Lecture III. Indefinites and Anaphora

(Recap) MTT-semantics for adjectival modification

- ✤ Left from Lecture I
- * Σ -types for the following Lecture III

Adjectival modification of CNs – case study

A traditional classification

* Kamp 1975, Parsons 1970, Clark 1970, Montague 1970

classification	property	example	
Intersective	Adj(N) → Adj & N	handsome man	
Subsectional	Adj(N) → N	large mouse	
Privative	Adj(N) → ¬N	fake gun	
Non-committal	Adj(N) → ?	alleged criminal	

Intersective adjectives

\therefore Example: handsome man (see next page for Σ -types)

Montague		MTT-semantics	
man	man : e→t	Man : Type	
handsome	handsome : e→t	Man→Prop	
handsome man	$\lambda x. man(x) \& handsome(x)$	Σ (Man,handsome)	

In general:

	Montague	MTT-semantics
CNs	predicates	types
Adjectives	predicates	simple predicates
CNs modified by intersective adj	Predicate by conjunction	Σ-type

Σ -types

An extension of the product types A x B of pairs Σ -types of "dependent pairs" $\Gamma \vdash A \ type \quad \Gamma, \ x : A \vdash B \ type$ (Σ) * $\Sigma(A,B)$ of (a,b) for a:A & b:B(a) $\Gamma \vdash \Sigma x : A.B \ type$ $\Gamma \vdash a : A \quad \Gamma \vdash b : [a/x]B \quad \Gamma, x : A \vdash B \ type$ \clubsuit Rules for Σ -types: (pair) $\Gamma \vdash (a, b) : \Sigma x : A.B$ * $\Sigma(A,B)$ also written as $\Sigma x:A.B(x)$ $\Gamma \vdash p : \Sigma x : A.B$ (π_{1}) $\Gamma \vdash \pi_1(p) : A$ Examples: $\Gamma \vdash p : \Sigma x : A.B$ (π_2) $\Gamma \vdash \pi_2(p) : [\pi_1(p)/x]B$ * Σ (Human,dog) $\Gamma \vdash a : A \quad \Gamma \vdash b : [a/x]B \quad \Gamma, x : A \vdash B \ type$ $(proj_1)$ with dog(j)={d}, dog(m)= \emptyset , ... $\Gamma \vdash \pi_1(a, b) = a : A$ $\Gamma \vdash a : A \quad \Gamma \vdash b : [a/x]B \quad \Gamma, x : A \vdash B \ type$ * Σ (Man,handsome) $(proj_2)$ $\Gamma \vdash \pi_2(a, b) = b : [a/x]B$

An adjective maps CNs to CNs:

- * In MG, predicates to predicates.
- In MTT-semantics, types to types.

MTT-semantics (Chatzikyriakidis & Luo 2020, Luo 2023)

classification	example	types employed
Intersective	handsome man	Σ -types with simple predicates
Subsectional	large mouse	Π -polymorphic predicates and Σ -types
Privative	fake gun	Disjoint union types with Π/Σ -types
Non-committal	alleged criminal	special predicates

This lecture

- **1.** Indefinites and the Russellian ∃-view
- 2. Dynamic semantics
- 3. Type-theoretical approach
- Problem with the type-theoretic approach and solution with both strong/weak sums (possibly in Lecture IV)

III.1. Indefinites and Russellian ∃-view

We'll discuss indefinites like "a man". Are they

- & Quantifier phrases (as Russell suggests)?
- Referring expressions?

A man came in. → $\exists x: e. man(x) \land come_in(x)$

✤ John saw <u>a dog</u> and Mary saw <u>a dog</u>, too.

- [Could be different dogs. Russell's ∃-view predicts it.]
- [Different "a dog" could refer to different things. c.f., He likes him.]
- It is not the case that <u>a man</u> came in.
 Every child owns <u>a doq</u>.
 - [Not a particular man/different dogs. Russell's ∃-view predicts it.]

