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Model-theoretic & Proof-theoretic Semantics 

Model-theoretic (traditional):  

 Denotations as central (cf, Tarski, …) 

 Montague: NL  simple type theory  set theory 

Proof-theoretic (logics):  

 Inferential roles as central (Gentzen, Prawitz, Dummett, 
Brendom, …) 

 E.g., logical operators given meaning via inference rules 

MTT-semantics: 

 Semantics in style of Montague semantics 

 But, in Modern Type Theories  
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Example argument for traditional set-theoretic sem. 

 Or, an argument against non-set-theoretic semantics 

 “Meanings are out in the world”  

 Portner’s 2005 book on “What is Meaning” – typical view 

 Assumption that set theory represents (or even is) the world 

 Comments:  
 This is an illusion! Set theory is just a theory in FOL, not “the world”. 

 A good/reasonable formal system can be as good as set theory. 
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Claim:  

     Formal semantics in Modern Type Theories  (MTT-semantics) 

     is both model-theoretic and proof-theoretic. 

 NL  MTT (representational, model-theoretic) 
 MTT as meaning-carrying language with its types representing 

collections (or “sets”) and signatures representing situations 

 MTT  meaning theory (inferential roles, proof-theoretic) 
 MTT-judgements, which are semantic representations, can be 

understood proof-theoretically by means of their inferential roles 
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Traditional model-theoretic semantics: 

 Logics/NL  Set-theoretic representations 

Traditional proof-theoretic semantics of logics: 

 Logics  Inferences 

Formal semantics in Modern Type Theories: 

 NL  MTT-representations  Inferences 
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Why important for MTT-semantics? 

 Model-theoretic – powerful semantic tools 
 Much richer typing mechanisms for formal semantics 

 Powerful contextual mechanism to model situations  

 Proof-theoretic – practical reasoning on computers 
 Existing proof technology: proof assistants (Coq, Agda, Lego, …) 

 Applications of to NL reasoning 

 Leading to both 
 Wide-range modelling as in model-theoretic semantics  

 Effective inference based on proof-theoretic semantics 
 

Remark: new perspective & new possibility not available before! 
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This talk is based on:  

Collaborative work on MTTs and MTT-semantics with 
many people including, in recent years, among 
others: 

 S. Chatzikyriakidis (MTT-semantics) 

 S. Soloviev and T. Xue (coercive subtyping) 

 G. Lungu (signatures) 

 R. Adams, Callaghan, Pollack, … (MTTs) 

Several papers including 
 Z. Luo. Formal Semantics in Modern Type Theories: Is It Model-theoretic, Proof-

theoretic, or Both? Invited talk at Logical Aspects of Computational Linguistics 2014.  
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This talk consists of three parts: 

I. What is MTT-semantics?  

 Introduction to MTTs and overview of MTT-semantics 

II. Model-theoretic characteristics of MTT-semantics 

 Signatures – extended notion of contexts to represent 
situations 

III. Proof-theoretic characteristics of MTT-sem 

 Meaning theory of MTTs – inferential role semantics of MTT-
judgements  
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I. Modern Type Theories & MTT-semantics 

Type-theoretical semantics: general remarks 

 Types v.s. sets 

Modern Type Theories 

 Basics and rich type structure 

MTT-semantics 

 Linguistic semantics: examples 
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I.1. Type-theoretical semantics 

 Montague Grammar (MG) 

 Richard Montague (1930 – 1971) 

 In early 1970s: Lewis, Cresswell, Parsons, ... 

 Later developments: Dowty, Partee, … 

 Other formal semantics 

 “Dynamic semantics/logic” (cf, anaphora)  

 Discourse Representation Theory (Kemp 1981, Heim 1982) 

 Situation semantics (Barwise & Berry 1983) 

 Formal semantics in modern type theories (MTTs) 

 Ranta 1994 and recent development (this talk), making it a full-
scale alternative to MG, being better, more powerful & with 
applications to NL reasoning based on proof technology (Coq, …). 

    RHUL project http://www.cs.rhul.ac.uk/home/zhaohui/lexsem.html 
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Simple v.s. modern type theories 

Church’s simple type theory 

 As in Montague semantics 

 Base types (“single-sorted”): e and t 

 Composite types: et, (et)t, …               

 Formulas in HOL (eg, membership of sets) 
 Eg, s : et is a set of entities (as iff s(a)) 

Modern type theories 

 Many types of entities – “many-sorted”         
 Table, Man, Human, Phy, … are types 

 Different MTTs have different embedded logics: 
 Martin-Löf’s type theory (1984): (non-standard) first-order logic 

 Impredicative UTT (Luo 1994): higher-order logic  
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Types v.s. Sets 

Both types and sets represent “collections of objects”  
 So, both may be used to represent collections in formal 

semantics (“model-theoretic”). 

