
MTT-Semantics Is Model-Theoretic

As Well As Proof-Theoretic∗

Zhaohui Luo†

Royal Holloway, University of London
Email: Zhaohui.Luo@hotmail.co.uk

July 4, 2019

Abstract

In this paper, we argue that formal semantics based on modern type
theories (MTT-semantics) is both model-theoretic and proof-theoretic,
and hence has unique advantages as a semantic framework. Being
model-theoretic, it provides a wide coverage of various linguistic fea-
tures partly because the rich type structure in MTTs can be used
effectively to represent various collections, playing a role as sets do in
Montague’s model-theoretic semantics. Being proof-theoretic, its foun-
dational languages have a proof-theoretic meaning theory and provide
a solid foundation for natural language reasoning using proof assis-
tants.

After presenting the basic arguments, we shall then focus on further
development of the first, and arguably less understood, aspect: MTT-
semantics is model-theoretic. We shall develop a notion of signature
to allow new forms of subtyping and definitional entries and show that
such formal contextual tools support useful ways of representing in-
complete possible worlds in semantic studies. We shall also develop a
notion of belief collection and show, from a different angle, that MTTs
provide powerful mechanisms for linguistic semantics.

∗The viewpoint, as stated in the title, that the formal semantics in modern type theo-
ries (MTT-semantics for short) is both model-theoretic and proof-theoretic, was first put
forward in the author’s talk [51] at the 2014 conference on Logical Aspects in Compu-
tational Linguistics. Since then, there have been further developments of the idea and
arguments, enriching the theme, on the one hand, and clarifying some misunderstand-
ings, on the other. In this paper, we intend to give a more thorough and self-contained
explication.
†Partially supported by the EU grant EUTypes (COST Action CA15123).

1

1 Introduction

MTT-semantics [52, 21] is formal semantics in the style of Montague’s se-
mantics [61], but in Modern Type Theories (MTTs)1 rather than in simple
type theory (and its set-theoretical models) [22, 61, 33]. MTTs have impor-
tant features that traditional logical systems such as simple type theory do
not have. Besides containing embedded logics based on the Curry-Howard
principle of propositions as types [27, 38], most of MTTs have rich type struc-
tures including, to name a few, dependent types, inductive types and type
universes (see later for more elaborations). In this paper, we shall argue that
MTT-semantics has a unique important feature: it is both model-theoretic
and proof-theoretic, and this has made MTTs a particularly nice frame-
work for formal semantics. Being model-theoretic, MTT-semantics provides
a wide coverage of various linguistic features and, being proof-theoretic, its
foundational languages have proof-theoretic meaning theory based on infer-
ential uses (appealing philosophically and theoretically) and it establishes
a solid foundation for practical reasoning in natural languages on comput-
ers (appealing practically). Altogether, this strengthens the argument that
MTT-semantics is a promising framework for formal semantics, both theo-
retically and practically.

MTTs are proof-theoretically specified. Usually, an MTT is presented
as a natural deduction system where, in particular, every type construc-
tor is specified by rules among which introduction rules are to declare how
the type (formula) is inhabited (proved) and the elimination rule to specify
what consequences can be derived under the assumption that the type is
inhabited. These rules are harmonious and, as an important consequence,
MTTs themselves have proof-theoretic semantics, as studied by logicians
such as Gentzen [35], Prawitz [69, 68] and Martin-Löf [59, 60] and discussed
by philosophers such as Dummett [31] and Brandom [11, 12], among oth-
ers.2 For example, Martin-Löf has studied and developed meaning theory
and given a solid foundation for his type theory [59]. Therefore, MTT-
semantics, the formal semantics in MTTs, is proof-theoretic in the sense
that its foundational semantic languages have proof-theoretic meaning the-

1By MTTs, we refer to the family of formal systems such as Martin-Löf’s intensional
type theory (MLTT) [58, 62], the type theory in Coq (pCIC) [24] and the Unifying Theory
of dependent Types (UTT) [43]. See §2 for more details.

2It is worth remarking that even if a logical system is specified by proof-theoretic
rules, it can still fail to have a proper proof-theoretic semantics. The introduction and
elimination rules must be in harmony as discussed by Dummett [31] and others. See §4.2
for further discussions.

2

ory based on inferential uses.
Furthermore, the fact that MTTs are proof systems with proof-theoretic

semantics has another significant and practical consequence in NL reason-
ing based on MTT-semantics. In particular, this makes it possible for
MTTs to be implemented in proof assistants such as Coq [24], Agda [3] and
Lego/Plastic [56, 14] – computer-assisted reasoning systems that computer
scientists have developed and successfully used for formalisation of mathe-
matics and verification of computer programs. Therefore, MTT-semantics
can be directly implemented in proof assistants that implement MTTs: for
example, the MTT-semantics in type theory UTT has been implemented in
Coq and Plastic and used for NL reasoning [17, 49].

That MTTs are proof-theoretically presented has led to a widely-held
view that formal semantics based on MTTs is only proof-theoretic and, in
particular, it is not model-theoretic.3 This is mistaken! As will be argued,
MTT-semantics is model-theoretic as well: this is the major theme to be
explicated in the current paper. First of all, it is necessary for us to make
clear that, by MTT-semantics being model-theoretic, we do not mean that
an MTT can be given a set-theoretical semantics (e.g., in some categorical
framework); instead, we mean that an MTT itself can be employed as a
meaning-carrying language to give the model-theoretic semantics to Natu-
ral Language. That is, in MTT-semantics, an MTT can play the role of
meaning-carrying language – in the traditional model-theoretic semantics,
this is the role played by set theory. In other words, we argue that MTTs
can well serve as a foundational semantic language to give meanings in them-
selves in a model-theoretic semantics.

We shall develop the theme that MTT-semantics is model-theoretic in
two fronts: the first is to note that, like sets in Montague’s semantics, types
in MTTs are employed to represent collections4 of objects (for example,
semantic interpretations of common nouns), and the rich type structure in
MTTs provides powerful means of representation for formal semantics. In
other words, intuitively, types in MTTs are rich enough to play the role of
representing collections, just as sets in Montague’s semantics.

For instance, compared with the types e, t and arrow types A → B in
simple type theory used in the Montagovian setting, MTTs contain many
more type constructors for dependent types (e.g., Π-types and Σ-types), in-

3An exception is Ranta [73] (p.346) where he pointed out that it is a misunderstanding
to think that formal semantics based on Martin-Löf’s type theory (an MTT) is not model-
theoretic.

4In this paper, the word collection is used to refer to informal entities, rather than
their formal representations such as sets or types.

3

ductive types (e.g., types of numbers/lists/vectors/trees and disjoint union
types), logical types for propositions (under the propositions-as-types prin-
ciple), and type universes (types that contain types as objects). As we know,
types are different from sets. For example, in MTTs type-checking is de-
cidable; in other words, it is decidable whether a : A – this is the basis for
the principle of propositions as types and also for efficient implementations
of proof assistants such as Coq based on MTTs. This is in contrast to the
fact that the membership relation s ∈ S (or whether something satisfies a
predicate) is undecidable, since it is just a formula in FOL and its truth
is undecidable. As we are going to demonstrate, in MTT-semantics, these
types play an important role in representing different kinds of collections
such as those given by CNs modified by various adjectives. As these types
do not exist in simple type theory, one cannot represent various collections
as types there by means only the simple arrow types. In this paper, we shall
summarise how types are used to play various different representation roles
in MTT-semantics to show the power of MTTs’ rich type structure. This is
the first facet to explicate that MTT-semantics is model-theoretic.

The second facet is that the contextual structures in MTTs provides
useful means to support model-theoretic descriptions of incomplete possible
worlds5. We shall describe some new developments in this respect that
support model-theoretic descriptions. In particular, we introduce a notion
of signature into MTTs: rather than the usual judgement forms Γ ` J in
type theory, the new judgements with signatures are of the form

(1) Γ `Σ J

where Σ is a signature which, like a context, is a sequence of entries, in-
cluding the traditional membership entries of the form c : A that declares
that the constant c is of type A. Declaring a constant (or making other
declarations), an entry in a signature cannot be abstracted by means of
quantification or λ-abstraction. This is in contrast to entries in a context
in type theory (Γ in the above judgement form (1)) that describe variables
which can be abstracted.

