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Abstract

Coercive subtyping is a general approach to abbreviation and subtyping in depen-
dent type theories with inductive types. Coherence and admissibility of transitivity
are important both for understanding of the framework and for its correct im-
plementation. In this paper, we study the issue of transitivity in the context of
subtyping for parameterised inductive types. In particular, we propose and study
the notion of weak transitivity and show that, for a large class of parameterised
inductive types, the natural subtyping rules are coherent and weak transitivity is
admissible in an intensional type theory. A possible extension of type theory with
certain extensional computation rules is also discussed for achieving admissibility
of transitivity in general.

1 Introduction

Coercive subtyping has been studied as a promising general approach to ab-
breviation and subtyping in dependent type theories with inductive types (see,
for example, [16,17]). It has been implemented in several proof assistants such
as Coq [3], Lego [19] and Plastic [7] and used effectively in proof development
(e.g., [2]).

In coercive subtyping, the subtyping relation between any two types is associ-
ated with a coercion between them. A is a subtype of B if there is a (unique)
coercion c from A to B, where c is a functional operation from A to B in the
type theory. Therefore, any object of type A may be regarded as (an abbrevi-
ation of) an object of type B via coercion c. Note that this is different from
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the more traditional understanding of subtyping via subsumption. (See the
next section for more on this together with a brief introduction to coercive
subtyping.)

Coherence and admissibility of transitivity are crucial properties of any coer-
cive subtyping system. Coherence essentially says that coercions between any
two types are unique, while admissibility of transitivity (or transitivity elimi-
nation) is obviously important as for any subtyping system. Besides ensuring
the logical correctness of a coercive subtyping system, these properties are also
the basis for a correct implementation.

This paper studies transitivity and coherence for parameterised inductive
types and the associated subtyping rules. We propose and study the notion
of weak transitivity, to be explained below, and show that, for a large class of
parameterised inductive types, the natural subtyping rules are coherent and
weak transitivity is admissible in an intensional type theory.

A problem with transitivity In the presentation of coercive subtyping in
[17], the following transitivity rule is included:

(Trans)
Γ ⊢ A <c B: Type Γ ⊢ B <c′ C: Type

Γ ⊢ A <c′◦c C: Type

Intuitively, it says that the composition of two coercions is also a coercion,
the coercion corresponding to transitivity. In [13], it has been proved that the
transitivity rule is admissible for certain subtyping rules, such as those for
Π-types and Σ-types.

However, the above transitivity rule is sometimes too strong (in intensional
type theories). For some parameterised inductive data types together with
natural subtyping rules, especially when the inductive type has more than
one constructor, the above rule fails to be admissible or eliminatable. For in-
stance, for the inductive type of lists List(A) parameterised by its element
type A, if we introduce the following subtyping rule, where map(A, B, c) is
the application of the usual map function to the coercion function c
such that map(A, B, c)(nil(A)) = nil(B) and map(A, B, c)(cons(A, a, l)) =
cons(B, c(a), map(A, B, c)(l)):

Γ ⊢ A <c B: Type

Γ ⊢ List(A) <map(A,B,c) List(B): Type

then the transitivity rule (Trans) fails to be admissible. If we add (Trans)
together with the above rule to the system, coherence fails. To see this, suppose
that we have types F , E and N such that F <c1 E and E <c2 N . Then, by
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(Trans), F <c2◦c1 N . By the above subtyping rule for lists, we have

List(F ) <map(F,E,c1) List(E),

List(E) <map(E,N,c2) List(N),

List(F ) <map(F,N,c2◦c1) List(N).

By the transitivity rule (Trans), we also have

List(F ) <map(E,N,c2)◦map(F,E,c1) List(N).

Now, the problem is that map(F, N, c2 ◦ c1) is not computationally equal to
map(E, N, c2)◦map(F, E, c1) in an intensional type theory, although we know
that they are extensionally equal. In other words, we have two coercions be-
tween List(F ) and List(N) which are not computationally equal and hence
coherence fails.

Remark 1.1 The problem shown in the above example arises when we con-
sider subtyping rules for parameterised inductive types. This itself is a difficult
issue, but these subtyping rules are powerful and useful.

Weak transitivity – a proposed solution Rather than the above (strong)
transitivity rule (Trans), we introduce a weaker notion of transitivity – weak
transitivity, which can informally be represented by the following rule:

(WTrans)
Γ ⊢ A <c B: Type Γ ⊢ B <c′ C: Type

Γ ⊢ A <c′′ C: Type

It says that, if A <c B and B <c′ C, then A <c′′ C for some coercion c′′. Fur-
thermore, we require that c′′ be extensionally equal to c′ ◦ c (see Section 4.2
for the treatment of the equality requirement). The essential difference com-
pared with the strong transitivity rule (Trans) is that we are only concerned
with the existence of a coercion that is extensionally equal to the composition.
Weak transitivity expresses the adequate requirement enough for the applica-
tion of coercive subtyping. For many natural subtyping rules for parameterised
inductive types, weak transitivity is admissible, as shown in this paper, but
the strong transitivity rule (Trans) is not.

WT-schemata Through our investigation, we have also found out that weak
transitivity does not hold for some parameterised inductive types such as
dependent Σ-types which involve certain form of dependency between param-
eters. We show how such dependency can be made precise – we consider, in
Section 3, a restricted form of inductive schemata – WT-schemata, which for-
bid such dependency and the inductive types generated from which enjoy weak
transitivity. (Note that the harmful dependency is some form of dependency
between parameters. Forbidding such dependency does not mean that all of
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the dependent types are excluded. See more details in Section 3 and Section
6.) For such inductive schemata, we develop a general method, which is also
useful for implementation, to give the subtyping rules and the definition of
coercions for a large class of parameterised inductive types. Then, in Section
4.1, we prove the coherence and the admissibility of weak transitivity (and
substitution) of the coercive subtyping system with these rules. Section 4.2
discusses the equality requirement for weak transitivity and shows that the
general coercions we define satisfy the extensional equality requirement.

Extensional computation rules As seen in the above example of lists and
later, the problem arises from the fact that certain extensional equalities do
not hold computationally in intensional type theories. For example, it is not
the case that map(F, N, c2 ◦ c1) and map(E, N, c2) ◦ map(F, E, c1) are com-
putationally equal. It is shown that, if we consider such a restricted form of
extensional equality rules as computational, inductive types generated by any
inductive schema, including those excluded by the WT-schemata, can be as-
sociated with natural subtyping rules which are proved to be coherent and
satisfying transitivity elimination. Discussions are given in Section 5 whether
such equalities can or should be regarded as computational.

2 Coercive subtyping

We give in this section a brief introduction to coercive subtyping and explain
some background notations to be used in latter sections.

2.1 Coercive subtyping: the basic idea and overview

Two views about types and subtyping In the literature, there have been
two different views of types and consequently, two related but different views
about subtyping. The more traditional view, as often found in the study of
programming languages, is that of type assignment. Under this view, types are
assigned to objects, which already exist. Considered in this way, it is natural to
think that an object may have more than one type and a type A is a subtype
of type B if all objects of A are also objects of B. This is the typical view
to understand the notion of subtyping by means of the so-called subsumption
rule.

