## Lecture III. Indefinites and Anaphora

- (Recap) MTT-semantics for adjectival modification
* Left from Lecture I
* $\Sigma$-types for the following Lecture III


## Adjectival modification of CNs - case study

* A traditional classification
* Kamp 1975, Parsons 1970, Clark 1970, Montague 1970

| classification | property | example |
| :--- | :--- | :--- |
| Intersective | $\operatorname{Adj}(\mathrm{N}) \rightarrow$ Adj \& $N$ | handsome man |
| Subsectional | $\operatorname{Adj}(\mathrm{N}) \rightarrow \mathrm{N}$ | large mouse |
| Privative | $\operatorname{Adj}(\mathrm{N}) \rightarrow \rightarrow \mathrm{N}$ | fake gun |
| Non-committal | $\operatorname{Adj}(\mathrm{N}) \rightarrow$ ? | alleged criminal |

## Intersective adjectives

*xample: handsome man (see next page for $\Sigma$-types)

|  | Montague | MTT-semantics |
| :--- | :--- | :--- |
| man | man : e $\rightarrow \mathbf{t}$ | Man : Type |
| handsome | handsome : e $\rightarrow \mathbf{t}$ | Man $\rightarrow$ Prop |
| handsome man | $\lambda x$. man $(x) \&$ handsome $(x)$ | $\Sigma($ Man,handsome $)$ |

* In general:

|  | Montague | MTT-semantics |  |
| :--- | :--- | :--- | :--- |
| CNs | predicates | types |  |
| Adjectives | predicates | simple predicates |  |
| CNs modified by <br> intersective adj | Predicate by conjunction | $\Sigma$-type |  |

## $\Sigma$-types

- An extension of the product types $A \times B$ of pairs
* $\Sigma$-types of "dependent pairs"
* $\Sigma(A, B)$ of ( $\mathrm{a}, \mathrm{b}$ ) for $\mathrm{a}: \mathrm{A} \& \mathrm{~b}: \mathrm{B}(\mathrm{a})$
* $\Sigma(A, B)$ also written as $\Sigma x: A . B(x){\left(\pi_{1}\right)}$

Examples:

* $\Sigma$ (Human, dog)
with $\operatorname{dog}(\mathrm{j})=\{\mathrm{d}\}, \operatorname{dog}(\mathrm{m})=\varnothing, \ldots$
* $\Sigma($ Man,handsome $)$
(pair)

$$
\frac{\Gamma \vdash A \text { type } \quad \Gamma, x: A \vdash B \text { type }}{\Gamma \vdash \Sigma x: A . B \text { type }}
$$

$$
\frac{\Gamma \vdash a: A \quad \Gamma \vdash b:[a / x] B \quad \Gamma, x: A \vdash B \text { type }}{\Gamma \vdash(a, b): \Sigma x: A . B}
$$

$$
\frac{\Gamma \vdash p: \Sigma x: A \cdot B}{\Gamma \vdash \pi_{1}(p): A}
$$

$\left(\pi_{2}\right)$
( proj $_{1}$ )
$\left(\right.$ proj $\left._{2}\right)$

$$
\frac{\Gamma \vdash p: \Sigma x: A . B}{\Gamma \vdash \pi_{2}(p):\left[\pi_{1}(p) / x\right] B}
$$

$\frac{\Gamma \vdash a: A \quad \Gamma \vdash b:[a / x] B \quad \Gamma, x: A \vdash B \text { type }}{\Gamma \vdash \pi_{1}(a, b)=a: A}$
$\frac{\Gamma \vdash a: A \quad \Gamma \vdash b:[a / x] B \quad \Gamma, x: A \vdash B \text { type }}{\Gamma \vdash \pi_{2}(a, b)=b:[a / x] B}$

* An adjective maps CNs to CNs:
* In MG, predicates to predicates.
* In MTT-semantics, types to types.
* MTT-semantics (Chatzikyriakidis \& Luo 2020, Luo 2023)

| classification | example | types employed |
| :--- | :--- | :--- |
| Intersective | handsome man | $\Sigma$-types with simple predicates |
| Subsectional | large mouse | П-polymorphic predicates and $\Sigma$-types |
| Privative | fake gun | Disjoint union types with $\Pi / \Sigma$-types |
| Non-committal | alleged criminal | special predicates |