The use of the notion of signature in type theory, as far as the author
knows, first appeared in Edinburgh Logical Framework, where signatures
with membership entries are used to describe a logical system [37].6 We shall

5In this paper, the phrases such as possible worlds or situations are used informally
without referring to any formal meanings of these words that may have been employed in
the literature.

6Historically, signatures have been used in describing algebraic structures and, for

4

introduce signatures that do not just have the usual membership entries, but
also contain the following two new forms of entries:

• A ≤κ B, a subtyping entry that declares that A be a subtype of B via
coercion κ.7

• c ∼ a : A, a manifest entry that declares that c behaves exactly as the
object a of type A.8

These forms of entries strengthen the power of signatures in representing (in-
complete) possible worlds, even in cases where, for example, situations are
infinite or involve more sophisticated phenomena. It can be shown that ex-
tending MTTs with signatures, which may contain entries of the above new
forms as well as the membership entries, preserves their nice meta-theoretic
properties such as strong normalisation and hence logical consistency. In
this paper, however, we shall focus on representational issues by present-
ing examples to explain how signatures can be used to represent possible
worlds, and only sketch the meta-theoretic results – their technical studies
and detailed proofs are dealt with elsewhere (see, for example, [42, 40]).

We shall also propose a formal treatment of beliefs in MTTs that is ca-
pable of dealing with hyperintensional problems. Ranta [72] introduced a
notion of belief context in type theory which can be adopted very usefully
in various ways in formal semantics. However, it does not solve hyperinten-
sional problems such as that of logical omniscience [26] since, under Ranta’s
notion of belief context, whether an agent believes in something is closed
under derivability and hence, for example, if one believes in a proposition
P , one believes in every proposition that is logically equivalent to P . Our
treatment is more restrictive and reflects the idea that, given a collection
of beliefs of an agent, a statement is believed by the agent if, and only if,
it is intensionally equal to one of the existing beliefs in the agent’s belief
collection. This also shows, from a different angle, that the mechanisms in
MTTs are rich and powerful in dealing with various kinds of phenomena in
formal semantics.

example, more recently they were employed in describing many-sorted structures in the
study of algebraic specifications [13]. However, it should be noted that the notion of
signature in type theory is rather different from that in algebras, although they may be
related informally.

7Here, a subtyping entry A ≤κ B is based on coercive subtyping, where κ : (A)B is a
function from type A to type B, as studied in [44, 57]. In this paper, we shall study its
localisation (i.e., declaring them in signatures).

8Informally, this is to introduce entries that allow ‘definitional’ declarations, whose
introduction into contexts by unit types and coercions was studied in [46] and, in this
paper, we shall study their introduction into signatures.

5

It is worth pointing out that foundational semantic languages that are
both model-theoretic and proof-theoretic were not available before the de-
velopment of MTT-semantics or, at least, people have not recognised that
there is such as possibility (in particular, set theory is not such a language
since it is not proof-theoretic.) That MTT-semantics is both model-theoretic
and proof-theoretic sheds a new light on the divide between model-theoretic
semantics and proof-theoretic semantics and allows us to come up with a
new perspective in studying formal semantics.

The main contributions of the current paper are two-fold. First, our
main theme is to argue, for the first time as far as the author is aware, that
MTT-semantics can be seen as both model-theoretic and proof-theoretic, in
the sense that we have sketched and shall elaborate in the paper. As said, the
model-theoretic characteristics of MTT-semantics is reflected in two facets:
rich type structure for representations and contextual mechanisms for rep-
resenting various linguistic phenomena, both unique for MTTs. However, as
will be explained, the existing contextual mechanisms in MTTs have limita-
tions and potential problems for such representations. Therefore, this is our
second main contribution: we introduce signatures, which are more suitable
than contexts for representations, and add two new forms of entries to sig-
natures that allow us to overcome the limitations of the existing contextual
mechanism that does not allow subtyping or manifest entries and to add
new representational power to MTTs.

The structure of the paper is as follows. §2 gives an introduction to
MTTs, summarising their historical development and introducing the em-
bedded logic and various type constructors, and §3 briefly introduces MTT-
semantics. In §4, we present the arguments that MTT-semantics is both
model-theoretic and proof-theoretic, showing in §4.1 that the rich type struc-
ture of MTTs provides powerful means of representation in formal seman-
tics, on the one hand, and in §4.2 that proof-theoretic semantics for MTTs
establishes the basis for inferential semantics and computerised practical
reasoning, on the other. §5 studies the extension with signatures that may
contain subtyping and manifest entries and their uses in semantics, both in
its basic form in §5.1 and in its advanced form in §5.2. In §6, an intensional
notion of belief collection is introduced to show, from another angle, that
MTTs have very rich type structures, and in this case, powerful logical types
for representations in semantic studies. Some concluding remarks on related
and future work are given in Conclusion.

6

2 Modern Type Theories

The development of type theory started from Russell’s work on Ramified
Theory of Types [79, 75], aiming at solving the problem of paradoxes as
found in Cantor’s naive set theory for the foundation of mathematics. It
was later developed into Simple Type Theory by Ramsay [71] and Church
[22], which has been used by Montague in Intensional Logic (IL) as an
intermediate language for model-theoretic semantics of natural language [61,
33].

The studies of simple type theory have been driven in search of founda-
tional languages for classical mathematics. In the 1970s, various researchers
studied foundational languages for constructive rather than classical math-
ematics. Besides other systems, Martin-Löf’s type theory [58, 59] has been
widely studied and applied to the foundations of mathematics, computer
science and linguistic semantics. It contains powerful typing mechanisms
such as dependent typing, inductive typing and type universes. Its study,
together with that of simple type theory, has led to the development of a
family of (intensional) type theories called Modern Type Theories (MTTs),
including predicative type theories such as Martin-Löf’s intensional type the-
ory (MLTT) (see its description in Part III of [62]) and impredicative type
theories such as the calculus of constructions (CC) [25] and the Unifying
Theory of dependent Types (UTT) (see Chapter 9 od [43]).

In computer science, MTTs have been implemented in proof assistants
and used in applications to formalisation of mathematics and verification of
programs; for example, (some version of) MLTT has been implemented in
Agda [3], the system pCIC (an extension of CC) in Coq [24] and UTT in
Lego/Plastic [56, 14].

It is worth remarking that, although formalising constructive mathemat-
ics was the main motivation of the early development of Martin-Löf’s type
theory, it is not the case that modern type theories can only be employed
constructively.9 Put in another way, powerful typing is not monopolised
by constructive mathematics or constructive reasoning; instead, it can be
used in much wider applications such as linguistic semantics (for example,
MTT-semantics considered in this paper).

In this section, we shall introduce MTTs, some aspects of which are
detailed because they are used in latter parts of the paper. It will focus
on necessary background information and provide notational conventions as

9In this respect, one may be interested in the work on Logic-enriched Type Theories
(LTTs) [1, 34] and a logical framework of LTTs [45, 2] for reasoning in various different
logical foundations, including classical as well as intuitionistic systems.

7

well.

2.1 Judgements

In an MTT, the notion of judgement is the most basic.10 A typical form of
judgement is:

(2) Γ ` a : A

which states that ‘object a is of type A in context Γ’. Types in MTTs
can be used to represent collections of objects in a model-theoretic sense,
although they are syntactic entities, often inductively defined in MTTs. In
other words, intuitively, the above judgement states that, in the environment
represented by context Γ, the object a stands for an object in the collection
represented by A. It may be worth noting that, unlike ordinary logical
systems, a judgement of the form (2) in an MTT is not a logical proposition,
which is a type according to the propositions-as-types principle.

Contexts in MTTs are formal mechanisms that, in logical terms, stand
for assumptions of environments, and can be used, in semantic studies, to
represent incomplete possible worlds in which statements are made.11 Cur-
rently, in type theory, the notion of context only allows membership entries:
the context Γ in (2) is a finite sequence (3) of variable-type pairs in which
one assumes that xi be of type Ai (i = 1, ..., n).