The other view considers the relationship between types and objects in a dif-
ferent way; we call this view as that of canonical objects, which is well accepted
in the community of dependent type theories (c.f., Martin-Löf’s type theory
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[21]). Under this view, types are considered as consisting of their canonical
objects and the objects and their types depend on each other and do not exist
independently. For example, the type N of natural numbers consists of the
canonical numbers 0 and succ(n) and the natural numbers only exist because
they are objects of N . This view of canonical objects is the basis to consider
various inductive types in type theory, where there are associated reasoning
principles (elimination rules) expressing that, in order to prove a property for
all objects of an inductive type, one only has to prove it for all of its canonical
objects.

If types are considered as consisting of their canonical objects, it is difficult to
see how subtyping could be understood or introduced by means of subsump-
tion. To do so, one would have to ask questions like: Would the canonical
objects of a subtype also be canonical objects of a supertype? How would
reasoning principles be formulated to take care of the objects introduced by
subtyping relations? Obviously, such thinking leads to difficulties.

Fortunately, the notion of subtyping can be understood in a different way, by
means of the existence of coercions: A is a subtype of B if there is a (unique)
coercion from A to B, where a coercion is a special function from A to B.
Coercive subtyping is based on the view of canonical objects and employs
coercions in establishing subtyping relations.

Remark 2.1 The notion of coercion has been studied in the literature for
simple type systems and for the simpler type systems, one can show that sub-
sumption and coercion are equivalent (see, for example, [23,22]). However,
when more sophisticated types (e.g., various inductive types) are considered,
such an equivalence does not hold anymore and it is difficult to see how the
view of type assignment and the notion of subsumption can be used to introduce
subtyping.

Coercive subtyping In coercive subtyping, a type is a subtype of another
type if there is a unique coercion between them. A coercion plays the role of
abbreviation. More precisely, if c is a coercion from K0 to K, then a functional
operation f from K to K ′ can be applied to any object k0 of K0 and the
application f(k0) is definitionally equal to f(c(k0)). Intuitively, we can view
f as a context which requires an object of K; then the argument k0 in the
context f stands for its image of the coercion, c(k0). Therefore, one can use
f(k0) as an abbreviation of f(c(k0)).

Remark 2.2 Note that this is different from the traditional view of subtyping
where, as explained above, subsumption is the central idea by which supertypes
contain also those objects of their subtypes. In coercive subtyping, types do
not obtain more objects through subtyping. Although f(k0) is now a well-typed
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object of K ′, it abbreviates f(c(k0)) which is already an object of K ′. Another
way to look at this issue is that subsumption is based on ”overloading terms”,
that is, a term (typically a λ-term) resides in its type and the supertypes of its
type. In coercive subtyping, we do not have such overloading – a term such as
f(k0) may inhabit K ′ only because that it abbreviates the object f(c(k0)), an
object of K ′.

The above simple idea becomes very powerful when formulated in the logi-
cal framework. Various useful mechanisms of coercion can be represented [2]
and they are very useful in the practice of proof development. The framework
of coercive subtyping covers a variety of subtyping relations including those
represented by parameterised coercions and coercions between parameterised
inductive types. For example, see [17,2,7,18] for details of some of these devel-
opment and applications of coercive subtyping.

Some important meta-theoretic aspects of coercive subtyping have been stud-
ied. In particular, the results on conservativity and on transitivity elimination
for subkinding have been proved in [27]. The conservativity result says, in-
tuitively, that every judgement that is derivable in the theory with coercive
subtyping and that does not contain coercive applications is derivable in the
original type theory. Furthermore, for every derivation in the theory with coer-
cive subtyping, one can always insert coercions correctly to obtain a derivation
in the original type theory. The main result of [27] is essentially that coherence
of basic subtyping rules does imply conservativity. These results not only jus-
tify the adequacy of the theory from the proof-theoretic consideration, but also
provide the proof-theoretic basis for implementation of coercive subtyping.

Coercion mechanisms with certain restrictions have been implemented both in
the proof development system Lego [19] and Coq [3], by Bailey [2] and Saibi
[26], respectively. Callaghan of the Computer Assisted Reasoning Group at
Durham has implemented Plastic [7], a proof assistant that supports logical
framework and coercive subtyping with a mixture of simple coercions, pa-
rameterised coercions, coercion rules for parameterised inductive types, and
dependent coercions [20].

Related work The early development of the framework of coercive subtyp-
ing is closely related to Aczel’s idea in type-checking overloading methods for
classes [1] and the work on giving coercion semantics to lambda calculi with
subtyping by Breazu-Tannen et al [6]. Bailey, Saibi, and Callaghan’s respec-
tive implementations of coercions in the proof systems Lego, Coq and Plastic
are important contributions [2,26,7]. Barthe and his colleagues have studied
constructor subtyping and its possible applications in proof systems [4,5]. A
logical approach to the study of subtyping in system F can be found in [11]
and Chen has studied the issue of transitivity elimination in that framework
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[8]. One of Chen’s proof methods was used in one of our earlier papers [13] to
prove the admissibility of transitivity in the framework of coercive subtyping.
This paper is a further development of [14].

2.2 Coercive subtyping: a formal presentation

Coercive subtyping [17] is formally formulated as an extension of (type theories
specified in) the logical framework LF [15], whose rules are given in Appendix
A. (The LF here is different from the Edinburgh Logical Framework [10].)
Types in LF are called kinds. The kind Type represents the conceptual universe
of types and a kind of the form (x : K)K ′ represents the dependent product
with functional operations f as objects (e.g., abstraction [x : K]k′) which can
be applied to objects of kind K to form application f(k). For every type (an
object of kind Type), El(A) is the kind of objects of A. A kind is small if
it does not contain Type. LF can be used to specify type theories, such as
Martin-Löf’s type theory [24] and UTT [15].

Notation 2.3 We shall use the following notations:

• We often write (K)K ′ for (x : K)K ′ when x does not occur free in K ′, and
A for El(A) and hence (A)B for (El(A))El(B) when no confusion may
occur.

• Substitution: We sometimes use M [x] to indicate that variable x may occur
free in M and subsequently write M [N ] for [N/x]M , when no confusion
may occur.

• Functional composition: for f : (K1)K2 and g: (K2)K3, define g ◦ f =df [x :
K1]g(f(x)): (K1)K3, where x does not occur free in f or g.

