
Dependent Record Types RevisitedI

Zhaohui Luo1

Department of Computer Science
Royal Holloway, University of London

Egham, Surrey TW20 0EX, U.K.
zhaohui.luo@hotmail.co.uk

Abstract

Dependently-typed records have been studied in type theory to provide, for
example, module mechanisms for both programming and proof languages.
In this paper, we shall conduct further studies of dependent record types and
show that they provide powerful and useful tools in applications. In partic-
ular, it is shown that dependent record types are more powerful than depen-
dent record kinds (kinds at the level of a logical framework) and sometimes
they are more useful than Σ-types (types of tuples without labels). Further-
more, we shall explain how manifest fields can be expressed for record types
in an intensional type theory, without introducing any extensional rules.

Keywords: dependent record types, type theory

1. Introduction

Dependently-typed records have been studied in type theory previously,
including (Harper and Lillibridge, 1994; Betarte and Tasistro, 1998; Pollack,
2002; Coquand et al., 2005; Luo, 2009), with applications to the study of
module mechanisms for both programming and proof languages. In this
paper, further studies are conducted about dependent record types (DRTs)
and their applications.

First, let us make clear that we study record types, not record kinds.
In a type theory with inductive types, types include those such as Nat of
natural numbers and Σ-types of dependent pairs, while kinds are at the level

IPreliminary versions of some parts of the current paper appeared as the workshop
papers (Luo, 2010; Feng and Luo, 2010).

1Partially supported by the U.K. Leverhulme research grant F/07-537/AJ.

Preprint submitted to Elsevier September 23, 2011

of logical framework used to specify the type theory (e.g., the kind Type of
all types). In the terminology used in this paper, most of the previous work
studies record kinds,2 with (Pollack, 2002) as the only notable exception.
Since kinds have a much simpler structure than types, it is easier to add
record kinds (e.g., to ensure label distinctness) than record types, while the
latter is much more powerful. For example, if R is a record type, one can
form the types such as Πx:R.C of dependent functions with domain R and
List(R) of lists of records of type R, while if R is a record kind, one cannot.
Also, it is possible to consider universes of record types, but not for record
kinds. We shall show how such universes can be introduced so that record
types provide a more powerful mechanism than record kinds in expressing
module types. This is illustrated by means of an example in date refinement.

In formulating dependent record types, we introduce kinds RType[L] of
the record types whose (top-level) labels all occur in the label set L. The
associated label sets in the kinds RType[L] play a crucial role in forming
record types with distinct labels (among other uses). In particular, unlike
(Pollack, 2002), repetition of labels is not allowed when record types are
formed or when records are introduced. Such a requirement for label dis-
tinctness is not only intuitively natural, but useful in some applications, as
one of our examples shows. It is interesting to note that, in type theory, to
ensure label distinctness is not easy for record types, although it is easy for
record kinds.

It has been a common view held by many researchers that, because one
can easily introduce Σ-types as inductive types in type theory, dependent
record types are not necessary — they can always be replaced by Σ-types.
In this paper, we argue that such a view is not completely justified — record
types provide some additional useful means that is not available for Σ-types.
As we know, the only difference between a dependent record type and a Σ-
type is that the former has field labels. We show that, in some applications,
labels provide a useful mechanism in a finer distinction between record types
so that record types can be used adequately together with some forms of
structural subtyping, while Σ-types cannot.

A field in a record type may be manifest (in the form of v = a : A) as well
as abstract (in the form of v : A) (Leroy, 1994). It has been believed that, in
order to have manifest fields, one need to introduce some form of extensional
equality rules. In fact, this is not the case: one can have intensional manifest

2For example, both (Betarte and Tasistro, 1998) and (Coquand et al., 2005) study
record kinds – their ‘record types’ are studied at the level of kinds in a logical framework.

2

fields with the help of coercive subtyping (Luo, 2009). We shall explain how
this can be done for DRTs.

The meta-theoretic properties of DRTs in a logical framework are studied
by means of its Typed Operational Semantics, an approach developed by
Goguen in his PhD thesis (Goguen, 1994, 1999), where he has developed
the TOS for the type theory UTT (Luo, 1994) and proved that UTT has
the nice properties such as Church-Rosser, Subject Reduction and Strong
Normalisation. A similar development was done for the DRTs to show that
the logical framework with DRTs has the nice properties.

The following subsections give the background and notational conven-
tions: briefly describing the logical framework LF in which the underly-
ing type theory is specified (§1.1) and the framework of coercive subtyping
(§1.2). Dependent record types are formulated in §2 where their basic formu-
lation is given in §2.1 and the introduction of universes of DRTs is described
in §2.2. §3 illustrates why record types are more powerful than record kinds
by considering an example in data refinement, §4 explains the usefulness of
labels in an adequate use of record types together with structural subtyp-
ing, and §5 describes how manifest fields can be represented for DRTs with
the help of coercive subtyping. The meta-theoretic properties of DRTs in
a logical framework are studied by means of its TOS in §6, followed by the
conclusion with discussions of related and future work.

1.1. The Logical Framework LF

LF (Luo, 1994) is the typed version of Martin-Löf’s logical framework
(Nordström et al., 1990). It is a dependent type system for specifying type
theories such as Martin-Löf’s intensional type theory (Nordström et al.,
1990), the Calculus of Constructions (CC) (Coquand and Huet, 1988) and
the Unifying Theory of dependent Types (UTT) (Luo, 1994). The types in
LF are called kinds, including:

• Type – the kind representing the universe of types (A is a type if
A : Type);

• El(A) – the kind of objects of type A (we often omit El); and

• (x:K)K ′ (or simply (K)K ′ when x ̸∈ FV (K ′)) – the kind of dependent
functional operations such as the abstraction [x:K]k′.

The rules of LF can be found in Chapter 9 of (Luo, 1994).

Notations We shall adopt the following conventions.

3

• Substitution: We sometimes use M{x} to indicate that x may occur
free in M and subsequently write M{a} for the substitution [a/x]M .

• Functional composition: For f : (K1)K2 and g : (K2)K3, g ◦ f =
[x:K1]g(f(x)) : (K1)K3, where x does not occur free in f or g.

When a type theory is specified in LF, its types are declared, together with
their introduction/elimination operators and the associated computation
rules. Examples of types include

• inductive types such as Nat of natural numbers,

• inductive families of types such as V ect(n) of vectors of length n, and

• families of inductive types such as Π-types and Σ-types.

A Π-type Π(A,B) is the type of functions λ(x:A)b and a Σ-type Σ(A,B) of
dependent pairs (a, b). (We use A → B and A×B for the non-dependent Π-
type and Σ-type, respectively.) In a non-LF notation, Σ(A,B), for example,
will be written as Σx:A.B(x).

Types can be parameterised. For example, one may introduce the induc-
tive unit types 1(A, a): it is an inductive type with only one object ∗(A, a)
and parameterised by a type A and an object a of type A. (See §5 for an
example of using the unit types.)

One may also introduce type universes to collect (the names of) some
types into types (Martin-Löf, 1984). This can be considered as a reflection
principle: such a universe reflects those types whose names are its objects.
For instance, in Martin-Löf’s type theory or UTT, we can introduce a uni-
verse U : Type, together with T : (U)Type, to reflect the types in Type
introduced before U (see (Martin-Löf, 1984) or §9.2.3 of (Luo, 1994)). For
example, for Σ-types, we introduce their names in U as follows

Γ ⊢ a : U Γ ⊢ b : (T (a))U

Γ ⊢ σ(a, b) : U

Γ ⊢ a : U Γ ⊢ b : (T (a))U

Γ ⊢ T (σ(a, b)) = Σ(T (a), [x:T (a)]T (b(x))) : Type

Note that such a universe is predicative: for example, U and Nat → U do
not have names in U .

Remark The type theories thus specified in LF are intensional type the-
ories as implemented in the proof assistants Agda (Agda 2008), Coq (Coq
2007), Lego (Luo and Pollack, 1992) and Matita (Matita 2008).3 They have

3In some systems (Agda, for example), there may be some experimental features that
are extensional, but the cores of these proof assistants are all intensional.

