
Dependent Coercions

�

Zhaohui Luo

Computer Science Department

University of Durham

South Road, Durham DH1 3LE, U.K.

E-mail: Zhaohui.Luo@durham.ac.uk

Sergei Soloviev

IRIT, Universit�e Paul Sabatier

118 route de Narbonne, 31062

Toulouse, France

E-mail: Sergei.Soloviev@irit.fr

July 30, 1999

Abstract

A notion of dependent coercion is introduced and studied in the context of depen-

dent type theories. It extends our earlier work on coercive subtyping into a uniform

framework which increases the expressive power with new applications.

A dependent coercion introduces a subtyping relation between a type and a family

of types in that an object of the type is mapped into one of the types in the family.

We present the formal framework, discuss its meta-theory, and consider applications

such as its use in functional programming with dependent types.

1 Introduction

Coercive subtyping, as studied in [Luo97, Luo99, JLS98], represents a new general approach

to subtyping and inheritance in type theory. In particular, it provides a framework in which

subtyping, inheritance, and abbreviation can be understood in dependent type theories where

types are understood as consisting of canonical objects.

In this paper, we extend the framework of coercive subtyping to introduce a notion of

dependent coercion. A dependent coercion introduces a subtyping relation between a type

A and a family of types B(x) that are indexed by objects x of type A. For example, the type

of lists may be regarded as a subtype of the family of vector types via a coercion that maps a

list into its `corresponding' vector. This extends our earlier work on coercive subtyping and

provides a uniform framework in which simple coercions (between two types), parameterised

coercions (between two families of types), and dependent coercions (between a type and a

family of types) can all be studied. Applications of dependent coercions include its use in

functional programming with dependent types, large proof development, and formalisation

of certain mathematical concepts.

In the following section, we �rst give an overview of coercive subtyping and a summary

of some of our earlier work on this. Then, in Section 3, we introduce the framework of

�

In Proc. of the 8th Inter. Conf. on Category Theory in Computer Science (CTCS'99), Edinburgh, 1999.

This work is partly supported by the UK EPSRC grant on `Subtyping, Inheritance and Reuse' (GR/K79130).

1



dependent coercion. In Section 4, we show that every dependent coercion can be represented

in a `canonical' form. Section 5 discusses the potential applications, its implementation in

Callaghan's system Plastic, and the related issues such as coherence checking.

2 Coercive subtyping: an overview of work so far

Motivation and basic ideas

Data types in dependent type theories such as Martin-L�of's type theory [NPS90] and the

type theory UTT [Luo94], can in general be considered as inductive in the sense that they

consist of their canonical objects. This is rather di�erent from the traditional views when

one studies type systems of programming languages and most of the work about subtyping,

where objects constitute a pre-given universe, while types are assigned to the objects and

a subtyping relation is obtained by overloading object terms (eg. �-terms). It is not clear

(if possible) how the traditional approach to subtyping can be applied to type theory with

inductive types in accordance with the view that types consist of canonical objects.

Coercive subtyping represents a new approach to subtyping and inheritance in type

theory. The basic idea is that A is a subtype of B if there is a (unique) coercion c from A to

B, and therefore, any object of type A may be regarded as an object of type B via c, where

c is a functional operation from A to B in the type theory. In the theoretical framework of

coercive subtyping, this is represented by the coercive de�nition rule (see Figure 2), which

says that, if f is a functional operation with domain K, k

0

is an object of K

0

, and c is a

coercion from K

0

to K, then f(k

0

) is de�nitionally equal to f(c(k

0

)). Intuitively, we can

view f as a context which requires an object of K; then the argument k

0

in the `context f

stands for its image of the coercion, c(k

0

). Therefore, one can use f(k

0

) as an abbreviation

of f(c(k

0

)).

Power of the framework

The above simple idea, when formulated in a typed logical framework [Luo94], becomes very

powerful. In our early work [Luo97, Luo99], we have developed the framework that covers

subtyping relations represented by the following kinds of coercions:

� Simple coercions: representing subtyping between two types. For example, coercions

between basic inductive types: Even is a subtype of Nat.

� Parameterised coercions: representing (point-wise) subtyping (or subfamily relation)

between two families of types indexed by objects of the same type. A coercion can

be parameterised over free variables occurring in it and (possibly) its domain or range

types. As a special case, for example, each vector type V ec(A;n) can be taken as

a subtype of that of lists List(A), parameterised by the index n, where the coercion

would map the vector < a

1

; :::; a

n

> to the list [a

1

; :::; a

n

].

� Coercions between parameterised inductive types: we have general schematic rules

that represent natural propagation of the basic coercions to other structured (or pa-

rameterised) inductive types. For example, �(A;B) is a subtype of �(A

0

; B

0

) if A is a

subtype of A and B is a subfamily of B

0

.