(3) x1 : A1, x2 : A2, ..., xn : An,

Note that those types in a context may depend on ‘previous’ variables:
x1, ..., xi−1 may occur free in Ai. For instance, if Man is the type of men
and handsome : Man→ Prop a predicate over Man, then we can consider
a context that contains the entries in (4) as a part, which assumes that x
is an (arbitrary) handsome man (i.e., x is an arbitrary man and y is an
arbitrary proof that x is handsome):

(4) x : Man, y : handsome(x)

10In §5, judgement forms will be extended with signatures.
11In linguistics, the term context is used to refer to those objects or entities which

surround a communicative event, providing resources for its appropriate interpretation.
In MTT-semantics, one may consider contexts in MTTs as formal representatives of some
of those linguistic contexts. However, it is an open issue as to what extent the formal notion
of context in MTTs can approximate the informal linguistic notion and this is beyond our
discussion in the current paper. Using contexts to represent possible situations in real
world was studied by Ranta in [72], among others. We shall extend the notion in this
paper with new entries which are particularly useful for formal semantics.

8

We usually call an entry of the form x : A a membership entry. In the
second entry of (4), the type is the logical proposition handsome(x), where
x occurs free; in other words, handsome(x) is a type depending on x.

Remark In this paper, unless explicitly stated otherwise, we usually give
examples (for instance, (4)) in the impredicative type theory UTT [43],
where there is a type Prop of all logical propositions (see §2.2.3). 2

2.2 Types

A type in a type theory informally stands for a collection of entities. In
simple type theory, examples of types are the base types e of entities and
t of truth values and function types such as e → t. In modern type the-
ories, there are many different types which can be formed by various type
constructors other than →. In this subsection, we shall give informal but
precise descriptions of these types – their formal rules will mostly be given
in the appendixes except Σ-types of dependent pairs in §2.2.1, which we use
as an example for illustrations.

Like those in simple type theory, types in MTTs are manageable, as
compared with sets in set theory. For example, in MTTs, type-checking is
decidable: for any t and T , it is mechanically determinable whether t is an
object of type T (i.e., whether t : T). This is different from set theory where,
for example, it is in general undecidable whether s is a member of set S (i.e.,
whether s ∈ S). Decidability of type-checking is fundamental; for example,
it is the basis for the propositions-as-types principle.12 Having a rich type
structure with such properties is one of the reasons that MTTs offer a nice
semantic framework with advantages compared with the traditional one in
simple type theory.

2.2.1 Σ-types of Dependent Pairs

Modern type theories contain dependent types and a Σ-type is a typical
example of a dependent type. If A is a type and B is a family of types
that depends on objects of type A, then Σ(A,B), or sometimes written as
Σx:A.B(x), is a type, consisting of pairs (a, b) such that a is of type A and b
is of type B(a). Σ-types are associated with the projection operators π1 and
π2 so that, for every (a, b) of type Σ(A,B), π1(a, b) = a and π2(a, b) = b.

12This is not difficult to see: given a proposition P and a term p, it should be decidable
whether p is a proof of P , i.e., whether p : P . Note that this is different from deciding
whether an arbitrary P is true, which is undecidable.

9

Here, the dependency of B over objects of A is the crucial aspect that
makes Σ(A,B) a dependent type. Let’s use an example to explain: assum-
ing that Man is the type of men and handsome : Man → Prop is the
predicate expressing that a man is handsome. Then, Σ(Man, handsome)
is the type of handsome men or, more precisely, the type that represents
the collection of pairs (m, p) of a man m and a proof p that m is hand-
some. Note that the predicate handsome is a family of propositions (and,
by propositions as types, a family of types): handsome(x) is a proposi-
tion/type for each man x : Man. In other words, handsome(x) depends on
x and Σ(Man, handsome) is a dependent type. In particular, for (m, p) of
type Σ(Man, handsome), p’s type handsome(m) depends on m.

The ordinary product type A × B of non-dependent pairs is a special
case of the dependent Σ-type. Put in another more precise way, when B(x)
is a constant type (i.e., always the same type no matter what x is), the Σ-
type Σ(A,B) degenerates into a product type of non-dependent pairs that
we are familiar with. For instance, if Woman is the type of women, then
the product type Man×Woman is that of ordinary pairs (m,w) such that
m : Man and w : Woman. This ordinary product type Man ×Woman
is the same as the Σ-type Σ(Man,W), where the constant family of types
W (x) is always equal to Woman.

Σ-types are inductively defined. Formally, every inductive type con-
structor is specified by means of inference rules in Natural Deduction, called
formation rule, introduction rules, elimination rules and computation rules.
For Σ-types, these rule are given in Figure 1.

• The formation rule (Σ) tells us how a Σ-type can be legally formed.

• The introduction rule (Pair) tells us that a Σ-type consists pairs as
objects.13 Note that, as explained above, the second component b of
the pair is of type B(a), which depends on the first component a – this
is type dependency. To explain in terms of the example of the above,
in an object pair (m, p) of type Σx:Man.handsome(x)), p must be a
proof of m being handsome (not of something else).

• The elimination rules (Proj1) and (Proj2) specify the projection oper-
ators which get their meanings by means of the computation/definition
rules (Conv1) and (Conv2) that stipulate that, when applied to a pair

13Here, we have simplified the formality a bit for understandability: formally, the pair
(a, b) needs to contain typing information so that it can be deduced during type inference.
We omit the details here.

10

(Σ)
Γ ` A type Γ, x:A ` B type

Γ ` Σx:A.B type

(Pair)
Γ ` a : A Γ ` b : [a/x]B Γ, x:A ` B type

Γ ` (a, b) : Σx:A.B

(Proj1)
Γ ` p : Σx:A.B

Γ ` π1(p) : A

(Proj2)
Γ ` p : Σx:A.B

Γ ` π2(p) : [π1(p)/x]B

(Conv1)
Γ ` a : A Γ ` b : [a/x]B

Γ ` π1(a, b) = a : A

(Conv2)
Γ ` a : A Γ ` b : [a/x]B

Γ ` π2(a, b) = b : [a/x]B

Figure 1: The rules for Σ-types.

of a Σ-type, the first and second projections are equal to the first and
second components, respectively.

A Σ-type Σ(A,P) can be used to represent subset constructions when its
second parameter P is a predicate. This makes use of the idea of propositions
as types – for any x : A, P (x) is a proposition and hence a type. Therefore,
Σ(A,P) is a type, according to the above formation rule. Also, in general,
Σ-types can be regarded as types of tuples since its formation can be nested.
A nested Σ-type Σx1:A1 Σx2:A2 ... Σxn−1:An−1. An can be written by the
following notation and, intuitively, its objects are n-tuples of terms of the
respective types.

x1 : A1

x2 : A2

...

xn : An

2.2.2 More Type Constructors

Here, we briefly introduce several other type constructors and examples of
their uses in MTT-semantics. Like Σ-types above, they are all inductive
types and their formulations follow a similar pattern as that for Σ-types

11

described above in §2.2.1. We will give the formal rules for each type con-
structor in Appendix A.

Π-types of Dependent Functions. Another typical dependent type con-
structor is that of Π-types of dependent functions. When A is a type and
B is a family of types that depends on objects of A, then Π(A,B), some-
times written as Πx:A.B(x), is the type of λ-functions f such that, for any
a : A, f(a), the application of f to a, is of type B(a). Note that the type
B(a) of the application f(a) is dependent on the input a – that makes the
Π-type a dependent type. A Π-types degenerates to the ordinary function
type A→ B in the non-dependent case – when its second parameter is the
constant type B. For instance, the type of predicates over Man is the func-
tion type Man → Prop, where Prop is the type of all logical propositions
(see §2.2.3). The formal rules for Π-types can be found in Appendix A.1.

Disjoint Union Types. When A and B are types, so is the disjoint union
type A + B, whose objects are either inl(a) for a : A and inr(b) for b : B.
Disjoint union types have been proposed to give interpretations of common
nouns when modified by privative adjectives [48, 16, 19]. For instance, for
the types GR of (real) guns and GF of fake guns, one can use the following
disjoint union type G = GR +GF to represent the collection of all guns (see
§4.1 for details). The formal rules for disjoint union types can be found in
Appendix A.2.

