consider the following sentence:

1 Prop is very much like the type t in the simple type theory. The main difference is
that, in modern type theories, we have explicit proof terms of logical propositions.

162 Z. Luo

(1) John is handsome.

With [[John]] : [[man]] and [[handsome]] : [[man]] → Prop, the above sentence (1)
is interpreted as proposition [[handsome]]([[John]]) of type Prop.

2.3 Dependent Types

Modern type theories contain dependent types. For instance, When A is a type
and P is a predicate over A, Πx:A.P (x) is the dependent function type that, in
the embedded logic, stands for the universally quantified proposition ∀x:A.P (x).
Π-types degenerates to the function type A → B in the non-dependent case.

Another example of dependent type is the so-called Σ-types. If A is a type
and B is an A-indexed family of types, then Σ(A, B), or sometimes written as
Σx:A.B(x), is a type, consisting of pairs (a, b) such that a is of type A and b is of
type B(a). When B(x) is a constant type (i.e., always the same type no matter
what x is), the Σ-type degenerates into product type A × B of non-dependent
pairs. Σ-types (and product types) are associated projection operations π1 and
π2 so that π1(a, b) = a and π2(a, b) = b, for every (a, b) of type Σ(A, B) or A×B.

In a type-theoretical semantics, modified common nouns are interpreted as
Σ-types. For instance, Σ([[man]], [[handsome]]) is the type of handsome men (or
more precisely, of those men together with proofs that they are handsome).

Notations for Σ-types. A nested Σ-type can be seen as a type of tuples/modules.
The following notations will be adopted (in §5). We shall use⎧⎪⎨

⎪⎩
x1 : A1

...

xn : An

⎫⎪⎬
⎪⎭

to stand for the Σ-type Σx1 : A1Σx2 : A2 ... Σxn−1 : An−1. An. For example,{
name : [[man]]
hproof : [[handsome]](name)

}
stands for Σ([[man]], [[handsome]]).

Coq implementation of Σ-types. In the proof assistant Coq [9], Σ-types are
implemented by means of the ‘record’ mechanism, which provide many automatic
tools, including the following:

– If the record mechanism is used, the projection operators of the Σ-types are
automatedly generated as globally defined terms, named by the ‘labels’ such
as name and hproof in the above example.

– A projection operator may be indicated as a coercion. For instance, if we
want to declare the first projection of the above Σ-type as a coercion, we
may simply write name :> Man when defining the Σ-type. (cf., the definition
of the dot-type PhyInfo in Appendix B.2.)

These automatic tools have greatly helped our experiments in Coq on the type-
theoretical semantics, as reported in §6 and Appendix B.

Contextual Analysis of Word Meanings in Type-Theoretical Semantics 163

2.4 Coercive Subtyping

Coercive subtyping [19,20] is an adequate theory of subtyping for modern type
theories. In computer science, coercive subtyping has been implemented in many
proof assistants such as Coq [9,35], Lego [23,4], Matita [26] and Plastic [5], and
used effectively in interactive theorem proving. It has also been applied to type-
theoretical semantics [21].

The basic idea of coercive subtyping is to consider subtyping as an abbrevi-
ation mechanism: A is a (proper) subtype of B (A < B) if there is a unique
implicit coercion c from type A to type B and, if so, an object a of type A can
be used in any context CB[] that expects an object of type B: CB[a] is legal
(well-typed) and equal to CB[c(a)].

For instance, one may introduce [[man]] < [[human]]. Then, if we assume that
[[John]] : [[man]] and [[shout]] : [[human]] → Prop, the interpretation (3) of (2) is
well-typed:

(2) John shouts.
(3) [[shout]]([[John]])

according to the rule of coercive subtyping, because [[man]] < [[human]].

2.5 Universes

Other more advanced features in a modern type theory are useful in develop-
ing the theory of type-theoretical semantics. For example, one may collect (the
names of) some types into a type called a universe [25]. Introducing universes
can be considered as a reflection principle: such a universe reflects those types
whose names are its objects.