2



Coercive subtyping has applications in many areas such as large proof development, inductive

reasoning, representing implicit syntax, etc.

Conservativity and meta-theoretic results

We have studied some important meta-theoretic aspects of coercive subtyping (for non-

dependent coercions) [JLS98, SL98]. In particular, we have proved results on transitivity

elimination for kinds and on conservativity.

The conservativity result says, intuitively, that every judgement that is derivable in the

theory with coercive subtyping and that does not contain coercive applications is derivable

in the original type theory. Furthermore, for every derivation in the theory with coercive

subtyping, one can always insert coercions correctly to obtain a derivation in the original

type theory.

The main result of [SL98] was that coherence of basic subtyping rules does imply conser-

vativity, under certain conditions (these conditions are satis�ed, for example, for the type

theory UTT or Martin-L�of's type theory.) The proof of the conservativity theorem consists

of the following three major parts:

1. Lemmas about general meta-theoretic properties of the theory with coercive subtyping;

2. Transitivity elimination in the calculus with subtyping and subkinding but without

coercive application and de�nition rules.

3. The proof of the well-de�nedness (totality) of a coercion completion which maps deriva-

tions of the full theory into the calculus without coercive application and de�nition

rules.

These results not only justify the adequacy of the theory from the proof-theoretic consider-

ations, but also provide the proof-theoretic basis for implementation of coercive subtyping.

Implementations

Coercion mechanisms of non-dependent coercions with certain restrictions have been imple-

mented both in the proof development systems Lego [LP92] and Coq [Coq96], by Bailey

[Bai96, Bai98] and Saibi [Sai97], respectively. Callaghan of the Computer Assisted Rea-

soning Group at Durham has recently implemented Plastic, a proof assistant that supports

logical framework and coercive subtyping (see Section 5 for more information.)

Related work

Subtyping in various type systems is actively studied since mid-eighties (cf, [CW85]). The

more traditional approach to subtyping considers usually a subtyping relation over lambda-

terms and its properties (eg, the existence of principal or minimal typing). The notion of

coercion was introduced later as an explicit representation of the transformation of (the

elements of) the subtype into (the elements of) the supertype. The subtyping relation

was interpreted by the existence of a certain de�nable term c:A ! B when A < B, with

motivation of giving semantics to calculi with subtyping and inheritance (see, e.g., [BCGS91],

where no equational theory was studied for the calculus with coercions). Others have also

considered coercions in di�erent frameworks of subtyping. See, for example, [LMS95, Che98].

3



The framework on coercive subtyping takes a di�erent approach { taking coercions se-

riously and directly at the proof-theoretic level (they extend type theories directly with

coercive de�nition rules) and providing a coherent view on how subtyping and inheritance

can be studied in a type theory with inductive data types [CPM90, Dyb91, Luo94]. The

work has been in
uenced by Peter Aczel and Anthony Bailey via their project on classes and

coercions [Bai98], and by Randy Pollack via his idea of type-checking terms with implicit

coercions (private communication). The current work extends this framework to dependent

coercions.

3 Dependent coercions

We �rst give an informal explanation of what a dependent coercion is. Then, the formal

framework of coercive subtyping (with dependent coercions) is presented.

3.1 An informal introduction

With dependent types, it is natural to consider when a type is a subtype of a family of types.

For instance, we can consider the type of lists List(A) be a subtype of the family of types

of vectors, V ec(A;n).

1

A natural coercion between them is the functional operation c that

maps list [a

1

; :::; a

n

] to the vector < a

1

; :::; a

n

>. More precisely, we can de�ne

c(nil(A)) = nil

V

(A) : V ec(A; 0)

c(cons(A; a; l)) = cons

V

(A; jlj; a; c(l)) : V ec(A; jlj+ 1)

This coercion c is of kind dependent product (l:List(A))V ec(A; jlj), where jlj is the length

of l.

The framework of coercive subtyping studied before, eg, in [Luo99], does not allow such

coercions with dependent types. This is an example of dependent coercion; we can declare

that c is a dependent coercion from the type of lists to the family of types of vectors. In

notation, we write this as:

l:List(A)

c

�! V ec(A; jlj);

where V ec(A; jlj) depends on the bound variable l. More generally and more formally, we

may declare the following basic subtyping rule to introduce such a coercion:

A

c

AB

�! B : Type

l:List(A)

c

�! V ec(B; jlj) : Type

where c is de�ned as above except that in the second clause of the above de�nition, we have

c(a::l) = cons

V

(B; jlj; c

AB

(a); c(l)).

Note that a dependent coercion is di�erent from a parameterised coercion of the form

A

c

0

�! B(x) [x:P ]. The parameterised coercion c

0

says that the type A is regarded as a

subtype of each type in family B, while a dependent coercion of the form x:A

c

�! B(x) is

in fact saying that, informally, A is a subtype of the `union' of the types in the family B.