Type Universes. A universe is a type of types. Theoretically, the intro-
duction of a universe provides extra power that allows one to formalise some
concepts in type theory which cannot be done without universes. Practi-
cally, universes are very useful since they make it possible to treat various
collections of types as internal totalities and, combined with Π-types, they
help to represent concepts polymorphically or generically – let’s call it Π-
polymorphism. In MTT-semantics, examples of universes include cn, the
universe of (the interpretations of) common nouns [52], and LType, the
universe of ‘linguistic types’, introduced in studying coordination [15]. (See
§4.1 for examples uses of universes and Π-polymorphism.)

2.2.3 Prop and Logical Propositions

Modern type theories have embedded logics based on the Curry-Howard
principle of propositions as types [27, 38], with explicit proof terms of propo-
sitions, which are types in the type theory. Let’s consider a simple example:

12

the logical proposition A in (5) can be proved by the term p in (6); in
other words, (7) is a correct judgement stating that p is a proof term of A
(formally, one says that the judgement (7) can be derived):

(5) A = ∀P : Nat→ Prop ∀x : Nat. P (x) ⊃ P (x)

(6) p = λP : Nat→ Prop λx : Nat λy : P (x). y

(7) p : A

A logical formula, represented as a type, is true if, and only if, there exists a
proof of the corresponding type: in the above example, A is true since there
is p which is a proof of A.

Prop, as found in impredicative type theories like UTT, is an example of
a universe – the type of all logical propositions. When the second parameter
of a Π-type is a predicate P : A → Prop, the Π-type Π(A,P), sometimes
written as ∀x:A.P (x), stands for the proposition of universal quantification.
For example, the sentence (8) can be represented as (9), where handsome
and ugly are predicates over Man. Using the notation ∀ for Π, (9) can be
written as (10) as well.

(8) If a man is handsome, he is not ugly.

(9) Πx:Man. handsome(x)→ ¬ugly(x)

(10) ∀x:Man. handsome(x)→ ¬ugly(x)

The formal rules of the logical universe Prop can be found in Appendix A.3.
Note that every proposition is a type (see (Prop2) in AppendixA.3) and that
is why we have used predicates to form, for example, Σ-types: in order to
form Σx:Man.handsome(x), we would need handsome(x) be a type (see rule
(Σ) in Figure 1) – but it is a proposition and, by (Prop2) in AppendixA.3,
it is a type.

Furthermore, when both parameters for Π are logical propositions, the
non-dependent P → Q is the proposition that P implies Q. In general, in an
impredicative type theory, one can define all the other logical operators such
as implication, conjunction, disjunction, negation and existential quantifier
by means of ∀. This was studied and noticed by several researchers when
studying second-order logics (see, for example, [67]) and the definitions can
be found in, for example, Chapter 5 of [43]. For instance, the conjunction
operator can be defined as (11).

(11) P ∧Q =df ΠX:Prop. (P → Q→ X)→ X

Here is another example: we can use Π to define the equality between any
two objects of the same type. For any type A and any two objects a, b : A,

13

Example Montague semantics Semantics in MTTs
CN man, human man, human : e→ t Man, Human : Type
IV talk talk : e→ t talk : Human→ Prop

ADJ handsome handsome : (e→ t)→ (e→ t) handsome : Man→ Prop
MCN handsome man handsome(man) Σm : Man. handsome(m)

S A man talks ∃m : e. man(m) & talk(m) ∃m : Man. talk(m)

Figure 2: Examples in formal semantics.

the proposition that a and b are equal can be defined as (12).

(12) (a =A b) =df ΠP : A→ Prop. P (a)→ P (b).

The equality thus defined is called the Leibniz equality; it is intensional
in the following two senses: (1) logical equivalence does not imply Leibniz
equality: i.e., it is possible that P 6=Prop Q while P ≡ Q; and (2) functional
extensionality does not hold: for example, for f, g : A → B, it is possible
that f 6=A→B g, although it is the case that ∀x:A. f(x) =B g(x). Leibniz
equality will be used in §6 to propose a formalisation of belief collections.

3 MTT-Semantics: a Brief Introduction

In this section, we give a brief introduction to formal semantics in mod-
ern type theories (MTT-semantics) [52, 21]. The development of MTT-
semantics is a part of a wider research endeavour by many researchers who
have recognised the potential advantages of rich type structures in construct-
ing formal semantics [77, 72, 54, 9, 23, 28, 74, 8, 36]. MTT-semantics is in
the style of Montague’s semantics [61] but, while Montague’s semantics is
based on Church’s simple type theory [22, 33], MTT-semantics is based on
modern type theories, as introduced above in §2.

In Figure 2, we give some basic examples to illustrate how linguistic cat-
egories are interpreted in MTTs and compare them to those in Montague’s
semantics.

One of the key differences between MTTs and simple type theory is that
MTTs have rich type structures with many types, much richer than those
in simple type theory. Because of this, in such a rich type system, common
nouns can be interpreted as types rather than predicates (see, for example,
Ranta’s proposal on this in Martin-Löf’s type theory [72]). We can call
this the CNs-as-types paradigm: it is different from Montague’s semantics,

14

which adopts the CNs-as-predicates paradigm, where CNs are interpreted
as predicates of type e → t (and so are verbs and adjectives).14 For in-
stance, consider the CN ‘book’: it is interpreted in Montague’s semantics
as a predicate of type e→ t, while in MTT-semantics, it is interpreted as a
type Book.

It has been argued that interpreting CNs as types rather than pred-
icates has several advantages including, for example, better treatment of
selectional restriction by typing, compatible use of subtyping in semantic
interpretations and satisfactory treatment of some advanced linguistic fea-
tures such as copredication (see, for example, [47, 20] for further details).
Because CNs are interpreted as types, verbs and adjectives are interpreted
as predicates over the types (eg, [[human]]) that interpret the domains in
which they are meaningful: examples are given in Figure 2.

Note that subtyping is crucial for the formal semantics in MTTs. For
instance, consider the MTT semantics of the sentence ‘A man talks’ in Fig-
ure 2: for m of type [[man]] and [[talk]] of type [[human]]→ Prop, [[talk]](m)
is only well-typed because we have that [[man]] is a subtype of [[human]]. For
MTTs, coercive subtyping as studied in [44, 57] is an adequate framework
to be employed for formal semantics [52].

Several remarks may be made for MTT-semantics.15

• Since logical propositions are used to interpret sentences, the usual
simple inferences follow as intended. For instance, we have that the
interpretation of (15) is implied by that of (13), but not by that of
(14), and this follows directly from the use of ∧ and ∨ to interpret
(13) and (14), respectively. (See, for example, [15] for explanations of
how coordination can be done in MTT-semantics.)

(13) John can both read and speak Dutch.

(14) John can both read and speak Dutch.

(15) John can both read Dutch.

• Just like Montague’s semantics, MTT-semantics is compositional in
the sense that, for example, the meaning of a sentence is obtained
functionally from those of its components. This can be understood

14In the Montague semantics whose underlying logic can be regarded as ‘single-sorted’
(it only has one type e of all entities although, strictly speaking, there is another base type
t of truth values). In contrast, MTTs can be regarded as ‘many-sorted’ logical systems
where there are many types (see §2).

15Thanks for a reviewer to get attention of these points to the author.

15

by just saying that, for example, the type constructors can be applied
to any types and any families of types, which may be used to give
semantics of new entities. For instance, we may use Σ-types Σx:A.B(x)
to interpret intersective adjective modifications (see §4.1) – the CN
semantically represented by A modified by an intersective adjective
semantically represented by B. These As and Bs are open for new
CNs and new intersective adjectives.

• Some ambiguities can also be captured in MTT-semantics. For in-
stance, with read : Editor → Manuscript → Prop,16 the sentence
(16) is ambiguous with two possible readings, whose MTT-interpretations
are (17) and (18), respectively, where the former is a ∃∀-formula and
the latter a ∀∃-formula.

(16) Some editors read every manuscript.

(17) ∃x:Editor∀y:Manuscript. read(x, y)

(18) ∀y:Manuscript∃x:Editor. read(x, y)

4 MTT-Semantics Is Both Model-Theoretic and
Proof-Theoretic

In this section, we shall present our arguments that formal semantics in mod-
ern type theories is both model-theoretic and proof-theoretic, showing that
the framework has unique advantages: being model-theoretic, it provides
a wider coverage in semantic treatments of linguistic features and, being
proof-theoretic, it has inferential meaning theories and supports practical
reasoning on computer-assisted proof assistants.