In type-theoretical semantics, universes can be introduced to help semantic
interpretations. For instance, one may consider the universe cn : Type of all
common noun interpretations and, for each type A that interprets a common
noun, there is a name A in cn. For example,

[[man]] : cn and Tcn([[man]]) = [[man]] .

In practice, we do not distinguish a type in cn and its name by omitting the
overlines and the operator Tcn by simply writing, for instance, [[man]].

Type universes can be used in semantic interpretations. For instance, the
universe cn can be used to give semantic interpretations to adverbs.2 An adverb
modifies a verb (an adjective) to result in a verb (adjective) phrase.3 Since, in
a type-theoretical semantics, verbs and adjectives are interpreted as predicates
over a variety of domains (rather than over a single domain as in the Montagovian
2 As far as the author is aware, there are no proposals in the literature on how adverbs

should be interpreted in a type-theoretical semantics based on modern type theories.
3 There are other adverbs. For example, an adverb may modify sentences to result in

new sentences and, as in Montague grammar [27], such adverbs are interpreted as
functions from Prop to Prop.

164 Z. Luo

setting), adverbs such as ‘loudly’ in ‘John talked loudly’ and ‘simply’ in ‘That
idea is simply ridiculous’ would be interpreted as of type

ΠA : cn. (A → Prop) → (A → Prop).

For instance, for [[talk]] : [[human]] → Prop, the following phrase (4) can be
interpreted as (5), which is of type [[human]] → Prop:

(4) talk loudly
(5) [[loudly]]([[human]], [[talk]])

Such interpretations of adverbs are experimented in Coq as, for example, shown
in an example at the end of Appendix B.1.

3 Sense Selection via Overloading

In this paper, we shall consider how word meanings can be formalised in a
type-theoretical semantics based on modern type theories. It is important to
emphasise that the formal presentation of word meanings should naturally give
rise to automated disambiguation in contexts so that, when considered in an
interpretation of sentences or even larger linguistic entities where the concerned
word occurs, the correct meaning will be automatedly selected.

In this section, we first start with the simple cases of homonymy and show
that, when the meanings of a homonym can be differentiated by means of typing,
its sense enumeration can be represented with coercive subtyping.

3.1 Sense Enumeration

A word may be homonymous with several unrelated meanings.4 For instance, the
word ‘run’ can be used in the following two sentences with different meanings.

(6) John runs quickly.
(7) John runs a bank.

In a type-theoretical semantics, we may have the following two different meanings
of ‘run’, corresponding to the above uses:

(8) [[run]]1 : [[human]] → Prop

(9) [[run]]2 : [[human]] → [[institution]] → Prop

To represent the sense selection model, we need a mechanism that allows
automated selection of the correct meaning when a sentence is interpreted. For
instance, [[run]]2 in (9) should be selected automatedly when (7) is interpreted.

4 Sense enumeration lexicons have been discussed, e.g., by Pustejovsky [31].

Contextual Analysis of Word Meanings in Type-Theoretical Semantics 165

3.2 Simple Sense Selection via Overloading Based on Coercive
Subtyping

In type theory, simple cases in the sense selection model can be represented by
means of overloading (or ad hoc polymorphism) [36]. Intuitively, in the above
example, the word ‘run’ is overloaded in the sense that it is associated with
more than one meaning. Overloading can be supported by coercive subtyping
[20,4], as explained below.

Assume that w be an arbitrary homonym with different meanings [[w]]i : Ai

(i = 1, ..., n), where Aj �= Ak if j �= k. Let 1w : Type be the inductive unit
type with only one object w : 1w (see Appendix A for the formal details of the
unit type). Then, the meaning of w is represented as the coercions ci : 1w → Ai

(i = 1, ..., n), defined as:
ci(w) = [[w]]i : Ai.