4

nice meta-theoretic properties including Church-Rosser, Subject Reduction
and Strong Normalisation. (See Goguen’s thesis on the meta-theory of UTT
(Goguen, 1994).) In particular, the inductive types do not have the exten-
sional η-like equality rules. As an example, the above inductive unit type
is different from the singleton type (Aspinall, 1995) in that, for a variable
x : 1(A, a), x is not computationally equal to ∗(A, a). �

1.2. Coercive subtyping

Coercive subtyping for dependent type theories has been developed and
studied as a general approach to abbreviation and subtyping in type theories
with inductive types (Luo, 1997, 1999). Coercions have been implemented
in the proof assistants Coq (Coq 2007; Säıbi, 1997), Lego (Luo and Pollack,
1992; Bailey, 1999), Plastic (Callaghan and Luo, 2001) and Matita (Matita
2008). Here, we explain the main idea and introduce necessary terminolo-
gies. For a formal presentation with complete rules, see (Luo, 1999).

In coercive subtyping, A is a subtype of B if there is a coercion c :
(A)B, expressed by Γ ⊢ A ≤c B : Type. The main idea is reflected by the
following coercive definition rule, expressing that an appropriate coercion
can be inserted to fill up the gap in a term:

Γ ⊢ f : (x:B)C Γ ⊢ a : A Γ ⊢ A ≤c B : Type

Γ ⊢ f(a) = f(c(a)) : [c(a)/x]C

In other words, if A is a subtype of B via coercion c, then any object a of
type A can be regarded as (an abbreviation of) the object c(a) of type B.

Coercions may be declared by the users. They must be coherent to
be employed correctly. Essentially, coherence expresses that the coercions
between any two types are unique (and that there are no coercions between
the same types). Formally, given a type theory T specified in LF, a set R
of coercion rules is coherent if the following rule is admissible in T [R]0:

4

Γ ⊢ A ≤c B : Type Γ ⊢ A ≤c′ B : Type

Γ ⊢ c = c′ : (A)B

Coherence is a crucial property. Incoherence would imply that the extension
with coercive subtyping is not conservative in the sense that more judge-
ments of the original type theory T can be derived. In most cases, coher-
ence does imply conservativity (e.g., the proof method in (Soloviev and Luo,

4T [R]0 is an extension of T with the subtyping rules in R together with the congruence,
substitution and transitivity rules for the subtyping judgements, but without the coercive
definition rule. See (Luo, 1999) for formal details.

5

2002) can be used to show this). When the employed coercions are coherent,
one can always insert coercions correctly into a derivation in the extension
to obtain a derivation in the original type theory. For an intensional type
theory, coercive subtyping is an intensional extension. In particular, for an
intensional type theory with nice meta-theoretic properties, its extension
with coercive subtyping has those nice properties, too.

Remark Coercive subtyping corresponds to the view of types as consist-
ing of canonical objects while ‘subsumptive subtyping’ (the more traditional
approach with the subsumption rule) to the view of type assignment (Luo
and Luo, 2005). These two notions of subtyping are suitable for different
kinds of type systems: subsumptive subtyping for type assignment systems
such as the polymorphic calculi in programming languages and coercive sub-
typing for the type theories with canonical objects such as Martin-Lofs type
theory implemented in proof assistants. It is worth noting that subsumptive
subtyping is incompatible with the idea of canonical object and cannot be
employed adequately for type theories with canonical objects, while coercive
subtyping can be used to do so satisfactorily. Furthermore, coercive sub-
typing is not only suitable for structural subtyping, but for non-structural
subtyping. The use in this paper of the coercion ξ concerning the unit type
(see §5) is such an example. �

2. Dependent Record Types

In this section, we present the formulation of dependent record types
(DRTs) and describe how universes of DRTs can be introduced.

2.1. A Formulation of Dependent Record Types

A dependent record type is a type of labelled tuples. For instance, ⟨n :
Nat, v : V ect(n)⟩ is the dependent record type with objects (called records)
such as ⟨n = 2, v = [5, 6]⟩, where dependency has to be respected: [5, 6]
must be of type V ect(2).

Formally, we formulate dependent record types as an extension of inten-
sional type theories such as Martin-Löf’s type theory or UTT, as specified
in the logical framework LF. The syntax is extended with record types and
records:

R : = ⟨⟩ | ⟨R, l : A⟩
r : = ⟨⟩ | ⟨r, l = a : A⟩

6

where we overload ⟨⟩ to stand for both the empty record type and the empty
record. Records are associated with two operations:

• restriction (or first projection) [r] that removes the last component of
record r;

• field selection r.l that selects the field labelled by l.

The labels form a new category of symbols. For every finite set L of
labels, we introduce a kind RType[L], the kind of the record types whose
(top-level) labels are all in L, together with the kind RType of all record
types:

Γ valid

Γ ⊢ RType[L] kind

Γ valid

Γ ⊢ RType kind

These kinds obey obvious subkinding relationships:

Γ ⊢ R : RType[L] L ⊆ L′

Γ ⊢ R : RType[L′]

Γ ⊢ R : RType[L]

Γ ⊢ R : RType

Γ ⊢ R : RType

Γ ⊢ R : Type

In particular, they are all subkinds of Type. Equalities are also inherited by
superkinds in the sense that, if Γ ⊢ k = k′ : K and K is a subkind of K ′,
then Γ ⊢ k = k′ : K ′. The obvious rules are omitted.

The main inference rules for dependent record types are given in Figure 1.
Note that, in record type ⟨R, l : A⟩, A is a family of types of kind (R)Type,
indexed by the records of type R, and this is how dependency is embodied
in the formulation.

There are also congruence rules for record types and their objects, as
given in Figure 2. It is worth remarking that we pay special attention to
the equality between record types. In particular, record types with different
labels are not equal. For example, ⟨n : Nat⟩ ̸= ⟨n′ : Nat⟩ if n ̸= n′.

Notation We shall adopt the following notational conventions.

• For record types, we write

⟨l1 : A1, ..., ln : An⟩, for ⟨⟨⟨⟩, l1 : A1⟩, ..., ln : An⟩,

and often use label occurrences and label non-occurrences to express
dependency and non-dependency, respectively. For instance, we write

⟨n : Nat, v : V ect(n)⟩

for
⟨⟨⟨⟩, n : NAT ⟩, v : [x:⟨n : NAT ⟩]V ect(x.n)⟩,

7

Formation rules

Γ valid

Γ ⊢ ⟨⟩ : RType[∅]
Γ ⊢ R : RType[L] Γ ⊢ A : (R)Type l ̸∈ L

Γ ⊢ ⟨R, l : A⟩ : RType[L ∪ {l}]

Introduction rules

Γ valid

Γ ⊢ ⟨⟩ : ⟨⟩
Γ ⊢ ⟨R, l : A⟩ : RType Γ ⊢ r : R Γ ⊢ a : A(r)

Γ ⊢ ⟨r, l = a : A⟩ : ⟨R, l : A⟩

Elimination rules

Γ ⊢ r : ⟨R, l : A⟩
Γ ⊢ [r] : R

Γ ⊢ r : ⟨R, l : A⟩
Γ ⊢ r.l : A([r])

Γ ⊢ r : ⟨R, l : A⟩ Γ ⊢ [r].l′ : B l ̸= l′

Γ ⊢ r.l′ : B

Computation rules

Γ ⊢ ⟨r, l = a : A⟩ : ⟨R, l : A⟩
Γ ⊢ [⟨r, l = a : A⟩] = r : R

Γ ⊢ ⟨r, l = a : A⟩ : ⟨R, l : A⟩
Γ ⊢ ⟨r, l = a : A⟩.l = a : A(r)

Γ ⊢ ⟨r, l = a : A⟩ : R Γ ⊢ r.l′ : B l ̸= l′

Γ ⊢ ⟨r, l = a : A⟩.l′ = r.l′ : B

Figure 1: The main inference rules for dependent record types.

where NAT ≡ [:⟨⟩]Nat, and

⟨R, l : V ect(2)⟩ for ⟨R, l : [:R]V ect(2)⟩.

• For records, we often omit the type information to write

⟨r, l = a⟩

for
either ⟨r, l = a : [:R]A(r)⟩ or ⟨r, l = a : A⟩.

Such a simplification is possible thanks to coercive subtyping (Luo,
1999). A further explanation is given in ??. �

Remarks

Several remarks are in order to explain some of the design decisions in
the above formulation and to compare it with previous attempts.