4.1 Model-Theoretic Characteristics: Types for Representa-
tion

The model-theoretic characteristics of MTT-semantics can be considered in
terms of two aspects. First, types in MTTs can be employed to represent
collections (just like sets in set theory) and, since MTTs have a rich type
structure, their types provide powerful means for representation in linguis-
tic semantics. Secondly, the notion of context or signature, as a part of

16Here, read can have a more general type, for example, its first argument can be any
human (of type Human), but since Editor ≤ Human, read of such a more general type
is of type Editor →Manuscripot→ Prop. So, subtyping is essential – see our remark on
subtyping above.

16

judgements in MTTs, is extremely useful (and can be extended further to
be more suitable) in describing contextual information that is often found
difficult to be captured in formal semantics without set-theoretical means.

None of the above is available in traditional logical systems such as first-
order logic or simple type theory. First, the type structure in MTTs are
much richer than that of simple type theory: not just the base types and
arrow types, MTTs have other type constructors such as those summarised
in §2.2 which can be used effectively to represent various collections such
as those corresponding to different CNs and to provide useful formal tools
such as Π-polymorphism in constructing formal semantics. Secondly, the
contextual mechanisms in MTTs (contexts and, as we’ll study and develop
in §5, signatures) are very useful in representing incomplete or partial worlds
in semantic studies and these contextual mechanisms are not available in
traditional logical systems, either.

In this subsection, after a discussion on the representational facet of
model-theoretic semantics, we shall focus on the first aspect of the model-
theoretic characterisatics of MTT-semantics, while the second aspect will be
studied in §5.

Model-theoretic Semantics. Model-theoretic semantics has been the
dominating formal semantics in linguistics since the pioneering work by Mon-
tague in the late 60s and early 70s [61] where, with simple type theory as
an intermediate language, Tarski’s work in set-theoretical model theory has
been applied to natural language semantics.17 It is an accepted approach
by most linguists, partly for historical reasons18 and partly for the reasons
to be elaborated in the following two paragraphs.

An important virtue of model-theoretic semantics is that it is represen-
tational.19 For instance, in Montague’s semantics that employed simple type

17There are other approaches to model-theoretic semantics including, for example, sit-
uation semantics [6] and variants of Montague’s semantics. For our discussions, however,
they do not make differences and hence we shall use Montague’s semantics as a typical
representative.

18Partee has once expressed her view on why model-theoretic (possible worlds) semantics
is popular among linguists: ‘Linguists tend to be instrumentalists about metaphysics, in
the sense that they will tend to judge competing foundational theories more by their
fruitfulness in helping to lead to insightful explanations of linguistic phenomena than by
any other kinds of arguments’ ([64], p.107).

19We use the term ‘representational’ without any historical connotations and, especially,
it does not refer to either the approaches often classified as mental representation-based
theories of meaning or the so-called ‘representationalist’ approaches to semantics (see, for
example, Partee [64]). We do not use the term in such a way and, in particular, do not

17

theory (and its models in set theory), where representations (or sometimes
called denotations) are given as meanings of natural language sentences and
phrases. For instance, when considering representations of advanced lin-
guistic features, people often directly resort to the set-theoretical models
that are powerful and flexible (see, for example, [30], among others).

Another often-cited advantage of model-theoretic semantics is that a set-
theoretical semantics connects language to the real world.20 Some people
think that such views are illusionary because set theory is just a theory
of first-order logic and, compared with other semantic approaches, giving
meaning representations set-theoretically does not make the semantic stud-
ies any closer to reality, if at all. However, the author does not take such
an extreme view; instead, we argue that the representational approach does
make the semantic studies intuitively more realistic, although not formally.
For example, the notion of a collection of things is rather natural in everyday
conversation and reasoning and set theory does provide powerful means to
represent collections by means of sets. This has arguably contributed to the
intuitive understanding of set-theoretical semantics and could be a reason
why people think that such a model-theoretic semantics connects language
to reality.

A common misunderstanding about formal semantics in modern type
theories (MTT-semantics) is that it is only proof-theoretic, but not model-
theoretic, since MTTs are proof-theoretically specified. This is mistaken
and, in fact, MTT-semantics is model-theoretic and, in particular, it is rep-
resentational. In MTT-semantics, types are employed to represent collec-
tions. This is very much like using sets in set theory to represent collections.
Since MTTs have a rich type structure in that there are a lot of types with
different and useful structures, these types can be effectively used for repre-
sentation in semantic studies.

Representing Collections by Types in MTT-semantics The type
structure of modern type theories21 is much richer than the simple arrow
types A→ B as found in the Montagovian setting. Types can be employed
to represent various collections such as those for CNs and this provides ad-

view that model-theoretic semantics as non-representational (in fact, just the opposite).
20There are many researchers expressing such views in slight different ways. See, for

example, Portner’s introductory book on model-theoretic semantics [66], among many
others.

21See Footnote 1. In this paper, the type theory UTT [43], one of the MTTs, is used
when concrete examples are given.

18

equate and useful tools for semanticists to construct formal semantics.22

Here, we give several examples without going into too much details, be-
cause most of them have been explained in other places and the appropriate
references are given in each case.

1. Σ-types, as introduced in §2.2.1, have been employed to interpret ad-
jectival modifications when the adjectives are intersective, an idea
originated from Ranta’s work [72] and further elaborated in MTT-
semantics [48, 19]. For instance, if beautiful : Woman → Prop is a
predicate over type Woman, representing the collection of women, the
Σ-type in (19) represents the collection that beautiful woman denotes.

(19) Σx:Woman. beautiful(x)

It is worth remarking that this method of using Σ-types to represent
adjective modifications is only adequate and viable because of two
conditions. The first is that we have a proper notion of subtyping for
MTTs, for otherwise such a Σ-type representation does not work.23

Fortunately, the framework of coercive subtyping [44, 57] provides ex-
actly this. In §5, we shall introduce signatures with coercive subtyping
entries, a feature very useful for semantic studies.

The second condition is subtler and less recognised – proof irrelevance
should be enforced, for otherwise, the representation of adjective mod-
ification by Σ-types would be inadequate in that it would not have cor-
rect identity criteria. Taking the above interpretation (19) of beautiful

22(Many thanks for a reviewer to make a remark that has led to this footnote.) A
different way of giving semantics to CNs is the traditional Montagovian approach: to
declare a type Ent and then interpret CNs as predicates of type Ent → Prop. In such
an approach, of course, one would not need the rich type structure in MTTs and, in
fact, one can work in a simple type theory already. The idea of interpreting a CN as
a type, rather than a predicate, was first considered by Ranta [72], where he used Σ-
types to represent adjective modification. This CNs-as-types paradigm, different from the
Montagovian CNs-as-predicates paradigm, has been argued to have several advantages
including, for example, a better treatment of selectional restriction by typing, compatible
use of subtyping in semantic interpretations and satisfactory treatment of some advanced
linguistic features such as copredication (see, for example, [47, 52, 20] for further details).
It may be interesting to remark that, recognising that interpreting CNs as types has several
advantages, some researchers have suggested that both paradigms need be considered
including, for instance, Retoré’s idea in this respect [74]. A related issue in type-theoretical
semantics is how to turn judgemental interpretations into corresponding propositional
forms, as studied in [81] which proposes an axiomatic solution for such transformations
that can be justified by means of heterogenous equality of type theory.

23See §3.3 of [72] for a very interesting discussion of the problem of ‘multiple categori-
sation of verbs’. A satisfactory solution is an adequate subtyping mechanism for MTTs.

19

woman as an example. To use (19) for the representation adequately,
it must be the case that two beautiful women are the same if, and only
if, they are the same woman – how they are shown to be handsome
should be irrelevant. This requires that some notion of proof irrele-
vance is enforced and, being recognised, this can be done appropriately
– see [50, 53] for details.

2. Dependent product types and universes, as introduced in §2.2.2, can be
used to formalise various linguistic features by means of Π-polymorphism.
For example, in MTT-semantics, we employ the type universe cn for
the collection of (the interpretations of) CNs: each CN is interpreted
as a type and therefore the type of all CNs is a universe whose objects
are the types that interpret CNs. Let us use cn as an example to
illustrate how Π-polymorphism can be used in various useful repre-
sentations: we illustrate this by showing that how to give semantics
to verb-modifying adverbs [52, 19], subsective adjectives [16, 19] and
quantifiers [41, 20], as exemplified as follows.