But what about, for example,

- ☆ (1) <u>A man</u> came in. <u>He</u> lit a cigarette.
 - (#) [∃x:e.man(x)∧come_in(x)] [∃y:e.cigarette(y)∧light(x_?,y)]
 Geach's proposed solution (1962): put the latter into
 the scope of ∃x. But, this is non-compositional ...
- (2) Every farmer who owns <u>a donkey</u> beats <u>it</u>.

9

- (#) $\forall x: \mathbf{e}. \text{ farmer}(x) \land \exists y: \mathbf{e}.(\text{donkey}(y) \land \text{own}(x, y) \rightarrow \text{beat}(x, y)$
- (3) Every person who buys <u>a TV</u> and has <u>a credit card</u> uses <u>it</u> to pay for <u>it</u>.
- In the above sentences, "it" seems to refer to something
 - ✤ Variable? E.g., x_? for (1) and the last "y" for (2)
 - ✤ But they are outside their scopes!

III.2. Dynamic semantics

Dynamic approaches (widely accepted for anaphora treatment)

- ✤ Discourse Representation Theory (Kamp 1981, Heim 1982)
- ✤ Dynamic Predicate Logic (Groenendijk and Stokhof 1991)

 $(\exists x \varphi); \psi \Leftrightarrow ([x]; \varphi); \psi \Leftrightarrow [x]; (\varphi; \psi) \Leftrightarrow \exists x(\varphi; \psi)$

$$(\exists x \varphi) \to \psi \Leftrightarrow ([x]; \varphi) \to \psi \Leftrightarrow [x] \to (\varphi \to \psi) \Leftrightarrow \forall x (\varphi \to \psi)$$

where ";" is the dynamic conjunction and $\underline{\psi}$ may have free x ! * So, if we replace \land by ; then x₂ and "y" in previous interpretations would be OK (because of the above equivalences)! $\forall x: \mathbf{e}. [farmer(x) ; \exists y: \mathbf{e}. (donkey(y) ; own(x,y)] \rightarrow beat(x,y)$ $\Leftrightarrow \forall x: \mathbf{e} \forall y: \mathbf{e}. [farmer(x) ; donkey(y) ; own(x,y)] \rightarrow beat(x,y)$ This equivalence is true because of the above 2nd equivalence.

However, logics in dynamic semantics are rather nonstandard.

- Dynamic Predicate Logic (DPL, Groenendijk and Stokhof 1991) is non-monotonic, has irreflexive/intransitive entailment, ...
- Substantial changes required for underlying logic(s) in semantics
- Two "extremes"? Anything "in the middle"?

Russell (∃) |-----| Dynamic

• Σ -types in MTTs may provide such a "middle" solution!

III.3. Type-theoretical approach

Using dependent types (Mönnich 1985, Sundholm 1986)
Every farmer who owns a donkey beats it.

(#) ∀x:e. farmer(x) ∧ ∃y:e.(donkey(y) ∧ own(x,y) → beat(x,y))

In type theory, we could give semantics as follows:

∀z : [Σx:Farmer Σy:Donkey. Own(x,y)]. Beat(π₁(z), π₁(π₂(z)))
∑ is the "strong sum" with two projections π₁ and π₂.
Therefore, "it" refers to "a donkey" – by means of π_i, as π₁(π₂(z))

This gives a compromise – something "in the middle" – see below.

 Σ -types (recap)