A system with coercive subtyping, T [R], is an extension of any type theory
T specified in LF. It can be presented in two stages: first we consider the
system T [R]0, which is an extension of T , with subtyping judgements of the
form Γ ⊢ A <c B: Type; then the system T [R], which is an extension of
T [R]0, with subkinding judgements of the form Γ ⊢ K <c K ′. The rules for
subkinding include, for example, the basic subkinding rule, that lifts subtyping
to subkinding:

Γ ⊢ A <c B: Type

Γ ⊢ El(A) <c El(B)

and the coercive definition rule:

Γ ⊢ f : (x : K)K ′ Γ ⊢ k0: K0 Γ ⊢ K0 <c K

Γ ⊢ f(k0) = f(c(k0)): [c(k0)/x]K ′

7



As we are mainly concerned with the subtyping rules and their transitivity
and coherence (in T [R]0), we shall omit the details of the kind level in this
paper. (See, for example, [17] for more details.)

T [R]0 is an extension of T with the following rules:

• A set R of subtyping rules whose conclusions are subtyping judgements of
the form Γ ⊢ A <c B: Type.

• The congruence rule for subtyping judgements

(Cong)

Γ ⊢ A <c B: Type

Γ ⊢ A = A′: Type Γ ⊢ B = B′: Type Γ ⊢ c = c′: (A)B

Γ ⊢ A′ <c′ B′: Type

In the presentation of coercive subtyping in [17], T [R]0 also has the following
substitution and transitivity rules:

(Subst)
Γ, x : K, Γ′ ⊢ A <c B: Type Γ ⊢ k: K

Γ, [k/x]Γ′ ⊢ [k/x]A <[k/x]c [k/x]B: Type

(Trans)
Γ ⊢ A <c B: Type Γ ⊢ B <c′ C: Type

Γ ⊢ A <c′◦c C: Type

Since we consider in this paper the admissibility of transitivity and substitu-
tion, we do not include the above two rules as basic rules.

The most basic requirement for the subtyping rules (in R) is that of coherence,
given in the following definition, which essentially says that coercions between
any two types must be unique.

Definition 2.4 (coherence condition) We say that the subtyping rules are
coherent if T [R]0 has the following coherence properties:

(1) If Γ ⊢ A <c B: Type, then Γ ⊢ A: Type, Γ ⊢ B: Type, and Γ ⊢ c: (A)B.
(2) Γ 6⊢ A <c A: Type for any Γ, A and c.
(3) If Γ ⊢ A <c B: Type and Γ ⊢ A <c′ B: Type, then Γ ⊢ c = c′: (A)B.

Remark 2.5 This is a weaker notion of coherence as compared with that given
in [17], since there the rules (Subst)(Trans) are included in T [R]0. In general,
when parameterised coercions and substitutions are present, coherence is un-
decidable. This is one of the reasons one needs to consider proofs of coherence
in general.

Well-defined coercions After new subtyping rules are added into R, we need
to prove that the system is still coherent and that the transitivity rule and
substitution rule are admissible. A general strategy we adopt is to consider
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such proofs in a stepwise way. That is, we first suppose that some existing
coercions (possibly generated by some existing rules) are coherent and have
good admissibility properties, and then prove that all the good properties are
kept after new subtyping rules are added. This leads us to define the following
concept of well-defined coercions (WDC) [13].

Definition 2.6 (well-defined coercions) If C is a set of subtyping judge-
ments of the form Γ ⊢ M <d M ′: Type which satisfies the following conditions,
we say that C is a well-defined set of judgements for coercions, or briefly called
Well-Defined Coercions (WDC).

(1) (Coherence)
(a) Γ ⊢ A <c B: Type ∈ C implies Γ ⊢ A: Type, Γ ⊢ B: Type and

Γ ⊢ c: (A)B.
(b) Γ ⊢ A <c A: Type /∈ C for any Γ, A, and c.
(c) Γ ⊢ A <c1 B: Type ∈ C and Γ ⊢ A <c2 B: Type ∈ C imply Γ ⊢ c1 =

c2: (A)B.
(2) (Congruence) Γ ⊢ A <c B: Type ∈ C , Γ ⊢ A = A′: Type, Γ ⊢ B =

B′: Type and Γ ⊢ c = c′: (A)B imply Γ ⊢ A′ <c′ B′ ∈ C .
(3) (Transitivity) Γ ⊢ A <c1 B: Type ∈ C and Γ ⊢ B <c2 A′: Type ∈ C

imply Γ ⊢ A <c2◦c1 A′: Type ∈ C .
(4) (Substitution) Γ, x : K, Γ′ ⊢ A <c B: Type ∈ C implies Γ, [k/x]Γ′ ⊢

[k/x]A <[k/x]c [k/x]B: Type ∈ C , for any k such that Γ ⊢ k: K.
(5) (Weakening) Γ ⊢ A <c B: Type ∈ C , Γ ⊆ Γ′ and Γ′ is valid imply

Γ′ ⊢ A <c B: Type ∈ C .

Remark 2.7 One may change the third condition (transitivity) to weak tran-
sitivity, i.e., Γ ⊢ A <c1 B: Type ∈ C and Γ ⊢ B <c2 A′: Type ∈ C imply
Γ ⊢ A <c3 A′: Type ∈ C for some c3 such that c3 and c2 ◦ c1 are extensionally
equal. This weaker condition is also sufficient for the following development
in this paper, except that some lemmas and proofs require minor changes.

In this paper, we consider the system of coercive subtyping in which the set
R of the subtyping rules contains the following rule, where C is a WDC:

(C)
Γ ⊢ A <c B: Type ∈ C

Γ ⊢ A <c B: Type

2.3 Inductive schemata and parameterised inductive types

Inductive types are generated by inductive schemata, as studied, for example,
in [9,25]. In this subsection, we lay down some notations of inductive schemata,
to be used in the next section (see Chapter 9 of [15] for more details). We shall
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first give some formal definitions and then some examples to explain.

Definition 2.8 (inductive schemata)

• A strictly positive operator Φ, with respect to a type variable X and a valid
context Γ, is of one of the following forms:

(1) Φ ≡ X , or
(2) Φ ≡ (x : K)Φ0, where K is a small kind and Φ0 is a strictly positive

operator.
• An inductive schema Θ, with respect to a type variable X and a valid context

Γ, is of one of the following forms:
(1) Θ ≡ X , or
(2) Θ ≡ (x : K)Θ0 , where K is a small kind and Θ0 is an inductive schema,

or
(3) Θ ≡ (x : Φ)Θ0 , where Φ is a strictly positive operator, Θ0 is an inductive

schema, and x 6∈ FV (Θ0).

Any finite sequence of inductive schemata Θ ≡< Θ1, ..., Θm > (m ∈ ω) gener-
ates an inductive type M [Θ], with its introduction, elimination and computa-
tion rules. In this paper, we shall consider the following form of parameterised
inductive types:

T =df [Y1 : P1]...[Yn : Pn]M [Θ]

where Y1, ..., Yn are parameters (λ-abstracted bound variables) and P1, ..., Pn

are kinds. One can specify such parameterised types in LF by declaring the
following constant expressions, where Y = Y1, ..., Yn:

T : (Y1 : P1)...(Yn : Pn)Type

lj : (Y1 : P1)...(Yn : Pn)Θj[T (Y )] (j = 1, ..., m)

ET : (Y1 : P1)...(Yn : Pn)(C : (T (Y ))Type)

(f1 : Θ◦

1[T (Y ), C, l1(Y )])...