Record types v.s. record kinds. It is important to emphasise that we

8

Congruence rules for record types

Γ valid

Γ ⊢ ⟨⟩ = ⟨⟩ : RType[∅]

Γ ⊢ R = R′ : RType[L] Γ ⊢ A = A′ : (R)Type l /∈ L

Γ ⊢ ⟨R, l : A⟩ = ⟨R′, l : A′⟩ : RType[L ∪ {l}]
Congruence rules for records

Γ valid

Γ ⊢ ⟨⟩ = ⟨⟩ : ⟨⟩

Γ ⊢ R : RType[L] l /∈ L
Γ ⊢ r = r′ : R Γ ⊢ a = a′ : A(r) Γ ⊢ A = A′ : (R)Type

Γ ⊢ ⟨r, l = a : A⟩ = ⟨r′, l = a′ : A′⟩ : ⟨R, l : A⟩
Γ ⊢ r = r′ : ⟨R, l : A⟩

Γ ⊢ [r] = [r′] : R

Γ ⊢ r = r′ : ⟨R, l : A⟩
Γ ⊢ r.l = r′.l : A([r])

Figure 2: Congruence rules

9

have formulated record types, not record kinds. Record types are at the same
level as the other types such as Nat and A×B; they are not at the level of
kinds such as Type. (For those familiar with previous work on dependently-
typed records, both (Betarte and Tasistro, 1998) and (Coquand et al., 2005)
study record kinds — their ‘record types’ are studied at the level of kinds
in the logical framework, while only (Pollack, 2002) studies record types.)

Record types are much more powerful than record kinds. As explained
later in §2.2, we can introduce universes to reflect record types, which can
then be used to represent module types in a more flexible way than record
kinds in many useful applications.

Since kinds have a much simpler structure than types, it is much easier
to add record kinds to a type theory than record types. For example, a
record kind must be of the form ⟨R, l : A⟩ and cannot be of other forms
such as f(k), but this is not the case for a record type. For example, a
record type may be of the form f(k), say

([x:Type]x)(⟨n : Nat, v : V ect(n)⟩)

that is equal to ⟨n : Nat, v : V ect(n)⟩. As a consequence, it is much easier
to study (e.g., to formulate) record kinds. For instance, it is easy to ensure
that the labels in a record kind are distinct (as in, e.g., (Coquand et al.,
2005)), but it is not easy at all if we consider record types. Let’s discuss
this issue now.

Label distinctness in record types. When considering record types,
how can one ensure that the (top-level) labels in a record type are distinct?
Thinking of this carefully, one would find that it is not clear how it could
be done in a straightforward way.5 It is probably because of this difficulty
that, when record types are studied in (Pollack, 2002), a special strategy
called ‘label shadowing’ is adopted; that is, label repetition is allowed and,
if two labels are the same, the latter ‘shadows’ the earlier. For example, for
r ≡ ⟨n = 3, n = 5⟩, r.n is equal to 5 but not 3. This, however, is not natural
and may cause problems in some applications (see, for example, Remark 4
in §4).

In our formulation of dependent record types, we have introduced the
kinds RType[L] of record types whose (top-level) labels occur in L. This

5There is a problem in (Betarte and Tasistro, 1998), where the freshness condition of
label occurrence in a formation rule of record kinds has not been clearly defined — its
definition is not easy, if possible at all, because there are functional terms that result in
record kinds as values. This is similar to the problem with record types.

10

has solved the problem of ensuring label distinctness in a satisfactory way.
(See the second formation rule in Figure 1.)

It may be worth remarking that the label sets L also play other useful
roles. For example, for a label l ̸∈ L, one may want to define a functional op-
eration Extend[l](R) =df ⟨R, l : [x : R]Nat⟩, for all R : RType[L]. Without
label sets, it would be difficult to see how the operations such as Extend[l]
could be defined. (See Appendix A of (Luo, 2009) for a practical example
in which such operations are used essentially.)

Independence on subtyping. Many previous formulations of dependently-
typed records make essential use of subtyping in typing selection terms
(Harper and Lillibridge, 1994; Betarte and Tasistro, 1998; Coquand et al.,
2005). In this respect, (Pollack, 2002) is different and our formulation follows
it in that it is independent of subtyping. We consider this independence as
a significant advantage, mainly because it allows one to adopt more flexible
subtyping relations in formalisation and modelling.

2.2. Universes of Record Types

We explain here how universes of record types can be introduced.
One may collect (the names of) some types into a type called a universe

(Martin-Löf, 1984). This can be considered as a reflection principle: such a
universe reflects those types whose names are its objects. For instance, in
Martin-Löf’s type theory or UTT, we can introduce a universe U : Type,
together with T : (U)Type, to reflect the types in Type introduced before U
(see (Martin-Löf, 1984) or §9.2.3 of (Luo, 1994)). For example, for Π-types,
we have

Γ ⊢ a : U Γ ⊢ b : (T (a))U

Γ ⊢ π(a, b) : U

Γ ⊢ a : U Γ ⊢ b : (T (a))U

Γ ⊢ T (π(a, b)) = Π(T (a), [x:T (a)]T (b(x))) : Type

Note that such a universe is predicative: for example, U and Nat → U do
not have names in U .

Similarly, we can consider universes of dependent record types.6 We
introduce the following universes:

• UR[L] to reflect the record types inRType[L] (introduced before UR[L]):

UR[L] : Type and TR[L] : (UR[L])RType[L].

6Note that we can do this because they are record types, not record kinds.

11

Γ valid

Γ ⊢ ⟨̄⟩̄ : UR[∅]
Γ valid

Γ ⊢ TR[∅](⟨̄⟩̄) = ⟨⟩ : RType[∅]
Γ ⊢ r : UR[L] Γ ⊢ a : (TR[L](r))U l ̸∈ L

Γ ⊢ ⟨̄r, l : a⟩̄ : UR[L ∪ {l}]
Γ ⊢ r : UR[L] Γ ⊢ a : (TR[L](r))U l ̸∈ L

Γ ⊢ TR[L ∪ {l}](⟨̄r, l : a⟩̄) = ⟨TR[L](r), l : [x:TR[L](r)]T (a(x))⟩ : RType[L ∪ {l}]

Figure 3: Introduction of names of record types.

Γ ⊢ r : UR[L] L ⊆ L′

Γ ⊢ r : UR[L′]

Γ ⊢ r : UR[L] L ⊆ L′

Γ ⊢ TR[L′](r) = TR[L](r) : RType[L′]

Γ ⊢ r : UR[L]

Γ ⊢ r : UR

Γ ⊢ r : UR[L]

Γ ⊢ TR(r) = TR[L](r) : RType

Γ ⊢ r : UR

Γ ⊢ r : U

Γ ⊢ r : UR

Γ ⊢ T (r) = TR(r) : Type

Figure 4: Subtyping between universes.

• UR to reflect the record types in RType (introduced before UR):

UR : Type and TR : (UR)RType.

Names of the record types are introduced into the universes UR[L] by the
rules in Figure 3. For example, the record type ⟨n : Nat, v : V ect(n)⟩ has
a name ⟨̄n : nat, v : vect(n)⟩̄ in UR[{n, v}], where nat is a name of Nat in
U and vect : (Nat)U maps n to a name of V ect(n).

Furthermore, the universes obey the following subtyping relationship
that reflects the subkinding relationship between the corresponding kinds,
where L ⊆ L′:

UR[L] ≤ UR[L
′] ≤ UR ≤ U.

The subtyping relations are given by the rules in Figure 4.

Remark Note that the universes UR[L] and UR do not have names in U , for
otherwise the universes would become impredicative and the whole system
inconsistent. �

12

3. Dependent Record Types as Module Types

One of the primary functions of dependent record types is to repre-
sent types of modules. Because record types (but not record kinds) can be
reflected in universes, as explained in §2.2, they provide a more powerful
mechanism for module types than record kinds, as the example below in
data refinement illustrates.

Notation For readability, we shall adopt the following two notational con-
ventions in this section.

• We shall not distinguish types and their names in a universe. In par-
ticular, we shall abuse the notations: for example, we simply write
A → B for both the function type and its name and ⟨R, l : A⟩ for
both the record type and its name.

• We shall use
l1 : A1

...
ln : An

 and

 l1 = a1
...
ln = an

to stand for the record type ⟨l1 : A1, ..., ln : An⟩ and the record
⟨l1 = a1, ..., ln = an⟩, respectively. For example, the record type
⟨n : Nat, v : V ect(n)⟩ (cf., the notational conventions at the end of
§2.1) and its object ⟨n = 3, v = [a, b, c]⟩ are written as{

n : Nat
v : V ect(n)

}
and

[
n = 3
v = [a, b, c]

]
,

respectively. �

We now consider an example to show how record types can be used to
represent module types in data refinement. The general idea of specification
and data refinement in type theory is set out in (Luo, 1993). In general,
a specification consists of a type (e.g., a record type), called the structure
type, and a predicate over the type. The following example is based on an
example given in (Luo, 1993); the key difference is that record types, instead
of Σ-types, are used to represent module types. It illustrates the traditional
implementation of stacks by arrays together with pointers.

