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Abstract.

We present `Plastic', an implementation of LF with Coercive Subtyping, and

focus on its implementation of Universes. LF is a variant of Martin-L�of's logical

framework, with explicitly typed �-abstractions. We outline the system of LF with

its extensions of inductive types and coercions. Plastic is the �rst implementation

of this extended system; we discuss motivations and basic architecture, and give

examples of its use.

LF is used to specify type theories. The theory UTT includes a hierarchy of

universes which is speci�ed in Tarski style. We outline the theory of these universes

and explain how they are implemented in Plastic. Of particular interest is the

relationship between universes and inductive types, and the relationship between

universes and coercive subtyping.

We claim that the combination of Tarski-style universes together with coercive

subtyping provides an ideal formulation of universes which is both semantically clear

and practical to use.

Keywords: type theory, universes, logical framework, implementation

1. Introduction

Conventionally, a type theory is implemented directly and furnished

with sophisticated machinery to make that theory easier to use. This

often leads to limited reuse and some duplication of e�ort in imple-

mentation (and in meta-theory) when a new type theory is required.

A di�erent approach is adopted in [24], of de�ning an object type

theory UTT via a logical framework LF, resulting in a more precise

and semantically clearer version of the theory ECC (implemented in

Lego [35]).

The logical framework approach has other bene�ts. It is a vehicle for

recent work in Durham on Coercive Subtyping [25], where de�nitional

�
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2 Callaghan & Luo

equality in the framework is an ideal way of expressing the abbrevia-

tional nature of coercive subtyping. Object theories speci�ed in LF can

take advantage of subtyping automatically, without having to justify

the theory in the new setting. One also has the exibility of being able

to specify precisely the type theory needed for a particular task, rather

than attempting to stay within a subset of a general theory.

Universes are an important part of UTT. In [24] they are speci�ed

using the style �a la Tarski, using explicit lifting operators to represent

cumulativity in universes. The terminology is due to Martin-L�of [30],

and contrasted against the style �a la Russell, based on the overloading

of common term operators, which was used in ECC. Russell-style is

practically more convenient but semantically less clear, and such uni-

verses are not compatible with the elimination rules for inductive types

(e.g., for �), where the subject reduction property fails to hold

1

.

Plastic is the �rst implementation of LF with its various extensions

(as presented in [24] and [25]), and consequently the �rst implementa-

tion of coercive subtyping via a logical framework. We plan to use it

as a tool in future research in coercive subtyping (e.g. to understand

the e�ects of coercions in non-trivial case studies, and to improve the

e�ciency of implementation). More practically, it will be used to imple-

ment speci�c object theories; a particular interest is the construction

of domain-speci�c reasoning tools which are based on type theory but

will not require great expertise in type theory to use.

After describing the current state of Plastic, we consider how it

implements universes in the Tarski style. Of particular interest is the

relationship between universes and inductive types, and the relation-

ship between universes and coercive subtyping. Coercions are shown

to play a signi�cant part by providing some of the convenience of the

Russell style but within the preferable Tarski style.

Section 2 introduces LF, highlighting the important aspects of the

basic system and presenting the extensions of inductive types, uni-

verses, and coercive subtyping. Section 3 presents Plastic, detailing

the main components of the system, with examples of its use. The

�nal section focuses on the implementation of universes in the Tarski

style in Plastic; a key issue is whether the practical convenience of

Russell-style universes can be regained with the semantically-oriented

(but less convenient) Tarski-style universes together with coercive sub-

typing. The main contributions of this paper are: an implementation

of a hierarchy of Tarski-style universes inside LF; its integration with

1

The problem occurs because the formulation of the elimination rule has not

taken into the account that, in the presence of subtyping, a super-type also contains

canonical objects of its subtypes. There does not appear to be an easy way to �x

this problem for Russell-style universes. For more information, see [25], p. 124.
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LF with Coercive Subtyping & Universes 3

the implementation of inductive types; and use of coercive subtyping

to make working with Tarski-style universes more convenient.

1.1. Universes in Type Theory

Universes increase the proof theoretic strength of the theory, for ex-

ample allowing constructive formalisations of category theory. There

are also many important practical applications, such as representing

structured speci�cations of programs or abstract mathematical struc-

tures. A notion of abstract theory [23, 24] for reasoning about such

structures is expressible internally to a type theory (in ECC and UTT

this requires four universe levels).

Early presentations (e.g. [30, 32]) give just one universe. In these

references, the presentation uses the Tarski style (terminology due to

Martin-L�of), in which types in universes are represented by codes (i.e.,

names) and a decoding function maps such names to appropriate types.

This is contrasted against Russell-style, where codes and the types they

represent are identi�ed.

A standard example of universe use is to prove that the constructors

of inductive types are distinct. For the boolean type, this is true 6=

Bool

false; see section 4.5.2 for the proof in Plastic. Such properties cannot

be proved without universes [37].

The theory ECC [24] contains a hierarchy of universes Prop, Type

0

,

Type

1

, . . . presented in the Russell style. The universe Prop of propo-

sitions is impredicative, allowing quanti�cation over the totality of

propositions, in contrast to the predicative universes Type

i

which are

intended for data types. The Calculus of (Inductive) Constructions (as

implemented in recent versions of Coq [8]) contains a similar hierarchy

(there are some technical di�erences but they are not relevant here).

The theory UTT is derived from ECC, and also contains a hierarchy

of universes. But UTT is speci�ed by means of a logical framework [24],

and its universes are introduced in the Tarski style. Luo claims that use

of a logical framework allows a clearer and more precise presentation

of the complete type theory (see section 2 for further discussion). For

example, Tarski-style universes avoid the failure of subject reduction

mentioned above.

In standard use of type theory, e.g. formalisation of mathematics or

of programs, the above universe schemes are usually su�cient. Rarely

can a use be found for universes above the fourth level in the hier-

archy. But it is possible to de�ne more powerful universes, to obtain

type theories of greater proof-theoretic strength [33]. An alternative to

universes is to use induction recursion [14]. This extended notion of
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4 Callaghan & Luo

recursion involves large elimination and is therefore powerful enough

to de�ne universes internally to the type theory.

1.2. Related Work

This section surveys the implementations of universes in other proof

assistants, and then compares these to Plastic in more general terms.

ECC and its Russell-style universes are implemented in Lego [35],

together with a form of universe polymorphism [17]; the facility of \typ-

ical ambiguity" allows one to omit explicit universe level information

and the implementation ensures that an consistent set of levels is used.

It allows the exibility of Type : Type, but without the inconsistency.

The universes are integrated with Lego's inductive types; the universes

are closed under the (inductive) type formers as the type is de�ned,

and no further action is required. Coq [8] also implements Russell-style

universes, but with a few di�erences from Lego (these di�erences are

not relevant to this paper, so we avoid discussion).