 But, their similarity stops here.   

 MTT-types are “manageable”. 

 Some set-theoretical operations in set theory are  

   destructive – they destroy salient MTT-properties. 
 Eg, intersection/union operations, a resulting theory is  

    usually undecidable (see below). 
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I.2. MTTs (1) – Types 

 Propositional types  

    (Curry-Howard’s propositions-as-types principle) 

 

 

 

 Inductive and dependent types  
 (A,B) (intuitively, { (a,b) | a : A & b : B(a) }) 

 [handsome man] = ([man], [handsome]) 

 x:A.B(x) (intuitively, { f : A
aA

B(a) | a : A & b : B(a) }) 

 A+B, AxB, Vect(A), …  

 Universes 
 A universe is a type of (some other) types. 

 Eg, CN – a universe of the types that interpret CNs 

 Other types: Phy, Table, AB, …  
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formula type example 

A  B A  B If …, then … 

x:A.B(x) x:A.B(x) Every man is handsome.          



MTTs (2): Coercive Subtyping 

 History: studied from two decades ago (Luo 1997) for proof 
development in type theory based proof assistants 

 Basic idea: subtyping as abbreviation 

 AB if there is a (unique) coercion c from A to B. 

   Eg. Man  Human; (Man, handsome)  Man; …  

 Adequacy for MTTs (Luo, Soloviev & Xue 2012) 

 Coercive subtyping is adequate for MTTs 

 Note: traditional subsumptive subtyping is not. 

 Subtyping essential for MTT-semantics 

 [walk] : HumanProp, [Paul] = p : [handsome man]  

 [Paul walks] = [walk](p)  :  Prop 

 because p : [handsome man] 
 
Man  Human 
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MTTs (3): examples 

Predicative type theories  

 Martin-Löf’s type theory 

 Extensional and intensional equalities in TTs 

 Impredicative type theories 

 Prop  
 Impredicative universe of logical propositions (cf, t in simple TT) 

 Internal totality (a type, and can hence form types, eg TableProp, 
Man Prop, X:Prop.X,  

 F/F (Girard), CC (Coquand & Huet) 

 ECC/UTT (Luo, implemented in Lego/Plastic) 

 CICp (Coq-team, implemented in Coq/Matita) 
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MTTs (4): Technology and Applications 

Proof technology based on type theories 

 Proof assistants – ALF/Agda, Coq, Lego/Plastic, NuPRL, …  

Applications of proof assistants 

 Math: formalisation of mathematics (eg, 4-colour Theorem 
in Coq) 

 CS: program verification and advanced programming 

 Computational Linguistics 
 E.g., MTT-sem based NL reasoning in Coq (Chatzikyriakidis & Luo 2014) 



I.3. MTT-semantics 

 Formal semantics in modern TTs 

 Formal semantics in the Montagovian style 

 But, in modern type theories (not in simple TT) 

 Key differences from the Montague semantics: 

 CNs interpreted as types (not predicates of type et) 

 Rich type structure provides fruitful mechanisms for various 
linguistic features (CNs, Adj/Adv modifications, coordination, 
copredication, linguistic coercions, events, …)  

 Some work on MTT-semantics 

 Ranta (1994): basics of MTT-semantics 

 A lot of recent developments … …  
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MTT-semantics 

 

 

 

 

 

 

 

 

 

 

 

Category Semantic Type 

S  Prop 

CNs (book, man, …) types (each CN is interpreted as a type: [book]. [man], …) 

IV  AProp (A is the “meaningful domain” of a verb) 

Adj  AProp (A is the “meaningful domain” of an adjective) 
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MTT-semantics: examples 

 Sentences as propositions: [A man walks] : Prop 

 Common nouns as types: [man], [handsome man], [table] : Type 

 Verbs as predicates: [shout] : [human]Prop 

 [A man shouts] = m:[man]. [shout](m) : Prop 

 Only well-typed because [man]  [human] – subtyping is crucial. 

 Adjectives as predicates: [handsome] :  [man]Prop 

 Modified CNs as -types: [handsome man] = ([man], [handsome]) 

 Subtyping is crucial: [handsome man]  [man] 

 Adverbs as polymorphic functions:  
 [quickly] : A:CN. (AProp)(AProp), where CN is universe of CNs 
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Modelling Adjectives: Case Study 

 Intersective adjectives (eg, handsome) 
 Adj(N)  N & Adj(N)  Adj 

 [handsome man] = ([man], [handsome]) 

 Subsective, but non-intersective, adjectives (eg, large) 
 Adj(N)  N (but not the 2nd above) 

 [large] : A:CN. (AProp)  

 [large mouse] = ([mouse], [large]([mouse])) 

 Privative adjectives (eg, fake) 
 Adj(N)  N 

 G = GR+GF – type of all guns 

 Declare inl and inr both as coercions: GR <inl G  and  GF <inr G 

 Non-committal adjectives (eg, alleged) 
 Adj(N)  ? 