## This lecture

1. Indefinites and the Russellian $\exists$-view
2. Dynamic semantics
3. Type-theoretical approach
4. Problem with the type-theoretic approach and solution with both strong/weak sums (possibly in Lecture IV)

## III.1. Indefinites and Russellian $\exists$-view

* We'll discuss indefinites like "a man". Are they
* Quantifier phrases (as Russell suggests)?
* Referring expressions?
* Russell (1919): the $\exists$-view
* A man came in. $\rightarrow$ ヨx:e. man(x)^come_in(x)

* Arguments/examples in favour of the $\exists$-view
* John saw a dog and Mary saw a dog, too.
[Could be different dogs. Russell's $\exists$-view predicts it.]
[Different "a dog" could refer to different things. c.f., He likes him.]
* It is not the case that a man came in.

Every child owns a dog.
[Not a particular man/different dogs. Russell's $\exists$-view predicts it.]

* But what about, for example,
* (1) A man came in. He lit a cigarette.
 Geach's proposed solution (1962): put the latter into the scope of $\exists x$. But, this is non-compositional ...
* (2) Every farmer who owns a donkey beats it. (\#) $\forall \mathrm{x}: \mathrm{e}$. farmer $(\mathrm{x}) \wedge \exists \mathrm{y}: \mathrm{e}$.(donkey $(\mathrm{y}) \wedge \mathrm{own}(\mathrm{x}, \mathrm{y}) \rightarrow \operatorname{beat}(\mathrm{x}, \mathrm{y})$
* (3) Every person who buys a TV and has a credit card uses it to pay for it.
* In the above sentences, "it" seems to refer to something
* Variable? E.g., $x_{\text {? }}$ for (1) and the last " $y$ " for (2)
* But they are outside their scopes!


## III.2. Dynamic semantics

Dynamic approaches (widely accepted for anaphora treatment)

* Discourse Representation Theory (Kamp 1981, Heim 1982)
* Dynamic Predicate Logic (Groenendijk and Stokhof 1991)

$$
\begin{aligned}
& (\exists x \varphi) ; \psi \Leftrightarrow([x] ; \varphi) ; \psi \Leftrightarrow[x] ;(\varphi ; \psi) \Leftrightarrow \exists x(\varphi ; \psi) \\
& (\exists x \varphi) \rightarrow \psi \Leftrightarrow([x] ; \varphi) \rightarrow \psi \Leftrightarrow[x] \rightarrow(\varphi \rightarrow \psi) \Leftrightarrow \forall x(\varphi \rightarrow \psi)
\end{aligned}
$$

where ";" is the dynamic conjunction and $\psi$ may have free $x$ !

* So, if we replace $\wedge$ by ; then $x$ ? and " $y$ " in previous interpretations would be OK (because of the above equivalences)!
$\forall x:$ e. $[f a r m e r(x) ; \exists y: e .(d o n k e y(y) ;$ own $(x, y)] \rightarrow \operatorname{beat}(x, y)$
$\Leftrightarrow \forall x: \mathbf{e} \forall y: \mathbf{e} .[f a r m e r(x) ;$ donkey $(y) ;$ own $(x, y)] \rightarrow \operatorname{beat}(x, y)$
This equivalence is true because of the above $2^{\text {nd }}$ equivalence.
* However, logics in dynamic semantics are rather nonstandard.
* Dynamic Predicate Logic (DPL, Groenendijk and Stokhof 1991) is non-monotonic, has irreflexive/intransitive entailment, ...
* Substantial changes required for underlying logic(s) in semantics
* Two "extremes"? Anything "in the middle"?
Russell (ヨ) |-------------?-------------| Dynamic
* $\Sigma$-types in MTTs may provide such a "middle" solution!