One may de�ne Tarski-style universes internally in Agda's type the-

ory [10, 9] because it allows su�ciently powerful recursion. If several

universes are required then they must all be de�ned manually, and there

does not appear to be support for automatically closing such universes

over arbitrary inductive types. If a cumulative hierarchy is required,

then one must also provide appropriate lifting operators and use them

explicitly in terms.

Plastic's implementation of UTT provides a hierarchy of universes

in the Tarski style, and codes for inductive types in all universes (above

the lowest legal universe for that type). Furthermore, Plastic allows one

to declare the universe lifting functions as implicit coercions, so one may

use a name in Type

i

as if it was in some higher universe Type

i+j

.

In more general terms, Plastic is signi�cantly di�erent from Lego,

Coq, or Agda. Firstly, it is not intended to be used directly by expert

users but as the underlying layer for other systems. LF is a deliberately

restricted language; to obtain a exible type theory, one must specify

it as an object theory and then use the language of that object the-

ory. Plastic does provide some of the functionality of other systems to

aid speci�cations of object theories, such as tactic-based proof, meta-

variables and a form of argument synthesis. An experienced user of

Plastic can translate developments in ECC/Lego to UTT without much

di�culty. But Plastic is not a `�nished' system: our current research

considers ways to provide a good user interface for object type theories.
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2. The logical framework LF

This section describes the type theory LF as introduced in Chapter 9

of the monograph [24] (henceforth abbreviated as C&R), and extended

with Coercive Subtyping [25]. LF is a version of Martin-L�of's logical

framework [30]. The main di�erence is that Luo's LF has type labels

on �-abstractions (i.e., [x : K]k rather than [x]k). There are also small

syntactic di�erences, several reecting the inuence of Edinburgh LF

[16]. The extra type labels ensure that type checking is decidable for

this LF, whereas for Martin-L�of's LF it is only decidable for a subset

of terms

2

.

Theoretically, there are several reasons to be interested in LF. Luo

introduces LF as a meta-language for specifying a type theory (UTT in

this case), because it allows a clearer and more satisfactory presenta-

tion: speci�cally, one can make clear the distinction between an object

language (to be used for programming and reasoning) and the meta-

level mechanisms which are used to de�ne it. There are also several

practical reasons for interest in LF, which we discuss in section 3. We

postpone discussion of universes to section 4.

2.1. Rules of LF

Figure 1 shows the rules of basic LF (some admissible rules for

substitution have been omitted). Important features include:

� `Types' in the framework are called `kinds' in order to avoid con-

fusion with types in an object (i.e., user-speci�ed) type theory.

� There is a special kind Type which represents the conceptual

universe of types of the object type theory. Given a type A : Type,

there is a kind El(A) corresponding to the collection of objects of

type A. We refer to such kinds as El-kinds.

� In addition to the usual judgement form � ` k : K, LF has a

form to represent de�nitional equality, e.g. � ` k = k

0

: K, which

says k and k

0

are equal objects of kind K. De�nitional equality is

a framework notion, and is a suitable mechanism for representing

abbreviations, such as de�nitions and coercive subtyping.

2

It is claimed (e.g. [3]) that in practice this is not a hindrance. The system ALF

[29] implements a form of Martin-L�of's LF and provides decidable type checking

subject to certain restrictions. However, implementations cannot freely expand def-

initions since the result may not type-check (the implementation does not have the

property we call \de�nitional transparency").
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Contexts and assumptions

hi valid

� ` K kind x 62 FV (�)

�; x : K valid

�; x : K;�

0

valid

�; x : K;�

0

` x : K

General equality rules

� ` K kind

� ` K = K

� ` K = K

0

� ` K

0

= K

� ` K = K

0

� ` K

0

= K

00

� ` K = K

00

� ` k : K

� ` k = k : K

� ` k = k

0

: K

� ` k

0

= k : K

� ` k = k

0

: K � ` k

0

= k

00

: K

� ` k = k

00

: K

Equality typing rules

� ` k : K � ` K = K

0

� ` k : K

0

� ` k = k

0

: K � ` K = K

0

� ` k = k

0

: K

0

The kind Type

� valid

� ` Type kind

� ` A : Type

� ` El(A) kind

� ` A = B : Type

� ` El(A) = El(B)

Dependent product kinds

(DP )

� ` K kind �; x : K ` K

0

kind

� ` (x : K)K

0

kind

(DP Eq)

� ` K

1

= K

2

�; x : K

1

` K

0

1

= K

0

2

� ` (x : K

1

)K

0

1

= (x : K

2

)K

0

2

(abs)

�; x : K ` k : K

0

� ` [x : K]k : (x : K)K

0

(�)

� ` K

1

= K

2

�; x : K

1

` k

1

= k

2

: K

� ` [x : K

1

]k

1

= [x : K

2

]k

2

: (x : K

1

)K

(app)

� ` f : (x : K)K

0

� ` k : K

� ` f(k) : [k=x]K

0

(app Eq)

� ` f = f

0

: (x : K)K

0

� ` k

1

= k

2

: K

� ` f(k

1

) = f

0

(k

2

) : [k

1

=x]K

0

(�)

�; x : K ` k

0

: K

0

� ` k : K

� ` ([x : K]k

0

)(k) = [k=x]k

0

: [k=x]K

0

(�)

� ` f : (x : K)K

0

x 62 FV (f)

� ` [x : K]f(x) = f : (x : K)K

0

Figure 1. The inference rules of LF.
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� Functions in LF are called functional operations; a subset of these

are �-abstractions, written [x : K]k. The kinds of functional op-

erations are called dependent products, written (x : K)K

0

. Reduc-

tion of functional operations applied to objects in their domain

corresponds to �-reduction.

� Dependent products are the �-types of the framework, and should

not be confused with �-types in an object language like ECC or

UTT

3

. A signi�cant di�erence is the � rule for functional opera-

tions (which have dependent product kind). There is no equivalent

rule for �-types, although we can prove propositional equality for

�-types through use of the � rule [25] (p. 108).

� Object theories are speci�ed by declaring new constants and then

extending the de�nitional equality to specify the behaviour of the

constants. More precisely, the former corresponds to a new rule:

� valid

� ` k : K

and, for a kind K which is either Type or of the form El(A)

(but not a dependent product), one can assert computation rules

by writing k = k

0

: K, which introduces the following rule for

de�nitional equality:

� ` k : K � ` k

0

: K

� ` k = k

0

: K

For convenience, we allow several abbreviations of notation. We usually

omit the lifting operator El: this can be done safely since it will always

be clear where it must be inserted. Dependent products (x : K)K

0

where the bound variable x does not occur free in K

0

are abbreviated

4

to K ! K

0

. Finally, since we do not deal signi�cantly with object type

theories (i.e., our discussion concerns LF and extensions which allow

de�nition of object theories, rather than object theories themselves),

we allow the imprecision of calling kinds `types'.