1

List(A), parameterised over type A, is introduced as the inductive type with constructors nil(A) :

List(A) and cons(A) : (a:A)(l:List(A))List(A). The inductive family of types V ec(A) : (n:Nat)Type,

indexed over natural numbers and parameterised over type A, is introduced with constructors nil

V

(A) :

V ec(A; 0) and cons

V

(A) : (n:Nat)(a:A)(v:V ec(A; n))V ec(A; n+ 1).

4



3.2 Dependent coercions: a formal presentation

We consider how to extend any type theory speci�ed in the logical framework LF with

dependent coercions as well as other coercions.

3.2.1 Logical framework and notations

The logical framework LF [Luo92, Luo94] is a typed version of Martin-L�of's logical frame-

work (see Chapter 19 of [NPS90] for a presentation of the latter). The rules of LF are given

in Appendix A and, for how to specify type theories in LF, we refer to Chapter 9 of [Luo94]

or [Luo99] for more detailed discussions. Examples of type theories that can be speci�ed

with LF include Martin-L�of's intensional type theory [NPS90], UTT [Luo94], and many

others.

Paul Callaghan of the Computer Assisted Reasoning Group at Durham has implemented

LF in the form of a proof assistant for the language, called Plastic. In Plastic one can specify

type theories such as UTT; it provides mechanisms for inductive types and universes, and has

a library providing logical reasoning and many standard data types. Plastic also implements

coercive subtyping. See Section 5.2 for more information.

Notations The following basic notational conventions will be used in this paper.

� Substitution: as usual, [N=x]M stands for the expression obtained from M by substi-

tuting N for the free occurrences of variable x in M , de�ned as usual with possible

changes of bound variables; informally, we sometimes useM [x] to indicate that variable

x may occur free in M and subsequently write M [N ] for [N=x]M , when no confusion

may occur.

� We shall often omit El-operator in LF to write A for El(A) when no confusion may

occur and may write (K)K

0

for (x:K)K

0

when x does not occur free in K

0

.

� Identity function: id

M

� [x:M ]x.

� Functional composition: for f : (K

1

)K

2

and g : (y:K

2

)K

3

[y], de�ne g�f =

df

[x:K

1

]g(f(x)) :

(x:K

1

)K

3

[f(x)], where x does not occur free in f or g.

3.2.2 Judgement forms

Besides the judgement forms in LF, we consider two new forms of judgement, which assert

that c is a coercion (possibly dependent coercion) from kind K to kind K

0

and from type A

to type B, respectively:

� ` x:K

c

�! K

0

and � ` x:A

c

�! B : Type;

where x:K and x:A bind variable x in K

0

and B, respectively, but they do not bind x in c.

We also say that K is a subkind of K

0

(and A is a subtype of B) via coercion c.

Notation When x does not occur free in K

0

(B), we write

� ` K

c

�! K

0

and � ` A

c

�! B : Type

5



for the above two judgements, respectively. Note that, when K and K

0

(or B and B

0

) are

not computationally equal, � ` K

c

�! K

0

and � ` A

c

�! B : Type correspond to the

judgement forms � ` K <

c

K

0

and � ` A <

c

B : Type we have used in, eg, [Luo99].

Let T be any type theory speci�ed in LF. We shall present the system T[R], the extension

of T with coercive subtyping (with dependent coercions), whose subtyping relation is given

by the basic subtyping rules R, which satisfy certain coherence conditions. In order to state

the coherence conditions for the basic subtyping rules, we �rst consider an intermediate

system T[R]

0

.

3.2.3 T[R]

0

and coherence conditions

T[R]

0

extends T (only) with the new judgement form of subtyping, � ` x:A

c

�! B : Type,

and the following new rules:

� A set R of basic subtyping rules whose conclusions are subtyping judgements of the

form � ` x:A

c

�! B : Type.

� The general subtyping rules in Figure 1. .

Identity coercion

� ` A : Type

� ` A

id

A

�! A : Type

Congruence

� ` x:A

c

�! B : Type � ` A = A

0

: Type �; x:A ` B = B

0

: Type � ` c = c

0

: (x:A)B

� ` x:A

0

c

0

�! B

0

: Type

Transitivity

� ` x:A

c

�! B : Type �; x:A ` y:B

c

0

�! C[x; y] : Type

� ` x:A

[x:A]c

0

(c(x))

�! C[x; c(x)] : Type

Substitution

�; x:K;�

0

` y:A

c

�! B : Type � ` k : K

�; [k=x]�

0

` [k=x](y:A

c

�! B) : Type

Figure 1: General type coercion rules in T[R]

0

(and T[R]).

Note that in T[R]

0

, the subtyping judgements do not contribute to any derivation of a

judgement of any other form. Therefore, T[R]

0

is obviously a conservative extension of T.