For instance, the above word ‘run’ has two meanings [[run]]1 and [[run]]2 (in (8)
and (9) in the previous subsection). The sense selection model for these two
meanings of ‘run’ is given by the following two coercions:5

c1(run) = [[run]]1 and c2(run) = [[run]]2 .

This has the effect that, for example, in any context C1[run] that requires an
object of type [[human]] → Prop, we have

C1[run] = C1[c1(run)] = C1[[[run]]1],

and, in any context C2[run] that requires an object of type [[human]]
→ [[institution]] → Prop, we have

C2[run] = C2[c2(run)] = C2[[[run]]2].

Therefore, through automated insertions of coercions, the sentences (6) and (7)
will both be interpreted correctly as expected.

Remark 1. For some homonyms, their different meanings may have the same
type and therefore cannot be differentiated by typing. For instance, in a type-
theoretical semantics, common nouns are interpreted as types and, therefore, the
disambiguation of a homonymous common noun (e.g., ‘bank’) may depend on
further linguistic information (e.g., in the case of ‘bank’, it may refer to some
financial matters). One can resort to local coercions, as to be discussed in §4.2,
to give formal interpretations in such situations. ��

We have experimented in the proof assistant Coq [9] on sense selection based
on the unit type and coercive subtyping. See Appendix A for unit types and
Appendix B.1 for an example of homonymy.

5 If other meanings of ‘run’ are considered, further coercions are defined accordingly.

166 Z. Luo

4 Representation of Contexts: Coercion Contexts and
Local Coercions

Word meanings are context sensitive. For instance, as discussed in the above
section, a homonym has different meanings when used in different sentences,
or in different sentential contexts. In other circumstances, the contexts are not
sentential; what they describe can be either a special situation or a specific
background. Many usages are only meaningful in such special situations or local
contexts in which, for instance, the meanings of some words change.

Example 1 (reference transfer). Consider the following utterance (cf., [30]):

(10) The ham sandwich shouts.

Assuming that the act of shouting requires that the argument be human, it is
obvious that sentence (10) is not well-formed, unless it is uttered by somebody
in some special extralinguistic context (e.g., by a waiter in a café to refer to a
person who has ordered a ham sandwich). ��

4.1 Coercion Contexts in Type Theory

In a type-theoretical semantics, such local contexts can be described by means
of the formal notion of context in type theory. Traditionally, a context in type
theory is of the form

x1 : A1, ..., xn : An

where Ai is either a data type, in which case xi is assumed to be an object of
that type, or a logical proposition, in which case the proposition Ai is assumed
to be true and xi a proof of Ai. For example, one may have the following context:

m : [[man]], hproof : [[handsome]](m)

which assumes, in layman’s terms, that ‘m is a man’ and ‘m is handsome’ (with
‘hproof’ being a proof).

The formal notion of context can be extended by coercion declarations or
subtyping assumptions, as proposed in [21]. A coercion context is a context
whose entries may be of the form A <c B as well as the usual form x : A. For
instance, the following context may be used to describe the special circumstances
in a café:

(11) ..., [[ham sandwich]] < [[human]], ...

where the subtyping assumption says that a ham sandwich can be coerced into
a person (i.e., the person who has ordered a ham sandwich). In a context such
as (11), the above sentence (10) can be interpreted satisfactorily as intended.

Formally, we have:

Γ � A : Type Γ � B : Type Γ � c : (A)B
Γ, A <c B valid

Γ, A <c B, Γ ′ valid

Γ, A <c B, Γ ′ � A <c B : Type

Contextual Analysis of Word Meanings in Type-Theoretical Semantics 167

where (A)B is the functional kind from A to B in the logical framework (see
Chapter 9 of [18] for formal details.) In other words, coercions can now be in-
troduced in contexts and they are only valid ‘locally’ in the context where they
are introduced. For example, sentence (10) can be reasonably interpreted in a
context which contains the subtyping as shown in (11) and, otherwise, it cannot.

