Formal Semantics in Modern Type Theories (MTT-semantics): advanced topics

Zhaohui Luo Royal Holloway, Univ. of London

Lecture I. Introduction

Natural Language Semantics

Semantics – study of meaning

communicate = convey meaning

Various kinds of theories of meaning

- Meaning is reference ("referential theory")
 Word meanings are things (abstract/concrete) in the world.
 c.f., Plato, ...
- Meaning is concept ("internalist theory")
 - Word meanings are ideas in the mind.
 - C.f., Aristotle, ..., Chomsky.
- Meaning is use ("use theory")
 - Word meanings are understood by their uses.
 - & c.f., Wittgenstein, ..., Dummett, Brandom.

ESSLLI 2023

3

Formal semantics

Model-theoretic semantics

- ✤ Meaning is given by denotation.
- ☆ c.f., Tarski, Church, ..., Montague
- & e.g., Montague grammar (MG)
 & NL → simple type theory → set theory

Proof-theoretic semantics

- In logics, meaning is inferential use
 - (two aspects: proof + consequence)
- * c.f., Gentzen , ..., Prawitz
- ✤ e.g., meaning theories (c.f., previous page)

Simple v.s. Modern Type Theories

Church's simple type theory (1940)

- As in Montague semantics
- ↔ Types ("single entity-sort": **e**, **t**, **e**→**t**); HOL/predicates
- Modern type theories
 - Many types of entities "many-sorted"
 - ♦ Human, Table, $\sum x$:Man.handsome(x), $Evt_T(t)$, Phy•Info, ...
 - Dependent types, inductive types, universes, ...
 - ✤ Examples of MTTs:
 - Predicative [non-standard FOL]: MLTT (Martin-Löf 1984)
 - ✤ Impredicative [HOL]: pCIC (Coq manual) and UTT (Luo 1994)

An episode: MTT-based technology and applications

Proof technology based on type theories

- Proof assistants
 - MTT-based: ALF/Agda, Coq, Lean, Lego, NuPRL, Plastic, ...
 - HOL-based: Isabelle, Isabelle-HOL, ...

Applications of proof assistants

Math: formalisation of mathematics – eg,

- ✤ 4-colour theorem (on map colouring) in Coq
- Kepler conjecture (on sphere packing) in Isabelle/HOL
- Computer Science:
 - Program verification and advanced programming
- Computational Linguistics
 - NL reasoning based on MTT-semantics

(In Coq: Chatzikyriakidis & Luo 2014/2016/2020; Luo 2023)

The Kepler conjecture

First proposed by Johannes Kepler in 1611, it states that the most efficient way to stack cannonballs or equalsized spheres is in a pyramid. A University of Pittsburgh mathematician has proven the 400-year-old conjecture.

Source: Thomas C. Hales Post Gazett

ESSLLI 2023

6

Type theories as foundational languages

- Type theories as foundational languages for
 - * Maths: classical/Church's STT and constructive/Martin-Löf's
 - NL semantics: Montague semantics and MTT-semantics
- A comment what typing is not:
 - * "a : A" is not a logical formula (A is not a predicate).
 - ✤ j: e; ugly(j): t; 7: Nat; j: Human; ...
 - 7:Nat/j:Human are different from formulae nat(7)/human(j), where nat/human are predicates.
 - * "a : A" is different from "a \in S" (the latter is a logical formula).
- What typing is related to (some example notions):

 - Semantic/category errors (eg, "A table talks." later)
 - ✤ Type presuppositions (Asher 2011)