Example 3.1. We consider a specification of stacks, a specification of ar-
rays and an implementation of stacks by means of arrays together with point-
ers.

13

• Stack(Nat), a specification of stacks of natural numbers. Its structure
type Str[Stack(Nat)] can be represented as the following record type:

Stack : Setoid
empty : Stack.Dom
push : Nat → Stack.Dom → Stack.Dom
pop : Stack.Dom → Stack.Dom

where

Setoid ≡
{

Dom : U
Eq : Dom → Dom → Prop

}
with U being the universe reflecting types in Type introduced before U
(see §2.2) and Prop the type of logical propositions (as in UTT).

The predicate of Stack(Nat) expresses the axiomatic requirements
of the stack structures including, for example, that the book equality
Stack.Eq is a congruence relation and that, for any number n and any
stack s, pop(push(n, s)) is equal to s (i.e., Stack.Eq(pop(push(n, s)), s)).

• Array(Nat), a specification of arrays of natural numbers. This can
be defined similarly. Its structure type Str[Array(Nat)] can be repre-
sented as the following record type:

Array : Setoid
newarray : Array.Dom
assign : Array.Dom →

Nat → Nat → Array.Dom
access : Array.Dom → Nat → Nat

where indexes are represented by natural numbers (intuitively, assign(A,n, i)
and access(A, k) stand for A[i] := n and A[k], respectively). The predi-
cate of Array(Nat) expresses the axioms such as, for any array A, any
number n and any indexes i and j,
access(assign(A,n, i), j) is equal to n, if i = j, and access(A, j), if
i ̸= j.

• Now, we want to use arrays to implement stacks. We can define a
refinement map

ρ : Str[Array(Nat)] → Str[Stack(Nat)]

as follows: for any record r : Str[Array(Nat)], ρ(r) is defined to be the
record given in Figure 5. In the implementation, a stack is represented

14

ρ(r) =

Stack =

Dom =

{
arr : r.Array.Dom
ptr : Nat

}
Eq = λ(s, s′ : Dom) s.ptr =Nat s

′.ptr &
∀i : Nat. (i < s.ptr ⇒
access(s.arr, i) =Nat access(s

′.arr, i))

empty =

[
arr = r.newarray
ptr = 0

]
push = λ(n : Nat, s : Stack.Dom)[

arr = assign(s.arr, n, s.ptr)
ptr = s.ptr + 1

]
pop = λ(s : Stack.Dom)[

arr = s.arr
ptr = s.ptr − 1

]

Figure 5: Refinement map from arrays to stacks.

by means of a record that consists of an array arr and a pointer ptr;
in other words, the type of stacks is refined into the record type

ρ(r).Stack.Dom ≡
{

arr : r.Array.Dom
ptr : Nat

}
.

Two of such stack representations s and s′ are equal if their pointers
are the same (i.e., s.ptr =Nat s

′.ptr, where =Nat is the propositional
equality on Nat) and accessing both of the representing arrays with an
index i < s.ptr gives the same result.

We can prove that ρ as defined above is indeed a refinement map in the sense
that it maps every realisation of Array(Nat) to a realisation of Stack(Nat).

�

Remark Note that, in the above example, ρ(r).Stack.Dom is a record
type (not a record kind) and, therefore, it can be reflected as an object in a
type universe. This is why the refinement map ρ is well-typed: for example,
the record type ρ(r).Stack.Dom has a name in UR[{Dom,Eq}] ≤ U and,
therefore, ρ(r).Stack is of type Setoid. It is worth pointing out that, if

15

ρ(r).Stack.Dom were a record kind as studied in (Coquand et al., 2005), we
would not be able to introduce a universe to reflect it and hence the above
example would not go through (in particular, the refinement map ρ would
not be definable). �

4. Dependent Record Types v.s. Σ-types

Dependent record types are arguably better mechanisms than Σ-types
when used to represent types of modules. However, some people may still
take the view that, although they bring convenience to applications, de-
pendent record types are not necessary — they can always be replaced by
Σ-types. In this section, it is argued that such a view is not completely jus-
tified. In particular, we consider a case to demonstrate that this is not the
case: record types can be used adequately in some situations while Σ-types
cannot.

As we know, the only difference between a dependent record type and
a Σ-type is that the former has field labels. Our case considers the use
of module types together with some form of structural subtyping, in the
framework of coercive subtyping (Luo, 1999), and shows that the labels are
actually useful in making a finer distinction between record types so that
record types can be used adequately in some applications, while Σ-types
cannot as they do not have labels.

Module types with structural subtyping. A module type can be repre-
sented in a type theory as either a Σ-type or a dependent record type (and,
in the non-dependent case, a product type or a non-dependent record type).
Here, by structural subtyping for module types, we mean the following sub-
typing relationships:

• Projective subtyping: a module type is a subtype of its constituent
types. For instance, in the framework of coercive subtyping and for
the first projection,

A×B ≤π1 A and ⟨l1 : A, l2 : B⟩ ≤[] ⟨l1 : A⟩,

where π1 and [] are the first projection operators for Σ-types and
record types, mapping (a, b) to a and ⟨l1 = a, l2 = b⟩ to ⟨l1 = a⟩,
respectively.

• Component-wise subtyping: subtyping relationships propagate through
the module types. For example, for product types (i.e., Σ-types in the

16

non-dependent case, and similar for record types — see below), if
A ≤c A′ and B ≤c′ B

′, then A × B ≤d A′ × B′, where d maps (a, b)
to (c(a), c′(b)) in the component-wise way.

Structural subtyping can be useful for many applications. For example,
when using module types to represent classes in an object-oriented language
such as Java, it would be desirable for these subtyping relationships to hold
between the representing types in order to capture the subclassing relation-
ships between classes. This is elaborated in the following example (see (Luo,
2009) for more details.)

Example 4.1. A class in an OO-language consists of two parts: states and
methods. The former can be represented as a module type and the latter by
means of intensional manifest fields as studied in (Luo, 2009). Here, we
omit the details of how to represent methods but focus on the representation
of states.

For a class C, its states can be represented as a module type either as
A1 × ... × An or ⟨l1 : A1, ..., ln : An⟩, where Ai’s are types. For example,
in the type-theoretic model as described in (Luo, 2009), if C is a class, then
its type of states is such a module type SC .

In order to obtain a faithful representation, we would like that the subtyp-
ing relationships between the representing types capture the subclassing rela-
tionships between classes. Therefore, it would be desirable to have SC′ ≤ SC

if C ′ is a subclass of C. This would require that the type of states be a sub-
type of its constituent types (SC ≤ Ai or SC ≤ ⟨li : Ai⟩). In the framework
of coercive subtyping, this would amount to having both projections from the
module types as coercions.

Furthermore, the subtyping relations between the constituent types need
to be propagated through the module types and this requires to have component-
wise coercions as well. �

Can one consistently make these structural mappings as coercions — are
they coherent?7 Unfortunately, for Σ-types (or product types), one cannot,
for otherwise, coherence is lost. It is here that the labels of record types
play a crucial role in the coherence of these structural subtyping relations.
Particularly, the labels make a special contribution to a more refined dis-

7Intuitively, coherence is the condition that the coercions between any two types are
unique; that is, a set of coercion rules is coherent if c = c′ : (A)B for any coercions c and
c′ from A to B. See (Luo, 1999) for formal details.

17

tinction between record types, which is not available for Σ-types. We begin
by explaining the coherence problem for Σ-types for structural subtyping.

Incoherence of structural subtyping for Σ-types. It is known from
Y. Luo’s thesis (Luo, 2005) that, for Σ-types (and product types in the
non-dependent case), the following coercions together are incoherent.

• The first and second projections. Let’s consider the non-dependent
case, where the projections are π1 : (A×B)A and π2 : (A×B)B, for
any A,B : Type. If we take both projections as coercions, incoherence
happens. For instance, taking both A and B to be Nat, π1 and π2 are
both from Nat×Nat to Nat, but they are not equal: π1(3, 5) = 3 and
π2(3, 5) = 5.

• Either projection and the component-wise coercions. For example, if
the first projection and the component-wise mappings were coercions,
there would be two different coercions from (A × B) × B to A × B:
one mapping ((a, b1), b2) to (a, b1) (the first projection) and the other
mapping ((a, b1), b2) to (a, b2) (the composition of the component-wise
coercion and the first projection).