## III.3. Type-theoretical approach

* Using dependent types (Mönnich 1985, Sundholm 1986)
* Every farmer who owns a donkey beats it.
* (\#) $\forall x: e . f a r m e r(x) \wedge \exists y: e .(d o n k e y(y) \wedge o w n(x, y) \rightarrow \operatorname{beat}(x, y)$
* In type theory, we could give semantics as follows:
* $\forall z$ : [ $\Sigma x$ :Farmer $\Sigma y$ :Donkey. Own $(x, y)]$. Beat $\left(\pi_{1}(z), \pi_{1}\left(\pi_{2}(z)\right)\right)$
* $\Sigma$ is the "strong sum" with two projections $\pi_{1}$ and $\pi_{2}$.
* Therefore, "it" refers to "a donkey" - by means of $\pi_{\mathrm{i}}$, as $\pi_{1}\left(\pi_{2}(z)\right)$
* This gives a compromise - something "in the middle" see below.


## -types (recap)

* An extension of the product types $A \times B$ of pairs
* $\Sigma$-types of "dependent pairs"
* $\Sigma(A, B)$ of ( $\mathrm{a}, \mathrm{b}$ ) for $\mathrm{a}: \mathrm{A} \& \mathrm{~b}: \mathrm{B}(\mathrm{a})$
* $\Sigma(\mathrm{A}, \mathrm{B})$ also written as $\Sigma \mathrm{x}: \mathrm{A} \cdot \mathrm{B}(\mathrm{x})_{\left(\pi_{1}\right)}$
- Examples:
* $\Sigma$ (Human, dog)
with $\operatorname{dog}(\mathrm{j})=\{\mathrm{d}\}, \operatorname{dog}(\mathrm{m})=\varnothing, \ldots$
* $\Sigma($ Man,handsome)
(pair)

$$
\frac{\Gamma \vdash A \text { type } \quad \Gamma, x: A \vdash B \text { type }}{\Gamma \vdash \Sigma x: A . B \text { type }}
$$

$$
\frac{\Gamma \vdash a: A}{} \frac{\Gamma \vdash b:[a / x] B \quad \Gamma, x: A \vdash B \text { type }}{\Gamma \vdash(a, b): \Sigma x: A . B}
$$

$$
\frac{\Gamma \vdash p: \Sigma x: A . B}{\Gamma \vdash \pi_{1}(p): A}
$$

$\left(\pi_{2}\right)$
( proj $_{1}$ )
$\left(\right.$ proj $\left._{2}\right)$

$$
\frac{\Gamma \vdash p: \Sigma x: A . B}{\Gamma \vdash \pi_{2}(p):\left[\pi_{1}(p) / x\right] B}
$$

$\frac{\Gamma \vdash a: A \quad \Gamma \vdash b:[a / x] B \quad \Gamma, x: A \vdash B \text { type }}{\Gamma \vdash \pi_{1}(a, b)=a: A}$
$\frac{\Gamma \vdash a: A \quad \Gamma \vdash b:[a / x] B \quad \Gamma, x: A \vdash B \text { type }}{\Gamma \vdash \pi_{2}(a, b)=b:[a / x] B}$

## So, in more details:

$\Sigma \Sigma$ is a quantifier $-\Sigma x: A . P(x)$

* Quantifying over $x$ in the scope $P(x)$.
* $\Sigma x: M a n . h a n d s o m e(x)$
* $\Sigma y: D o n k e y . o w n(j, y)$
* is like the existential quantifier $\exists$
* $\exists \mathrm{y}$ :Donkey.own(j,y)
but different: it has the first projection $\pi_{1}$ :

$$
(\mathrm{a}, \mathrm{~b}): \Sigma \mathrm{x}: A \cdot P(\mathrm{x}) \rightarrow \pi_{1}(\mathrm{a}, \mathrm{~b})=\mathrm{a}
$$

* This first projection does not exist for $\exists$. That's why $\Sigma$ is also called the "strong sum", while $\exists$ the "weak sum".
* Two "extremes"? Anything "in the middle"?

```
Russell (ヨ) |-------------------------- Dynamic
```

* $\Sigma$-types in MTTs may provide such a "middle" solution!
: $\Sigma$ is "strong" so that witnesses can be referred to outside its scope (by means of $\pi_{1}$ and $\pi_{2}$ ).
* The change for the underlying logic is much less substantial in the sense that we just use $\Sigma$ instead of $\exists$.
* However, still a (minor?) problem - see below.