MTT-semantics

MTT-semantics

- ✤ Formal semantics in modern type theories (MTTs), not simple TT
- ✤ Has <u>both</u> model-/proof-theoretic characteristics. (Luo 2014)
- Development of MTT-semantics
 - * Early use of dependent type theory in formal semantics:
 - ✤ Mönnich 1985, Sundholm 1986, Ranta 1994
 - Development since 2009 full-scale alternative to Montague semantics
 - Z. Luo. Modern Type Theories: Their Development & Applications. Tsinghua Univ Press. 2023. (Monograph on MTTs with chapters on MTT-semantics, in Chinese)
 - S. Chatzikyriakidis & Z. Luo. Formal Semantics in Modern Type Theories. Wiley/ISTE. 2020. (Monograph on MTT-semantics)
 - S. Chatzikyriakidis & Z. Luo (eds.) Modern Perspectives in Type Theoretical Semantics. Springer, 2017. (Collection of papers on rich typing in NL semantics)

ESSLLI 2023

8

Course Plan

- Motivations of the course
- This lecture (Lecture I):
 - MTT-semantics: intro & case study (adjectival modification)
 - ✤ Introductory overview of the topics in Lectures II IV
- Several traditionally "advanced" topics
 - ✤ Lect II: Events (Davidsonian → dependent event types)
 - ☆ Lect III: Anaphora (Russellian/dynamic → type-theoretic solution)
 - ☆ Lect IV: Copredication (dot-types → formalisation in MTTs)
 - Lect V: More + analysis (e.g., dependent CGs, ...; "open")

Each: history/Montague/MTT-semantics (informal & understandable)

Material and References

Material available on the ESSLLI23 course web link:

- * Lecture slides for the first lecture (Lecture I)
- Course proposal (good summary, but the organisation and descriptions of lectures are slightly different.)
- The slides for all 5 lectures, and the course proposal, will be available at

https://www.cs.rhul.ac.uk/home/zhaohui/lecture-notes.html

with references (cited in lectures) listed in the end of the slides.

Papers/books on MTT-semantics available at

http://www.cs.rhul.ac.uk/home/zhaohui/lexsem.html

I.1. Introduction to MTT-semantics

Dependent types

- MTTs are dependent type theories what's a dependent type?
 What is <u>not</u> a dependent type:
 - A dependent type is not a type dependent on types.
 * E.g., List(A) depends on types A and is not a dependent type.
- A dependent type is a type dependent on <u>objects</u>.
 - ✤ Parent(x) it depends on objects x : Human.
 - * Event \rightarrow Evt(h) with h:Human (events performed by h)
 - Π-types of dependent functions (see next page)
- Dependent types give, among other things:
 - * Logical quantifiers (e.g., Π for \forall) in a propositions-as-types logic
 - ✤ Powerful tools in semantic construction (eg, □-polymorphism)

П-types: a taste of dependent types

✤ IIx:Human.Parent(x)

- ✤ Type of functions, where Parent(x) is the type of x's parents.
- * f : ∏x:Human.Parent(x), then
 - f(h) : Parent(h), for h : Human.
- A→Prop (i.e., Пx:A.Prop)
 - * Type of predicates over type A
- ✤ Π-polymorphism
 - small : ∏A:CN.(A→Prop)
 - small(Elephant) : Elephant→Prop
 - small(Mouse) : Mouse→Prop
 - small(Table) : Table→Prop

 $\frac{\Gamma \vdash A \ type \quad \Gamma, \ x:A \vdash B \ type}{\Gamma \vdash \Pi x:A.B \ type}$

 $\frac{\Gamma, \ x: A \vdash b: B}{\Gamma \vdash \lambda x: A.b: \Pi x: A.B}$

$$\frac{\Gamma \vdash f : \Pi x : A.B \quad \Gamma \vdash a : A}{\Gamma \vdash f(a) : [a/x]B}$$

 $\frac{\Gamma, \ x:A \vdash b: B \quad \Gamma \vdash a: A}{\Gamma \vdash (\lambda x:A.b)(a) = [a/x]b: [a/x]B}$

Montague semantics and MTT-semantics

Two basic semantic types in MG/MTT-semantics

Category	MG's type	MTT-semantic type
S (sentence)	t	Prop
IV (verb)	e→t	A→Prop (A: "meaningful domain")

Simple example

John talks.

- * Sentences are (interpreted as) logical propositions.
- Individuals are entities or objects in certain domains.
- Verbs are predicates over entities or certain domains.