2.2. Inductive Types and Inductive Families

A class of types that may be safely added to LF are inductive types,

as speci�ed by the schema in C&R (p. 177) (based on earlier work

3

ECC/Lego does not distinguish these, which can sometimes lead to confusion.

4

Earlier papers used the notation (A)B for this. But (A)B can also represent

an application of term A applied to term B, and requires type information to

disambiguate. We avoid this unnecessary complication.
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8 Callaghan & Luo

[12, 13, 22]). The addition is safe because it does not break useful meta-

theoretic properties such as strong normalisation and subject reduction:

see [15] for an investigation of the meta-theory. The schema identi�es a

class of inductive types which recurse through strictly positive opera-

tors, and speci�es how the elimination operators and computation rules

are formed for each type. An alternative explanation of the schema

(with details of how to implement it) may be found in [7]. Elimina-

tion over these inductive types is small; it cannot be used to de�ne

kinds. To de�ne a function value (e.g. of kind Nat ! Nat ! Bool)

by induction on the �rst Nat, one must use an elimination family

[n : Nat]�(Nat; [m : Nat]Bool).

For example, a type Nat of natural numbers can be de�ned as

Nat =

df

M[

�

�], where

�

� represents the kinds of the constructors {

in this case, kinds X and X ! X where X is a placeholder for the

name of the inductive type. The associated introduction operators are

zero =

df

�

1

[

�

�] : Nat and succ =

df

�

2

[

�

�] : Nat ! Nat. The elimination

operator and computation rules are:

E

Nat

=

df

E[

�

�]

: (C : Nat! Type)(c : C(zero))

(f : (x : Nat) C(x)! C(succ(x)))(n : Nat)C(n);

E

Nat

(C; c; f; zero) = c

E

Nat

(C; c; f; succ(x)) = f(x;E

Nat

(C; c; f; x)):

Inductive families are a generalisation of inductive types, where a

family of types is inductively de�ned. An extended schema for these is

given at the end of C&R. A standard example is the family of vectors:

the type name contains the length of the vector, so an empty vector

has type V ec(zero) and so on.

2.3. Coercive Subtyping

LF is extended with a notion of Coercive Subtyping in [25], with ad-

ditional studies in [20, 38, 28]. Coercive Subtyping is viewed as an

abbreviational mechanism of the meta-language (LF), and not part of a

particular object type theory. The machinery of subtyping is expressed

as a fundamental part of LF and object type theories can make use of it

by virtue of their de�nition in LF. Expressing subtyping as an extension

of LF also allows us to study various forms of subtyping in a general

framework, e.g. Bailey's notions of argument coercion, �-coercion, and

kind coercion [2] are instantiations of the underlying mechanism

5

.

5

Bailey implemented several forms of coercion in Lego for use in a large-scale

development [2]. See [36] for a comparable development in the Coq system.
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LF with Coercive Subtyping & Universes 9

A coercion is a function c : K ! K

0

, which lifts an object of kind K

to kind K

0

. The meaning of coercion use is expressed via the coercive

de�nition rule:

f : (x : K)K

0

k

0

: K

0

K

0

<

c

K

f(k

0

) = f(c(k

0

)) : [c(k

0

)=x]K

0

This says that term f(k

0

) abbreviates and is de�nitionally equal to

a term where the coercion is made explicit, namely f(c(k

0

)), when a

coercion c exists to lift object k

0

to the kind expected by the functional

operation f . Notice that coercions are only used in a context where

the expected kind is known, i.e. where we know both K and K

0

. A

concrete example: if f expects a vector but k

0

is a list, and there was a

coercion which converts lists to vectors, then term f(k

0

) would be well

typed and de�nitionally equal to the explicitly coerced form

6

. There

are other rules in the extended system LF

<

, such as for contravariant

sub-kinding on dependent products.

Coercive subtyping generalises notions of subset-based subtyping

(e.g. even numbers are a subtype of natural numbers by virtue of being

a subset), and of record-based inheritance (e.g. groups are a subtype of

monoids by virtue of a group being a monoid with extra structure). It

also allows novel forms of subtyping, e.g. in Natural Language seman-

tics, where coercions have provided elegant ways of analysing various

phenomena that are problematic in other approaches [27, 26].

But the extra power does not come without complication. When

using coercions, we require a property of coherence: the coercions de-

clared must be mutually compatible. In any sizeable example, several

coercions may be valid at a point, and we must be sure that all possibil-

ities lead to the same result (allowing us then to choose any of them).

So-called \coherence checking" of a set of coercions is in principle unde-

cidable, and thus an interesting question for implementations. A major

problem is with parametrized coercions, which are essential for realistic

(i.e., large-scale) use; e.g. �rst projection on arbitrarily parametrized

sigma types. The coherence checking in [2] and [36] is decidable because

both use a restricted form of coercion. One possibility for workable

coherence checking is a concept we call \dynamic checking", where we

only check coherence of the subset of actual coercions (i.e., fully instan-

tiated) applicable in a given term. This technique is being investigated

in Plastic [5].

Several meta-theoretic results have been proved about coercive sub-

typing for type theories such as UTT, subject to coherence. A key

6

This is a dependent coercion of kind (l : List

A

)V ec

A

(length

A

(l)). The range

depends on the argument: the size of the vector is the length of the list.
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10 Callaghan & Luo

result is \coercion completion": for every derivation in the type theory

extended with subtyping, one can always insert coercions correctly

(\coercion completion") to obtain a derivation in the original type

theory. A related result is conservativity: every judgement that is deriv-

able in the extended type theory and that does not use coercions, can

be derived in the original type theory [38]. Elimination of transitiv-

ity in sub-kinding has also been established; although elimination of

transitivity in sub-typing has not yet been proved.

The correct notion of reduction in LF

<

is typed reduction. Notice

that a term f(x) with an implicit coercion is not a ��-redex because

it cannot satisfy the typing premisses of the � rule or the � rule.

For reduction to occur, the coercion must be made explicit via the

coercive de�nition rule, resulting in a term which does satisfy the

appropriate premisses. Consequently, adding coercions does not add

new reductions to the system: it merely extends the class of well-typed

terms. This underlines the point that coercions are just abbreviations.

On this basis, it is conjectured that strong normalisation properties

can be transferred from an object theory speci�ed in LF to the object

theory extended with coercions [25]. Observe that the Church-Rosser

property does not hold if untyped �� reduction is used (consider the

term [x : Even]([y : Nat]y)(x), where Even < Nat). Unfortunately,

typed reduction is prohibitively expensive. But coercion completion

allows us to convert a term in LF

<

to a term in LF by inserting

appropriate coercions (see section 3.2), so untyped reduction is safe

when all coercions are inserted. Plastic uses untyped reduction.