Remark 2. (coherent context) Please note that validity of a context is not enough
anymore for it to be legal. One needs to make sure that the context is coherent,
in the sense that the declared coercions in the context do not lead to more than
one coercion between two types. Since it requires some formal backgrounds to
be treated more concisely, its details are omitted here. ��

Example 2. Consider the following example (adapted from [24]):

(12) Every linguist drinks a glass.

Let’s assume that ‘drink’ be interpreted as:

[[drink]] : [[animated]] → [[liquid]] → Prop.

Now, since not every container contains drinks, there should be a special context
in which the above sentence (12) can be interpreted. The coercion context should
contain the following subtyping relations:

[[glass]] < [[beverage]], [[beverage]] < [[liquid]], [[linguist]] < [[animated]]

Then, in a coercion context with the above, (12) can be interpreted as:

(13) ∀l : [[linguist]] . ∃g : [[glass]] . [[drink]](l, g).

In the coercion context, (13) is well-typed. ��

4.2 Local Coercions in Terms

Consider the following phrases that use the homonym ‘bank’:

(14) the bank of the river
(15) the richest bank in the city

From the previous subsection, we know that (14) and (15) can be interpreted in
the following contexts (16) and (17), respectively:

(16) ... [[bank]] < [[riverside]], ...

(17) ... [[bank]] < [[financial institution]], ...

Now, what if we want to use the word ‘bank’ twice with these two different
meanings in the same text (e.g., in a text where (14) is followed not far by

168 Z. Luo

(15))? Although one is not forbidden to introduce a context that contains both
subtyping assumptions:

(18) ... [[bank]] < [[riverside]], ... [[bank]] < [[financial institution]], ...

it may not be known which subtyping relation should be used in which sen-
tence (unless some extra information is available). Automatic selection fails.
Sometimes, the situation is even worse: it may be impossible to assume all the
subtyping relations because it would lead to incoherence.

Such a problem can be solved by introducing local coercions – coercions that
are only effective locally for some terms (expressions in type theory). Coercions
may be introduced into terms by the following rule:

Γ, A <c B � J

Γ � coercion A <c B in J

where J is any of the following four forms of judgement:

k : K, k = k′ : K, K kind, and K = K ′.

For instance, with J ≡ k : K, we have

Γ, A <c B � k : K

Γ � coercion A <c B in k : K

Intuitively, the coercions declared locally are only effective in the expressions in
the scope of the keyword in. For instance, for

coercion [[bank]] < [[financial institution]] in e,

the subtyping relation between [[bank]] and [[financial institution]] is only effec-
tive in the expression e, not outside e.

The key word coercion distributes through the components of J . For exam-
ple, the following two judgements are identified:

coercion A <c B in (k : K)
(coercion A <c B in k) : (coercion A <c B in K)

The introduction of local coercions broadens the scope of interpretation in
applying the above techniques. For example, assuming that (14) and (15) have in-
terpretations [[(14)]] under [[bank]] < [[riverside]] and [[(15)]] under
[[bank]] < [[financial institution]], respectively, then the following two terms
give their semantics and can be used together with no problem:

(19) coercion Bank < Riverside in [[(14)]]
(20) coercion Bank < FinancialInst in [[(15)]]

Since the coercions only take effects in the relevant expressions, the intended
semantics gets represented correctly.

Contextual Analysis of Word Meanings in Type-Theoretical Semantics 169

5 Structured Lexical Entries: Copredication and Beyond

Lexical entries can either be atomic, as advocated by Fodor and Lepore’s lexical
atomism [12,32], or complex and structured as proposed and studied by Puste-
jovsky and others [31]. According to lexical atomism, the basic words such as
‘book’ may only be properly interpreted in an atomic way, while Pustejovsky and
others believe that they should be represented by means of rich and structured
entities which, when combined with other linguistic entities in a sentence, make
important contributions to meaning generations.