## A problem

* $\Sigma$ has played two related but different roles.
* "Subset":
* $\Sigma \mathrm{x}$ :Farmer. $\mathrm{P}(\mathrm{x})$ for "the farmers such that P holds"
* Existential:
* $\Sigma x$ :Farmer $\Sigma y$ :Donkey.own( $x, y$ ) for "the farmers who own a donkey"
* This is problematic $\rightarrow$ counting problem.
* Satisfactory solution with both strong/weak sums (Luo 2021)
* We'll use donkey anaphora as a case study.
* (III. 4 is moved to Lecture IV)


## III.4. Donkey anaphora: problem and solution (Luo 2021)

* Examples (Geach 1962, ...)
(1) Every farmer who owns a donkey beats it.
(2) Every person who buys a TV and has a credit card uses it to pay for it.

* Strong/weak readings (Chierchia 1990):
* Strong reading of (1):

Every farmer who owns a donkey beats every donkey $\mathrm{s} / \mathrm{he}$ owns.

* Weak reading of (1):

Every farmer who owns a donkey beats some donkeys s/he owns.

## Original problem and use of dependent types

* Every farmer who owns a donkey beats it.
* In traditional loaics:
: (\#) $\forall x .[\operatorname{farmer}(x) \& \exists y .(\operatorname{donkey}(y) \& \operatorname{own}(x, y))] \Rightarrow \operatorname{beat}(x, y)$ where $\exists$ is a "weak sum" and the last y is outside its scope.
* Using dependent types (Mönnich 85, Sundholm 86)
* $\forall z: F_{\Sigma}$. beat $\left(\pi_{1}(z), \pi_{1}\left(\pi_{2}(z)\right)\right)$ with $F_{\Sigma}=\Sigma x: F \Sigma y: D$. own $(x, y)$ where $\Sigma$ is the "strong sum" with two projections $\pi_{1}$ and $\pi_{2}$.
* Note: the interpretation only conforms to the strong reading.
* $\Sigma$ plays a double role:
* subset constructor ( $1^{\text {st }} \Sigma$ ) and existential quantifier ( $2^{\text {nd }} \Sigma$ ).
* But this is problematic $\rightarrow$ counting problem.


## Problem of counting (Sundholm 89, Tanaka 15)

* Cardinality of finite types
* $|A|=n$ if $A \cong$ Fin(n) (i.e., it has exactly $n$ objects.)
* Consider the donkey sentence with "most":
* Most farmers who own a donkey beat it.
* Mosts $z: F_{\Sigma}$. beat $\left(\pi_{1}(z), \pi_{1}\left(\pi_{2}(z)\right)\right)$ with $F_{\Sigma}=\Sigma x: F \Sigma y: D$. own $(x, y)$
* But, this is inadequate - failing to "count" correctly:
* $\left|F_{\Sigma}\right|=$ the number of $(x, y, p) \neq \#$ (donkey-owning farmers)
* E.g., 10 farmers:
* 1 owns 20 donkeys and beats all of them, and
* the other 9 own 1 donkey each and do not beat them.
* The above sentence with "most" could be true - incorrect semantics.
* C.f., the "proportion problem" in using DRT to do this.


## Why and ...?

* "Double role" by $\Sigma$ in $F_{\Sigma}=\Sigma x$ :Farmer $\Sigma y$ :Donkey.own $(x, y)$
* First $\Sigma$ : representing the collection of farmers such that ...
* Second $\Sigma$ : representing the existential quantifier (!)
* But, unlike traditional $\exists, \Sigma$ is strong:
* $|\Sigma x: A \cdot B(x)|$ is the number of pairs $(a, b)$, not just the number of a's such that $B(a)$ is true. So, the $2^{\text {nd }} \Sigma$ is problematic.
* Can we somehow replace the $2^{\text {nd }} \Sigma$ by $\exists$ ?
* Yes, although not directly (c.f., the original scope problem), by considering different readings of donkey sentences AND IF we have both $\Sigma$ and $\exists$ in the type theory.
* Note: $\exists$ in Montague's simple TT and $\Sigma$ in Martin-Löf's TT, but not both.