	Montague	MTT-semantics	
john	е	Human	
talk	e→t	Human→Prop	
talk(john)	t	Prop	

Selection Restriction

- (*) The table talks.
 - Is (*) meaningful?
- In MG, yes: (*) has a truth value
 - * talk(the table) is false in the intended model.
- In MTT-semantics, no: (*) is not meaningful
 - since <u>"the table"</u>: Table and it is not of type Human and, hence, talk(the table) is ill-typed as talk requires that its argument be of type Human.
 - So, in MTT-semantics, meaningfulness = well-typedness

CNs as types and subtyping

MTTs have many types (informally, collections).

- * Dependent types (Π -types, Σ -types, ...)
- Inductive types (Nat, Fin(n), ...)
- * And more ... (universes, logical types, ...)

Some can be used to represent CNs. (Ranta 1994, Luo 2012)

Subtyping (necessary for multi-type languages such as MTTs)

- ✤ Example: What if John is a man in "John talks"?
 - ♦ john : Man and talk : Human→Prop
 - talk(john)? (john is not of type Human ...?)
- ↔ Problem solved if Man ≤ Human
- Coercive subtyping adequate for MTTs (Luo 1997, Luo, Soloviev & Xue 2012)

Adjectival modification of CNs – case study

A traditional classification

* Kamp 1975, Parsons 1970, Clark 1970, Montague 1970

classification	property	example	
Intersective	Adj(N) → Adj & N	handsome man	
Subsectional	Adj(N) → N	large mouse	
Privative	Adj(N) → ¬N	fake gun	
Non-committal	Adj(N) → ?	alleged criminal	

Intersective adjectives

\therefore Example: handsome man (see next page for Σ -types)

	Montague	MTT-semantics	
man	man : e→t	Man : Type	
handsome	handsome : e→t	Man→Prop	
handsome man	$\lambda x. man(x) \& handsome(x)$	Σ (Man,handsome)	

In general:

	Montague	MTT-semantics	
CNs	predicates	types	
Adjectives	predicates	simple predicates	
CNs modified by intersective adj	Predicate by conjunction	Σ-type	

Σ -types

An extension of the product types A x B of pairs Σ -types of "dependent pairs" $\Gamma \vdash A \ type \quad \Gamma, \ x : A \vdash B \ type$ (Σ) * $\Sigma(A,B)$ of (a,b) for a:A & b:B(a) $\Gamma \vdash \Sigma x : A.B \ type$ $\Gamma \vdash a : A \quad \Gamma \vdash b : [a/x]B \quad \Gamma, x : A \vdash B \ type$ \clubsuit Rules for Σ -types: (pair) $\Gamma \vdash (a, b) : \Sigma x : A.B$ * $\Sigma(A,B)$ also written as $\Sigma x:A.B(x)$ $\Gamma \vdash p : \Sigma x : A.B$ (π_{1}) $\Gamma \vdash \pi_1(p) : A$ Examples: $\Gamma \vdash p : \Sigma x : A.B$ (π_2) $\Gamma \vdash \pi_2(p) : [\pi_1(p)/x]B$ * Σ (Human,dog) $\Gamma \vdash a : A \quad \Gamma \vdash b : [a/x]B \quad \Gamma, x : A \vdash B \ type$ $(proj_1)$ with dog(j)={d}, dog(m)= \emptyset , ... $\Gamma \vdash \pi_1(a, b) = a : A$ $\Gamma \vdash a : A \quad \Gamma \vdash b : [a/x]B \quad \Gamma, x : A \vdash B \ type$ * Σ (Man,handsome) $(proj_2)$ $\Gamma \vdash \pi_2(a, b) = b : [a/x]B$

ESSLLI 2023

20

An adjective maps CNs to CNs:

- * In MG, predicates to predicates.
- In MTT-semantics, types to types.