Therefore, one cannot use Σ-types (at least in a straightforward way) to
represent module types in the applications such as that explained in Exam-
ple 4.1.

Structural coercions for record types. Although incoherence happens
in the above situations for Σ-types and product types, the record types and
the corresponding coercions behave in a better way — the labels play a
useful role of distinguishing record types from each other. For instance, a
record type that corresponds to Nat ×Nat is Nat2 ≡ ⟨m : Nat, n : Nat⟩,
where the labels m and n are distinct. We may have ‘projections’ from Nat2
to ⟨m : Nat⟩ and ⟨n : Nat⟩, which are two different types – therefore, the
record projections are coherent together.

More formally, for non-empty record types,

• the first projection is simply the restriction operation

[] : (⟨R, l : A⟩)R,

mapping ⟨r, l = a⟩ to r, and

• the second projection is the functional operation

Snd : (r:⟨R, l : A⟩)⟨l : A([r])⟩,

18

mapping r to the record ⟨l = r.l⟩.

Note that the kind of Snd is different from that of field selection .l: the
codomain type of Snd is the record type ⟨l : A([r])⟩, rather than simply
A([r]). This makes an important difference: Snd is coherent with the first
projection and the component-wise coercions, while field selection is not.

We shall take both of the record projections as coercions. In this paper,
only non-dependent coercions (and, in this case, the non-dependent second
projection) are studied.8 Formally, we have the following two coercion rules:9

Γ ⊢ ⟨R, l : A⟩ : RType

Γ ⊢ ⟨R, l : A⟩ ≤[] R : RType

Γ ⊢ A : Type Γ ⊢ ⟨R, l : A⟩ : RType

Γ ⊢ ⟨R, l : A⟩ ≤Snd ⟨l : A⟩ : RType

where, in the second rule above, A is a type, ⟨R, l : A⟩ stands for ⟨R, l :
[:R]A⟩, and the kind of Snd is the non-dependent kind (⟨R, l : A⟩)⟨l : A⟩.
Note that the label l in the codomain type of Snd is the same label in its
domain type.

Remark Label distinction is important. If one allowed label repetitions
in record types, as in (Pollack, 2002), the projection coercions [] and Snd
would be incoherent together. For example, if Natl ≡ ⟨l : Nat, l : Nat⟩
were a well-typed record type, both projections would be from Natl to the
same type ⟨l : Nat⟩, but they are different. �

Component-wise coercions for record types express the idea that coercive
subtyping relations propagate through record types: informally, if R is a
subtype of R′ and A is a ‘subtype’ of A′, then ⟨R, l : A⟩ is a subtype of
⟨R′, l : A′⟩. Formally, this is formulated by means of the rules in Figure 6.

Remark With nice meta-theoretic properties such as Church-Rosser, we
can show that the coercions [], Snd and diR (i = 1, 2, 3) are coherent to-
gether. Note that, if one used Σ-types instead of record types, we can-
not have both projections as coercions (or any projection together with
the component-wise coercions) — coherence would have failed, as discussed
above. �

8When a coercion has a dependent kind, it is a dependent coercion (Luo and Soloviev,
1999).

9Γ ⊢ R ≤c R′ : RType is the judgement expressing that the record type R is a subtype
of the record type B via coercion c.

19

(d1R)

Γ ⊢ R : RType[L] Γ ⊢ R′ : RType[L]
Γ ⊢ A′ : (R′)Type Γ ⊢ R ≤c R

′ : RType

Γ ⊢ ⟨R, l : A′ ◦ c⟩ ≤d1R
⟨R′, l : A′⟩ : RType

(l ̸∈ L)

where d1R = [x : ⟨R, l : A⟩]⟨c([x]), l = x.l⟩.

(d2R)

Γ ⊢ R : RType[L] Γ ⊢ A, A′ : (R)Type
Γ, x:R ⊢ A(x) ≤c′{x} A′(x) : Type

Γ ⊢ ⟨R, l : A⟩ ≤d2R
⟨R, l : A′⟩ : RType

(l ̸∈ L)

where d2R = [x : ⟨R, l : A⟩]⟨[x], l = c′{[x]}(x.l)⟩.

(d3R)

Γ ⊢ R : RType[L] Γ ⊢ R′ : RType[L]
Γ ⊢ A : (R)Type Γ ⊢ A′ : (R′)Type

Γ ⊢ R ≤c R′ : RType Γ, x:R ⊢ A(x) ≤c′{x} A′(c(x)) : Type

Γ ⊢ ⟨R, l : A⟩ ≤d3
R
⟨R′, l : A′⟩ : RType

(l ̸∈ L)

where d3R = [x : ⟨R, l : A⟩]⟨c([x]), l = c′{[x]}(x.l)⟩.

Figure 6: Component-wise coercions for dependent record types

20

5. Intensional Manifest Fields in DRTs

As mentioned above, one of the primary functions of dependent record
types is for representation of module types. In a type of modules, a field
in such a type is usually abstract (of the form ‘v : A’) in the sense that
the data in that field can be any object of a given type. In contrast, a
field is manifest (of the form ‘v = a : A’) if the data in that field is not
only of a given type but the ‘same’ as some specific object of that type.
Intuitively, manifest fields allow internal expressions of definitional entries
and are hence very useful in expressing various powerful constructions in a
type-theoretic setting (see, for example, (MacQueen, 1984; Leroy, 1994) for
the use of manifest fields in expressing ML-style sharing).

For a manifest field v = a : A, the ‘sameness’ of the data as object a may
be interpreted as judgemental equality in type theory, as is done in most
of the previous studies on manifest fields in type theory (Harper and Lillib-
ridge, 1994; Pollack, 2002; Coquand et al., 2005). If so, this gives rise to an
extensional notion of judgemental equality and such manifest fields may be
called extensional manifest fields. In type theory, such extensional manifest
fields may also be obtained by means of other extensional constructs such
as the singleton type (Aspinall, 1995; Hayashi, 1994) and the extensional
equality (Martin-Löf, 1984; Constable and Hickey, 2000). It is known, how-
ever, such an extensional notion of equality is meta-theoretically difficult (in
the cases of the extensional manifest fields and the singleton types) or even
lead to outright undecidability (in the case of the extensional equality).

In this section. we briefly demonstrate that manifest fields can be repre-
sented for dependent record types with the help of coercive subtyping (Luo,
2009). In particular, we show that the ‘sameness’ in a manifest field does not
have to be interpreted by means of an extensional equality. With the help of
coercive subtyping (Luo, 1999), manifest fields are expressible in intensional
type theories such as Martin-Löf’s intensional type theory (Nordström et al.,
1990) and UTT (Luo, 1994). The idea is very simple: for a of type A, a
manifest field v = a : A is simply expressed as the shorthand of an ordinary
(abstract) field v : 1(A, a), where 1(A, a) is the inductive unit type parame-
terised by A and a. Then, with a coercion that maps the objects of 1(A, a)
to a, v stands for a in a context that requires an object of type A. This
achieves exactly what we want with a manifest field. Such a manifest field
is called an intensional manifest field (IMF).

21

5.1. Intensional Manifest Fields in DRTs

An intensional manifest field (IMF) in a dependent record type is a field
of the form

l ∼ a : A,

where A : (R)Type and a : (r:R)A(r). Formally, the above field stands for
the following field in a DRT:

l : [r:R]1(A(r), a(r)),

where 1(T, t) is the unit type parameterised by T : Type and t : T (see §1.1).
In other words, we write

⟨..., l ∼ a : A, ...⟩ for ⟨..., l : [r:R]1(A(r), a(r)), ...⟩.

In the simpler situation, for A : Type and a : A, l ∼ a : A stands for
l : 1(A, a). In records, for b : B,

l ∼B b stands for l = ∗(B, b).

The IMFs (and the DRTs involved) are well-defined and behave as in-
tended with the help of the following two coercions:

• ξA,a, associated with 1(A, a), maps the objects of 1(A, a) to a. In
a context where an object of type A is required (e.g., in the Σ-type
but after the field v ∼ a : A), v is coerced into a and behaves as an
abbreviation of a.

Formally, the coercion rule for ξ concerning the unit type is:

(ξ)
Γ ⊢ A : Type Γ ⊢ a : A

Γ ⊢ 1(A, a) ≤ξA,a
A : Type

where ξA,a(x) = a for any x : 1(A, a).

• The component-wise coercion diR (i = 1, 2, 3) in Figure 6, that propa-
gate subtyping relations, including those specified by ξ, through DRTs
so that the IMFs can be used properly in larger contexts.