(a) Verb modifying adverbs such as loudly and simply. In Montague’s
semantic setting, there is a single type e of all entities and, there-
fore, the type of loudly can be given as (20):

(20) loudly : (e→ t)→ (e→ t).

But when we have different types for different CNs, what do we
do?24 Here, Π-polumorphism over the universe cn gives a useful
solution: in MTT-semantics loudly can be given the following
type (21):

(21) loudly : ΠA : cn. (A→ Prop)→ (A→ Prop),

where for each common nounA, loudly(A) has type (A→ Prop)→
(A → Prop), as expected. For instance, for talk : Human →
Prop, the phrase (22) can be interpreted as (23), which is of type
Human→ Prop:

(22) talk loudly

(23) loudly(Human, talk)

24This has indeed been a seemingly difficult problem in MTT-semantics until (21) was
proposed in [49].

20

(b) Subsective adjectives such as small and large. Such adjectives
actually have different meanings when applied to different CNs:
for example, large means differently in size when used in modify-
ing elephant and mouse. This dependency on CNs is adequately
captured by Π-polymorphism, as in the type (24) of large which,
when applied to different CNs, denote different predicates as ex-
emplified by (25) and (26).

(24) large : ΠA : cn. (A→ Prop)

(25) large(Elephant) : Elephant→ Prop

(26) large(Mouse) : Mouse→ Prop

With the above interpretation of large, the sentence (27) is in-
terpreted as (28), where c stands for the semantics of the cat :

(27) A large mouse was chased by the cat.

(28) ∃x:LargeMouse. chase(c,m),
where LargeMouse = Σm:Mouse. large(Mouse,m).

(c) Generalised quantifiers such as some or three. Π-polymorphism
is also useful in giving semantic typings for quantifiers. For ex-
ample, some can be interpreted as having the type (29):

(29) Some : ΠA : cn. (A→ Prop)→ Prop

Then, for instance, we can interpret the sentence (30) as (31),
where Student : cn and speak : Human→ Prop (and Student ≤
Human):

(30) Some students spoke.

(31) Some(Student, speak)

Furthermore, for some and three, we can give their definitions as
well as typings. For instance, some can be defined as the logical
existential quantifier ∃ restricted to the universe cn as in (32),
which is of type (29).

(32) Some = λA:cn λP :A→ Prop. ∃(A,P).

The sentence (33) is interpreted as (34) where ast is the pred-
icate of type Student → Prop, as defined in (35), that gives
the semantics of attack some student and attack : Human →

21

Human→ Prop (and, since Student ≤ Human, we have attack :
Student → Student → Prop). Note that (34) is equal to (36),
after expanding the definition (29) of Some.

(33) Some student attacked some student.

(34) Some(Student, ast)

(35) ast = λx:Student. Some(Student, attack(x))

(36) ∃x:Student∃y:Student. attack(x, y)

The quantifier three can also be defined (and, in more sophisti-
cated situations, see [20] for detailed discussions.)

3. Disjoint union types, as briefly introduced in §2.2.2 and as pointed
out there, have been proposed to interpret privative adjective modifi-
cations [48, 16, 19]. For instance, the phrases involving the privative
adjective fake may be formalised as follows: if we use types GR and
GF to represent the collections of (real) guns and that of fake guns,
respectively, then the disjoint union type G in (37) can be used to
interpret the collection of all guns:25

(37) G = GR +GF .

The type G consists of objects inl(r) for real gun r : GR and inr(f) for
fake gun f : GF . It may be worth pointing out that, in order to make
the interpretations like (37) to be adequate, the associated injection
operators are declared as coercions as in coercive subtyping [44, 57]
(we omit the detailed technical justification here).

(38) GR ≤inl G and GF ≤inr G.

For example, the predicates real gun and fake gun of type G→ Prop
can now be defined as follows: for any r : GR and f : GF ,

(39) real gun(inl(r)) = True and real gun(inr(f)) = False;

(40) fake gun(inl(r)) = False and fake gun(inr(f)) = True.

Thus defined, the above predicates behave as intended: for exam-
ple, it is easy to see that, for any g : G, real gun(g) if, and only if,

25A reviewer has questioned this representation since it seems to be silent on whether
we regard ‘a fake fake gun’ as a real gun or fake gun, or even belonging to another type
(then G as the type of all guns should be the disjoint union of three types, rather than
just two). I’ll leave this for future investigations.

22

Classification Example Adj(N) Characterisation MTT-semantics
intersective handsome man N & Adj Σx:Man.handsome(x)
subsective large mouse N & AdjN large : ΠA:cn.(A→ Prop)
privative fake gun ¬ N G = GR +GF

non-committal alleged criminal nothing implied ∃h:Human. Hh,alleged(...)

Figure 3: MTT-semantics of adjective modifications.

¬fake gun(g). Note that, because injections inl and inr are coercions
as in (38), we can simply write, for example, real gun(f) for fake gun
f : GF and this facilitates understanding and make things easier as
well.

The rich typing structure in MTTs allows them to be powerful represen-
tational languages for formal semantics. Types in MTTs play powerful roles
in representing various collections that are represented as sets or predicates
in Montague’s semantics. For instance, the interpretations of various adjec-
tive modifications, as classified traditionally, can be summarised as Fig 3,
where the interpretations of the first three classes are explained above in
1, 2b, and 3, respectively, and that of the last uses the operators for non-
committal adjectives A.26

Besides those discussed above, there are other examples, some of which
involve some interesting linguistic features including, for example, the lin-
guistic phenomenon of copredication, as studied by Pustejovsky [70], Asher

26Let’s give an example to see how the operators Hh,A, for non-committal adjectives A,
are defined. For instance, let us consider alleged. For any human agent h : Human, we
can represent allegations of h by a predicate Σh,alleged : Fin(n) → Prop, assuming that
there are n allegations by h, where Fin(n) is the finite type of n objects (see Appendix C).
Then, the H-operator can be defined as (41), which informally says that ‘h alleges that P
is the case’.

(41) Hh,alleged(P) = ∃i : Fin(n). Σh,alleged(i) =Prop P .

By this definition, that h alleges P means that there exists a proposition in h’s allegation
collection that is the same as P . Here, the sameness is represented by Leibniz equality, as
defined in §2.2.2 and note that, technically, the above definition (41) is similar to that of
belief operator in §6. Based on this, we can interpret the sentences involving alleged : for
example, (42) can be interpreted as (43) and we shall not get into details here.

(42) John is an alleged criminal.

(43) ∃h:Human. Hh,alleged(John is a criminal).

23

[4] and others. It has been proposed that a new form of types in MTTs,
called dot-types of the form A • B, can be adequately used to deal with
copredication.27

To summarise, we have discussed in this subsection how to use sev-
eral type constructors introduced in §2.2 in constructing formal semantics,
showing that types in MTTs can be effectively used to represent various col-
lections. Put in another way, they offer flexible choices and powerful means
in various representations in semantic studies. Of course, types are not sets
– they are more manageable (for example, type-checking is decidable while
the set-theoretical membership is not). And, as discussed in Introduction,
that is also why MTTs can have proof-theoretic semantics and we can use
MTT-semantics to deal with NL reasoning in proof assistants.

4.2 Proof-Theoretic Characteristics: Meaning Theories and
Computer-Assisted Inference

MTT-semantics has proof-theoretic semantics, in the sense of [39], not just
because that they are specified by inference rules, but more importantly,
in their specifications the introduction and elimination rules are in har-
mony28 and has nice meta-theoretic properties such as strong normalisa-
tion29, among others, and hence they have proof-theoretic meaning theo-
ries, on the one hand, support computer-assisted reasoning based on proof
assistants, on the other.

Proof-Theoretic Semantics. Besides model-theoretic semantics, there
is another kind of formal semantics: proof-theoretic semantics. Proof-theoretic
semantics was pioneered by Gentzen [35], developed by Prawitz [68, 69] and
Martin-Löf [59, 60] (among other logicians) to study meaning theories of
logical systems, and studied by Dummett [31] and Brandom [11, 12] (among
other philosophers) to study general philosophical theories of meaning of
NLs. Proof-theoretic semantics is a form of inferential semantics in that it
not only takes inference seriously but regards it as the central concept of

27This extends the type structure of MTTs in a proper way: dot-types, first proposed
in [47] and then further studied in [52, 20], are not ordinary inductive types. We do not
have space to have in-depth discussions about dot-types here.