There are many applications of subtyping, e.g. making type theory

more convenient to use by allowing abbreviation. The classic example

is the use of coercions between parts of algebraic structure, where one

may supply a value representing a group where (e.g.) a set is required:

one just `forgets' the additional structure. Coercions are also useful with

inductive data types: in [25], Luo outlines how simple coercions may be

lifted functorially over inductive types, e.g. coercing a List of element

type A to a List of element type B given a coercion c : A ! B. We

are also �nding interesting applications through regular use in Plastic:

the simple coercion from function spaces (i.e., non-dependent �-types,

see section 4.5.1) to the (dependent) �-types is proving very useful,

enabling one to use the most appropriate form in each case. Subtyping

also has applications with universes, as we discuss in section 4.4 with

concrete examples.
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LF with Coercive Subtyping & Universes 11

3. Plastic: an Implementation of LF

Plastic is an implementation of LF with inductive types, universes,

and coercive subtyping. It is a proof assistant in the style of Lego

7

and

Coq [35, 8]. As noted in the introduction, there are several motivations

for a new implementation, including: �rst implementation of LF, as

a tool for coercive subtyping research, and as a tool to investigate the

possibility of building customised reasoning tools on top of type theory.

The various motivations give rise to a collection of design goals: to keep

the core of the system simple, to allow easy embedding of the core in

customised reasoning tools, and to facilitate adaptation to di�erent

object type theories. Given the importance of inductive types to object

theories, we also require good performance from the inductive types.

Plastic

8

is implemented in the non-strict functional language Haskell

[18], and can be run via several implementations, e.g. the GHC compiler

[34]. It is best used with Aspinall's Proof General interface for xemacs

[1]. More information on Plastic can be found in [5, 6, 7]. Plastic cur-

rently uses a simple script-based model of interaction: Lego and Coq

use this model, whereas ALF [29] and its relatives (Alfa, Agda [9], etc.)

are based on direct term manipulation.

3.1. Overview of Core System

3.1.1. Notation in the Concrete Syntax

Plastic concrete syntax is shown in Courier font. The mapping be-

tween LF syntax and Plastic syntax is given below. Note that Plastic

uses curried forms of function application and such applications take

precedence over any operators, hence fewer parentheses are required.

LF form Plastic syntax Explanation

(x : K)K

0

(x:K)K' dependent products

K ! K

0

K -> K' non-dependent products

[x : K]k [x:K]k �-abstractions

f(a; b) f a b function application

7

The name `Plastic' reects the inuence of Lego, whilst recalling that Plastic

represents a meta-level version of Lego.

8

Binaries together with a few libraries are available by ftp. Contact the �rst

author for details.
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12 Callaghan & Luo

3.1.2. Abstract Syntax

This internal representation contains standard constructs for applica-

tion, binders, and names, plus it represents bound variables with de

Bruijn indices. There are also special constructs representing cases of

computation where certain optimisations are possible, e.g. with induc-

tive types [7]. This abstract syntax is equipped with standard algo-

rithms for reduction (via substitution) and other utilities. We do not

use any form of explicit substitution; the laziness of Haskell permits a

straightforward implementation.

3.1.3. Type checking and Conversion

Plastic uses several techniques from \The Constructive Engine" [19].

Since functional operations are typed, and there are no complications

such as universes in the core LF, type synthesis is performed by a

straightforward compositional algorithm and type checking of a term

M is performed by synthesising the type ofM and testing convertibility

with the claimed type. The convertibility test also follows [19], except

for � conversion which does not occur in the Constructive Engine. We

use the technique due to Coquand [11].

3.1.4. Parsing and Pretty-printing

The concrete syntax is simple, containing in�x operators, term juxta-

position, binding forms, and names. The parser is implemented using

a yacc-like tool for Haskell. Plastic allows several forms of syntactic

sugar. The pretty-printer makes use of a library of pretty-printing

combinators, and implements several compressions of information, such

as attening of application terms and nested binders. Users may con-

trol some aspects of pretty-printing, such as how to display implicit

coercions. The resulting layout is of high quality and easy to read.

3.1.5. Context Mechanisms

Plastic currently maintains a simple linear context which contains as-

sumptions (`hypotheses'), global de�nitions, and declarations of induc-

tive types. The main operation on the context is Cut, as in the LF rules;

it does a type-safe replacement of a hypothesis by a term, expanding

(where legal) any global de�nitions whose name is lost from scope.

3.1.6. Meta-variables

Plastic provides a basic form of meta-variable to �ll in information

which is inferrable with simple uni�cation techniques. (For more pow-

erful systems of meta-variables, see e.g. [31].) The functionality is im-

plemented as a `preprocessor' for the core system, and the separation

allows us to keep the core simple. Inside the core, meta-variables are
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LF with Coercive Subtyping & Universes 13

treated as hypotheses. The only core operation possible on them is

cutting with a term of convertible type. The core cannot distinguish

meta-variables from hypotheses, and there is no special treatment of

them inside the core.

New meta-variables may be added to the context at any time by

claiming a name of a given type, e.g.

> Claim some_name : A -> A -> B

Fresh meta-variables can also appear in a term as either unnamed

(symbol ?) or named (symbol ?foo { foo is a name chosen by the

user); appropriate meta-variables are added to the context if they are

not solved by constraints within the term. These meta-variables are

�rst order in the sense that one cannot abstract over them. Under a

binder, introducing a meta-variable that cannot be solved is an error,

for example the term [x : K]?f(x) (which needs higher order uni�cation

to solve).

The type inference algorithm in the preprocessor works by propa-

gating type constraints downwards when available (e.g. \this subterm

should have kindK"), and uses a form of the conversion test which cal-

culates (�rst-order) uni�ers. This technique (independently developed)

appears similar to that of [36], where one of its uses is to calculate

suitable arguments for parametrized coercions. Sa��bi also studies the

theoretical properties of his algorithms.

3.1.7. Development of Proofs

Lego and Coq implement a goal-directed proof state which controls

which subgoals the user must prove next. This style is ideal for expert

users and helps them to work e�ciently. Plastic uses a more exible

model, where the `user' can work on any unsolved meta-variable in the

current (linear) context and need not completely solve a meta-variable

before attempting another. In earlier work, we identi�ed this exibility

as being useful to applications like Mathematical Vernacular [6], and

potentially more convenient if the user was in fact another program.

Meta-variables are the central notion: proof is the process of devel-

oping instantiations for them. Proofs start with a Claim for the kind

representing that which is to be proved. The proof commands may act

on that claimed meta-variable, which in turn could introduce further

meta-variables (i.e., `sub-goals'). The main commands are explained

below; an example of their use appears in section 4.5. Each of them

takes an optional target meta-variable to act on, which defaults to

the most recent meta-variable (this gives an approximation to Lego's

goal-directed proof mode):
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14 Callaghan & Luo

Re�ne { this is modelled on the Lego command, with similar be-

haviour: it computes a term to instantiate a meta-variable M

of known type. It is implemented in terms of the meta-variable

preprocessor. Cut is applied to M using the computed term t, and

any new meta-variables arising (`sub-goals') are inserted in the

context immediately beforeM . A subset of the new meta-variables

may appear in t. Meta-variables which occur in the type ofM may

also be solved indirectly when the type is uni�ed with the type of

the instantiation t.