Here is a simple example of formalisation of rings in abstract algebra
that shows how to use IMFs to represent sharing of domains and illustrates
how the coercion ξ can be used to support IMFs.

22

Example 5.1. Consider the following module type M , where U is a type
universe:

M ≡ ⟨S : U, op : S → S, ...⟩.

For m : M , we can change its first field into an IMF by specifying that the
carrier set must be ‘the same’ as (or, more precisely, abbreviate) the carrier
set of m:

Mw ≡ ⟨Sw ∼ m.S : U, op : Sw → Sw, ...⟩.

Note that Sw is of type 1(U,m.S) and is not a type. The reason that Sw →
Sw is well-typed is that Sw is now coerced into the type ξU,m.S(Sw) = m.S.

A ring R is composed of an abelian group (R,+) and a semigroup (R, ∗),
with extra distributive laws. One can construct a ring from an abelian group
and a semigroup. When doing this, one must make sure that the abelian
group and the semigroup share the same carrier set. One of the ways to
specify such sharing is to use an ‘equation’ to indicate that the carrier sets
are the same. This example shows that this can be done by means of the
IMFs.

The signature types of abelian groups, semigroups and rings can be repre-
sented as the following record types, respectively, where U is a type universe:

AG ≡ ⟨A : U, + : A → A → A, 0 : A, inv : A → A⟩
SG ≡ ⟨B : U, ∗ : B → B → B⟩

Ring ≡ ⟨C : U, + : C → C → C, 0 : C, inv : C → C, ∗ : C → C → C⟩

Note that an abelian group and a semigroup do not have to share their carrier
sets. In order to make this happen, we introduce the following record type,
which is parameterised by an AG-signature and whose manifest field ensures
sharing of the carrier sets:

SGw(ag) = ⟨B ∼ ag.A : U, ∗ : B → B → B⟩,

where ag : AG. Then, the function that generates a ring from an abelian
group ag : AG and a semigroup sg : SGw(ag) that share their carrier set
can now be defined as:

ringGen(ag, sg)

=df ⟨C = ag.A, + = ag.+, 0 = ag.0, inv = ag.inv, ∗ = sg.∗⟩.

�

23

Remark The above example shows a particular way that IMFs may be
used. In particular, it suggests a way to define the so-called ‘with’-clause
(see, for example, (Pollack, 2002)) that facilitates sharing by equation: for
R ≡ ⟨l1 : A1, ..., ln : An⟩, i ∈ {1, ..., n} and a : (x : Ri−1)Ai(x), where
Ri−1 ≡ ⟨l1 : A1, ..., li−1 : Ai−1⟩, we can define the following notation

R with li as a

for the record type

⟨ l1 : A1, ..., li−1 : Ai−1, li ∼ a : Ai, li+1 : Ai+1, ..., ln : An ⟩.

See (Luo, 2009) for the details. �

Experiments in proof assistants.. Experiments on several applications have
been done in the proof assistants Plastic (Callaghan and Luo, 2001) and Coq
(Coq 2007), both supporting the use of coercions (Luo, 2009). In Plastic,
one can define parameterised coercions such as ξ and coercion rules for
the structural coercions: we only have to declare ξ and the component-wise
coercion (and the projection coercions for the application of OO-modelling),
then Plastic obtains automatically all of the derivable coercions, as intended.
However, Plastic does not support record types; so Σ-types were used for
our experiments in Plastic, at the risk of incoherence of the coercions!

Coq supports a macro for dependent record types10 and a limited form
of coercions. In Coq, we have to use the identity ID(A) = A on types to
force Coq to accept the coercion ξ and to use type-casting as a trick to make
it happen. Also, since Coq does not support user-defined coercion rules, we
cannot implement the rules for the component-wise coercions; instead, we
have to specify its effects on the record types individually. The Coq code
for the Ring example in Example 5.1 is shown in Figure 7.

6. Meta-theoretic Properties of the Logical Framework with DRTs

Goguen (Goguen, 1994, 1999) has developed a method called typed op-
erational semantics (TOS for short) to prove meta-theoretic properties of

10It is a macro in the sense that dependent record types are actually implemented as
inductive types with labels defined as global names (and, therefore, the labels of different
‘record types’ must be different). Coq (Coq 2007) also supports a preliminary form of
‘manifest fields’ by means of the let-construct, which we do not use in our experiments.

24

(* Coq code for the Ring example -- the construction of rings from *)

(* abelian groups and semi-groups that share the domains. *)

(* Note that we have only formalised the signatures, omitting the axiomatic parts. *)

(* The parameterised unit type -- Unit/unit for 1/* *)

Inductive Unit (A:Type)(a:A) : Type := unit : Unit A a.

(* Coercion for the unit type; Use ID as trick to define it in Coq *)

Definition ID (A:Type) : Type := A.

Coercion unit_c (A:Type)(a:A)(_:Unit A a) := a : ID A.

(* Abelian Groups, Semi-groups and Rings -- signatures only *)

Record AG : Type := mkAG

{ A : Set; plus : A->A->A; zero : A; inv : A->A }.

Record SG : Type := mkSG

{ B : Set; times : B->B->B }.

Record Ring : Type := mkRing

{ C : Set; plus’ : C->C->C; zero’ : C; inv’ : C->C; times’ : C->C->C }.

(* Domain-sharing semi-groups; type-casting to make unit_c happen in Coq *)

Record SGw (ag : AG) : Type := mkSGw

{ B’ : Unit Set ag.(A); times’’ : let B’ := (B’ : ID Set) in B’->B’->B’ }.

Implicit Arguments B’. Implicit Arguments times’’.

(* function to generate rings from abelian/semi-groups with shared domain *)

Definition ringGen (ag : AG)(sg : SGw ag) : Ring :=

mkRing ag.(A) ag.(plus) ag.(zero) ag.(inv) sg.(times’’).

Figure 7: Coq code for the Ring example.

25

type theories. In his PhD thesis (Goguen, 1994), Goguen has developed the
TOS for the type theory UTT and proved that UTT has the nice properties
such as Church-Rosser, Subject Reduction and Strong Normalisation.

In this section, using the TOS approach, we study the meta-theoretic
properties of the logical framework LF with dependent record types. This is
a subsystem, but the basis, of that considered above and we hope that this
goes to some lengths to demonstrate the correctness of the DRT formulation,
on the one hand, and the usefulness and viability of the TOS approach, on
the other.

6.1. The TOS approach: an Informal Introduction

For a type theory, its typed operational semantics captures its compu-
tational behaviour, usually given by its (untyped) reduction relation. For
example, in TOS, the following judgement

Γ |= M → N → P : A

informally asserts that, among other things, N and P are the weak-head
normal form and the normal form of the term M , respectively. For the
logical framework LF, for example, its corresponding TOS has been studied
by Goguen (1999) and its inference rules are given in Figure 8. Since many
meta-theoretic properties of a type theory are concerned with its computa-
tional behaviour, it is not a surprise that TOS provides an effective approach
to the meta-theory of type theories.11

The TOS and its corresponding type theory are related to each other by
means of the soundness and completeness theorems. Using the judgement
Γ |= M : A to abbreviate ‘Γ |= M → N → P : A for some N and P ’, we can
state the soundness and completeness properties as follows:

• Soundness: Γ ⊢ M : A implies Γ |= M : A′ (for A′ that is the ‘normal
form’ of A).

• Completeness: Γ |= M : A implies Γ ⊢ M : A.

Based on soundness and completeness, we can prove many meta-theoretic
properties of the type theory such as strong normalisation.

There are three basic judgement forms in a TOS:

11It is worth noting that, although it is useful to study the meta-theory for many type
theories, the TOS approach would not be suitable for non-normalising type theories. See
(Goguen, 1994) for discussions.

26

Contexts

|= () → ()

|= Γ → ∆ Γ |= A → B x /∈ FV (Γ)

|= Γ, x:A → ∆, x:B

Kinds
Γ |= ok

Γ |= Type → Type

Γ |= M → N → P : Type

Γ |= El(M) → El(P)

Γ |= A1 → B1 Γ, x:A1 |= A2 → B2

Γ |= (x:A1)A2 → (x:B1).B2

Terms
Γ0, x:A,Γ1 |= A → B

Γ0, x:A,Γ1 |= x → x → x : B

Γ |= A1 → B1 Γ, x:A1 |= M0 →n P0 : B2 [x:B1]P0 not η−redex

Γ |= [x:A1]M0 → [x:A1]M0 → [x:B1]P0 : (x:B1)B2

Γ |= A1 → B1 Γ, x:A1 |= M0 →n P (x) : B2 Γ |= P → P → P : (x:B1)B2

Γ |= [x:A1]M0 → [x:A1]M0 → P : (x:B1)B2

Γ |= M1 → N1 → P1 : (x:B1)B2 Γ |= M2 → N2 → P2 : B1

Γ |= [M2/x]B2 → C N1 not abstraction

Γ |= M1(M2) → N1(M2) → P1(P2) : C

Γ |= M1 →w [x:A1]N0 : (x:B1)B2 Γ |= M2 : B1

Γ |= [M2/x]N0 → P → Q : C Γ |= [M2/x]B2 → C

Γ |= M1(M2) → P → Q : C

Figure 8: TOS rules for LF.