28See Dummett [31] for a proposal and interesting discussions of this concept and it has
since been further investigated by others in the context of proof-theoretic semantics.

29Technically, the strong normalisation property says that every computation starting
from a well-typed term terminates. This is a fundamental property that usually guarantees
that the proof system well-behaves: it usually implies logical consistency of the type theory
concerned.

24

meaning theories and such a direct link to inference is regarded as a key
advantage of proof-theoretic semantics.30

The MTT-semantics does not only have model-theoretic characteristics,
as studied above in §4.1 and further developed in §5, but proof-theoretic
characteristics. This is because that the meanings of judgements, which are
the basic sentences in MTTs, can be understood in a proof-theoretic meaning
theory. Martin-Löf has carried out a whole programme of proof-theoretic
semantics, studying and developing it for his type theory [59, 60]. Therefore,
once MTT-semantics has been constructed, the statements in the semantics
(i.e., judgement in the MTT) can be understood proof-theoretically.

Studying proof-theoretic meaning theories, people have considered two
aspects of use: verification and consequential application. For MTTs, the
first aspect is to consider how a judgement can be correctly asserted while
the other (second) aspect is to consider what consequences it has to accept
that a judgement is correct. The verificationist thinks that the first aspect
of verification is the (possibly only) central conceptual focus in meaning
theories while the pragmatist thinks that the second aspect of consequential
application is instead central. For example, under the verificationist view
on meaning explanations for type theory, one may consider such a meaning
explanation of the judgement a : A (I omit the context Γ here): it can
correctly asserted if a computes to a canonical object of type A.

The formal property of strong normalisation (see Footnoot 29) is closely
related to canonicity and, in many cases, normalisation implies canonicity
and even harmony. Although to explain the proof-theoretic properties like
normalisation is beyond the scope of the current paper, these properties do
play a fundamental role in justifying computer implementations of MTTs in
the so-called proof assistants – a topic we discuss below.

NL Reasoning in Proof Assistants. In computer science, MTTs have
been implemented in computer-assisted reasoning systems, called proof as-
sistants, such as Coq [24] (France), Agda [3] (Sweden) and Lego/Plastic
[56, 14] (U.K.), and used in applications such as the formalisation of math-
ematics and verification of programs. Based on this, MTT-semantics has
been directly implemented, in Coq and Plastic, and used for NL reasoning
[18, 17, 80, 49].

30There are philosophical arguments that conceptual role semantics (eg, proof-theoretic
semantics) supports the view in cognitive science that something is meaningful just because
that it plays a certain role (eg, inferential role) in a person’s psychology. I ignore this
because here proof-theoretic semantics is considered as an approach to formal semantics.

25

The implementation of an MTT in a proof-assistant replies on the proof-
theoretic properties: it depends on the fact that the implemented system
well-behaves. For example, type-checking is a crucial operation in such a
system. In a dependent type theory, type-checking requires (and, hence, is
equivalent to) type inference and, to do this, a typical algorithm is to com-
pute the relevant terms to their normal forms (or, technically, head-normal
forms) and then perform the checking (see, for example, Chaoter 5 of [43]).
This requires that every well-typed term is strongly normalising, i.e., that
the strong normalisation property holds. As another example, implement-
ing some crucial tactics concerning Σ-types requires that the property called
strengthening (or contraction) hold, for otherwise the tactic concerned can-
not be implemented in certain ways.

Put in another way, in order to justify that the implementation of a
proof assistant based on an MTT is correct, we need to know that the type
system has some nice properties which are crucial in the understanding of
the system, on the one hand, and in its correct implementation, on the
other. In other words, as the normalisation property is closely related to
having a proof-theoretic semantics (or, we can say that the former is a
formal reflection of the latter), the MTT concerned having proof-theoretic
semantics is a fundamental basis for it to be a well-behaving foundational
language for formal semantics for practical reasoning of computer-assisted
proof assistants as well as for better understanding of the semantic studies.

5 Signatures with Subtyping and Manifest Entries

As mentioned above, there are two notable features of MTTs that make
MTT-semantics model-theoretic: using types to represent collections, as
described in §4.1 above, is one of them. The other is the mechanism of con-
textual declarations: we shall formally extend type theories with signatures
and use them in representing (incomplete) worlds in formal semantics.

Contextual mechanisms do not exist in traditional logical systems such
as simple type theory. Contexts (and signatures as to be introduced below
in §5.2) are new to logical systems and provide us with useful internal mech-
anisms to describe incomplete worlds. This has been recognised by Ranta
[72], among others, and we think that it is one of the important aspects that
MTTs provide useful model-theoretic means to describe formal semantics.

Compared with the existing notion of context in type theory, our notion
of signature provides, on the one hand, a more restricted form of contex-
tual mechanism since they do not allow abstraction over their entries (see

26

below for explanations why this is preferable) and, on the other hand, more
powerful and flexible tools since they allow new forms of entries to describe
subtyping and manifest definitions. In §5.1, we formally introduce signa-
tures, but with only membership entries first, and show with an example
how signatures can be used to represent incomplete worlds. Then, in §5.2,
we extend signatures with two forms of new entries: the subtyping entries
and manifest entries, which can be used to describe more sophisticated sit-
uations in the world, including those involving infinitely many entries or
linguistic coercions.

5.1 Representing Incomplete Worlds with Signatures

Signatures: Motivations. A context Γ is a part of a judgement Γ ` a :
A, the basic form of sentences in existing type theory. As mentioned above,
it has been proposed that contexts can be used to represent incomplete
worlds in semantic studies. However, using contexts to represent incomplete
worlds has problems. There are two issues. The first is that a world should
be represented by assuming constants, rather than by assuming variables in
contexts. For instance, to declare that John is a man, one might use an entry
in a context to do so (e.g., the last entry of the context (44)). However, this
is not quite adequate because one can always abstract over the contextual
entry j : Man by means of abstraction operators such as the universal
quantifier: for instance, assuming that P is a predicate such as talk, if
under (44) we can prove P (j) (i.e., the judgement (45) is derivable), we
could then derive (46), which says P holds for every man – this is obviously
an incorrect conclusion that should not have been derived.

(44) Γ, j : Man

(45) Γ, j : Man ` P (j) true

(46) Γ ` ∀j : Man.P (j) true

Such an over-generation happens because of the incorrect use of a context
entry to describe a constant (j to represent John in the above example) that
can be abstracted over by abstraction operators. This is why we introduce
signatures whose entries introduce constants which cannot be abstracted
over.

Secondly, to use only membership entries of the form c : K to represent
more sophisticated situations is not easy, if possible at all. For instance, one
often want to assume that a collection is contained in another and, when
collections are represented as types, one would need to make subtyping
assumptions such as A ≤ B, but to do so, we’d need to allow a new form

27

of entry in our signature: subtyping entries. As another example, one may
want to represent a world consisting of infinitely many entities by means of
a signature, which like a context always consists of finitely many entries. So-
called manifest entries in a signature allow one to declare entities containing
infinite amount of information and, thanks to that, declaring infinitely many
entities becomes easier. In the next subsection §5.2, we shall introduce
these two new forms of entries in signatures, which allow flexible ways of
representing sophisticated (incomplete) worlds.31

Signatures with Only Membership Entries. A signature is similar to
but different from a context: it is similar to a context in that it is also a
finite sequence of entries like those in (3) except that an entry in a signature
can either be a membership entry as those in (3) or one of the two new forms
– a subtyping entry A ≤κ B or a manifest entry c ∼ a : A, to be introduced
in the next subsection §5.2. We shall first introduce signatures with only
membership entries.32

Introducing signatures into type theory, we extend its judgements with
signatures: for example, the membership judgement of the form (2) now
becomes the following (47), where Σ is a signature:

(47) Γ `Σ a : A

Like entries in context Γ, the assumptions given in the entries of a signature
are all taking into effect in reasoning. However, there is a crucial difference:
the membership entry c : K in a signature declares that c is a constant of
kind K. This is different from a contextual entry x : K that declares x
to be a variable. Note that a variable can be abstracted by, for example,
quantification or λ-abstraction as exemplified by a rule like the one below:

Γ, x : K `Σ P : Prop

Γ `Σ ∀x:K.P : Prop

However, constants in signatures can never be abstracted in this way – that
is why they are called constants. Therefore, compared with contexts in

31Another reason to introduce signatures is because that extending contexts to contain
these two new forms of entries is not easy and, actually, an earlier attempt [55] to do so has
met with some difficulties; in particular, its meta-theoretic study is rather sophisticated
and has been a difficult open question. Instead, it is easier to add them as entries in
signatures – this is what we propose to do.