An extension of the product types A x B of pairs Σ -types of "dependent pairs" $\Gamma \vdash A \ type \quad \Gamma, \ x : A \vdash B \ type$ (Σ) * $\Sigma(A,B)$ of (a,b) for a:A & b:B(a) $\Gamma \vdash \Sigma x : A.B \ type$ $\Gamma \vdash a : A \quad \Gamma \vdash b : [a/x]B \quad \Gamma, x : A \vdash B \ type$ \clubsuit Rules for Σ -types: (pair) $\Gamma \vdash (a, b) : \Sigma x : A.B$ * $\Sigma(A,B)$ also written as $\Sigma x:A.B(x)$ $\Gamma \vdash p : \Sigma x : A.B$ (π_{1}) $\Gamma \vdash \pi_1(p) : A$ Examples: $\Gamma \vdash p : \Sigma x : A.B$ (π_2) $\Gamma \vdash \pi_2(p) : [\pi_1(p)/x]B$ * Σ (Human,dog) $\Gamma \vdash a : A \quad \Gamma \vdash b : [a/x]B \quad \Gamma, x : A \vdash B \ type$ $(proj_1)$ with dog(j)={d}, dog(m)= \emptyset , ... $\Gamma \vdash \pi_1(a, b) = a : A$ $\Gamma \vdash a : A \quad \Gamma \vdash b : [a/x]B \quad \Gamma, x : A \vdash B \ type$ * Σ (Man,handsome) $(proj_2)$ $\Gamma \vdash \pi_2(a, b) = b : [a/x]B$

ESSLLI 2023

13

So, in more details:

• Σ is a quantifier – Σ x:A.P(x)

- * Quantifying over x in the scope P(x).

- \clubsuit Σ is like the existential quantifier \exists

but different: it has the first projection π_1 :

(a,b) : $\Sigma x:A.P(x) \rightarrow \pi_1(a,b) = a$

★ This first projection does not exist for ∃. That's why Σ is also called the "strong sum", while ∃ the "weak sum".

Two "extremes"? Anything "in the middle"?

Russell (∃) |-----| Dynamic

 Σ -types in MTTs may provide such a "middle" solution!

- * Σ is "strong" so that witnesses can be referred to outside its scope (by means of π_1 and π_2).
- * The change for the underlying logic is much less substantial in the sense that we just use Σ instead of \exists .

However, still a (minor?) problem – see below.

A problem

$\clubsuit \Sigma$ has played two related but different roles.

- * "Subset":
 - Σx:Farmer. P(x) for "the farmers such that P holds"
- Existential:

• Σx:Farmer Σy:Donkey.own(x,y) for "the farmers who own a donkey"

\bullet This is problematic \rightarrow counting problem.

- Satisfactory solution with both strong/weak sums (Luo 2021)
- * We'll use donkey anaphora as a case study.

(III.4 is moved to Lecture IV)

III.4. Donkey anaphora: problem and solution (Luo 2021)

- Examples (Geach 1962, ...)
 (1) Event farmer who owns a do
 - (1) Every farmer who owns <u>a donkey</u> beats <u>it</u>.
 - (2) Every person who buys <u>a TV</u> and
 - has <u>a credit card</u> uses <u>it</u> to pay for <u>it</u>.
- Strong/weak readings (Chierchia 1990):
 - Strong reading of (1):
 - Every farmer who owns a donkey beats every donkey s/he owns.
 - Weak reading of (1):
 - Every farmer who owns a donkey beats some donkeys s/he owns.

Original problem and use of dependent types

Every farmer who owns a donkey beats it.

- In traditional logics:
 - ★ (#) $\forall x. [farmer(x) \& \exists y. (donkey(y) \& own(x, y))] \Rightarrow beat(x, y)$ where \exists is a "weak sum" and the last y is outside its scope.

Using dependent types (Mönnich 85, Sundholm 86)

- ★ $\forall z : F_{\Sigma}$. $beat(\pi_1(z), \pi_1(\pi_2(z)))$ with $F_{\Sigma} = \Sigma x : F \Sigma y : D$. own(x, y)where Σ is the "strong sum" with two projections π_1 and π_2 .
- Note: the interpretation only conforms to the strong reading.

• Σ plays a <u>double role</u>:

- * subset constructor (1st Σ) and existential quantifier (2nd Σ).
- $\ast\,$ But this is problematic $\rightarrow\,$ counting problem.