6



Note that we have included the identity function as a coercion. Subtyping relations for

the object type theories speci�ed in LF are introduced as (default) basic subtyping rules,

which may include subtyping rules for parameterised data types such as �-types and �-

types. For most of the applications, these coercions are introduced between data types in

the type theory. (See [Luo99] for examples.)

The set of basic coercion rules are required to be coherent in the following sense.

De�nition 3.1 (coherence condition) A set R of basic coercion rules is coherent if the

following is true in T[R]

0

:

� If � ` x:A

c

�! B[x] : Type, � ` x:A

c

0

�! B

0

[x] : Type, � ` a : A, and � ` B[a] =

B

0

[a] : Type, then � ` c(a) = c

0

(a) : B[a].

Remark From the above, we have the following as consequences:

� If � ` A

c

�! A : Type, then � ` c = id

A

: (A)A.

� If x does not occur free in B or B

0

, we have (by ��-equality rules in LF) that � ` c =

c

0

: (A)B, if � ` A

c

�! B : Type, � ` A

c

0

�! B : Type, and A is not empty in �.

This is the coherence condition for non-dependent coercions in, eg, [Luo99], except the

requirement of non-emptyness of A.

3.2.4 T[R] and inference rules

Let R be a set of coherent basic subtyping rules. The system T[R], the extension of T with

coercive subtyping (with dependent coercions) with respect to R, is the system obtained

from T[R]

0

by adding the new subkinding judgement form � ` x:K

c

�! K

0

, the coercive

application and coercive de�nition rules in Figure 2, and the general kind coercion rules in

Figure 3.

Note that the judgement � ` k : K means that k is an object with principal kind

K, while the de�nable judgement � ` k :: K, which can be introduced by means of the

following rules (cf, [Luo99]):

� ` k : K � ` x:K

c

�! K

0

[x]

� ` k :: K

0

[k]

� ` k = k

0

: K � ` x:K

c

�! K

0

[x]

� ` k = k

0

:: K

0

[k]

would represent typing in general.

The basic subtyping rulesR represent the intended (and possibly user-de�ned) subtyping

relations between data types. Note that the basic relations are between types, not between

arbitrary kinds. It is not restricted to constant types (such as Even and Nat) but can be

between structured types such as �-types representing abstract mathematical theories (such

as those of rings and groups) possibly with the intended coercions speci�ed by the user of a

proof system.

The coherence conditions are the most basic and necessary requirements for the basic

subtyping rules. Note that in the paradigm of coercive subtyping, coercions between any

two kinds are required to be unique up to computational equality: it is easy to show that,

by the coercive de�nition rule and ���-equality rules, if x:K

c

�! K

0

and x:K

c

0

�! K

0

, then

we have c = c

0

: (x:K)K

0

. Coherence checking and proofs are not easy when parameterised

coercions or dependent coercions are present. (See Section 5.2 for a further discussion.)

7



Coercive application rules

� ` y:K

0

c

�! K[y] � ` k

0

: K

0

� ` f : (x:K[k

0

])K

0

[x]

� ` f(k

0

) : K

0

[c(k

0

)]

� ` y:K

0

c

�! K[y] � ` k

0

= k

0

0

: K

0

� ` f = f

0

: (x:K[k

0

])K

0

[x]

� ` f(k

0

) = f

0

(k

0

0

) : K

0

[c(k

0

)]

Coercive de�nition rule

� ` y:K

0

c

�! K[y] � ` k

0

: K

0

� ` f : (x:K[k

0

])K

0

[x]

� ` f(k

0

) = f(c(k

0

)) : K

0

[c(k

0

)]

Figure 2: Coercive application/de�nition rules in T[R].

3.3 Meta-theoretic results

The meta-theoretic results for non-dependent coercions, as sketched in Section 2, can be

lifted for dependent coercions. In particular, the conservativity theorem holds for the frame-

work with dependent coercions as well: every judgement that is derivable in T[R] and that

does not contain coercive applications (cf, the coercive application rule in Figure 2) is deriv-

able in the original type theory T. Furthermore, coercion completion is justi�ed: for every

derivation/judgement/object in T[R], one can insert coercions correctly to obtain a compu-

tationally equal counterpart of the derivation/judgement/term in the original type theory

T. We omit the details here and refer the reader to the similar results for non-dependent

coercions presented in [SL98].

3.4 Coercion rules for dependent products: a discussion

The coercion rule for dependent product kinds in Figure 3 is worth further discussion. In

our rule, the coercions in the premises are restricted to be non-dependent; in other words,

dependent coercions are not allowed to be lifted to dependent product kinds in the usual

contravariant way.