MTT-semantics (Chatzikyriakidis & Luo 2020, Luo 2023)

classification example		types employed		
Intersective	handsome man	Σ -types with simple predicates		
Subsectional	large mouse	Π -polymorphic predicates and Σ -types		
Privative	fake gun	Disjoint union types with Π/Σ -types		
Non-committal	alleged criminal	special predicates		

I.2. Introductory Overview of "Advanced" Topics

Note:

For each topic/lecture, I shall try to cover

- History/examples in introduction
- Montague or traditional approaches
- * Type-theoretical approaches

and informal/understandable.

Lecture II: Events (overview)

Event semantics is an extremely popular topic

- Casati and Varzi. Events: An Annotated Bibliography. 1997.
 [25 years ago, already 235 pages!]
- ✤ Some researchers even take it for granted ...
- But:
 - What is an event?
 - * Are events atomic? Structured? If the latter, how?
 - * Is the introduction of events completely harmless?
 - still unsettled/debated/...

ESSLLI 2023

*

Dependent event types

- Dependent event types (DETs)
 - Events are classified into "event types", dependent on (or classified according to) thematic roles.
- Focus: Montague (simple type theory) + DETs
 - Rather than MTT+DETs (stepping-stone for easier understanding)
- Several application examples
 - Solve problems such as "Event Quantification Problem"
 - * Facilitate semantic constructions of tensed sentences
 - Restore "selection restriction" in MTT-event semantics

See (Luo & Soloviev 2017, Chatzikyriakidis & Luo 2020, Luo 2023).

Lecture III. Indefinites & Anaphora (overview)

✤ We'll discuss indefinites like "a man". Are they

- & Quantifier phrases (as Russell suggests)?
- * Referring expressions?
- Russell (1919): the ∃-view
 - \Rightarrow A man came in. → $\exists x:e. man(x) \land come_in(x)$
 - \diamond A lot of arguments/examples for the ∃-view.
- But what about, for example,
 - ☆ <u>A man</u> came in. <u>He</u> lit a cigarette. [compositional semantics?]
 - Every farmer who owns <u>a donkey</u> beats <u>it</u>.

 $(\#) \ \forall x. \ [farmer(x) \ \& \ \exists y. (donkey(y) \ \& \ own(x, y))] \Rightarrow beat(x, y)$

Both referring to a variable outside its scope (e.g. the last "y").

Dynamic semantics

Dynamic approaches (widely accepted for anaphora treatment) ✤ Discourse Representation Theory (Kamp 1981, Heim 1982) Dynamic Predicate Logic (Groenendijk and Stokhof 1991) $(\exists x \varphi); \psi \Leftrightarrow ([x]; \varphi); \psi \Leftrightarrow [x]; (\varphi; \psi) \Leftrightarrow \exists x (\varphi; \psi)$ where ";" is the dynamic conjunction (so, previous "y" would be OK ...) However, logics in dynamic semantics are non-standard. ✤ For example, DPL (G&S91) is rather non-standard: non-monotonic, irreflexive/intransitive entailment, ... Substantial changes required for underlying logic(s) in semantics Two "extremes"? Anything in the middle? Russell (∃) |-----| Dynamic

Type-theoretical approaches

- Using dependent types (Mönnich 1985, Sundholm 1986)
 - (Donkey) Every farmer who owns a donkey beats it.
 - $\forall z: F_{\Sigma}. beat(\pi_1(z), \pi_1(\pi_2(z)))$ where $F_{\Sigma} = \Sigma x: F \ \Sigma y: D. own(x, y)$
 - Σ is the "strong sum" with two projections π_1 and π_2 .
- This gives a compromise:
 - * Σ is "strong" so that witnesses can be referred to outside its scope.
 - ✤ The change for underlying logic is much less substantial.
- However, a problem Σ plays a <u>double role</u>:
 - * Subset constructor (1st Σ) and existential quantifier (2nd Σ).
 - * But this is problematic \rightarrow counting problem.
 - ☆ A satisfactory solution with both strong/weak sums (Luo 2021)

Lecture IV. Copredication (overview)

- Copredication is a special case of logical polysemy.
 - ✤ See (Pustejovsky 1995, Asher 2011), among others.
- Examples
 - (*) The lunch was delicious but took a long time.
 - ♦ delicious : Food→t; take_long_time : Process→t
 - Their domains Food/Process do not share any common objects, but they can both apply to the same noun (lunch) ...
 - (**) All three books are heavy and boring.
 - ♦ heavy : Phy→t; boring : Info→t
 - Phy/Info (similar to the above) and heavy/boring can both apply to a book.