In this paper, we shall not argue for or against whether the lexicon should be
generative and structured, but only to investigate, if words should be represented
as complex and structured entities, how it can be done in a type-theoretical se-
mantics. We want to add that, if one can represent word meanings successfully
as structured entities that contribute to meaning generation, it will make sub-
stantial contribution to natural language processing in practice.

In this section, we shall first review how copredication (cf., [3]) can be captured
in the type-theoretical semantics [21] and then show how complex and structured
lexical entries, represented by Σ-types,6 can be dealt with satisfactorily in this
respect.

5.1 Copredication and Dot-Types

The dot-type and its use in lexical semantics were first proposed by Pustejovsky
[31] and further studied by many others including, for example, Asher in the
study of copredication [2,3]. In [21], the author has proposed a type-theoretic
formal treatment of dot-types, with the help of coercive subtyping, and shown
that the type-theoretical semantics with coercive subtyping gives a satisfactory
treatment of copredication, among others.

Example 3 (copredication). Let Phy and Info be the types of physical ob-
jects and informational objects, respectively. One may consider the dot-type Phy•
Info as the type of the objects with both physical and informational aspects. A
dot-type is a subtype of its constituent types: Phy • Info < Phy and Phy •
Info < Info. A book may be considered as having both physical and informa-
tional aspects, reflected as:

(∗) [[book]] < Phy • Info.

Now, consider the following sentence:

(21) John picked up and mastered the book.

In a type-theoretical semantics, we may assume

[[pickup]] : [[human]] → Phy → Prop

[[master]] : [[human]] → Info → Prop

6 Cooper [8,7] has proposed to use dependent record kinds in Martin-Löf’s type theory
to represent lexical entries. The idea of using Σ-types to represent structured lexical
entries was proposed, but not studied in any depth, in [22].

170 Z. Luo

Because of the above subtyping relationship (∗) (and contravariance of subtyping
for the function types), we have

[[pickup]] : [[human]] → Phy → Prop

< [[human]] → Phy • Info → Prop

< [[human]] → [[book]] → Prop

[[master]] : [[human]] → Info → Prop

< [[human]] → Phy • Info → Prop

< [[human]] → [[book]] → Prop

Therefore, [[pickup]] and [[master]] can both be used in a context where terms
of type [[human]] → [[book]] → Prop are required and the interpretation of the
sentence (21) can proceed as intended. ��

5.2 Generative Lexical Entries as Σ-types

When lexical entries are represented as complex and structured entities, copred-
ication should be able to be treated in a similar way. For the above example, the
key is to make sure that, if we interpret the word ‘book’ as a structured entity,
the subtyping relation (∗) still holds.

Our proposal is that the basic common nouns such as ‘book’ be represented
as Σ-types in type theory (see §2.3 for a brief introduction to Σ-types and the
relevant notations). For example, the lexical entry for ‘book’ (p.15 of [33]) may
be interpreted as the following Σ-type:

[[book]] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Arg : Phy • Info

Qualia :

⎧⎪⎨
⎪⎩

Formal : Hold(p1(Arg), p2(Arg))
Telic : R(Arg)
Agent : ∃h:Human.W (h, Arg)

⎫⎪⎬
⎪⎭

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

where p1 and p2 are the associated projection operators for the dot-type Phy •
Info (see [21] for formal details) and R(x) and W (h, x) informally stand for ‘x
to be read’ and ‘h wrote x’, respectively.

If ‘book’ is given the above structured interpretation, is it true that the sub-
typing relation (∗) still holds? (i.e., do we still have [[book]] ≤ Phy • Info?)
The answer is yes, because we can take the first projection π1 for Σ-types as a
coercion. Therefore, the formal calculations in the previous section goes through.

6 Implementations in Coq

Type theories have been implemented in several proof assistants such as Agda
[1] and Coq [9]. We have used Coq to experiment with the proposal as reported
in this paper. Coq supports the use of coercions. Although it is not completely
satisfactory, it can be used well to implement the examples. (We do not get into
the details here.) Some of the Coq codes are given in Appendix B:

Contextual Analysis of Word Meanings in Type-Theoretical Semantics 171

– In Appendix B.1, we give the Coq codes that implement the examples of
homonyms as described in §3. Please note that, since Coq has certain re-
strictions on what coercions can be defined (esp. concerning function types),
we have to use type-casting in order to make some coercion insertions work.