27

• |= Γ → ∆: the context Γ has context ∆ as its normal form;

• Γ |= A → B: the kind A is well-formed in context Γ and has normal
form B; and

• Γ |= M → N → P : A: the terms M , N , P are well-formed in context
Γ of kind A and M has weak-head normal form N and normal form
P .

From these basic judgements, one can define other forms of judgements,
including the following:

• Γ |= ok stands for ‘|= Γ → ∆ for some ∆’;

• Γ |= M →w N : A stands for ‘Γ |= M → N → P : A for some P ’;

• Γ |= M →n P : A stands for ‘Γ |= M → N → P : A for some N ’; and

• Γ |= M : A stands for ‘Γ |= M → N → P : A for some N and P ’.

6.2. Typed Operational Semantics for LF with DRTs

The typed operational semantics for the logical framework LF with DRTs
is the extension of the TOS for LF (Figure 8) with the inference rules given
in Figure 9, most of which are self-explanatory. We only mention that,
besides using the abbreviated forms of judgement (see above) in the rules,
we also use the terminology of ‘pair-records’, which refer to the terms of the
form ⟨r, l = a : A⟩. For example, in (BASERESTR), we require that p or
q be not a pair-record, for otherwise, for instance, [p] could be a redex and
would not be in normal form.

The TOS has many important properties including, for example, the
following lemma of derterminacy and strong normalisation theorem.

Lemma 6.1 (determinacy).

• If |= Γ → ∆ and |= Γ → Φ, then ∆ ≡ Φ.

• If Γ |= A → B and Γ |= A → C, then B ≡ C.

• If Γ |= M → N → P : B and Γ |= M → Q → R : C, then N ≡ Q,
P ≡ R and B ≡ C.

Theorem 6.2 (Strong Normalisation of TOS).

1. If Γ |= A → B then A is strongly normalisable.

28

Kinds of Record Types

Γ |= ok

Γ |= RType → RType
RTY PE

Γ |= ok

Γ |= RType[L] → RType[L]
RTY PE[L]

Record Types

Γ |= ok

Γ |= ⟨⟩ → ⟨⟩ → ⟨⟩ : RType[∅]
EMPRCDT

Γ |= R →n P : RType[L] Γ |= A →n B : (P)Type l /∈ L

Γ |= ⟨R, l : A⟩ → ⟨R, l : A⟩ → ⟨P, l : B⟩ : RType[L ∪ {l}]
RCDT

Pair-records
Γ |= ok

Γ |= ⟨⟩ → ⟨⟩ → ⟨⟩ : ⟨⟩
EMPRCD

Γ |= ⟨R, l : A⟩ →n ⟨P, l : B⟩ : RType Γ |= r →n p : P
Γ |= A(r) →n C : Type Γ |= a →n b : C

Γ |= ⟨r, l = a : A⟩ → ⟨r, l = a : A⟩ → ⟨p, l = b : B⟩ : ⟨P, l : B⟩
RCD

Restrictions

Γ |= r → q → p : ⟨P, l : B⟩ p, q not pair-records

Γ |= [r] → [q] → [p] : P
BASERESTR

Γ |= r →w ⟨p, l = b : A⟩ : ⟨P, l : B⟩ Γ |= p → s → t : P

Γ |= [r] → s → t : P
RESTR

Selections

Γ |= r → q → p : ⟨P, l : B⟩ p, q not pair-records
Γ |= B([r]) →n C : Type

Γ |= r.l → q.l → p.l : C
BASEFLDSEL

Γ |= r →w ⟨p, l = b : A⟩ : ⟨P, l : B⟩ Γ |= b → c → d : C Γ |= A(p) →n C : Type

Γ |= r.l → c → d : C
FLDSEL

Γ |= r →n s : ⟨P, l : B⟩ Γ |= [r].l′ → c → d : C l ̸= l′

Γ |= r.l′ → c → d : C
FLDSL′

Figure 9: Inference Rules of Typed Operational Semantics for LF with DRTs

29

2. If Γ |= M → N → P : A then M is strongly normalisable.

For the TOS, we can prove the soundness and completeness theorems.

Theorem 6.3 (Completeness).

• If Γ |= ok then ⊢ Γ valid.

• If Γ |= A → B then Γ ⊢ A kind and Γ ⊢ A = B.

• If Γ |= M → N → P : A then Γ ⊢ M : A, Γ ⊢ M = N : A,
Γ ⊢ M = P : A and Γ ⊢ A = A.

Theorem 6.4 (Soundness).

• If Γ ⊢ ok, then there exists ∆ such that |= Γ → ∆.

• If Γ ⊢ A kind, then there exists B such that Γ |= A → B.

• If Γ ⊢ A = B then there exists C such that Γ |= A → C and Γ |= B →
C.

• If Γ ⊢ M : A then there exist P , B such that Γ |= A → B and
Γ |= M →n P : B.

• If Γ ⊢ M = N : A, then there exist P , B such that Γ |= A → B, and
Γ |= M →n P : B, Γ |= N →n P : B.

Proof. By induction on derivations. For the cases of LF-rules, see (Goguen,
1999). We consider the following two cases about record types.

• The second introduction rule in Figure 1:

Γ ⊢ ⟨R, l : A⟩ : RType Γ ⊢ r : R Γ ⊢ a : A(r)

Γ ⊢ ⟨r, l = a : A⟩ : ⟨R, l : A⟩

By induction hypothesis, the following hold:

1. Γ |= ⟨R, l : A⟩ →n ⟨P, l : B⟩ : RType for some P and B,

2. Γ |= r →n p : P ′ and Γ |= R →n P ′ : RType[L] for some p, P ′

and L, and

3. Γ |= a →n b : C and Γ |= A(r) → C for some b and C.

By Determinacy Lemma 6.1 and inversion of the rule (RCDT) in
Figure 9, P ≡ P ′. Therefore, by rule (RCD) in Figure 9, Γ |= ⟨r, l =
a : A⟩ →n ⟨p, l = b : B⟩ : ⟨P, l : B⟩.

30

• The third elimination rule in Figure 1:

Γ ⊢ r : ⟨R, l : A⟩ Γ ⊢ [r].l′ : B l ̸= l′

Γ ⊢ r.l′ : B

By induction hypothesis, the following hold:

1. Γ |= r →n s : ⟨P, l : B⟩ and Γ |= ⟨R, l : A⟩ → ⟨P, l : B⟩ for some
s, P and B, and

2. Γ |= [r].l′ →n c : C and Γ |= B → C for some c and C.

Since l ̸= l′, by (FLDSL′) in Figure 9, we have Γ |= r.l′ →n c : C.

6.3. Meta-theoretic properties of DRTs

From the properties of the TOS, we can prove the following meta-
theoretic properties of LF with DRTs (for their proofs, see (Feng and Luo,
2010)).

Theorem 6.5. For LF with DRTs, we have

• Church-Rosser: If Γ ⊢ M = N : A, then M →∗ P and N →∗ P for
some P .

• Subject Reduction: If Γ ⊢ M : A and M → N , then Γ ⊢ N : A.

• Strong Normalisation

1. If Γ valid, then Γ is strongly normalisable.

2. If Γ ⊢ A kind, then A is strongly normalisable.

3. If Γ ⊢ A = B, then both A and B are strongly normalisable to
some C.

4. If Γ ⊢ M : A, then M and A are strongly normalisable and
Γ ⊢ P : B, where P and B are the normal forms of M and A,
respectively.

5. If Γ ⊢ M = N : A, then both M and N are strongly normalisable
to some P , A is strongly normalisable to some B such that Γ ⊢
P : B.

7. Related Work and Conclusion

In this paper, we have studied dependent record types, their applications
and some of the meta-theoretic properties. Some of the related and future
work is discussed here.

