Lecture V. Reasoning, CGs, and Beyond

This lecture

 NL reasoning in proof assistants
 Dependent Categorial Grammar
 Introduction to CGs
 Substructural type theory: introduction (application to syntactical analysis)

V.1. NL Reasoning in Proof Assistants

Interactive theorem proving based on MTTs

- Automatic TP v.s. interactive TP
- An ITP system consists of three parts for:
 - (1) contextual defns (2) proof development (3) proof checking

Figure 1: Interactive proof development and proof checking

3

Simple example (a theorem about primes)

(* context: properties about primes *)
Definition div (x y : nat) : Prop := exists z : nat, y = x*z.
Definition prime (n : nat) : Prop := n >= 2 /\ (forall x:nat, (div x n) -> x=1 \/ x=n).

(* Theorem: there are infinitely many primes. *) Theorem inf_many_primes : not (exists n:nat, forall x:nat, prime x -> x < n).

One can then use commands to interact with the system to solve goals by generating "subgoals" and, finally (if successful), to use Qed to finish it.

(Details omitted)

Proof development process

MTT-based technology and applications (recap)

Proof technology based on type theories

- Proof assistants
 - MTT-based: ALF/Agda, Coq, Lean, Lego, NuPRL, Plastic, ...
 - ✤ HOL-based: Isabelle, Isabelle-HOL, …

Applications of proof assistants

Math: formalisation of mathematics – eg,

- ✤ 4-colour theorem (on map colouring) in Coq
- Kepler conjecture (on sphere packing) in Isabelle/HOL
- Computer Science:
 - Program verification and advanced programming
- Computational Linguistics
 - NL reasoning based on MTT-semantics

(In Coq: Chatzikyriakidis & Luo 2014/2016/2020; Luo 2023)

The Kepler conjecture

First proposed by Johannes Kepler in 1611, it states that the most efficient way to stack cannonballs or equalsized spheres is in a pyramid. A University of Pittsburgh mathematician has proven the 400-year-old conjecture.

Source: Thomas C. Hales Post Gazett

ESSLLI 2023

6

NL Reasoning in Coq

Proof assistant Coq (INRIA, France (Coq 2004))
 Some basic data in MTT-semantics in Coq

(* CNs as types *)
Definition CN := Set.
Parameters Animal Cat Elephant Human Obj: CN.
Parameters John Julie : Human.

(* coercive subtyping relations *)
Axiom ca : Cat -> Animal.
Coercion ca : Cat >-> Animal.
Axiom ea : Elephant -> Animal. Coercion ea : Elephant >-> Animal.
Axiom ao : Animal -> Obj.
Coercion ao : Animal >-> Obj.

Adjectival modification (intersective: black)

```
(* intersective adjective (black) *)
Parameter black : Obj -> Prop.
(* In Coq, "Record" types are Sigma-types *)
Record BCat := mkBC
       { cat :> Cat;
        pBlack : black(cat)
       }.
(* Any black cat is black. *)
Theorem bcat is black : forall bc : BCat, black(bc).
intros. apply bc.
Qed. (* After Qed, bcat_is_black becomes the name of the proof. *)
```

- Further information, including other simple formalisations mentioned in the lectures
 - Adjective modifications (subsective, privative, ...)
 - Donkey anaphora (and Most)
 - ✤ Dependant event types (e.g., EQP, selection restriction, ...)

can be found in (Luo 2023, Chap 5, esp. Sect 5.3)

V.2. Dependent Categorial Grammar

Categorial Grammars (or type-logical grammars)

- An approach to syntactic analysis
- ✤ CGs are based on substructural logics
 - Moortgat: 'Typelogical grammars are substructural logics, designed for reasoning about the composition of form and meaning in natural language.' (Stanford Encyclopedia of Philosophy, 2010)

What is a substructural logic?

- ✤ In a proof system, there are three kinds of "structural" rules:
 - (1) Weakening: adding more assumptions
 - (2) Contraction (strengthening): removing repeated/unused assumptions
 - (3) Exchange: swapping the order of two assumptions
- In <u>sub</u>structural (resource-sensitive) logics, the above may not be OK. In Lambek/CGs, none of them is OK.