Intros { when used on a meta-variable M : (x:K)K', the context ap-

pearing after and including M is replaced with a hypothesis x : K

and a new meta-variable M' : K'. This creates a branch in the

context (the original context is hidden, awaiting a solution for M

{ there is no notion of branch switching as in [31]). In the new

context, the user must supply a term of kind K'.

Return { marks closure of an Intros, namely all meta-variables in-

troduced by (and since) the Intros have been solved. The action

is to abstract the solution for M' by x : K and cut the result into

the context existing prior to the corresponding Intros command.

3.1.8. Inductive Types

Plastic implements both inductive types and inductive families, each

of which may be parametrized. The syntax for these is based on Lego

and recursion is provided through elimination operators rather than

pattern-matching de�nitions

9

[31] (see examples in section 4.5). Details

of the basic implementation and optimisations can be found in [7].

3.1.9. Comments on Implementation

We are using a non-strict language, Haskell [18], whose implementa-

tions o�er various degrees of lazy evaluation. This allows us to write

algorithms in a natural way without being too concerned about the

run-time implications. For example, the implementation of substitution

is very close to a paper presentation of the algorithm with de Bruijn

indices. Laziness means that work is only done when required; thus in

a large term, the work of substitution is done incrementally, or not at

all if the subterm is never used in a computation. (In e�ect, this defers

responsibility for some aspects of evaluation to the compiler.) Contrast

this against a strict language. Typically, one needs to implement mech-

anisms to prevent substitutions being done throughout a large term,

9

Pattern matching is much more convenient to use. McBride is investigating how

his techniques may be adapted to the setting of LF.
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e.g. using explicit substitutions or an abstract machine. Such measures

do make the calculus or the implementation more complex.

Non-strict languages do have some disadvantages, primarily that

laziness adds overheads to the resource use of a program (time and

space). People have believed these to be too prohibitive for serious

use in the past. However, recent advances in compiler technology, e.g.

as implemented in GHC [34] have signi�cantly reduced this obstacle,

so Haskell is becoming a reasonable choice for many applications. As

evidence, the computation speed of Plastic compares favourably with

that of Coq (the fastest of contemporary type theory proof assistants,

and written in ocaml, a dialect of ML) on small examples (reduction

of large Church numerals (e.g. 10

7

) and sorting lists of numbers). But

note that we cannot make �rm conclusions about performance until

Plastic is tested on large developments of the size successfully handled

by Coq.

3.2. Coercive Subtyping

Plastic is being used to test ideas on coercive subtyping, in particu-

lar based on recent work in Durham [25, 20, 38, 28]. The forms of

coercion implemented include parametrized and dependent coercions,

non-dependent subkinding (e.g. allowing contravariant subtyping of

functions at the framework level), and the lifting of coercions over

inductive types [4]. There is also support for the use of coercions with

universes, as discussed in section 4.4 below. The implementation is

based on coercion insertion during type checking, as justi�ed by the

coercion completion results [38], and uses the meta-variable mechanism

to calculate appropriate parameters. However, this must not intro-

duce unsolved meta-variables: the missing information must be fully

inferrable by uni�cation.

Forms of coercive subtyping have been implemented in Lego by

Bailey [2] and in Coq by Sa��bi [36], but these have required various re-

strictions to remain tractable. Both implementations are based around

the concept of a �nite graph of coercions. Another restriction is use

of syntactic matching: a potential coercion only matches if the types

involved are syntactically equal. This is in contrast to matching based

on convertibility, which is much more general, although more expensive

to use. Plastic uses convertibility as the matching criteria.

Plastic can handle more coercions than Lego or Coq, in particular

the lifting of coercions over inductive types, but our coherence checking

(see section 2.3) is fairly primitive. In general, coherence checking is

undecidable, hence the restrictions in Lego and Coq. We expect that
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16 Callaghan & Luo

a mixture of theoretical and practical restrictions may be necessary to

retain feasibility of coercion use; for more discussion, see [5].

Notice that, in contrast to previous implementations, we cannot pre-

calculate �nite directed acyclic graphs of coercions as the closure of all

declared coercions. Consider the following rule, which allows the lifting

of arbitrary coercions over lists:

� ` A <

c

B

� ` List A <

map

A;B

(c)

List B

This pattern can be repeated in�nitely (i.e., A and B can be lists

themselves), so we cannot build a �nite graph containing all instances of

this rule and the resulting compositions with other coercions. Instead,

we must synthesise such coercions as they are required. The universe

lifting coercions below are a similar case.

4. Universes in LF and Plastic

4.1. Basic Theory

The type theory UTT, which is speci�ed as an object theory in LF,

contains a hierarchy of predicative universes Type

i

with an impredica-

tive universe Prop at its base. This hierarchy is speci�ed in the Tarski

style of universes (C&R p. 182). The cumulativity is represented by

means of explicit lifting operators, where codes from a universe are

injected into the next universe. This formulation is named \Universes

as uniform constructions" in [33]. El is explicit here, to reinforce the

distinction between types and their respective El-kinds.

� There is an impredicative universe Prop of propositions

10

. Prf

maps propositions to types; it is the decoding function for Prop.

Prop : Type

10

Prop is introduced by declaring the constants above plus the following:

8 : (A : Type)(A! Prop)! Prop

� : (A : Type)(P : A! Prop)((x : A)Prf(P (x)))! Prf(8(A;P ))

E

8

: (A : Type)(P : A! Prop)(R : Prf(8(A;P ))! Prop)

((g : (x : A)Prf(P (x)))Prf(R(�(A;P; g))))!

(z : Prf(8(A;P )))Prf(R(z))

and by asserting the following computation rule:

E

8

(A;P; R; f;�(A;P; g)) = f(g) : Prf(R(�(A;P; g))):

Notice that Prop is de�ned, and can be used, independently of universes; it is the

basis of second-order logic in UTT.
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LF with Coercive Subtyping & Universes 17

Prf : Prop! Type

� There are (predicative) universes of types, whose objects are (the

names of) types in that universe.

Type

i

: Type (i 2 !)

� For each universe Type

i

, there is a `decode' function which maps

names in Type

i

to a type in Type.