One may consider more general rules. For example, the following rule allows the second

coercion in the premises to be dependent, while restricting the �rst to be non-dependent:

(�)

�; x:K

1

` K

2

[x] kind � ` K

0

1

c

1

�! K

1

�; x

0

:K

0

1

` y:K

2

[c

1

(x

0

)]

c

2

�! K

0

2

[x

0

; y]

� ` f :(x:K

1

)K

2

[x]

[f :(x:K

1

)K

2

[x]][x

0

:K

0

1

]c

2

(f(c

1

(x

0

)))

�! (x

0

:K

0

1

)K

0

2

[x

0

; f(c

1

(x

0

))]

Or, one could take a even more liberal view to allow both coercions in the premises to be

dependent:

�; x

0

:K

0

1

; x:K

1

[x

0

] ` K

2

[x

0

; x] kind

� ` x

0

:K

0

1

c

1

�! K

1

[x

0

] �; x

0

:K

0

1

` y:K

2

[x

0

; c

1

(x

0

)]

c

2

�! K

0

2

[x

0

; y]

� ` f : (x

0

:K

0

1

)(x:K

1

[x

0

])K

2

[x

0

; x]

c

�! (x

0

:K

0

1

)K

0

2

[x

0

; f(x

0

; c

1

(x

0

))]

8



Basic kind coercion rules

� valid

� ` Type

id

Type

�! Type

� ` x:A

c

�! B : Type

� ` x:El(A)

c

�! El(B)

Kind coercion for dependent product kinds

�; x:K

1

` K

2

[x] kind � ` K

0

1

c

1

�! K

1

�; x

0

:K

0

1

` K

2

[c

1

(x

0

)]

c

2

�! K

0

2

[x

0

]

� ` (x:K

1

)K

2

[x]

[f :(x:K

1

)K

2

[x]][x

0

:K

0

1

]c

2

(f(c

1

(x

0

)))

�! (x

0

:K

0

1

)K

0

2

[x

0

]

Congruence rule

� ` x:K

1

c

�! K

2

� ` K

1

= K

0

1

�; x:K

1

` K

2

= K

0

2

� ` c = c

0

: (x:K

1

)K

2

� ` x:K

0

1

c

0

�! K

0

2

Transitivity rule

� ` x:K

c

�! K

0

�; x:K ` y:K

0

c

0

�! K

00

[x; y]

� ` x:K

[x:K]c

0

(c(x))

�! K

00

[x; c(x)]

Substitution rule

�; x:K;�

0

` y:K

1

c

�! K

2

� ` k : K

�; [k=x]�

0

` [k=x](y:K

1

c

�! K

2

)

Figure 3: Kind coercion rules in T[R].

9



where c(f; x

0

) = c

2

(f(x

0

; c

1

(x

0

))).

It is obvious that having more general rules would lift more dependent coercions from

the type level to dependent product kinds. For instance, the (�) rule above would have the

e�ect that, for example, there is a coercion

f :(A:Type)List(A)

d

�! (A:Type)V ec(A; jf(A)j);

where d(f;A) = c(f(A)), if we assume that we have the dependent coercion from lists to

vectors as discussed before. This coercion would not be derivable using our simple rule.

It requires further investigation to understand how these dependent coercions lifted to

the dependent product kinds can be used in practice and what the implications are for the

theory. There is one di�culty in the meta-theoretic study: with the more general rules

considered here, the transitivity elimination result at the kind level fails to hold. Note that

transitivity elimination was used to prove the conservativity theorem as sketched above, we

have not succeeded in proving the conservativity result for these more general rules. We

leave these to future research.

4 The �

2

-coercions

Dependent coercions can either be introduced by the user (eg, the dependent coercion be-

tween lists and vectors), or formed by composition with other coercions, which can be simple,

parameterised, or dependent. Although dependent coercions can be rather complicated, it

is interesting to note that they can all be represented in some canonical form.

In fact, all dependent coercions can be represented as compositions of non-dependent

coercions with a special dependent coercion { the second projection for �-types.

Consider dependent sum types (or strong sums) �(A;B) for type A : Type and family

B : (A)Type indexed by objects in A. Let �

1

and �

2

be the �rst projection and second

projection, respectively. Then, we can declare the second projection to be a dependent

coercion:

p:�(A;B)

�

2

�! B(�

1

(p)) : Type:

Then, for any dependent coercion from A to B,

x:A

c

�! B(x) : Type;

we can de�ne the following non-dependent coercion

A

d

c

�! �(A;B) : Type;

where d

c

(x) = pair(A;B; x; c(x)) : �(A;B). Then, the composition of d

c

and �

2

is a depen-

dent coercion from A to B and �

2

� d

c

= c : (x:A)B(x).

So, any dependent coercion can be represented as the composition of a �

2

-coercion with

a non-dependent coercion. Furthermore, this representation preserves coherence, as the

following theorem shows.

Theorem 4.1 Let T' be the type theory obtained from T by adding a new �-type constructor.