(fm : Θ◦

m[T (Y ), C, lm(Y )])

(z : T (Y ))C(z)

and asserting the following computation rules: (j = 1, ..., m)

ET (Y , C, f, (lj(Y , Θv
j )) = fj(Θ

♯
j) : C(lj(Y , Θv

j ))

where Θ◦, Θv and Θ♯ are formally introduced in the following definition and
will also be used in latter sections.

Definition 2.9 Let Φ be a strictly positive operator and Θ an inductive schema.
For A: Type, C: (A)Type, f : (x : A)C(x), y: Φ[A] and z: Θ[A],

• define kind Φ∗[C, y] as follows:
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(X)∗[C, y]= C(y)

((x : K)Φ0)
∗[C, y]= (x : K)Φ∗

0[C, y(x)]

• define kind Θ◦[A, C, z] as follows:

(X)◦[A, C, z] =C(z)

((x : K)Θ0)
◦[A, C, z] = (x : K)Θ◦

0[A, C, z(x)]

((x : Φ)Θ0)
◦[A, C, z] = (x : Φ[A])(x′ : Φ∗[C, x])Θ◦

0[A, C, z(x)]

• define Φ♮[f, y] as follows:

(X)♮[f, y] = f(y)

((x : K)Φ0)
♮[f, y] = [x : K]Φ♮

0[f, y(x)]

• Assume that Θ be of the form (x1 : M1)...(xs : Ms)X and x1, ..., xs are
fresh variables. Then Θv =< x1, ..., xs > and Θ♯ is defined as the following
sequence of arguments:

(1) if Θ ≡ X then Θ♯ =< >
(2) if Θ ≡ (xt : K)Θ0 then Θ♯ =< xt, Θ

♯
0 > (t = 1, ..., s)

(3) if Θ ≡ (xt : Φ)Θ0 then Θ♯ =< xt, Φ
♮[ET (A, C, f), xt], Θ

♯
0 > (t = 1, ..., s)

Example 2.10 We give three examples of parameterised inductive types.

(1) Lists: List =df [A : Type]M [X, (A)(X)X]. This is equivalent to declaring
the following constants:

List : (A)Type

nil : (A : Type)List(A)

cons : (A : Type)(a : A)(l : List(A))List(A)

EList : (A : Type)(C : (List(A))Type)(C(nil(A)))

((a : A)(l : List(A))(C(l))C(cons(A, a, l)))

(z : List(A))C(z)

with computation rules:

EList(A, C, c, f, nil(A))= c: C(nil(A))

EList(A, C, c, f, cons(A, a, l))= f(a, l,EList(A, C, c, f, l))

: C(cons(A, a, l))

(2) Function types: (→) =df [A : Type][B : Type]M [((A)B)X].

(→) : (A : Type)(B : Type)Type

λ : (A : Type)(B : Type)((A)B)(A → B)

E(→) : (A : Type)(B : Type)(C : (A → B)Type)

((g : (A)B)C(λ(A, B, g)))(z : A → B)C(z)
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with computation rule:

E(→)(A, B, C, f, λ(A, B, g)) = f(g): C(λ(A, B, g))

(3) Either types (disjoint union): Either =df [A : Type][B : Type]M [(A)X, (B)X].

Either : (A : Type)(B : Type)Type

left : (A : Type)(B : Type)(A)Either(A, B)

right : (A : Type)(B : Type)(B)Either(A, B)

EEither : (A : Type)(B : Type)(C : (Either(A, B))Type)

((a : A)C(left(A, B, a)))((b : B)C(right(A, B, b)))

(z : Either(A, B))C(z)

with computation rules:

EEither(A, B, C, f1, f2, left(A, B, a))= f1(a): C(left(A, B, a))

EEither(A, B, C, f1, f2, right(A, B, b))= f2(b): C(right(A, B, b))

3 WT-schemata and general subtyping rules

In this section, we define the WT-schemata and the general subtyping rules
for those (parameterised) inductive types generated by the WT-schemata. The
WT-schemata are those that generate (parameterised) inductive types whose
subtyping rules satisfy the weak transitivity requirements.

3.1 WT-schemata

As briefly mentioned in the introduction, although it is suitable for subtyping
rules of a large class of inductive types, weak transitivity is not admissible for
some parameterised inductive types whose generation involves certain form of
dependency between parameters. We start with this problem and explain that
this is captured by the notion of WT-schemata.

A problem with weak transitivity Weak transitivity does not hold for
the subtyping rules for every parameterised inductive type. For example, its
admissibility fails for the subtyping rules for Σ-types and Π-types. An impor-
tant observation is that the admissibility of weak transitivity fails for such
types because they involve certain form of dependency between parameters.
For example, Σ =df [A : Type][B : (A)Type]M [(x : A)(B(x))X] where B(x)
is dependent on the objects of parameter A. There are three subtyping rules
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for Σ-types, two of which are:

(∗)
Γ ⊢ A <c A′: Type Γ, x : A ⊢ B(x) = B′(c(x)): Type

Γ ⊢ Σ(A, B) <d1 Σ(A′, B′): Type

Γ ⊢ A <c A′: Type Γ, x : A ⊢ B(x) <e[x] B′(c(x)): Type

Γ ⊢ Σ(A, B) <d2 Σ(A′, B′): Type

We can see that the coercion c in the first premise occurs in the second premise.
And hence a proof of the admissibility of weak transitivity cannot go through.
For instance, in order to prove that Σ(A1, B1) < Σ(A2, B2) and Σ(A2, B2) <
Σ(A3, B3) imply Σ(A1, B1) < Σ(A3, B3) (coercions and some other details
are omitted here), we would proceed by induction on derivations. One of the
cases is that the last steps of the derivations of Σ(A1, B1) < Σ(A2, B2) and
Σ(A2, B2) < Σ(A3, B3) use the above subtyping rule (∗) for Σ-types:

A1 <c1 A2 x : A1 ⊢ B1(x) = B2(c1(x))

Σ(A1, B1) < Σ(A2, B2)

A2 <c2 A3 y : A2 ⊢ B2(y) = B3(c2(y))

Σ(A2, B2) < Σ(A3, B3)

By induction hypothesis, A1 <c3 A3 is derivable for some c3, but c3 is not
(necessarily) computationally equal to c2 ◦ c1. Since x : A1 ⊢ c1(x): A2 we have
x : A1 ⊢ B2(c1(x)) = B3(c2(c1(x))) and hence x : A1 ⊢ B1(x) = B3(c2(c1(x))).
But x : A1 ⊢ B1(x) = B3(c3(x)) is not necessarily derivable and how to derive
Σ(A1, B1) < Σ(A3, B3) becomes a problem of the proof.

In fact, the following example shows that weak transitivity is not admissible
when we combine the subtyping rules for Σ-types and types of lists (the rule
given in Section 1), i.e., even if M1 <e1 M2 and M2 <e2 M3 are derivable, but
M1 <e3 M3 is not derivable for any e3.