## UTT (Luo 1994): a type theory with both $\Sigma / \exists$



Fig. 1. The type structure in UTT.

## Logic in UTT and proof irrelevance

Formulas/propositions: $\forall \mathrm{x}: \mathrm{A} . \mathrm{P}, \exists \mathrm{x}: \mathrm{A} . \mathrm{P}, \mathrm{P} \Rightarrow \mathrm{Q}, \ldots$

* For example: $\exists x: A \cdot P(x)=\forall X$ : Prop. $(\forall x: A .(P(x) \Rightarrow X)) \Rightarrow X$
* Proof irrelevance:
* Every two proofs of the same proposition are the same.
* In UTT, this can be enforced by the following rule:

$$
\frac{P: \text { Prop } p: P \quad q: P}{p=q: P}
$$

* Note: This wouldn't be possible for Martin-Löf's type theory.
* As a consequence, we have, for example:
* $|P| \leq 1$, if $P: \operatorname{Prop}(e . g .,|\exists x: A . R| \leq 1)$
* $|\Sigma x: A \cdot Q(x)| \leq|A|$, if $A$ is a finite type and $Q: A \rightarrow$ Prop


## Donkey sentences in UTT

* Most farmers who own a donkey beat it.
* Most farmers who own a donkey beat every donkey they own.
* Most farmers who own a donkey beat some donkeys they own.
* "Most" in UTT (formal details next page)
* Definition similar to (Sundholm 89), but with $\exists$ as existential quantifier, instead of $\Sigma$.
* Interpretations

$$
\begin{aligned}
& F_{\exists}=\Sigma x: F . \exists y: D \cdot \operatorname{own}(x, y) \\
& \text { Most } z: F_{\exists} \cdot \forall y^{\prime}: \Sigma y: D \cdot \operatorname{own}\left(\pi_{1}(z), y\right) \cdot \operatorname{beat}\left(\pi_{1}(z), \pi_{1}\left(y^{\prime}\right)\right) \\
& \text { Most } z: F_{\exists} \cdot \exists y^{\prime}: \Sigma y: D . \operatorname{own}\left(\pi_{1}(z), y\right) \cdot \operatorname{beat}\left(\pi_{1}(z), \pi_{1}\left(y^{\prime}\right)\right)
\end{aligned}
$$

## D Most in UTT

Let $A$ be a finite type with $|A|=n_{A}, P: A \rightarrow$ Prop a predicate over $A$, and $\operatorname{Fin}(n)$ the types with $n$ objects defined in Appendix B. Then, in UTT, the logical proposition Most $x: A . P(x)$ of type Prop is defined as follows, where $\operatorname{inj}(f)$ is a proposition expressing that $f$ is an injective function:

$$
\begin{aligned}
\operatorname{Most} x: A \cdot P(x)=\exists k: N . & \left(k \geq\left\lfloor n_{A} / 2\right\rfloor+1\right) \\
& \wedge \exists f: \operatorname{Fin}(k) \rightarrow A \cdot \operatorname{inj}(f) \wedge \forall x: \operatorname{Fin}(k) \cdot P(f(x))
\end{aligned}
$$

The type $\operatorname{Fin}(n)$, indexed by $n: N$ with $N$ being the type of natural numbers, consists of exactly $n$ objects and can be specified by means of the following introduction rules (we omit their elimination and computation rules):

$$
\begin{gathered}
\frac{n: N}{\operatorname{zero}(n): \operatorname{Fin}(n+1)} \\
\frac{n: N \quad i: \operatorname{Fin}(n)}{\operatorname{succ}(n, i): \operatorname{Fin}(n+1)}
\end{gathered}
$$

## Another example

* Every person who buys a TV and has a credit card uses it to pay for it.
* where "a TV" obtains a strong $\forall$-reading and "a credit card" a weak $\exists$-reading.

```
\forall: \Sigmax:Person. }\exists\mp@subsup{y}{1}{}:TV.\operatorname{buy}(x,\mp@subsup{y}{1}{})\wedge\exists\mp@subsup{y}{2}{}:Card.own(x,\mp@subsup{y}{2}{}
\forally:\Sigma\mp@subsup{y}{1}{}:TV.buy(\mp@subsup{\pi}{1}{}(z),\mp@subsup{y}{1}{})
\exists
    pay(}\mp@subsup{\pi}{1}{}(z),\mp@subsup{\pi}{1}{}(y),\mp@subsup{\pi}{1}{}(\mp@subsup{y}{}{\prime})
```

* Note: It would be impossible to do this in MLTT.