Then T[R]

0

is coherent with

x:A

c

�! B(x) : Type

10



if and only if T'[R]

0

is coherent with the following coercions

A

d

c

�! �(A;B) : Type;

p:�(A;B)

�

2

�! B(�

1

(p)) : Type;

where d

c

(x) =

df

pair(A;B; x; c(x)).

Proof sketch The if part is trivial, since by the transitivity and congruence rules, we

have x:A

c

�! B(x) : Type. For the only-if part, we only have to show that T'[R]

0

is a

conservative extension of T[R]

0

. This is the case because the �-types involved are new. 2

Remark The condition in the above theorem that the �-type constructor is new is impor-

tant. The type theory T may have other strong sum types over which there may be other

coercions de�ned, but the added �-type constructor is a di�erent copy, distinct from the

other strong sum types.

Considering the intuitive meaning of a dependent coercion, the above result is not sur-

prising, if one notes that the �-type �(A;B) intuitively represents the `union' of the family

B.

5 Applications and implementation

In this section, we brie
y discuss applications of dependent coercions, and its implementation

and related issues.

5.1 Applications

Exisiting applications. Coercive subtyping has applications in large proof development

[Bai98] and provides useful mechanisms for inductive reasoning, overloading, and represen-

tation of some implicit syntax, etc (see [Luo99]). Dependent coercions extend the power of

the framework in these areas. For example, the �

2

-coercions allow more 
exible structuring

and reuse of proofs in formalisation of mathematical theories.

Application to functional programming with dependent types. When we consider

functional programming with dependent types as well as non-dependent types, it is often

crucial and very useful if one can reuse programs with dependent types (eg, functions con-

cerning vectors) in the world of non-dependent types (eg, that of lists). Dependent coercions

(eg, the coercion from lists to vectors), together with other coercions, are useful in such

transformations. For example, one can de�ne a function from lists to lists by means of a

similar function from vectors to vectors, rather than de�ning the former directly. This pro-

vides a basis for reusing functional programs and makes the use of dependent types easier

in programming.

Formalisation of mathematical concepts. Some mathematical concepts involve a set

being a subset of the union of a family of sets, and with dependent coercions, it is possible

to model such concepts at the level of types. The notion of covering is such an example: we

11



can consider a type A and a family of types A

s

such that every element of A can be regarded

as an element of some A

s

, while each A

s

is a subtype of A.

For example, let Nat be the type of natural numbers with constructors zero and succ.

As in [Luo99], we can consider the subtypes of even and odd numbers as the copies of Nat,

Even =

df

Nat

0

(with constructors zero

0

and succ

0

) and Odd =

df

Nat

1

(with constructors

zero

1

and succ

1

) with the following coercions:

Nat

0

c

0

0

�! Nat : Type and Nat

1

c

0

1

�! Nat : Type;

where for i = 1; 2,

c

0

0

(zero

0

) = zero; c

0

1

(zero

1

) = succ(zero); and c

0

i

(succ

i

(x)) = succ(succ(c

0

i

(x))):

One may de�ne also a dependent coercion

x:Nat

c

�! Nat

i(x)

: Type;

where i(x) =

�

0; if x is even

1; if x is odd

. The coercion c of kind (x:Nat)Nat

i(x)

maps the even nat-

ural numbers of typeNat (0; 2; :::) to the even numbers of type Nat

0

(zero

0

; succ

0

(zero

0

); :::),

and the odd natural numbers (1; 3; :::) to the odd numbers of typeNat

1

(zero

1

; succ

1

(zero

1

); :::).

The above coercions form a covering in the intuitive sense. Furthermore, they themselves

constitute a coherent set of basic coercions (note that there is no composition of the coercion

c

0

i

with c to form a coercion from Nat to Nat, since Nat

0

(or Nat

1

) is not computationally

equal to Nat

i(x)

.)

Some remarks on extensionality. Note that in the above example, the coercions c

0

0

and

c

0

1

may be written in the parametric form as x:Nat ` Nat

i(x)

c

0

i(x)

�! Nat : Type. If we took

this as a coercion as well, together with the coercion c above, the whole system of coercions

would not be coherent, since in this case, we could compose c with c

0

i(x)

to obtain a coercion

from Nat to Nat that is not computationally equal to id

Nat

. This is an example where

coercions only satisfy what we may call `extensional coherence', ie, two coercions with the

same domain and range types are only extensionally equal, but are not intensionally (or

computationally) equal.

In this paper and in the study of coercive subtyping in general, we have assumed that our

underlying type theories are intensional. However, if we consider extensional type theories

(cf, [ML84]), which sometimes are good in direct formalisation of mathematical concepts,

then our notion of coherence becomes extensional and the above system of coercions would

be (extensionally) coherent. Extensional coherence is sometimes a very useful notion and

needs further study.