Example 3.1 Assume that we have some type constants A1, A2 and A3, a
constant B3 of kind (List(A3))Type, a WDC C generated by the congruence
rule (Cong), and three coercions A1 <c1 A2, A2 <c2 A3 and A1 <c2◦c1 A3.
By the subtyping rule for lists, we have List(A1) <d1 List(A2), List(A2) <d2

List(A3) and List(A1) <d3 List(A3), where d1, d2 and d3 are defined as in
Section 1. Note that d3 and d2 ◦ d1 are not computationally equal.

Since B3 ◦ d2: (List(A2))Type, by the above subtyping rule (∗), we have

Σ(List(A1), B3 ◦ d2 ◦ d1) <e1 Σ(List(A2), B3 ◦ d2)

Σ(List(A2), B3 ◦ d2) <e2 Σ(List(A3), B3)

Here, we omit the definition of e1 and e2.
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Now, is the judgement Σ(List(A1), B3 ◦ d2 ◦ d1) <e3 Σ(List(A3), B3) derivable
for some e3? The answer is NO. We prove this by contradiction. If it is deriv-
able, it can only be derived from the above subtyping rule (∗) (except several
uses of the congruence rule). By coherence, which can be proved by the same
method as in Section 4.1 and in [13], and the Church-Rosser property of the
original type theory, we would have d3 = d2 ◦d1, i.e., they are computationally
equal – a contradiction.

Weak transitivity schemata The fact that the admissibility of weak tran-
sitivity fails for some parameterised inductive types has led us to introduce a
restricted form of schemata, WT-schemata, which disallow that a coercion in
one premise occurs in a type of another premise.

Definition 3.2 (WT-schemata) Let Y be a set of parameters and Θ an
inductive schema. Then Θ is a WT-schema w.r.t. Y if the following is the
case:

• if (x : K)M is a subterm of Θ and x occurs free in M , then K does not
contain any of the parameters in Y .

Remark 3.3 Obviously, WT-schemata can be defined inductively as done for
inductive schemata, but the above definition captures directly the dependency
to be excluded.

A parameterised inductive type T is generated by WT-schemata if

T =df [Y1 : P1]...[Yn : Pn]M [Θ]

and each of the schemata in Θ is a WT-schema w.r.t. Y = {Y1, ..., Yn }.
The above notion of WT-schema covers a large class of parameterised induc-
tive types such as lists, Maybe types, Either types (disjoint union), function
types, product types, types of branching trees, etc. What it excludes are those
parameterised types such as Σ-types and Π-types.

3.2 Subtyping rules and coercions

Now, we consider how to define subtyping rules and the associated coercions
for the parameterised types of the form

T =df [Y1 : P1]...[Yn : Pn]M [Θ]

14



generated by WT-schemata Θ wrt the parameters Y1, ..., Yn. The general form
of the subtyping rules of T is

(∗∗)
premises

Γ ⊢ T (A) <dT
T (B): Type

where A = A1, ..., An and B = B1, ..., Bn are fresh and distinct schematic
letters. Intuitively, we associate T with subtyping rules whose conclusion is of
the form T (A) <dT

T (B) such that the coercion dT is defined by induction on
T (A) and maps the canonical objects of T (A) to the corresponding canonical
objects of T (B). For example, for the type of lists List(Y ) parameterised by
the type parameter Y , the subtyping rule is

Γ ⊢ A <c B: Type

Γ ⊢ List(A) <map(A,B,c) List(B): Type

where the coercion map(A, B, c) is defined as

map(A, B, c) =df EList(A, [l : List(A)]List(B), nil(B),

[a : A][l : List(A)][l′ : List(B)]cons(B, c(a), l′)),

which maps the canonical objects nil(A) to nil(B) and cons(A, a, l) to
cons(B, c(a), map(A, B, c)(l)). Note that the definition of the coercion map(A, B, c)
is dependent on the premise, in particular, the assumed coercion c in the
premise.

3.2.1 A formal definition

The premises and the corresponding definition of the coercion dT of the rules
of the form (∗∗) are given below. We first give a generic form of the sequence
of premises and the corresponding coercion (PremΓ(Θ) and DT below), and
then specify how to make instantiations to obtain the concrete premises and
coercions dT of the rules.

Notation 3.4 In the following, we shall write D[A] for [A1/Y1, ..., An/Yn]D
and D[B] for [B1/Y1, ..., Bn/Yn]D. Also, we write Y ∈ FV (M) and Y 6∈
FV (M) to mean that ‘some of the parameters occur free in M ’ and ‘none of
the parameters occurs free in M ’, respectively.

Definition 3.5 (premise set)

• For small kind K in Γ, we define premΓ(K) as follows:
(1) K ≡ El(D):

(a) if Y 6∈ FV (D) then premΓ(K) = ∅
(b) if Y ∈ FV (D) then premΓ(K) = {(Γ, D[A], D[B])}
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(2) K ≡ (y : K1)K2

(a) if y 6∈ FV (K2) then premΓ(K) = premΓ(K1) ∪ premΓ(K2), where

premΓ(K1) =df {(Γ, B, A) | (Γ, A, B) ∈ premΓ(K1)}

(b) if y ∈ FV (K2) then premΓ(K) = premΓ,y:K1(K2). Note that in this
case, if K is in a WT-schema, Y 6∈ FV (K1).

• For a WT-schema Θ in Γ w.r.t. the parameters Y = {Y1, ..., Yn}, we define
premΓ(Θ) as follows:

(1) Θ ≡ X, then premΓ(Θ) = ∅
(2) Θ ≡ (x : K)Θ0

(a) if x 6∈ FV (Θ0) then premΓ(Θ) = premΓ(K) ∪ premΓ(Θ0)
(b) if x ∈ FV (Θ0) then premΓ(Θ) = premΓ(K) ∪ premΓ,x:K(Θ0). Note

that in this case, Y 6∈ FV (K).
(3) Θ ≡ (x : Φ)Θ0, then premΓ(Θ) = premΓ(Φ) ∪ premΓ(Θ0), where the

definition of premΓ(Φ) is the same as that above.
• For any sequence of WT-schemata Θ ≡< Θ1, ..., Θm > in Γ w.r.t. the pa-

rameters Y = {Y1, ..., Yn}, we define

premΓ(Θ) = ∪m
i=1premΓ(Θi)

Now, we give an order to the elements of premΓ(Θ):

(Γ1, A1, B1), ..., (Γm, Am, Bm).

Then, the sequence of premise forms w.r.t Γ and Θ, PremΓ(Θ), is

Γ1 ⊢ A1 ≤c1 B1: Type, ..., Γm ⊢ Am ≤cm
Bm: Type,

where the schematic letters ci (i = 1, ..., m) are fresh and distinct.

Having defined the general forms of the premises, we now define a general
form of the corresponding coercion. We first introduce the following notational
definition.