## E-type Anaphora (Evans 77, ...)

* Evans' example:
* Few congressmen admire Kennedy, and they are very junior.
* Few congressmen admire Kennedy, and the congressmen who do admire Kennedy are very junior.
* Note: "they" cannot be "bound" by "Few congressmen" for, otherwise, the meaning is different.
* It would mean: Few congressmen are such that they admire Kennedy and are very junior (at the same time).
* Interpretations in type theory:

Few x:C.admire $(x, K) \wedge \forall z:[\Sigma x: C . a d m i r e(x, K)] \cdot \operatorname{junior}\left(\pi_{1}(z)\right)$

* Link of $\Sigma$ with descriptions (Martin-Löf, Carlström, Mineshima)


## Combining strong and weak sums

* How to add $\Sigma$ to an impredicative type theory with $\exists$-propositions?

* Three possibilities:
* UTT (seen before): $\Sigma$-types + ヨ-propositions
* "Large" $\Sigma$-propositions
$\frac{\text { A type } P: A \rightarrow \text { Prop }}{\Sigma x: A \cdot P(x): \text { Prop }}$
* "Small" $\Sigma$-propositions
$\frac{A: \text { Prop } P: A \rightarrow \text { Prop }}{\Sigma x: A \cdot P(x): \text { Prop }}$
Conclusion: Only the UTT's approach is OK.
* How to add $\exists$ to a predicative type theory with $\Sigma$ types?

* Not clear how to do this (but see next page for MLTTh
* One might define $\exists$ by $\Pi$ in predicative universes $\mathrm{U}_{i}$ :

$$
\exists_{i} x: A \cdot B(x)=\Pi X: U_{i} \cdot(\Pi x: A \cdot(B(x) \rightarrow X)) \rightarrow X
$$

* But, thus defined, $\exists_{\mathrm{i}}$ is the same as the strong sum $\Sigma$ !

We can define $p: \exists_{i} x: A \cdot B(x) \rightarrow \Sigma x: A \cdot B(x)$ such that $\exists_{\mathrm{i}}$-projections exist:

$$
p_{1}=\pi_{1} \circ p \text { and } p_{2}=\pi_{2} \circ p
$$

(Bad side effect!)

## $\mathrm{MLTT}_{\mathrm{h}}$ : Extension of MLTT with H-logic

* H-logic (in Homotopy Type Theory; HoTT book 2013)
* A proposition is a type with at most one object.
* Logical operators (examples):

$$
\begin{aligned}
& P \neg Q=P \rightarrow Q \text { and } \forall x: A \cdot P=\Pi x: A \cdot P \\
& P \vee Q=|P+Q| \text { and } \exists x: A \cdot P=|\Sigma x: A \cdot P|
\end{aligned}
$$ where $|A|$ is propositional truncation, a proper extension.

- MLTT $h=$ MLTT + h-logic (subsystem of HoTT) [Luo 2019]
* Proof irrelevance is "built-in" in h-logic (by definition).
* $\exists$ defined by truncating $\Sigma$ is a weak sum and can be used to give adequate semantics of donkey sentences as proposed.
* Note: MLTT h is a proper extension of MLTT.


## Concluding remarks

* Summary
* Donkey sentences - old topic, but still intriguing.
* Type theories - with "standard" logics embedded.
* We have studied this completely proof-theoretically.
* Dynamics in semantics
* "Dynamic type theory"? (Not a way forward, even IF possible)
* Cf, Dynamic Predicate Logic that extends FOL.
* But, DPL is non-standard (eg, non-monotonic ...) and prooftheoretically difficult [Veltman 2000] (probably problematic).
* Formal semantics based on such is too big a price to pay.