 Employ “belief contexts” …  
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MTT-sem: more examples of linguistic features 

 Anaphora analysis 
 MTTs provide alternative mechanisms for proper treatments via   -types 

[Sundholm 1989] (cf, DRTs, dynamic logic, …)  

 Linguistic coercions 
 Coercive subtyping provides a promising mechanism (Asher & Luo 2012) 

 Copredication 
 Cf, [Pustejovsky 1995, Asher 2011, Retoré et al 2010] 

 Dot-types [Luo 2009, Xue & Luo 2012, Chatzikyriakidis & Luo 2015] 

 Generalised quantifiers (Sundholm 1989, Lungu & Luo 2014) 

 [every] :  A:CN. (AProp)Prop 

 [Every man walks] = [every]([man], [walk]) 

 Event semantics (Luo 2016) 

 Event types as dependent types Evt(h) (rather than just Event) 
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MTT-semantics: implementation and reasoning 

MTT-based proof assistants (see earlier) 

 Implementation of MTT-semantics in Coq 

 UTT v.s. CICp,  
 They are implemented in Lego/Plastic and Coq, respectively. 

 They are essentially the same. 

 Coq supports a helpful form of coercions 

 Reasoning about NL examples (Chatzikyriakidis & Luo 2014) 

 Experiments about new theories  

Theory of predicational forms (Chatzikyriakidis & Luo 2016a) 

 CNs with identity criteria (Chatzikyriakidis & Luo 2016b) 
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II. MTT-sem: Model-theoretic Characteristics 

 In MTT-semantics, MTT is a representational 
language. 

MTT-semantics is model-theoretic 

 Types represent collections – see earlier slides on using rich 
types in MTTs to give semantics. 

 Signatures represent situations (or incomplete possible 
worlds). 
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 Types and signatures/contexts are embodied in judgements: 

   ├ a : A 

 where A is a type,  is a context and  is a signature.   

 Contexts are of the form   x1 : A1, …, xn : An 

 Signatures, similar to contexts, are finite sequences of entries, 
but 
 their entries are introducing constants (not variables; i.e., cannot be 

abstracted – c.f, Edinburgh LF (Harper, Honsell & Plotkin 1993)), and  

 besides membership entries, allows more advanced ones such as manifest 
entries and subtyping entries (see later). 
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Situations represented as signatures 

Beatles’ rehearsal: simple example 

 Domain:  

 

 Assignment: 

 

 Signature representing the situation of Beatles’ rehearsal: 

 

 We have, for example,  

 

 “John played guitar” and “Bob was not a Beatle”. 
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Subtyping Entries in Signatures 

Subtyping entries in a signature, where  : (A)B : 

   A  B 

 Eg, Man  Human ( depends on how Man is defined.) 

 Eg, Vect(A,m) (m) List(A), parameterised by m : Nat, where 
(m) maps n1,…,nm to [n1,…,nm]. 

Note that, formally, for signatures with subtyping 
entries: 
 We do not need “local coercions” [Luo 2009] (no need to abstract 

subtyping entries to the right!) 

 This is meta-theoretically simpler (cf, [Luo & Part 2013]) 

Kent, June 2016 26 



Remark on coherence 

With subtyping entries, we don’t just need validity, 
but should also consider coherence, of signatures. 

 Intuitively, from a coherent signature, one cannot 
derive two different coercions between the same 
types, in an appropriate subsystem of TS, where the 
following coercive definition rule is removed: 

     f : (x:A)B   a0 : A0    A0  A 
   ===================================== 

      f(a0) = f((a0)) : [(a0)/x]B 

(Formal definition omitted.) 
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Manifest Entries in Signatures 

More sophisticated situations 

 E.g., infinite domains 

 Traditional membership entries are not enough. 

 In signatures, we can have a manifest entry: 

    c  a : A 

 where a : A.   

 Informally, it assumes constant c to behave the same 
as a. 
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Manifest entries: examples 

 

 
 

 

 

where 

 
 

 

 with aD being a finite type and aB and aG inductively defined. 

 (Note: Formally, “Type” should be a type universe.) 
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Representations of infinite situations: 

 Infinite domain D represented by infinite type Inf 

   D  Inf : U 

 Infinite predicate with domain D: 

   f  f-defn : D  Prop 

  with f-defn being inductively defined. 
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Manifest Entries: Formal Treatment 

A manifest entry abbreviates two special entries. 

 c  a : A  abbreviates 

  c : 1A(a),  1A(a)  A 

 1A(a) is the inductively defined unit type, parameterised by A 
and a; 

 (x) = a for x : 1A(a). 