Problem of counting (Sundholm 89, Tanaka 15)

Cardinality of finite types

- * |A| = n if $A \cong Fin(n)$ (i.e., it has exactly n objects.)
- Consider the donkey sentence with "most":
 - Most farmers who own a donkey beat it.
 - Most_S $z : F_{\Sigma}$. beat $(\pi_1(z), \pi_1(\pi_2(z)))$ with $F_{\Sigma} = \Sigma x : F \Sigma y : D$. own(x, y)
- But, this is inadequate failing to "count" correctly:
 - ↓ |F_Σ| = the number of (x,y,p) ≠ #(donkey-owning farmers)
 - ✤ E.g., 10 farmers:
 - ✤ 1 owns 20 donkeys and beats all of them, and
 - the other 9 own 1 donkey each and do not beat them.
 - The above sentence with "most" could be true incorrect semantics.
 - $\ast\,$ C.f., the "proportion problem" in using DRT to do this.

Why and ...?

• "Double role" by Σ in $F_{\Sigma} = \Sigma x$: Farmer Σy : Donkey.own(x,y) * First Σ : representing the collection of farmers such that ... * Second Σ : representing the existential quantifier (!) \clubsuit But, unlike traditional \exists , Σ is strong: * $|\Sigma x: A.B(x)|$ is the number of pairs (a,b), not just the number of a's such that B(a) is true. So, the $2^{nd} \Sigma$ is problematic. ↔ Can we somehow replace the $2^{nd} \Sigma$ by \exists ? Yes, although not directly (c.f., the original scope problem), by considering different readings of donkey sentences <u>AND IF</u> we have both Σ and \exists in the type theory. * Note: \exists in Montague's simple TT and Σ in Martin-Löf's TT, but not both.

UTT (Luo 1994): a type theory with both Σ/\exists

Data types: N, Π, Σ, \dots $Type_0, Type_1, \dots$

Logic: \forall , *Prop*

Fig. 1. The type structure in UTT.

Logic in UTT and proof irrelevance

♦ Formulas/propositions: $\forall x:A.P, \exists x:A.P, P \Rightarrow Q, ...$ ★ For example: $\exists x : A.P(x) = \forall X : Prop. (\forall x : A.(P(x) \Rightarrow X)) \Rightarrow X$ Proof irrelevance: Service two proofs of the same proposition are the same. In UTT, this can be enforced by the following rule: $P: Prop \quad p: P \quad q: P$ p = q : PNote: This wouldn't be possible for Martin-Löf's type theory. As a consequence, we have, for example: * $|\mathsf{P}| \leq 1$, if P : Prop (e.g., $|\exists x:A.R| \leq 1$) \Rightarrow |Σx:A.Q(x)| ≤ |A|, if A is a finite type and Q : A→Prop

Donkey sentences in UTT

Most farmers who own a donkey beat it.
 Most farmers who own a donkey beat <u>every</u> donkey they own.
 Most farmers who own a donkey beat <u>some</u> donkeys they own.
 "Most" in UTT (formal details next page)
 Definition similar to (Sundholm 89), but with ∃ as existential quantifier, instead of Σ.
 Interpretations

 $F_{\exists} = \Sigma x : F. \ \exists y : D.own(x, y)$

Most $z: F_{\exists}$. $\forall y': \Sigma y: D.own(\pi_1(z), y)$. $beat(\pi_1(z), \pi_1(y'))$

Most $z: F_{\exists}$. $\exists y': \Sigma y: D.own(\pi_1(z), y). beat(\pi_1(z), \pi_1(y'))$

D Most in UTT

Let A be a finite type with $|A| = n_A$, $P : A \to Prop$ a predicate over A, and Fin(n) the types with n objects defined in Appendix B. Then, in UTT, the logical proposition $Most \ x:A.P(x)$ of type Prop is defined as follows, where inj(f) is a proposition expressing that f is an injective function:

$$Most \ x:A.P(x) = \exists k : N. \ (k \ge \lfloor n_A/2 \rfloor + 1)$$

$$\land \exists f:Fin(k) \to A. \ inj(f) \land \forall x:Fin(k).P(f(x))$$

The type Fin(n), indexed by n : N with N being the type of natural numbers, consists of exactly n objects and can be specified by means of the following introduction rules (we omit their elimination and computation rules):

$$\frac{n:N}{zero(n):Fin(n+1)}$$
$$\frac{n:N\quad i:Fin(n)}{succ(n,i):Fin(n+1)}$$

25

Another example

- Every person who buys <u>a TV</u> and has <u>a credit card</u> uses <u>it</u> to pay for <u>it</u>.
 - where "a TV" obtains a strong ∀-reading and "a credit card"
 a weak ∃-reading.