31

Related work. As mentioned in the introduction, there have been several
studies of dependently-typed records, many of which study dependent record
kinds at the level of the logical framework. In particular, Coquand et al.
(2005) have studied the meta-theoretic properties of dependent record kinds,
including the decidability of type-checking, among others. As discussed in
§2.1, kinds have a simpler structure and that allows one to conduct meta-
theoretic studies in a more straightforward way. For instance, as a simple
example, it is straightforward to determine the set of top-level labels of a
record kind since it is always of the form ⟨l1 : A1, ..., ln : An⟩, while this
is not the case for record types. This is why the meta-theoretic studies of
record types are more sophisticated as in §6 and (Feng and Luo, 2010).

Pollack (2002) studies dependent record types and shows very interesting
examples of how dependently-typed records may be used in formalisation
of mathematics. However, the paper did not show that record types are
stronger and more useful than record kinds – the examples in that paper
can also be done with record kinds. The current paper has studied DRTs
further in this respect and compared them with Σ-types.

In the formulation of DRTs in the present paper, we have introduced
the kinds RType[L] of the record types, where the associated label set L
plays a crucial role in forming record types with distinct labels. This is one
of the important improvements in formulation of DRTs for dependent type
theories. In (Pollack, 2002), labels may be repeatedly used in a record type,
although a latter label overrides a former one. This was considered because,
unlike record kinds, a record type can take other syntactic forms other than
⟨l1 : A1, ..., ln : An⟩ and, therefore, it has been a problem how to determine
its label set. Our kinds RType[L] play this role to make it possible to form
DRTs with only distinct labels.

Dependently typed records have been implemented in several proof assis-
tants. In Coq (Coq 2007), dependent record types are actually implemented
as inductive types (or generalised Σ-types) with labels defined as global
names. As a consequence, for example, different record types must have dis-
tinct labels in the same environment. Coq provides useful mechanisms with
its records implementation. For example, it provides a very useful mecha-
nism that allows one to specify easily projections as coercions. The Agda
proof assistant (Agda 2008) implements a notion of record type that is more
flexible and stronger, with even the so-called recursive records allowed. This
kind of experimental features certainly require careful research into them to
obtain a better understanding.

32

Future work. The DRTs studied in this paper are intensional. This is differ-
ent from that presented in (Luo, 2009), where the notion of equality between
records is weakly extensional in the sense that two records are equal if their
components are. This is reflected in the following two rules:

Γ ⊢ r : ⟨⟩
Γ ⊢ r = ⟨⟩ : ⟨⟩

Γ ⊢ r : ⟨R, l : A⟩ Γ ⊢ r′ : ⟨R, l : A⟩
Γ ⊢ [r] = [r′] : R Γ ⊢ r.l = r′.l : A([r])

Γ ⊢ r = r′ : ⟨R, l : A⟩

For example, for any r : ⟨R, l : A⟩ (r can be a variable), we have, by the
second rule above, that r = ⟨[r], l = r.l : A⟩ : ⟨R, l : A⟩. It is unclear
whether such extensionality is useful in practice. Further studies are called
for to investigate this.

We have studied the relationships between DRTs and Σ-types. This may
have raised concerns, as well as interests, between their formal relations.
Formally, we’d like to prove that adding DRTs does not increase the logical
power of the system; in other words, adding DRTs is a conservative extension
of a type theory with Σ-types (and other constructions) already present in
the type theories such as Martin-Löf’s type theory or UTT. Adams and the
author have made efforts in conducting this research, which have reduced the
problem of conservativity to that of injectivity of record types12 (Admas and
Luo, 2011). Injectivity is not a trivial property and one of the ways to prove
it is to use Church-Rosser of the system with DRTs, which may be proved by
extending the TOS approach as described in §6 to more sophisticated type
theories. Research efforts are needed to follow this line of possibly tedious
but useful research.

References

Admas, R., Luo, Z., 2011. Dependent record types and Σ-types compared.
Manuscript.

Agda 2008, 2008. The Agda proof assistant (version 2).
http://appserv.cs.chalmers.se/users/ulfn/wiki/agda.php.

Aspinall, D., 1995. Subtyping with singleton types, in: CSL’94, LNCS’993.

Bailey, A., 1999. The Machine-checked Literate Formalisation of Algebra in
Type Theory. Ph.D. thesis. University of Manchester.

12Formally, injectivity of record types is the property that, if Γ ⊢ ⟨R, l : A⟩ = ⟨R′, l′ :
A′⟩ : RType, then Γ ⊢ R = R′ : RType and Γ ⊢ A = A′ : Type.

33

Betarte, G., Tasistro, A., 1998. Extension of Martin-Löf’s type theory with
record types and subtyping, in: Sambin, G., Smith, J. (Eds.), Twenty-five
Years of Constructive Type Theory, Oxford University Press.

Callaghan, P., Luo, Z., 2001. An implementation of LF with coercive sub-
typing and universes. Journal of Automated Reasoning 27, 3–27.

Constable, R., Hickey, J., 2000. Nuprl’s class theory and its applications,
in: Foundations of Secure Computation, IOS Press, Amsterdam.

Coq 2007, 2007. The Coq Proof Assistant Reference Manual (Version 8.1),
INRIA. The Coq Development Team.

Coquand, T., Huet, G., 1988. The calculus of constructions. Information
and Computation 76.

Coquand, T., Pollack, R., Takeyama, M., 2005. A logical framework with
dependently typed records. Fundamenta Informaticae 65.

Feng, Y., Luo, Z., 2010. Typed operational semantics for dependent record
types, in: Proceedings of Types for Proofs and Programs (TYPES’09),
Aussois, France. EPTCS 53.

Goguen, H., 1994. A Typed Operational Semantics for Type Theory. Ph.D.
thesis. University of Edinburgh.

Goguen, H., 1999. Soundness of typed operational semantics for the log-
ical framework. Typed Lambda Calculi and Applications (TLCA’99),
LNCS’1581 .

Harper, R., Lillibridge, M., 1994. A type-theoretic approach to higher-order
modules with sharing. POPL’94 .

Hayashi, S., 1994. Singleton, union and intersection types for program ex-
traction. Information and Computation 109, 174–210.

Leroy, X., 1994. Manifest types, modules and separate compilation. POPL
1994 .

Luo, Y., 2005. Coherence and Transitivity in Coercive Subtyping. Ph.D.
thesis. University of Durham.

Luo, Z., 1993. Program specification and data refinement in type theory.
Mathematical Structures in Computer Science 3.

34

Luo, Z., 1994. Computation and Reasoning: A Type Theory for Computer
Science. Oxford University Press.

Luo, Z., 1997. Coercive subtyping in type theory. CSL’96, LNCS’1258 .

Luo, Z., 1999. Coercive subtyping. J of Logic and Computation 9, 105–130.

Luo, Z., 2009. Manifest fields and module mechanisms in intensional type
theory, in: Types for Proofs and Programs, Proc. of Inter. Conf. of
TYPES’08. LNCS 5497.

Luo, Z., 2010. Dependent record types revisited, in: Proc. of the 1st In-
ter. Workshop on Modules and Libraries for Proof Assistants (MLPA’09),
Montreal. ACM Inter. Conf. Proceeding Series 429.

Luo, Z., Luo, Y., 2005. Transitivity in coercive subtyping. Information and
Computation 197, 122–144.

Luo, Z., Pollack, R., 1992. LEGO Proof Development System: User’s Man-
ual. LFCS Report ECS-LFCS-92-211. Dept of Computer Science, Univ of
Edinburgh.

Luo, Z., Soloviev, S., 1999. Dependent coercions. Proc of the 8th Inter.
Conf. on Category Theory in Computer Science (CTCS’99), Electronic
Notes in Theoretical Computer Science, Vol 29. .

MacQueen, D., 1984. Modules for standard ML. ACM Symp. on Lisp and
Functional Programming .

Martin-Löf, P., 1984. Intuitionistic Type Theory. Bibliopolis.

Matita 2008, 2008. The Matita proof assistant. http://matita.cs.unibo.it/.

Nordström, B., Petersson, K., Smith, J., 1990. Programming in Martin-Löf’s
Type Theory: An Introduction. Oxford University Press.

Pollack, R., 2002. Dependently typed records in type theory. Formal Aspects
of Computing 13, 386–402.

Säıbi, A., 1997. Typing algorithm in type theory with inheritance. POPL
1997 .

Soloviev, S., Luo, Z., 2002. Coercion completion and conservativity in coer-
cive subtyping. Annals of Pure and Applied Logic 113, 297–322.

35