– In Appendix B.2, we give the Coq codes that interpret ‘book’ as a Σ-type
(implemented in Coq as the ‘record’ mechanism), as in §5.2, and implement
examples of copredication etc; in particular, it shows how the following sen-
tences can be interpreted as intended:

(22) John burned a boring book.
(23) John picked up and mastered book B.

7 Conclusion

Lexical semantics must consider how to give appropriate meaning explanations to
the words which have different meanings in different contexts. We have studied
how this may be done in various situations in the type-theoretical semantics
based on modern type theories. The proposals can all be implemented on the
computer based on the automated selection mechanisms with the help of coercive
subtyping, among others. It would be interesting to see how such a system can
be built based on the type-theoretical semantics.

The study of meta-theory of coercion contexts and local coercions is beyond
the scope of the current paper. Although we do not foresee key difficulties, a
challenge may be concerned with the notion of ‘coherent context’ as mentioned in
Remark 2 in §4.1. The meta-theoretic properties such as strong normalisation do
not just concern valid contexts, but coherent contexts and this new phenomena
may need new tools to be dealt with satisfactorily.

In this paper, we have used Σ-types to represent structured lexical entries of
CNs. However, other words such as verbs should not be represented as types. In
general, the structured semantics of a word may be represented as a pair

(A, φ), where A : Type and φ : A → Prop.

Such constructions have been studied in the contexts of mathematical theories
[16] and program specifications [17]. Similar constructions seem to be needed in
the current context and further studies are called for in this respect.

Among related work, we should mention that by Francez et al [13], where the
proof-theoretic semantics (cf., [15]) of a fragment of natural language has been
studied. Although it is quite different from type-theoretic semantics, there is
one thing in common: proof-theoretic ideas play a central role in such semantics,
in contrast to the more dominant model-theoretic approaches, including the
Montague semantics.

Finally, it may also be helpful to mention that, in natural language processing,
there is a substantial amount of work on the word sense disambiguation (WSD)
problem (see, for example, [28] for a recent survey) and to emphasise that this
is quite different (e.g., in aims) from the work reported here.

172 Z. Luo

References

1. The Agda proof assistant (2008),
http://appserv.cs.chalmers.se/users/ulfn/wiki/agda.php?

2. Asher, N.: A type driven theory of predication with complex types. Fundamenta
Infor. 84(2) (2008)

3. Asher, N.: Lexical Meaning in Context: A Web of Words, draft, CUP (2010)
4. Bailey, A.: The Machine-checked Literate Formalisation of Algebra in Type The-

ory. Ph.D. thesis, University of Manchester (1999)
5. Callaghan, P., Luo, Z.: An implementation of LF with coercive subtyping and

universes. Journal of Automated Reasoning 27(1), 3–27 (2001)
6. Church, A.: A formulation of the simple theory of types. J. Symbolic Logic 5(1)

(1940)
7. Cooper, R.: Records and record types in semantic theory. J. Logic and Computu-

tation 15(2) (2005)
8. Cooper, R.: Copredication, dynamic generalized quantification and lexical inno-

vation by coercion. Proceedings of GL 2007, the Fourth International Workshop
on Generative Approaches to the Lexicon (2007)