5.2 Implementation

The proof system Plastic [Cal99], implemented by Callaghan at Durham, supports coercive

subtyping, including the use of dependent coercions. Several coercion mechanisms have

been implemented in Plastic, allowing a mixture of simple coercions, parametrised coercions,

coercion rules, and dependent coercions. The mechanismmakes use of meta-variable facilities

(including uni�cation) in the system to calculate the coercion terms. Plastic is being used

12



for experiments which investigate use of coercive subtyping, especially dependent coercions,

in functional programming.

As mentioned before, Plastic implements the typed LF with several extensions, such as for

inductive types and universes. There are several motivations for Plastic: to support research

on coercive subtyping, mathematical vernacular [LC98], functional programming with depen-

dent types [KLM99], and interfaces to type theory based proof assistants [CL98]. The system

is described in more detail on the WWWpage http://www.dur.ac.uk/CARG/plastic.html.

Coherence checking

Parameterised coercions and dependent coercions introduce in�nitely many coercions; there-

fore, coherence checking is in general undecidable. In practice, checking coherence of user-

de�ned coercions is also a very di�cult task. However, there are at least two possible

approaches to this problem.

Firstly, it is possible to consider di�erent classes of coercions useful for certain applications

and prove (by hand, and at the meta-level) that each constitutes a coherent set of basic

subtyping rules. As to dependent coercions, for example, we can easily show that the coercion

from lists to vectors in our example above is coherent (without considering other coercions.)

We call this approach of using external proofs to guarantee coherence of coercion sets as an

approach of `meta-arguments'.

However, in practice, it is often the case that we cannot predict what coercions a user

might use. Therefore, in implementing coercions, some form of coherence checking is nec-

essary. When we have dependent coercions or parameterised coercions, one possibility is to

consider dynamic checking. In this method, the system keeps a set of coercion instances

used so far, and guarantees that any use of coercions does not introduce con
icting in-

stances. Note that, dynamic checking is completely a practical approach: it only makes

sure that the coercion instances used are not in con
ict, but it does not guarantee that the

declared coercions are coherent.

The approach of using meta-arguments to ensure coherence can be combined with dy-

namic checking to make coherence checking more e�cient: one does not need to check

whether two coercion instances are in con
ict if the coercions concerned have been proved

to be coherent with each other. We are exploring this idea of dynamic checking using the

implementation of Plastic.

Acknowledgement Thanks to Paul Callaghan and James McKinna who have read drafts

of this paper and given their comments. It is also a pleasure to work with Paul Callaghan

who implemented coercions in Plastic. A discussion with Alex Jones on dynamic checking

has been very useful. Thanks also go to the CTCS referees who have made very useful

comments that have helped improve the paper.

A The inference rules for LF

The inference rules for the typed logical framework LF are given in Figure 4.

13



Contexts and assumptions

hi valid

� ` K kind x 62 FV (�)

�; x:K valid

�; x:K;�

0

valid

�; x:K;�

0

` x : K

Equality rules

� ` K kind

� ` K = K

� ` K = K

0

� ` K

0

= K

� ` K = K

0

� ` K

0

= K

00

� ` K = K

00

� ` k : K

� ` k = k : K

� ` k = k

0

: K

� ` k

0

= k : K

� ` k = k

0

: K � ` k

0

= k

00

: K

� ` k = k

00

: K

� ` k : K � ` K = K

0

� ` k : K

0

� ` k = k

0

: K � ` K = K

0

� ` k = k

0

: K

0

Substitution rules

�; x:K;�

0

valid � ` k : K

�; [k=x]�

0

valid

�; x:K;�

0

` K

0

kind � ` k : K

�; [k=x]�

0

` [k=x]K

0

kind

�; x:K;�

0

` K

0

kind � ` k = k

0

: K

�; [k=x]�

0

` [k=x]K

0

= [k

0

=x]K

0

�; x:K;�

0

` k

0

: K

0

� ` k : K

�; [k=x]�

0

` [k=x]k

0

: [k=x]K

0

�; x:K;�

0

` k

0

: K

0

� ` k

1

= k

2

: K

�; [k

1

=x]�

0

` [k

1

=x]k

0

= [k

2

=x]k

0

: [k

1

=x]K

0

�; x:K;�

0

` K

0

= K

00

� ` k : K

�; [k=x]�

0

` [k=x]K

0

= [k=x]K

00

�; x:K;�

0

` k

0

= k

00

: K

0

� ` k : K

�; [k=x]�

0

` [k=x]k

0

= [k=x]k

00

: [k=x]K

0

The kind Type

� valid

� ` Type kind

� ` A : Type

� ` El(A) kind

� ` A = B : Type

� ` El(A) = El(B)

Dependent product kinds

� ` K kind �; x:K ` K

0

kind

� ` (x:K)K

0

kind

� ` K

1

= K

2

�; x:K

1

` K

0

1

= K

0

2

� ` (x:K

1

)K

0

1

= (x:K

2

)K

0

2

�; x:K ` k : K

0

� ` [x:K]k : (x:K)K

0

(�)