Definition 3.6 For small kinds K1 and K2, Func[K1, K2] is defined as fol-
lows.

• K1 ≡ El(C) and K2 ≡ El(D).
(1) If Γ ⊢ C ≤c D: Type is in the sequence PremΓ(Θ), then Func[K1, K2] =

c.
(2) If C ≡ D, then Func[K1, K2] = idC = [x : K1]x.
(3) Otherwise, Func[K1, K2] is undefined.
• K1 ≡ (y : K11)K12 and K2 ≡ (y : K21)K22. If both Func[K12, K22] and

Func[K21, K11] are defined, then

Func[K1, K2] = [g : K1][y : K21]Func[K12, K22](g(Func[K21, K11](y))).
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• Otherwise, Func[K1, K2] is undefined.

Remark 3.7 In general, when c in Γ ⊢ C ≤c D: Type is of kind (C)D,
Func[K1, K2] is of kind (K1)K2.

Notation 3.8 Let Y1, ..., Yn be the parameters and Ψ be either a strictly pos-
itive operator or a WT-schema. We shall write

• Ψ[A] for [A1/Y1, ..., An/Yn]Ψ,
• Ψ[B] for [B1/Y1, ..., Bn/Yn]Ψ, and
• Ψ[B][T (B)] for [B1/Y1, ..., Bn/Yn,T (B)/X]Ψ.

Definition 3.9

• Let Φ be a strictly positive operator. For any f : Φ[A][T (B)], define Φk[f ] of
kind Φ[B][T (B)] as follows:

(1) if Φ ≡ X then Φk[f ] = f ;
(2) if Φ ≡ (x : K)Φ0, then

Φk[f ] = [x : K[B]]Φk
0[f(Func[K[B], K[A]](x))].

• Let Θ be a WT-schema. For any g: Θ[B][T (B)], define Θλ(g) as follows:
(1) if Θ ≡ X then Θλ(g) = g;
(2) if Θ ≡ (x : K)Θ0, then

Θλ(g) = [x : K[A]]Θλ
0(g(Func[K[A], K[B]](x)));

(3) if Θ ≡ (x : Φ)Θ0, then define

Θλ(g) = [x : Φ[A][T (A)]][x′ : Φ[A][T (B)]]Θλ
0(g(Φk[x′]))

Then, we define

DT =df ET (A, C, Θλ
1(l1(B))), ..., Θλ

m(lm(B)))

where lj(B) (j = 1, ..., m) and ET are the introduction operators and the elim-
ination operator of T , respectively (see Section 2.3), and C ≡ [z : T (A)]T (B).

Now we are ready to specify the rules of the form (∗∗), the premises and the
coercion. Let PremΓ(Θ) be the following sequence of length m:

Γ1 ⊢ A1 ≤c1 B1: Type, ..., Γm ⊢ Am ≤cm
Bm: Type,

then there are 2m − 1 rules of the form (∗∗) for the parameterised inductive
type, each of which has m premises. The premises for each rule are obtained
by changing ≤ci

into either = or <ci
. Different combinations give different

(sequences of) premises, and hence different rules, except that there must be
at least one premise that has the form Γ ⊢ A <c B: Type.
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For each sequence of premises, the corresponding coercion dT is obtained as
follows. Define

di =df

{

idAi
if the ith premise is Γi ⊢ Ai = Bi: Type

ci if the ith premise is Γi ⊢ Ai <ci
Bi: Type

Then

dT =df [d/c]DT ,

where d = d1, ..., dm and c = c1, ..., cm.

Remark 3.10 Some rules have contradictory premises. For example, one of
the subtyping rules for inductive type T (Y ) =df M [((Y )Y )X] parameterised
by type variable Y is

Γ ⊢ A <c1 B: Type Γ ⊢ B <c2 A: Type

Γ ⊢ T (A) <dT
T (B): Type

Since the premises in such rules are contradictory (and never satisfied), they
can never be applied.

3.2.2 Justification of the coercion dT

The fact that the coercion dT as defined above sends the canonical objects of
T (A) to the corresponding canonical objects in T (B) is described and proved
in the following lemma.

Definition 3.11 Let Θ be a WT-schema and assume that Θ be of the form
(x1 : M1)...(xs : Ms)X and x1, ..., xs are fresh variables. Θu(A, B) is the se-
quence of arguments defined as follows:

(1) If Θ ≡ X, then Θu(A, B) =< >.
(2) If Θ ≡ (xt : K)Θ0 (t = 1, ..., s), then

Θu(A, B) =< Func[K[A], K[B]](xt), Θ
u
0(A, B) > .

(3) If Θ ≡ (xt : Φ)Θ0 (t = 1, ..., s) then

Θu(A, B) =< Φk[Φ♮[dT , xt]], Θ
u
0(A, B) > .

Lemma 3.12 dT (lj(A, Θv
j )) = lj(B, Θu

j (A, B)), where Θv
j as defined in Sec-

tion 2.3.

Proof By the definition of dT and the computation rules for T (see page
10), we have

dT (lj(A, Θv
j )) = ET (A, C, f1, ..., fm, lj(A, Θv

j )) = Θλ
j (lj(B))(Θ♯

j).

18



Now, we need to prove that Θλ
j (lj(B))(Θ♯

j) = lj(B, Θu
j (A, B)). Rather than

proving it directly, we generalise the problem first; for any g: Θ[B][T (B)],
Θλ

j (g)(Θ♯
j) = g(Θu

j (A, B)). This can be proved by induction on the structures
of the WT-schemata.

3.2.3 Examples

For the last two parameterised inductive types in Example 2.10 in Section 2.3,
the subtyping rules and associated coercions are as follows (those for lists have
been given above).

Example 3.13

(1) The subtyping rules for Either types:

Γ ⊢ A <c1 A′: Type Γ ⊢ B = B′: Type

Γ ⊢ Either(A, B) <dEither1
Either(A′, B′): Type

Γ ⊢ A = A′: Type Γ ⊢ B <c2 B′: Type

Γ ⊢ Either(A, B) <dEither2
Either(A′, B′): Type

Γ ⊢ A <c1 A′: Type Γ ⊢ B <c2 B′: Type

Γ ⊢ Either(A, B) <dEither3
Either(A′, B′): Type

where

dEither3 =df EEither(A, B, [z : Either(A, B)]Either(A′, B′),

[a : A]left(A′, B′, c1(a)), [b : B]right(A′, B′, c2(b)))

satisfying

dEither3(left(A, B, a))= left(A′, B′, c1(a))

dEither3(right(A, B, b))= right(A′, B′, c2(b))

The definitions of dEither1 and dEither2 are similar to dEither3.