9. The Coq Development Team: The Coq Proof Assistant Reference Manual (Version
8.1), INRIA (2007)

10. Curry, H., Feys, R.: Combinatory Logic, vol. 1. North-Holland, Amsterdam (1958)
11. Feferman, S.: Predicativity. In: Shapiro, S. (ed.) The Oxford Handbook of Phi-

losophy of Mathematics and Logic. Oxford Univ. Press, Oxford (2005)
12. Fodor, J.A., Lepore, E.: The emptiness of the lexicon: Reflections on james puste-

jovskys the generative lexicon. Linguistic Inquiry 29(2), 269–288 (1998)
13. Francez, N., Dyckhoff, R.: Proof-theoretic semantics for a natural language frag-

ment. In: Ebert, C., Jäger, G., Michaelis, J. (eds.) MOL 10. LNCS, vol. 6149, pp.
56–71. Springer, Heidelberg (2010)

14. Howard, W.A.: The formulae-as-types notion of construction. In: Hindley, J.,
Seldin, J. (eds.) To H. B. Curry: Essays on Combinatory Logic. Academic Press,
London (1980)

15. Kahle, R., Schroder-Heister, P. (eds.) Synthese, vol. 148(3) (2006)
16. Luo, Z.: A higher-order calculus and theory abstraction. Information and Com-

putation 90(1) (1991)
17. Luo, Z.: Program specification and data refinement in type theory. Mathematical

Structures in Computer Science 3(3) (1993)
18. Luo, Z.: Computation and Reasoning: A Type Theory for Computer Science.

Oxford Univ. Press, Oxford (1994)
19. Luo, Z.: Coercive subtyping in type theory. In: van Dalen, D., Bezem, M. (eds.)

CSL 1996. LNCS, vol. 1258. Springer, Heidelberg (1997)
20. Luo, Z.: Coercive subtyping. J. of Logic and Computation 9(1), 105–130 (1999)
21. Luo, Z.: Type-theoretical semantics with coercive subtyping. In: Semantics and

Linguistic Theory 20 (SALT 20), Vancouver (2010)
22. Luo, Z., Callaghan, P.: Coercive subtyping and lexical semantics (extended ab-

stract). In: Logical Aspects of Computational Linguistics (LACL 1998) (1998)
23. Luo, Z., Pollack, R.: LEGO Proof Development System: User’s Manual. LFCS

Report ECS-LFCS-92-211, Dept. of Computer Science, Univ. of Edinburgh (1992)
24. Marlet, R.: When the generative lexicon meets computational semantics. In: 4th

Inter. Workshop on Generative Approaches to the Lexicon (2007)
25. Martin-Löf, P.: Intuitionistic Type Theory. Bibliopolis (1984)

http://appserv.cs.chalmers.se/users/ulfn/wiki/agda.php?

Contextual Analysis of Word Meanings in Type-Theoretical Semantics 173

26. The Matita proof assistant (2008), http://matita.cs.unibo.it/
27. Montague, R.: Formal Philosophy. Yale University Press, New Haven (1974)
28. Navigli, R.: Word sense disambiguation: a survey. ACM Computing Surveys 41(2)

(2009)
29. Nordström, B., Petersson, K., Smith, J.: Programming in Martin-Löf’s Type The-

ory: An Introduction. Oxford University Press, Oxford (1990)
30. Nunberg, G.: Transfers of meaning. J. of Semantics 12(2) (1995)
31. Pustejovsky, J.: The Generative Lexicon. MIT, Cambridge (1995)
32. Pustejovsky, J.: Generativity and explanation in semantics: A reply to fodor and

lepore. Linguistic Inquiry 29(2), 289–311 (1998)
33. Pustejovsky, J.: The semantics of lexical underspecification. Folia Linguistica

(1998)
34. Ranta, A.: Type-Theoretical Grammar. Oxford University Press, Oxford (1994)
35. Säıbi, A.: Typing algorithm in type theory with inheritance. In: POPL 1997 (1997)
36. Strachey, C.: Fundamental concepts in programming languages. Higher-Order and

Symbolic Computation 13(1-2) (2000), (Paper based on 1967 lectures)

A The Unit Type

A unit type is an inductive type that has only one object. It is one of the inductive
types in Martin-Löf’s type theory or UTT, whose formal details can be found in,
for example, Chapter 9 of [18]. In this paper, we consider a class of unit types:
a unit type 1w for each word w. These unit types can be introduced by means
of the following rules

1w : Type w : 1w

C : (1w)Type c : C(w) z : 1w

Ew(C, c, z) : C(z)

together with the computation rule Ew(C, c, w) = c : C(w) stating that, when
applied to the canonical object w, its elimination operator Ew computes to c.
For Coq implementation, see Appendix B.1 for that of 1run.