T

i

: El(Type

i

)! Type

� Prop has a name in Type

0

, which decodes to Prop. (Prop is the

lowest universe in the hierarchy.)

prop : El(Type

0

)

T

0

(prop) = Prop : Type

� There is a lifting function from Prop to Type

0

; names in Prop

decode to the types of their proofs.

t

0

: El(Prop)! El(Type

0

)

T

0

(t

0

(P )) = Prf(P ) : Type

� Each universe has a name in the next universe in the hierarchy;

such names decode to the appropriate universe.

type

i

: El(Type

i+1

)

T

i+1

(type

i

) = Type

i

: Type

� Every type with a name in Type

i

has a name in Type

i+1

by virtue

of lifting function t

i+1

; a lifted name decodes to the same result

as when unlifted.

t

i+1

: El(Type

i

)! El(Type

i+1

)

T

i+1

(t

i+1

(a)) = T

i

(a) : Type

4.2. Implementation

Lego and Coq implement their universe hierarchies directly, as part

of their abstract syntax and main algorithms. We prefer not to do

this in Plastic: it would orient the underlying core system towards
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18 Callaghan & Luo

a particular object type theory, and it may hinder experimentation

with di�erent formulations of universes. Rather than being restricted

to `pre-set' hierarchies, we aim to allow users to declare the universe

structures appropriate to their domain of interest. Thus, the design

must implement the Tarski style of universe in a way that has small

impact on the core, and is not tied to the details of the UTT hierarchy.

The key step is to realise that the universe names and decoding

functions have an inductive behaviour, namely the decoding functions

are elimination operators and the names are constructors. This observa-

tion allows us to implement the reduction behaviours via the underlying

reduction mechanism used for inductive types (described in [7]).

Thus, the `constructors' are internally represented as terms which

produce the required behaviour when the appropriate elimination oper-

ator is applied. For example, the constructor type

i

will decode to Type

i

when decoded with T

i+1

, as speci�ed in the rules. The decoding of the

lifting functions will do a form of recursion, calling the decode function

for the lower universe. The type system ensures that these constructors

are only used with appropriate eliminators, e.g. applying T

j

to type

i

where j 6= i + 1 (i.e., an incompatible use) will be caught as a type

error. This use of type information applies to all other names related

to universes.

The next issue is that the set of names encoding in�nite universes is

in�nite, so the implementation cannot rely on adding each new name

to the standard context, as is done for conventional entities. Our so-

lution is to store a `generator' for names in the context, and concrete

occurrences are generated as needed. For example, the name of universe

type

3

, which is written in Plastic

11

as type^3, is synthesised by apply-

ing the generator for the type

i

names to the index 3. The appropriate

generator is called each time a non-standard identi�er occurs in the

concrete syntax. The generator will also calculate the type of the name

(and the type itself may contain universe names, thus may need to use

other generators); this type can then be used as a conventional type in

the type-checking algorithms. Finally, the `base constructors' prop and

t

0

are implemented as concrete names (i.e., not as generators), with

appropriate behaviour under decoding with T

0

.

This generator scheme provides an external indexing of the universe

constants. Another possibility is an internal indexing, e.g. where Type

i

etc. are replaced by a family Type : (i : Nat)Type, but this does allow

quanti�cation over universe levels which is not intended in the original

theory.

11

Subscripts are not possible in ASCII, so we must �nd a simpler representation

for names like type

3

. The current representation is for our convenience; the obvious

alternative (e.g. type(3)) would require non-trivial changes to the parser.

impl-universes.tex; 26/09/2000; 14:27; p.18



LF with Coercive Subtyping & Universes 19

4.3. Universes and Inductive Types

4.3.1. Theory of Names in Universes

C&R (p. 183) outlines the relationship between inductive types and

universes. Intuitively, an inductive typeM has a name �

i

in Type

i

only

if all types A (i.e., A : Type) occurring in the kinds of its constructors

also have names in Type

i

. Such names ofM have behaviour T

i

(�

i

) =

M : Type. There is a minimal possible universe for M, which is the

lowest universe that all types A have names in; M has a name in

this universe and all higher universes. This restriction is required to

avoid paradox, and corresponds to the restrictions in the earlier theory

ECC, e.g. where �-types can only be formed for types at the same

universe level. Notice that an inductive type can never have a name in

Prop, reecting the intended distinction between logical propositions

and data types.

The approach used in [30, 32] is more explicit, although it considers

only a single universe. It is formulated in the Tarski style, with universe

U and decoding function T . A name �̂ constructs codes for �(A;B) in

universe U (using the notation of this paper):

a : U b(x) : U [x : T (a)]

�̂(a; b) : U

The computation rule is T (�̂(a; b)) = �(T (a); [x : T (a)]T (b(x))). This

pattern may be generalised to any type former, including inductive

types, and adapted to hierarchies of universes by providing a set of

names �̂

i

for each universe Type

i

(replacing U by Type

i

and T by T

i

).

4.3.2. Names in Practice

How are universes used, and speci�cally, how should one use universes

in LF? There is little experience to draw upon because the implemen-

tations of Russell-style universes successfully hide much of the detail of

universes. We identify three `modes'.

� Firstly, one can work with names of types inside speci�c universes.

Typically this occurs when a higher level of proof strength is

needed, e.g. proving distinctness of constructors, which cannot be

proved without universes [37].

� Secondly, one could be working with values of a type which has a

name in some universe. A key example of this is proof of propo-

sitions in UTT, using the universe Prop (with decoding function

Prf). The names P in Prop are the propositions being proved, and

proof aims to construct an inhabitant of Prf(P ).
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� Thirdly, the use of universes with inductive types. Because elimi-

nation is small, we cannot de�ne a value of a kind which contains

Type. Instead, induction must be done over a type which contains

Type

i

(where i is restricted by the universe constraints on the

terms involved). For example, to de�ne n : Nat ` U : Type, one

must re�ne U by some T

i

and use induction on n with elimination

family C : [n : Nat]Type

i

.

Furthermore, in ECC there is no concept of framework type (i.e.,

kind) and every type is a name in some universe. To use UTT in the

style of ECC (e.g. to provide an interface that is familiar to Lego users),

one would be forced to use only the names of types in universes.

Luo [24] (p. 183) mentions the issue of uniqueness of names (i.e. re-

quiring t

i+1

(�

i

) = �

i+1

: Type

i+1

), but suggests that it is not essential.

Note that names in universe Type

i

of the same M are extensionally

equal under the decoding function (T

i

) because the names all decode

toM (i.e. T

i+1

(t

i+1

(�

i

)) = T

i+1

(�

i+1

) =M). That uniqueness is not

essential implies that the structure of names is never used, only the

fact of their existence and their decoding behaviour. The theory does

not even require that the names �

i

are unique in the same universe, so

we would have names �

i

; �

0

i

; : : : as names forM in Type

i

. These facts

are signi�cant for implementation since it allows a simpler approach

to names. We also get a form of equivalence by declaring the universe

lifting functions as coercions (section 4.4), allowing one to treat a name

in Type

i

as if it was in a higher universe Type

i+j

, without needing to

lift it explicitly.