(2) Subtyping rules for function types:

Γ ⊢ A′ <c1 A: Type Γ ⊢ B = B′: Type

Γ ⊢ A → B <d(→)1
A′ → B′: Type

Γ ⊢ A = A′: Type Γ ⊢ B <c2 B′: Type

Γ ⊢ A → B <d(→)2
A′ → B′: Type

Γ ⊢ A′ <c1 A: Type Γ ⊢ B <c2 B′: Type

Γ ⊢ A → B <d(→)3
A′ → B′: Type

where
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d(→)3 =df E(→)(A, B, [z : A → B](A′ → B′),

[g : (A)B]λ(A′, B′, c2 ◦ g ◦ c1))

satisfying d(→)3(λ(A, B, g)) = λ(A′, B′, c2◦g◦c1). The definitions of d(→)1

and d(→)2 are similar to d(→)3.

4 Coherence, admissibility results and equality requirement

In this section, we show that the subtyping rules defined as above, for the
inductive types generated by the WT-schemata, satisfy coherence and the
admissibility results as expected, including that of weak transitivity. Further-
more, we show that these subtyping rules satisfy the equality requirement for
weak transitivity, that is, if A is a subtype of B via coercion c and B a subtype
of C via coercion c′, then the coercion c′′ from A to C is extensionally equal
to the composition of c and c′.

4.1 Coherence and admissibility results

We show that coherence and admissibility of weak transitivity and substitu-
tion are satisfied by T [R], where T is the original type theory and the set of
subtyping rules R consists of the following:

• The subtyping rules for parameterised inductive types T as defined above.
We assume that these inductive types are different, i.e., T 6≡ T ′ for any two
such inductive types.

• A set of well-defined coercions C . We assume that for any judgement Γ ⊢
A <c B: Type ∈ C , neither A nor B is computationally equal to any T -type.
Also note that we have the rule (C) in the system.

Furthermore, we assume that the original type theory T has good proper-
ties, in particular the Church-Rosser property and the property of context
replacement by equal kinds.

We denote by CM the set of the derivable subtyping judgements of the form
Γ ⊢ M <d M ′: Type in T [R]0; that is, Γ ⊢ M <d M ′: Type ∈ CM if and only
if Γ ⊢ M <d M ′: Type is derivable in T [R]0.

It is then not difficult to prove the following lemma by induction on deriva-
tions.

Lemma 4.1
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(1) If Γ ⊢ M1 <d M2: Type ∈ CM then both M1 and M2 are computationally
equal to a T-type or Γ ⊢ M1 <d M2: Type ∈ C .

(2) (context equality) If Γ ⊢ M1 <d M2: Type ∈ CM and ⊢ Γ = Γ′ then
Γ′ ⊢ M1 <d M2: Type ∈ CM .

(3) (weakening) If Γ ⊢ M1 <d M2: Type ∈ CM , Γ ⊆ Γ′ and Γ′ is valid then
Γ′ ⊢ M1 <d M2: Type ∈ CM .

The following theorem can be proved by induction on derivations and using
Lemma 4.1(1).

Theorem 4.2

(1) (Coherence)
(a) If Γ ⊢ M1 <d M2: Type ∈ CM then Γ 6⊢ M1 = M2: Type.
(b) If Γ ⊢ M1 <d M2: Type ∈ CM , Γ ⊢ M ′

1 <d′ M ′

2: Type ∈ CM , Γ ⊢
M1 = M ′

1: Type and Γ ⊢ M2 = M ′

2: Type then Γ ⊢ d = d′: (M1)M2.
(2) (Substitution) If Γ, x : K, Γ′ ⊢ M1 <d M2: Type ∈ CM and Γ ⊢ k: K

then Γ, [k/x]Γ′ ⊢ [k/x]M1 <[k/x]d [k/x]M2: Type ∈ CM .
(3) (Weak Transitivity) If Γ ⊢ M1 <d1 M2: Type ∈ CM , Γ ⊢ M ′

2 <d2

M3: Type ∈ CM and Γ ⊢ M2 = M ′

2: Type then Γ ⊢ M1 <d3 M3: Type ∈
CM for some d3.

Remark 4.3 In [13], we use the measure of depth, introduced by Chen in
his PhD thesis [8], to prove the admissibility of the (strong) transitivity rule.
But here, the proof concerning weak transitivity is simply by induction on
derivations since WT-schemata disallow the dependency where a coercion in
one premise can occur in another premise.

4.2 Equality requirement for weak transitivity

In the coercive subtyping framework, a subtyping relation between two types
means that there is a (unique) coercion between them. However, such a co-
ercion should not be an arbitrary one; in particular, if Γ ⊢ A <c B and
Γ ⊢ B <c′ C, then the coercion from A to C must be in some sense related
to c′ ◦ c, the composition of c and c′. As we have mentioned earlier, in such a
case, we require that the coercion from A to C be extensionally equal to c′ ◦ c.

There are choices one may make about this notion of extensional equality.
First, note that, although we have considered coercive subtyping in intensional
type theories, the equality requirement for weak transitivity can be considered
to be at the meta-level, and hence can be outside the intensional type theory.
One of such choices, that we adopt here, is the notion of equality in extensional
type theory [21].
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In an extensional type theory, one has the following rule

Γ ⊢ q: Eq(A, a, b)

Γ ⊢ a = b: A

where A is a type, a and b are objects of type A, Eq is the propositional
equality (Martin-Löf’s equality type or the Leibniz equality), and = is the
judgemental equality. One can consider an extension of the intensional type
theory (which has Eq-types) by the above rule to obtain the corresponding
extensional theory. Note that the above rule makes the resulting type theory
undecidable and loses its property of strong normalisation. However, it does
capture the notion of extensional equality in a strong sense.

We can now use the above notion of extensional equality to express our equality
requirement about weak transitivity.

• Equality requirement: If Γ ⊢ A <c B: Type, Γ ⊢ B <c′ C: Type, and
Γ ⊢ A <c′′ C: Type, then Γ ⊢ c′′ = c′ ◦ c: (A)C in the extentional type
theory.

The following theorem says that the equality requirement is satisfied by the
general subtyping rules for parameterised inductive types as defined in Section
3.

Theorem 4.4 (equality requirement) If Γ ⊢ A <c B: Type, Γ ⊢ B <c′

C: Type and Γ ⊢ A <c′′ C: Type and are all in CM , then Γ ⊢ c′′ = c′ ◦ c: (A)C
in the extensional type theory.

Proof By induction on derivations and using Lemma 4.1(1) and Lemma 3.12.

5 Extensional computation rules: a discussion

The problem of transitivity we have considered in this paper arises from the
fact that certain extensional equalities do not hold computationally in inten-
sional type theories. For example, in an intensional type theory, the following
equality

map(E, N, c2) ◦ map(F, E, c1) = map(F, N, c2 ◦ c1)

does not hold computationally, and hence we have a coherence problem, if
we include the strong transitivity rule (Trans), as shown in the Introduction
section. This has led us to introduce weak transitivity and study the related
coherence and admissibility properties.