B Implementations in Coq

B.1 Homonymy in Coq

(* Lexical Semantics using Coq’s records: simple homonymy *)

(* Categories of Sentences & CNs *)

Definition S := Prop.

Definition CN := Set.

Parameters Bank Institution Human Man : CN.

Parameter John : Man.

Axiom mh : Man->Human. Coercion mh : Man >-> Human.

Axiom bi : Bank->Institution. Coercion bi : Bank >-> Institution.

(* unit type for "run" *)

Inductive Onerun : Set := run.

http://matita.cs.unibo.it/

174 Z. Luo

Definition RSem1 := Human->S.

Definition RSem2 := Human->Institution->S.

Parameter run1 : RSem1.

Parameter run2 : RSem2.

Definition r1 (r:Onerun) : RSem1 := run1. Coercion r1 : Onerun >-> RSem1.

Definition r2 (r:Onerun) : RSem2 := run2. Coercion r2 : Onerun >-> RSem2.

(* John runs quickly *)

Parameter quickly : forall (A:CN), (A->S)->(A->S).

Definition john_runs_quickly := quickly Human (run:RSem1) John.

(* John runs a bank *)

Definition john_runs_a_bank := exists b:Bank, (run:RSem2) John b.

B.2 Copredications in Coq

(* Note: Coq’s "record-types" is Sigma-types plus auto-defns of projections & coercions *)

(* Categories of Sentences and CNs *)
Definition S := Prop.
Definition CN := Set.

Parameter Human Man : CN.
Axiom mh : Man->Human.
Coercion mh : Man >-> Human.

(* Phy dot Info *)
Parameter Phy Info : CN.
Record PhyInfo : CN := mkPhyInfo { phy :> Phy; info :> Info }.

(* Book as Sigma-type with PhyInfo & BookQualia *)
Parameter Hold : Phy->Info->Prop.
Parameter R : PhyInfo->Prop.
Parameter W : Human->PhyInfo->Prop.
Record BookQualia (A:PhyInfo) : Set :=

mkBookQualia { Formal : Hold A A;
Telic : R A;
Agent : exists h:Human, W h A }.

Record Book : Set := mkBook { Arg :> PhyInfo; Qualia : BookQualia Arg }.

(* "John burned a boring book" *)
Parameter John : Man.
Parameter boring : Info->S.
Record BBook : CN := mkBBook { b :> Book; _ : boring b }.
Parameter burn : Human->Phy->S.
Definition John_burned_a_boring_book := exists b:BBook, (burn John b) : S.

(* copredication: "John picked up and mastered book B" *)
Parameter B : Book.
Parameter pickup : Human->Phy->S.
Parameter master : Human->Info->S.
Definition John_picked_up_and_mastered_book_B := and (pickup John B) (master John B).

	Contextual Analysis of Word Meanings in Type-Theoretical Semantics
	Introduction
	Type-Theoretical Semantics
	A Brief Overview
	Embedded Logic
	Dependent Types
	Coercive Subtyping
	Universes

	Sense Selection via Overloading
	Sense Enumeration
	Simple Sense Selection via Overloading Based on Coercive Subtyping

	Representation of Contexts: Coercion Contexts and Local Coercions
	Coercion Contexts in Type Theory
	Local Coercions in Terms

	Structured Lexical Entries: Copredication and Beyond
	Copredication and Dot-Types
	Generative Lexical Entries as -types

	Implementations in Coq
	Conclusion
	The Unit Type
	Implementations in Coq
	Homonymy in Coq
	Copredications in Coq

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