Lambek calculus and beyond

Historical developments: Ajdukiewicz, Bar-Hillel, ... Lambek calculus (1958) Ordered formulae B/A and A\B John runs – "run applies to a np on the left". John : NP and run : NP\S Resource sensitive \diamond A context Γ , standing for a sequence of words, represents a sentence if Γ |- S. Words in a sentence cannot be arbitrarily added/removed/swapped \rightarrow context restrictions → substructural logics

An example

(*) John runs quickly.
 We have, corresponding to (*):
 NP, NP\S, (NP\S)\(NP\S) |- S
 As the following derivation shows:

	category (type)
John	NP
runs	$NP \setminus S$
quickly	$(NP \setminus S) \setminus (NP \setminus S)$

 $\frac{np}{\frac{(np\setminus S) - (np\setminus S) \setminus (np\setminus S)}{(np\setminus S)} \setminus_{e}}$

$1958 \rightarrow \dots \rightarrow 1980s \dots$ (CGs further developed) Key: nice account of syntax/semantics interface – close correspondence between CGs and Montague semantics: $[S] = \mathbf{t} [NP] = \mathbf{e} [CN] = \mathbf{e} \rightarrow \mathbf{t} [A \mid B] = [B/A] = A \rightarrow B$ Further (more recent) developments includes Linear CGs (Girard's linear logic; 1987) Oehrle 1994) to initiate, among many others Hybrid CGs (combining ordered/linear types) For example: Kubota & Levine's HTLG (a recent book in 2020), among others

Substructural type theory $\bar{\lambda}_{\Pi}$

Linear types/terms:

	Π -type	Non-dependent type	Abstraction	Application
Linear	$\overline{\Pi}x:A.B$	$A \multimap B$	$\overline{\lambda}x:A.b$	$\overline{app}(f,a)$
Ordered (right)	$\Pi^r x:A.B$	B/A	$\lambda^r x:A.b$	$app^{r}(f,a)$
Ordered (left)	$\Pi^l x:A.B$	$A \setminus B$	$\lambda^{l}x:A.b$	$app^{l}(a, f)$

Table 1 Three substructural function types in $\bar{\lambda}_{\Pi}$: summary of notations.

Terms, rather than contexts, represent NL phrases.

Work based on (Luo 2015, Luo & Zhang 2016; see Luo 2023)

Rules for the system without dependent types

Variables

 $x{:}A \vdash x : A$

Ordered function types

$$\begin{array}{l} \hline \Gamma, \ x:A \vdash b:B \\ \hline \Gamma \vdash \lambda^r x:A.b:B/A \end{array} & \begin{array}{l} \hline \Gamma \vdash f:B/A \quad \Delta \vdash a:A \quad FV(\Gamma) \cap FV(\Delta) = \emptyset \\ \hline \Gamma, \Delta \vdash app^r(f,a):B \end{array} \\ \\ \hline \hline \Gamma \vdash \lambda^l x:A.b:A \setminus B \end{array} & \begin{array}{l} \hline \Gamma \vdash f:A \setminus B \quad \Delta \vdash a:A \quad FV(\Gamma) \cap FV(\Delta) = \emptyset \\ \hline \Delta, \Gamma \vdash app^l(a,f):B \end{array} \end{array}$$

Linear function types

$$\frac{\Gamma, \ x:A \vdash b:B}{\Gamma \vdash \overline{\lambda}x:A.b:A \multimap B} \quad \frac{\Gamma \vdash f:A \multimap B \quad \Delta \vdash a:A \quad FV(\Gamma) \cap FV(\Delta) = \emptyset}{\Gamma, \Delta \vdash \overline{app}(f,a):B}$$

The lexicon rule

$$\frac{(c,A) \in \text{Lex}}{\langle \rangle \vdash c : A}$$

15

Notes: if there is no dependent type, types can be defined first/independently:

Definition 1 (types in $\overline{\lambda}_{\rightarrow}$) Types in $\overline{\lambda}_{\rightarrow}$ are inductively defined as follows:

- 1. The basic categories (such as S, NP and CN) are types.
- 2. If A and B are types, so are $A \multimap B$, B/A and $A \setminus B$.

An example without dep types (c.f., earlier example)

Table 2 Lexicon for (8).

	category (type)
John	NP
runs	$NP \setminus S$
quickly	$(NP \setminus S) \setminus (NP \setminus S)$

(8) John runs quickly.