4.3.3. Implementation of Names

Of the two formulations above, the second is easier to understand.

The main di�erence occurs with the treatment of parametrized induc-

tive types. Parametrization is not part of the o�cial theory, but is

a convenience feature implemented in most systems. Without it, use

of inductive types would be very cumbersome, since a new inductive

type would be needed for each `instantiation'. Luo's formulation only

considers instances of parametrized types (i.e. �(A;B) for suitable A,

B), and it does not specify how the names �

i

should be generalised

with respect to the parameters.

Plastic currently provides two mechanisms. The �rst mechanism

constructs names for (parametrized) inductive types at any universe

level from the lowest valid level and upwards. Validity is governed

by the conditions for avoiding paradox, as explained above. The tech-

nique basically introduces names �

i

(which are functional operations

for parametrized types) for the LF-level nameM where:
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� the kind of �

i

is obtained by replacing each occurrence of Type in

the kind ofM with Type

i

, and then applying the decode function

T

i

to each occurrence of a bound variable whose kind was replaced;

� �

i

itself is a constructor for the relevant decoder T

i

; the action of

decoding must also decode the arguments that were converted to

universe names.

Space prevents a thorough explanation, so we present an example of

the result on �-types, where � has kind:

� : (A : Type)(B : A! Type)Type

then name �

i

of � in Type

i

is:

�

i

: (a : Type

i

)(b : T

i

a! Type

i

)Type

i

T

i

(�

i

a b) = � (T

i

a) ([x : T

i

a]T

i

(b x))

Speci�c names �

0

; �

1

; : : : are produced using the dynamic generator

technique used for Type^2 etc., providing names pi^0, pi^1, . . . on

demand. The resulting functionality is a generalisation of the way �̂ is

de�ned in [30, 32].

The second mechanism implemented relies on the observation that

unique names are not essential, and thus that speci�c names for a type

in a universe are not important. Names for a type in some universe

are generated dynamically when a name is needed as the argument to

a speci�c decode function, subject to universe circularity constraints.

This generation is done through via uni�cation and meta-variables.

Given a term t : A and a speci�c universe Type

i

, it essentially provides

a solution to the equation T

i

?n = A : Type. Metavariable n will be

replaced by a constant in Type

i

whose decoding behaviour is given by

this equation. No solution is given if i is lower than the minimum valid

universe for A. Whilst sometimes convenient to use, this method is not

as general as the previous one because one may not abstract over the

constant produced. At present, only the �rst method is used in the

Plastic libraries.

4.4. Coercions and Universes

Coercions have an important application with universes: the lifting

functions t

i

can be declared as coercions, hence providing automatic

lifting of universe names to higher universes [25]:

� valid

� ` Prop <

t

0

Type

0

: Type

� valid

� ` Type

i

<

t

i+1

Type

i+1

: Type
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Plastic does not implement this rule schema directly; instead, the user

must declare the lifting functions t

0

. . . t

i

as coercions, where i is the

highest universe needed for a particular proof. (In principle, implement-

ing the full rule directly is possible, and may be desirable given the

exponential increase of possible compositions of the lifting functions.)

Such coercions have been useful in our experiments so far.

4.5. Examples in Plastic

The main example is to prove distinctness of constructors for the Bool

type, i.e. false 6=

Bool

true, which is (NOT (Eq Bool false true)) in

Plastic syntax. We begin with auxiliary de�nitions.

4.5.1. Preliminaries

We introduce the inductive type Bool, with constructors true and

false. For reference, we show the type of E_Bool, the elimination

operator for Bool. Bool Type^0 is the (automatically generated) name

of Bool in universe Type

0

, which we abbreviate as bool. This name can

be used in any higher universe if the necessary lifting functions have

been declared as coercions.

> Inductive [Bool:Type]

> Constructors [true:Bool] [false:Bool];

> [ bool = Bool_Type^0 : El Type^0 ];

>

> -- E_Bool : (C:[b:Bool]Type) C true ->

> -- C false -> (b:Bool) C b

NOT A is the type of functions mapping objects in type A to objects

in the empty type (inductively de�ned, with no constructors). NOT is

parametrized by A; since in LF we cannot �-abstract over a dependent

product (the term [A : Type]A! Empty is not well-typed), we must

use a function space Fn (the in�x operator => is a synonym).

> Inductive [Empty:Type] Constructors;

> [ empty = Empty_Type^0 : El Type^0 ];

> Inductive [ A,B : Type ] [ Fn : Type ]

> Constructors [ La_ : (f:(x:El A)El B) Fn];

> [(=>) = Fn ];

> [ NOT = [A:Type] A => Empty : Type -> Type ];

Lastly, we require a substitutive equality; we use Martin-L�of's inductive

Equality at the Type level, and have proved Eq_subst for it. Notice

that Eq is a parametrized inductive family.
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> Inductive

> [A:Type][Eq : (x:El A)(y:El A)Type]

> Constructors

> [Eqr : (z:El A)Eq z z];

> [ Eq_subst

> = ...

> : (A:Type)(m,n:A)(P:A->Type)Eq ? m n -> P m -> P n];

4.5.2. Distinctness of Constructors

A simple use of universes is to prove distinctness of constructors [37].

The standard technique is to assumeH : false =

Bool

true and construct

an inhabitant for Empty from this. A type-valued auxiliary function f is

de�ned by induction on a Bool, which maps true to Empty and false to

some non-empty type (e.g. Bool). Because of small elimination, it must

produce names in Type

0

rather than types in Type. Proving inhabita-

tion of Empty is equivalent to proving inhabitation of T

0

(f(true)). We

use substitutivity and H to produce a new goal of T

0

(f(false)), which

is trivially true. The Plastic proof is the following:

1. > Claim false_not_true : NOT (Eq ? false true);

2. > Refine La_;

3. > Intros H;

4. > [f = E_Bool ([y:Bool]Type^0) empty bool];

5. > Equiv T^0 (f true);

6. > Refine Eq_subst ? ? ? ([b:Bool]T^0 (f b)) H ?object;

7. > object Refine false;

8. > ReturnAll;

The �rst line introduces a new meta-variable, with the given type.