How to analyse it formally?

Very interesting issue Easy to understand, but intriguing (nice research topic) Numerous papers in the literature Many approaches, including (just to name a few): Dot-types and related approaches E.g., Pustejovsky 95, Asher 2011, Luo 2010, ... Mereological approaches E.g., Gotham 2014, 2017 Others E.g., Retoré 2013, Liebesman & Magidor 2023,

Dot-types in MTTs

Dot-types – idea by Pustejovsky (1995)

- ✤ Objects of type A•B have two aspects: being both A and B.
- * Informally, the above sentences (*)/(**) can now be interpreted.

How to

- * formalise dot-types?
- s formalise dot-types in MTTs?
- ✤ We'll try to explain them informally see (Luo 2010, 2023)
- What happens when copredication interacts with ...?
 - ↔ Interacting with quantification → identity criteria of CNs (Luo 2012)
 - ✤ See (Chatzikyriakidis and Luo 2018, Luo 2023)

Lecture V. Reasoning, CGs, and Beyond (overview)

- More MTT-related topic(s) may be briefly introduced; examples include:
 - Natural language reasoning based on MTT-semantics in "proof assistants" – computer-assisted reasoning systems;
 - c.f. (Chatzikyriakidis and Luo 2020, Chap 6; Luo 2023, Chap 5)
 - Dependent types in categorial grammars substructural dependent type theory; c.f. (Luo 2023, Sect 4.5)
- This lecture is intentionally left as "open" at the moment; besides the above, it may also include some "tidying up" of previous lectures.

NL Reasoning in Proof Assistants

Interactive theorem proving based on MTTs
 An ITP system consists of three parts for:

 (1) contextual defns (2) proof development (3) proof checking

Figure 1: Interactive proof development and proof checking

33

Dependent Categorial Grammar

Categorial Grammars (or typelogical grammars)

- An approach to syntactic analysis
- ✤ CGs are based on substructural logics

Moortgat: 'Typelogical grammars are substructural logics, designed for reasoning about the composition of form and meaning in natural language.' (Stanford Encyclopedia of Philosophy, 2010)

What is a substructural logic?

- In a proof system, there are usually three kinds of "structural" rules: weakening, contraction (strengthening), exchange
- Weakening: adding more assumptions is OK.
- ✤ Contraction: removing a repeated assumption is OK.
- ✤ Exchange: swapping the order of two assumptions is OK.

In substructural (resource-sensitive) logics, the above may not be OK.

Lambek calculus and beyond

- Categorial grammar and historical developments:
 - * Ajdukiewicz, Bar, Hillel, ...
- Lambek calculus (1958)
 - ✤ Ordered formulae B/A and A\B
 - John runs "run applies to a np on the left".
 John : NP and run : NP\S

- Resource sensitive substructural (eg, no exchange word order)
- Linear/hybrid CGs (Oehrle 1994, Kubota & Levine's HTLG, ...)

Substructural type theory (Luo 2023)

	Π -type	Non-dependent type	Abstraction	Application
Linear	$\overline{\Pi}x:A.B$	$A \multimap B$	$\overline{\lambda}x:A.b$	$\overline{app}(f,a)$
Ordered (right)	$\Pi^r x:A.B$	B/A	$\lambda^r x:A.b$	$app^{r}(f,a)$
Ordered (left)	$\Pi^l x:A.B$	$A \setminus B$	$\lambda^{l}x:A.b$	$app^{l}(a, f)$

Table 1 Three substructural function types in $\bar{\lambda}_{\Pi}$: summary of notations.

A