The lexicon for (8) is given in Table 2. It is straightforward to have:

 $app^{l}(John, app^{l}(runs, quickly)) : S$

When applying function ϕ to the above term, we have:

 $\phi(app^{l}(John, app^{l}(runs, quickly))) = John \circ runs \circ quickly$

A "counter-example"

(14) (#) a very book

 ★ Example from (Moot & Retore 2012)
 ★ In Lambek, we'd need a side condition
 for (/-intro) – context's non-emptiness.
 ★ Otherwise, (14) would be a legitimate phrase: a : NP/CN, very : (CN/CN)/(CN/CN), book : CN ⊢ NP
 ★ In our setting, we have app^r(a, app^r(app^r(very, λ^rx:CN.x), book)) : NP
 but this term does not represent a legitimate phrase

(the λ -term blocks it!)

Table 4 Lexicon for (14).

	category (type)
a	NP/CN
very	(CN/CN)/(CN/CN)
book	$_{\rm CN}$

Rules for substructural Π -types

Formation rules for substructural Π -types

 $\frac{\Gamma, \ x:A \vdash B \ type}{\Gamma \vdash \Pi^{r} x:A.B \ type} \quad \frac{\Gamma, \ x:A \vdash B \ type}{\Gamma \vdash \Pi^{l} x:A.B \ type} \quad \frac{\Gamma, \ x:A \vdash B \ type}{\Gamma \vdash \overline{\Pi} x:A.B \ type}$

Ordered Π -types ((app^r) and (app^l) have the side condition $FV(\Gamma) \cap FV(\Delta) = \emptyset$.)

$$(\lambda^r) \quad \frac{\Gamma, \ x:A \vdash b:B}{\Gamma \vdash \lambda^r x:A.b:\Pi^r x:A.B} \qquad (app^r) \quad \frac{\Gamma \vdash f:\Pi^r x:A.B \ \ \Delta \vdash a:A}{\Gamma, \Delta \vdash app^r(f,a):[a/x]B}$$

$$(\lambda^l) \quad \frac{\Gamma, \ x:A \vdash b:B}{\Gamma \vdash \lambda^l x:A.b: \Pi^l x:A.B} \qquad (app^l) \quad \frac{\Gamma \vdash f:\Pi^l x:A.B}{\Delta, \Gamma \vdash app^l(a,f):[a/x]B}$$

Linear Π -types $((\overline{app})$ has the side condition $FV(\Gamma) \cap FV(\Delta) = \emptyset$.)

$$(\overline{\lambda}) \quad \frac{\Gamma, \ x:A \vdash b:B}{\Gamma \vdash \overline{\lambda}x:A.b:\overline{\Pi}x:A.B} \qquad (\overline{app}) \quad \frac{\Gamma \vdash f:\overline{\Pi}x:A.B \ \ \Delta \vdash a:A}{\Gamma, \Delta \vdash \overline{app}(f,a):[a/x]B}$$

19

An example with dependent types

Table 5 Lexicon for (23)

(23) Most students study hard.

In our system, we have

	category (type)
most	$\Pi^r X: CN. S/(X \setminus S)$
$\operatorname{students}$	$_{ m CN}$
study	$NP \setminus S$
hard	$(NP \setminus S) \setminus (NP \setminus S)$

 $app^{r}(app^{r}(most, students), app^{l}(study, hard)) : S$

 $\phi(app^{r}(app^{r}(most, students), app^{l}(study, hard)))$

 $= most \circ students \circ study \circ hard$

So, (23) is a legitimate sentence.

Linearity

Variables

(Var)
$$\frac{\Gamma, x:A \ valid}{\Gamma, x:A \vdash x:A} \quad (\forall y \in FV(\Gamma). \ x \sim_{\Gamma, x:A} y)$$

where, in the side condition of (Var), for any $\Delta = x_1:A_1, ..., x_n:A_n$, the dependency relation \sim_{Δ} is defined as: (1) if $y \in FV(A_i)$, then $x_i \sim_{\Delta} y$; (2) if $x \sim_{\Delta} y$ and $y \sim_{\Delta} z$, then $x \sim_{\Delta} z$.

Theorem (linearity)

(Weak linearity in $\overline{\lambda}_{\Pi}$) In $\overline{\lambda}_{\Pi}$, every contextual variable occurs free essentially for exactly once in a well-typed term. In symbols, if $\Gamma \vdash a : A$ with $\Gamma = x_1:A_1, ..., x_n:A_n$, then each x_i occurs free essentially in a for exactly once (i.e., $x_i \in E_{\Gamma}(a)$ for exactly once (i = 1, ..., n)).