 $\begin{aligned} \forall z : & \Sigma x: Person. \ \exists y_1: TV. \ buy(x, y_1) \land \exists y_2: Card. \ own(x, y_2) \\ \forall y : & \Sigma y_1: TV. \ buy(\pi_1(z), y_1) \\ \exists y' : & \Sigma y_2: Card. \ own(\pi_1(z), y_2). \\ & pay(\pi_1(z), \pi_1(y), \pi_1(y')) \end{aligned}$

✤ Note: It would be impossible to do this in MLTT.

E-type Anaphora (Evans 77, ...)

Evans' example:

- ✤ Few congressmen admire Kennedy, and <u>they</u> are very junior.
- Few congressmen admire Kennedy, and the congressmen who do admire Kennedy are very junior.
- Note: "they" cannot be "bound" by "Few congressmen" for, otherwise, the meaning is different.
 - It would mean: Few congressmen are such that they admire Kennedy and are very junior (at the same time).
- Interpretations in type theory:
 - Few $x:C.admire(x, K) \land \forall z: [\Sigma x:C.admire(x, K)].junior(\pi_1(z))$
 - * Link of Σ with descriptions (Martin-Löf, Carlström, Mineshima)

Combining strong and weak sums

How to add Σ to an impredicative type theory with \exists -propositions? ? \land \exists

Three possibilities:

- \Rightarrow UTT (seen before): Σ-types + ∃-propositions
- - ➔ logical inconsistency

 $\frac{A \ type \quad P: A \to Prop}{\Sigma x: A.P(x): Prop}$

 $\Sigma x: A.P(x): Prop$

 $A: Prop \ P: A \to Prop$

→ weak ∃ becoming strong

Conclusion: Only the UTT's approach is OK.

* How to add \exists to a predicative type theory with Σtypes? $\exists \xrightarrow{} \Sigma$

★ Not clear how to do this (but see next page for MLTT_h)
◇ One might define ∃ by Π in predicative universes U_i: ∃_ix:A.B(x) = ΠX:U_i. (Πx:A.(B(x) → X)) → X
◇ But, thus defined, ∃_i is the same as the strong sum Σ!
We can define p : ∃_ix:A.B(x) → Σx:A.B(x) such that ∃_i-projections exist:
p₁ = π₁ ∘ p and p₂ = π₂ ∘ p

(Bad side effect!)

MLTT_h: Extension of MLTT with H-logic

H-logic (in Homotopy Type Theory; HoTT book 2013)

- ✤ A proposition is a type with at most one object.
- Logical operators (examples):
 P⊃Q = P→Q and ∀x:A.P = ∏x:A.P
 P∨Q = |P+Q| and ∃x:A.P = |Σx:A.P|

where |A| is propositional truncation, a proper extension.

Homotopy

Type Theory

• $MLTT_h = MLTT + h-logic$ (subsystem of HoTT) [Luo 2019]

- Proof irrelevance is "built-in" in h-logic (by definition).
- * \exists defined by truncating Σ is a weak sum and can be used to give adequate semantics of donkey sentences as proposed.

30

* Note: $MLTT_h$ is a proper extension of MLTT.

Concluding remarks

Summary

- Donkey sentences old topic, but still intriguing.
- Type theories with "standard" logics embedded.
- * We have studied this completely proof-theoretically.

Dynamics in semantics

- * "Dynamic type theory"? (Not a way forward, even IF possible)
 - ✤ Cf, Dynamic Predicate Logic that extends FOL.
 - But, DPL is non-standard (eg, non-monotonic ...) and prooftheoretically difficult [Veltman 2000] (probably problematic).
- Formal semantics based on such is too big a price to pay.