One might consider a restricted form of extensional equality to be ‘compu-
tational’ and introduce them as computational rules. For example, we might
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simply stipulate that the above equality is computational. In general, we can
stipulate such equalities as computational for all of the parameterised induc-
tive types generated by any inductive schemata, including those excluded by
the restriction in WT-schemata. (See [12] for the details.) Then, it can be
shown that, with such rules, inductive types can be associated with general
subtyping rules as defined systematically in the same way as in the last section
and these subtyping rules are coherent and satisfying transitivity elimination
even in the presence of the strong transitivity rule (Trans).

However, it is not clear at all whether such equality rules should or could be
taken as computational. First of all, these rules are not ‘computational’ in na-
ture. They are rules concerning the commutative features of the composition
operator. Intuitively, it is rather difficult to consider them as computational,
although when considered so, they do provide smooth treatment of the sub-
typing rules.

Secondly, not less importantly, it is not clear whether such rules, if considered
computational, have any negative impacts on the meta-theory of the resulting
type theory. For example, it is unclear whether the resulting type theory would
still have the properties of strong normalisation, Church-Rosser and subject
reduction. (We do not have either counter-examples or proofs about them.)
Such a problem could be rather difficult to settle.

6 Conclusion

In this paper, we have studied transitivity in coercive subtyping. In particular,
after explaining a problem with the strong notion of transitivity as originally
considered, we have introduced the notion of weak transitivity and shown
that the parameterised inductive types generated by the WT-schemata can be
associated with natural subtyping rules to be shown coherent and satisfying
good properties such as the admissibility of weak transitivity.

The WT-schemata as described above in the paper generate only inductive
types. They can be extended to inductive families of types straightforwardly
and the above results concerning subtyping extend naturally, too. For example,
the inductive family of types of vectors, which is parameterised by the object
type A, can be defined as follows:

V ec(A) =df M [X(0), (n : N)(A)(X(n))X(S(n))]

where X is a place holder of kind (N)Type, N the type of natural numbers,
and 0 and S are constructors for zero and the successor respectively (see [15]
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for more details). A common subtyping rule for vectors is the following:

Γ ⊢ n: N Γ ⊢ A <c B: Type

Γ ⊢ V ec(A, n) <d(n) V ec(B, n): Type

where

d(0, vnil(A))= vnil(B)

d(S(m), vcons(A, m, a, l))= vcons(B, m, c(a), d(m, l))

and vnil and vcons are the constructors of vectors introduced as usual. Adding
this subtyping rule into R, all the good properties are kept, i.e., R is still
coherent, substitution rule is admissible, weak transitivity holds and equality
requirement is satisfied. Note that V ec is a dependent family. As mentioned
in Section 3, WT-schemata avoid the kind of dependency between parameters
such as that for Σ-types to make sure that there is no coercion in one premise
that occurs in another premise. The above subtyping rule for vectors does not
have such dependency.

In the above section, we have discussed the issue of considering certain re-
stricted form of extensional equality as computational in order to solve the
transitivity problem. One naturally thinks that an interesting issue to be stud-
ied is how transitivity (and subtyping in general) works in extensional type
theories. Although extensional type theories are undecidable and arguably not
suitable for implementation or practical use, it may still be worth being stud-
ied. However, the topic might not be as easy as it appears to be, partly because
that we are aware of some technical difficulties to work in an extensional type
theory. On the other hand, to study coercive subtyping and its related issues
in an extensional framework may provide further theoretical insights.
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Appendix A

The following gives the rules of the logical framework LF.

Contexts and assumptions

<> valid

Γ ⊢ K kind x /∈ FV (Γ)

Γ, x : K valid

Γ, x : K, Γ′ valid

Γ, x : K, Γ′ ⊢ x: K

Equality rules

Γ ⊢ K kind

Γ ⊢ K = K

Γ ⊢ K = K ′

Γ ⊢ K ′ = K

Γ ⊢ K = K ′ Γ ⊢ K ′ = K ′′

Γ ⊢ K = K ′′

Γ ⊢ k: K

Γ ⊢ k = k: K

Γ ⊢ k = k′: K

Γ ⊢ k′ = k: K

Γ ⊢ k = k′: K Γ ⊢ k′ = k′′: K

Γ ⊢ k = k′′: K
Γ ⊢ k: K Γ ⊢ K = K ′

Γ ⊢ k: K ′

Γ ⊢ k = k′: K Γ ⊢ K = K ′

Γ ⊢ k = k′: K ′

Substitution rules

Γ, x : K, Γ′ valid Γ ⊢ k: K

Γ, [k/x]Γ′ valid

Γ, x : K, Γ′ ⊢ K ′ kind Γ ⊢ k: K

Γ, [k/x]Γ′ ⊢ [k/x]K ′ kind

Γ, x : K, Γ ⊢ K ′ kind Γ ⊢ k = k′: K

Γ, [k/x]Γ′ ⊢ [k/x]K ′ = [k′/x]K ′

Γ, x : K, Γ′ ⊢ k′: K ′ Γ ⊢ k: K

Γ, [k/x]Γ′ ⊢ [k/x]k′: [k/x]K ′

Γ, x : K, Γ′ ⊢ k′: K ′ Γ ⊢ k1 = k2: K

Γ, [k1/x]Γ′ ⊢ [k1/x]k′ = [k2/x]: [k1/x]K ′

Γ, x : K, Γ′ ⊢ K ′ = K ′′ Γ ⊢ k: K

Γ, [k/x]Γ′ ⊢ [k/x]K ′ = [k/x]K ′′

Γ, x : K, Γ′ ⊢ k′ = k′′: K ′ Γ ⊢ k: K

Γ, [k/x]Γ′ ⊢ [k/x]k′ = [k/x]k′′: [k/x]K ′

26



The kind Type

Γ valid

Γ ⊢ Type kind

Γ ⊢ A: Type

Γ ⊢ El(A) kind

Γ ⊢ A = B: Type

Γ ⊢ El(A) = El(B)

Dependent product kinds

Γ ⊢ K kind Γ, x : K ⊢ K ′ kind

Γ ⊢ (x : K)K ′ kind

Γ ⊢ K1 = K2 Γ, x : K1 ⊢ K ′

1 = K ′

2

Γ ⊢ (x : K1)K ′

1 = (x : K2)K ′

2

Γ, x : K ⊢ k: K ′

Γ ⊢ [x : K]k: (x : K)K ′

Γ ⊢ K1 = K2 Γ, x : K1 ⊢ k1 = k2: K

Γ ⊢ [x : K1]k1 = [x : K2]k2: (x : K1)K

Γ ⊢ f : (x : K)K ′ Γ ⊢ k: K

Γ ⊢ f(k): [k/x]K ′

Γ ⊢ f = f ′: (x : K)K ′ Γ ⊢ k1 = k2: K

Γ ⊢ f(k1) = f ′(k2): [k1/x]K ′

Γ, x : K ⊢ k′: K ′ Γ ⊢ k: K

Γ ⊢ ([x : K]k′)(k) = [k/x]k′: [k/x]K ′

Γ ⊢ f : (x : K)K ′ x /∈ FV (f)

Γ ⊢ [x : K]f(x) = f : (x : K)K ′
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