So, in any hole that requires an object of type A, we 
can use “c” which, under the above coercion, will be 
coerced into “a”, as intended.   

 In short, c stands for a!   
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Such manifest entries are intensional. 

 Compare (weakly) extensional definitional entries: x=a : A 

 Equivalent to  

  x : SingletonA(a) 

    where y=a : A if y:A (-equality).   

 But, in signatures, c ~ a : A is intensional (no -equality). 

Remarks: 

 For contextual entries and manifest fields in /record-types: 
see (Luo 2008). 

 Here, we only consider manifest entries in signatures, as we 
only have subtyping entries in signatures.   
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Meta-theoretic Results 

Theorem  

   Let T be a type theory specified in LF and TS the extension of T  

   with signatures (with subtyping/manifest entries in signatures).   

   Then, TS preserves the meta-theoretic properties of T for    

   coherent signatures. 

 

Note: Meta-theoretic properties include Church-Rosser, strong 
normalisation, consistency, etc. Eg, as a special case of the above: 
 

If T satisfies SN (├
 
a : A   a is SN), then for TS, if ├ a : A 

for coherent   a is SN. 
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III. MTT-sem: Proof-theoretic Characteristics 

Proof-theoretic semantics 

 Meaning is use (cf, Wittgenstein, Dummett, Brandom) 
 Conceptual role semantics; inferential semantics 

 Inference over reference/representation 

 Two aspects of use 
 Verification (how to assert a judgement correctly) 

 Consequential application (how to derive consequences from a correct 
judgement) 
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 Proof-theoretic semantics in logics 

 Two aspects of use via introduction/elimination rules, respectively. 

 Gentzen (1930s) and studied by Prawitz, Dummett, … (1970s) 

 Meaning theory for Martin-Löf’s type theory (Martin-Löf 1984) 

 Further developed by philosopher Brendon (1994, 2000) 

 Proof-theoretic semantics for NLs 

 Not much work so far 
 cf, Francez’s work (Francez & Dyckhoff 2011) under the name, but different …  

 Traditional divide of MTS & PTS might have a misleading effect. 

 MTT-semantics opens up new possibility – a meta/representational 
language (MTT) has a nice proof-theoretic semantics itself. 
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Meaning Explanations in MTTs 

Two aspects of use of judgements  

 How to prove a judgement? 

 What consequences can be proved from a judgement? 

Type constructors 

 They are specified by rules including, introduction rules & 
elimination rule. 

 Eg, for -types  
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Verificationist meaning theory 

Verification (introduction rule) as central 

 In type theory, meaning explanation via canonicity 
(cf, Martin-Löf); recall the following picture: 

 

 

 

 

 cf, strong normalisation property. 
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Pragmatist meaning theory 

Consequential application (elimination rule) as central 

This is possible for some logical systems 

 For example, operator &. 

For dependent types, impossible. 

 One can only formulate the elimination rules based on the 
introduction operators! 
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Another view: both essential 

 Both aspects (verification & consequential application) are 
essential to determine meanings. 

 Dummett  
 Harmony & stability (Dummett 1991), for simple systems. 

 For MTTs, discussions on this in (Luo 1994).  

 For a type constructor in MTTs, both introduction and elimination 
rules together determine its meaning. 

 Argument for this view: 

 MTTs are much more complicated – a single aspect is insufficient.   

 Pragmatist view:  
 impossible for dependent types (see previous page) 

 Verificationist view:  
 Example of insufficiency – identity types 
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 Identity type IdA(a,b) (eg, in Martin-Löf’s TT) 

 Its meaning cannot be completely determined by its 
introduction rule (Refl), for reflexivity, alone. 

 The derived elimination rule, so-called J-rule, is deficient in 
proving, eg, uniqueness of identity proofs, which can only be 
possible when we introduce the so-called K-rule [Streicher 
1993]. 

 So, the meaning of IdA is given by either one of the 
following:  
 (Refl) + (J)  

 (Refl) + (J) + (K) 

 ie, elimination rule(s) as well as the introduction rule. 
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Concluding Remarks 

Summary 

 NL  MTT (model-theoretic) 
 Hence wide coverage of linguistic features 

 MTT  meaning theory (proof-theoretic) 
 Hence effective reasoning in NLs (eg, in Coq) 

Future work 
 Proof-theoretic meaning theory  

 E.g. impredicativity (c.f., Dybjer’s recent work in on “testing-based 
meaning theory”) 

 Meaning explanations of hypothetical judgements 

 General model theory for MTTs? But …  

 Generalised algebraic theories [Cartmell 1978, Belo 2007] 

 Logic-enriched Type Theories (LTTs; c.f., Aczel, Palmgren, …)  
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