� ` K

1

= K

2

�; x:K

1

` k

1

= k

2

: K

� ` [x:K

1

]k

1

= [x:K

2

]k

2

: (x:K

1

)K

� ` f : (x:K)K

0

� ` k : K

� ` f(k) : [k=x]K

0

� ` f = f

0

: (x:K)K

0

� ` k

1

= k

2

: K

� ` f(k

1

) = f

0

(k

2

) : [k

1

=x]K

0

(�)

�; x:K ` k

0

: K

0

� ` k : K

� ` ([x:K]k

0

)(k) = [k=x]k

0

: [k=x]K

0

(�)

� ` f : (x:K)K

0

x 62 FV (f)

� ` [x:K]f(x) = f : (x:K)K

0

Figure 4: The inference rules of LF.

14



References

[Bai96] A. Bailey. Lego with implicit coercions. 1996. Draft.

[Bai98] A. Bailey. The Machine-checked Literate Formalisation of Algebra in Type The-

ory. PhD thesis, University of Manchester, 1998.

[BCGS91] V. Breazu-Tannen, T. Coquand, C. Gunter, and A. Scedrov. Inheritance and

explicit coercion. Information and Computation, 93, 1991.

[Cal99] P.C. Callaghan. Plastic: an implementation of typed LF with coercions. Talk

given in the Annual Conf of TYPES'99, June 1999.

[Che98] G. Chen. Subtyping, Type Conversion and Transitivity Elimination. PhD thesis,

University of Paris VII, 1998.

[CL98] P. Callaghan and Z. Luo. Mathematical vernacular in type theory based proof

assistants. User Interfaces for Theorem Provers (UITP'98), Eindhoven, 1998.

[Coq96] Coq. The Coq Proof Assistant Reference Manual (version 6.1). INRIA-

Rocquencourt and CNRS-ENS Lyon, 1996.

[CPM90] Th. Coquand and Ch. Paulin-Mohring. Inductively de�ned types. Lecture Notes

in Computer Science, 417, 1990.

[CW85] L. Cardelli and P. Wegner. On understanding types, data abstraction and poly-

morphism. Computing Surveys, 17, 1985.

[Dyb91] P. Dybjer. Inductive sets and families in Martin-L�of's type theory and their set-

theoretic semantics. In G. Huet and G. Plotkin, editors, Logical Frameworks.

Cambridge University Press, 1991.

[JLS98] A. Jones, Z. Luo, and S. Soloviev. Some proof-theoretic and algorithmic aspects

of coercive subtyping. Types for proofs and programs (eds, E. Gimenez and C.

Paulin-Mohring), Proc. of the Inter. Conf. TYPES'96, LNCS 1512, 1998.

[KLM99] R. Kiessling, Z. Luo, and J. M.McKinna. Some issues in functional programmiung

with dependent types. Talk in the Annual Conference of TYPES'99, June 1999.

[LC98] Z. Luo and P. Callaghan. Mathematical vernacular and conceptual well-

formedness in mathematical language. Proceedings of the 2nd Inter. Conf. on

Logical Aspects of Computational Linguistics, LNCS/LNAI 1582, 1998.

[LMS95] G. Longo, K. Milsted, and S. Soloviev. A logic of subtyping. In Proc. of LICS'95,

1995.

[LP92] Z. Luo and R. Pollack. LEGO Proof Development System: User's Manual. LFCS

Report ECS-LFCS-92-211, Department of Computer Science, University of Ed-

inburgh, 1992.

15



[Luo92] Z. Luo. A unifying theory of dependent types: the schematic approach. Proc.

of Symp. on Logical Foundations of Computer Science (Logic at Tver'92), LNCS

620, 1992. Also as LFCS Report ECS-LFCS-92-202, Dept. of Computer Science,

University of Edinburgh.

[Luo94] Z. Luo. Computation and Reasoning: A Type Theory for Computer Science.

Oxford University Press, 1994.

[Luo97] Z. Luo. Coercive subtyping in type theory. Proc. of CSL'96, the 1996 Annual

Conference of the European Association for Computer Science Logic, Utrecht.

LNCS 1258, 1997.

[Luo99] Z. Luo. Coercive subtyping. Journal of Logic and Computation, 9(1):105{130,

1999.

[ML84] P. Martin-L�of. Intuitionistic Type Theory. Bibliopolis, 1984.

[NPS90] B. Nordstr�om, K. Petersson, and J. Smith. Programming in Martin-L�of's Type

Theory: An Introduction. Oxford University Press, 1990.

[Sai97] A. Saibi. Typing algorithm in type theory with inheritance. Proc of POPL'97,

1997.

[SL98] S. Soloviev and Z. Luo. Coercion completion and conservertivity in coercive

subtyping. Draft submitted, 1998.

16