In order to use Intros, we must �rst `unpack' the inductive value by

re�ning with its constructor La_ to expose the dependent product. Line

(4) de�nes the auxiliary function, mapping true to empty and false

to bool. Induction on a value is achieved by using the elimination

operator with appropriate arguments. Line (5) is a convenience for

the user, rewriting the type of the most recent meta-variable if the

type is convertible with the given term. Eq_subst produces a new goal

T

0

(f(false)), using the equality hypothesis H; the subterm ?object is a

named fresh meta-variable, giving a speci�c name to the entry added to

the context. Line 7 targets this speci�c meta-variable by name. Finally,

all open Intros (just one here) are closed by ReturnAll, e�ectively

discharging the hypotheses. The resulting term is shown below.
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=> false_not_true

=> = La_ (Eq Bool false true)

=> Empty

=> ([H:El (Eq Bool false true)]

=> [f=E_Bool ([b:El Bool]Type^0) empty bool]

=> Eq_subst Bool false true

=> ([b:El Bool]T^0 (f b)) H false)

=> : NOT (Eq Bool false true)

4.5.3. Names of Inductive Types, with Coercions

This example shows names of the function space Fn in conjunction

with universe lifting by coercion. Lifting functions t

0

: : : t

6

have been

declared as coercions; by transitivity, several composite coercions are

now available, such as [x : Type

2

]t

4

(t

3

(x)) : Type

2

! Type

4

. We �rst

de�ne synonyms for Fn in Type

0

and Type

2

, and a name for Bool

in Type

0

. De�nition e1 is the name of a function Bool => (Bool =>

Bool) in Type

2

, as demonstrated by its decoding. It uses a coercion

from Type

0

to Type

2

. De�nition e2 is a functional operation from a

name in Type

5

, to its decoding in Type

6

(note the coercion). When

reduced to normal form, e2 yields the expected underlying function.

> [bool = Bool_Type^0 : Type^0];

> [fn0 = Fn_Type^0

> : (A:Type^0)(B:T^0 A -> Type^0) -> Type^0];

> [fn2 = Fn_Type^2

> : (A:Type^2)(B:T^2 A -> Type^2) -> Type^2];

> [e1 = fn2 bool (fn0 bool bool)];

> Normal T^2 e1; -- gives Bool => (Bool => Bool)

> [e2 = [t : Type^5]T^6 t : Type^5 -> Type];

> Normal e2 e1; -- gives Bool => (Bool => Bool)

The next example shows more complex aspects of coercive sub-

typing, using � types, declared below, whose names in Type

i

were

introduced in section 4.3.3 (the �

i

are written Pi Type^i here). Observe

that de�nition e3 expects a functional operation involving names in

Type

2

, but e4 uses names in Type

0

and Type

1

. The application is e3

e4 is well-typed by virtue of subtyping over dependent product kinds

[28] (p. 8), by virtue of a coercion on functions

12

, and decodes to the

expected result.

12

The term is [f : T

1

(t

1

(bool))! Type

0

][x : T

2

(t

2

(t

1

(bool))]t

2

(t

1

(f(x))).
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> Inductive [A : Type][B : (x:El A) Type][Pi : Type]

> Constructors [ La : (f:(x:El A)El (B x)) Pi];

> [pi2 = Pi_Type^2

> : (A:Type^2)(B:T^2 A -> Type^2) -> Type^2];

> [e3 = pi2 bool : (T^2 bool -> Type^2)-> Type^2];

> [e4 = [a:T^1 bool]prop : T^1 bool -> Type^0];

> Normal T^2 (e3 e4); -- gives Pi Bool ([x:Bool]Prop)

4.5.4. Setoids in LF

Setoids are a type together with an equivalence relation on that type.

This can be represented as an (inductively de�ned) dependently-typed

record with constructor mk setoid : (A : Type)EqRel(A) ! Setoid,

but the schema for inductive types prevents the occurrence of Type

in the kind of any constructor. We must use universes and supply the

name of the intended type in some universe. The following de�nes the

structure. We could avoid use of T^0 by de�ning EqRel on universe

names rather than types; there are several possible representations.

> Inductive [Setoid:Type]

> Constructors [mk: (ca:El Type^0)

> (eqr:El (EqRel (T^0 ca)))

> Setoid];

4.6. Discussion

Readers may have realised that Setoid above is only usable with types

having names in Type

0

. This is less attractive than ECC/Lego with the

universe polymorphism of Harper and Pollack [17] (henceforth H-P).

In Lego, one can use the symbol Type and the implementation assigns

appropriate universe levels internally each time the de�nition is used.

What can we do for setoids in LF? First note that a small number

of universe levels is su�cient in practice, and that the full power of

H-P is rarely required. Furthermore, users do not really mind which

universe levels are used, as long as cycles in universe use, and hence

inconsistencies, are avoided.

With the current form of Plastic, this suggests the following tech-

nique: one chooses a suitably high universe level, su�cient to accom-

modate the constraints of one's application, and names it e.g. de�ne

[TYPE = Type^4]. This need not be chosen precisely, but extremes

are not recommended. Setoids can then be de�ned in terms of this

name. Coercions will provide automatic lifting to the appropriate level.
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Should the initial choice be too low, the de�nition can be changed. New

coercions will be inserted appropriately in the relevant proofs. For �ner

control, one could provide names for the i universes immediately below

TYPE; this convention is used in the Lego library (TYPE_minus1 etc.).

Clearly this is not equivalent to H-P, e.g. there is no polymorphism

in universe levels. But is a system with Tarski universes and coercive

subtyping at a disadvantage compared to Lego? We argue this is not

the correct comparison. Instead, one should compare it against just

Russell-style universes and regard use of H-P as an orthogonal issue,

since there is no reason why we cannot implement it in Plastic too.

Russell-style universes identify names and types, and contains a form of

subtyping (of universes, via cumulativity); both are intended to make

its use easier, and do achieve this aim although addition of H-P is

desirable for practical use. Tarski universes in isolation are held to be

less convenient to work with. But by adding coercive subtyping, we

regain much of the convenience, even gaining some of the exibility of

H-P (because we do not need to be precise about all universe levels),

plus with Tarski universes there are additional bene�ts of precision,

clarity, and better theoretical properties in conjunction with inductive

types. Tarski universes with coercive subtyping seems the better option.

There are several possible extensions to this implementation of uni-

verses. It is possible to construct universes with greater proof-theoretic

strength [33]. It may be desirable to provide internally indexed uni-

verses: rather than a set of names Type

0

, Type

1

, . . . we provide a family

Type : Nat ! Type with decoding function T : (n : Nat)Type(n) !

Type. Such universes could be indexed by other types, e.g. Nat+ 1 to

represent a hierarchy of universes plus a separate universe. This may

support the implementation of multiple universe structures.

We will also study ways to make the universes easier to use. The use

of H-P was mentioned above; the algorithms may need modi�cations to

work with user-declared universe structures. Internalising H-P may be

bene�cial to understanding its e�ects. We may also allow the decoding

functions T

i

: Type

i

! Type to behave as a special case of coercion,

particularly the decoder for the universe TYPE (such functions are not

currently allowed in the framework of coercive subtyping).

Finally, we will undertake case studies of universe use. McBride's

work on programming with dependent types [31], which we wish to

adapt to the setting of LF, is an important source of examples. For

example, McBride's general treatment of the property of distinctness

of constructors for arbitrary inductive families (cf the simple proof in

section 4.5.2) makes signi�cant use of universes. Some of this work has

already been translated to LF, and is suggesting several fruitful areas

for future work.
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