32The notion of signatures (with only membership entries) was first introduced into type
theory in Edinburgh Logical Framework [37], where signatures are used to describe object
logical systems.

28

type theory, signatures are more suitable to be used to represent incomplete
worlds.33 Because of this, we shall often use c’s in signatures, for example,
writing a signature with only membership entries as

(48) c1 : K1, c2 : K2, ..., cn : Kn

We shall now formally describe the extension of MTTs by means of
signatures with the traditional membership entries and then give an example
to show, when an MTT is used as a representational language, how various
situations of the world can be represented by means of signatures.34

Signatures: a Formal Presentation. Type theories can be specified in
a logical framework such as Martin-Löf’s logical framework [62] or its typed
version LF [43]. We extend LF with signatures to obtain LFΣ, whose formal
presentation (its judgement forms and its inference rules) can be found in
Appendix B.1.

For people who are familiar with LF, LFΣ augments each of the judge-
ment forms in LF with signatures (for example, in the form of (47)) and all
of the inference rules of LF (i.e., those in Figures 9.1 and 9.2 of Chapter 9 of
[43]) become inference rules of LFΣ after replacing ` by `Σ (and changing
the judgement form ‘Γ valid’ to ‘`Σ Γ’). For instance, the following rule for
λ-abstraction35 in LF

Γ, x : K ` b : K ′

Γ ` [x:K]b : (x:K)K ′

becomes, in LFΣ,

Γ, x : K `Σ b : K ′

Γ `Σ [x:K]b : (x:K)K ′

In addition, in LFΣ, we have rules for signatures and contexts, how they
are formed and how the assumptions in them can be used to contribute to
inferences – see Appendix B.1 for formal details.

In LFΣ, various type constructors, as introduced in §2.2, can be spec-
ified by declaring constants (as done in LF [43], with the only difference

33Also, because the constants in signatures cannot be abstracted, it is easier meta-
theoretically to add new forms of entries to signatures than to contexts (see §5.2.3).

34Contexts with such traditional entries have been used by Ranta [72] and others [10, 29]
to represent situations, where they do not consider the issue of difference between variables
and constants. We consider signatures rather than contexts here. Note that signatures
may contain other forms of entries which are studied in the next section §5.2.

35In LF, we use the notation [x:K]b for λx:K.b and (x:K)K′ for Πx:K.K′.

29

that we now have signatures). For instance, Σ-types can be specified as
in Appendix B.2. Technically, compared with the direct rules as given in
§2.2.1 and Appendix A, the LFΣ specifications (and LF specifications) of
these type constructors are more concise, but more laborious in notations.
We omit further explanations here.

Representing Incomplete Worlds by Signatures: a Simple Exam-
ple. That signatures can be used to represent situations in the world to
be described is the other facet that the MTT-semantics is model-theoretic.
Here, we use an example given in [51] to illustrate how signatures can be
used to represent situations. From the example below, it is easy to see that
it would not be adequate to represent those entries in Σ as entries in a con-
text, since they are constants, not variables that can be abstracted over. Our
example is simple in that, for instance, the domain in the example is finite.
This will serve as a basis for our discussions on how more sophisticated situ-
ations such as those involving infinity or other special circumstances should
be represented in §5.2.

Example 5.1 The example, taken from Chapter 10 of Saeed’s book [76],
is about an (imagined) scenario in the Cavern Club at Liverpool in 1962
where the Beatles were rehearsing for a performance. It can be represented
as follows.

1. The domain consists of several peoples including the Beatles (John,
Paul, George and Ringo), their manager (Brian) and a fan (Bob).
This can be represented be means of the following signature Σ1:

Σ1 ≡ D : Type,

John : D, Paul : D, George : D, Ringo : D, Brian : D, Bob : D

2. The assignment function assigns, for example, predicate symbols such
as B and G to the propositional functions expressing ‘was a Beatle’
and ‘played guitar’, respectively. We can introduce the following in
our signature to represent such an assignment function:

Σ2 ≡ B : D → Prop, bJ : B(John), ..., bB : ¬B(Brian), b′B : ¬B(Bob),

G : D → Prop, gJ : G(John), ..., gG : ¬G(Ringo), ...

The signature that represents the overall situation will be of the form Σ ≡
Σ1, Σ2, We shall then have, for instance,

`Σ G(John) true and `Σ ¬B(Bob) true.

where G(John) and B(Bob) are semantically interpret John played Guitar
and Bob was a Beatle, respectively. 2

30

5.2 Subtyping and Manifest Entries in Signatures

In the last subsection, we have extended MTTs with signatures consisting
of traditional membership entries. In this subsection, we consider two new
forms of signature entries – subtyping entries and manifest entries, which
will make the notion of signature be more powerful in describing advanced
and sophisticated phenomena of an incomplete world. We shall introduce
the new forms of entries, illustrate their uses in semantic representations
and discuss the meta-theoretic properties of the extended type theories.

In earlier work, these forms of entries were proposed and studied as con-
textual entries: contextual manifest entries in type theory were first studied
in [46] and contextual subtyping entries (in the name of coercion contexts)
in [52]. Here, we consider them as entries in signatures as proposed in [51].
As mentioned earlier in the above subsection, having subtyping entries in
contexts make meta-theoretic studies much harder (a preliminary study was
reported in [55]). As signature entries, we can prove that the extension well
behaves in the sense that the properties of the original type theory are all
preserved (see §5.2.3). In other words, signatures, as supposed to contexts,
are not only more useful and more adequate in semantic representations,
but also simpler meta-theoretically.

5.2.1 Subtyping Entries

Coercive subtyping has been studied for subtyping and abbreviations in
MTTs and the associated proof assistants [44, 57].36 Introducing subtyping
entries (to either signatures or contexts) is to localise the coercive subtyping
mechanism, which has been studied globally in earlier research.37 For exam-

36The word ‘coercion’ has been used for related but maybe different things including
coercions in programming languages and coercions in linguistics. See Asher and Luo [5] for
a use of coercive subtyping in modelling linguistic coercions and Retoré et al [7] for another
proposal of using coercions to deal with some linguistic coercions in lexical semantics.

37In previous research on coercive subtyping [44, 57], one has considered the subtyping
extensions T [C], where T is a type theory and C is a set of coercive subtyping judgements.
So, coercions were assumed at the system level – done globally. This is in contrast to the
local treatments of subtyping in signature, as we propose here.

31

ple, if Man and Human are base types38, one may have a subtyping entry
(51) to assume that every man is a human. Note that such an entry will
occur in a signature Σ (say, (52)), and when we have a derived judgement
under Σ as in (53), it may not be derivable under a different signature ∆,
under which one cannot have (51), as shown in (54).

(51) Man ≤ Human
(52) Σ = (Σ1,Man ≤ Human,Σ2)

(53) `Σ Man ≤ Human
(54) 6`∆ Man ≤ Human

Syntactically, the system LFΣ, as introduced in the last subsection, is
extended with the judgement forms Γ `Σ A ≤κ B : Type (we shall often
just write A ≤κ B even when A and B are types) and Γ `Σ K ≤κ K ′. A
subtyping entry to signatures can be introduced by means of the following
rule:

`Σ A : Type `Σ B : Type `Σ κ : (A)B

Σ, A ≤κ B valid

where (A)B is the kind of functional operations from A to B. The assumed
subtyping relationships in a signature are derivable, as reflected in the fol-
lowing rule:

`Σ,A≤κB,Σ′ Γ

Γ `Σ,A≤κB,Σ′ A ≤κ B

Then the rules for coercive subtyping [57], albeit extended for judgements
with signatures, are all applicable. For instance, if signature Σ contains
A ≤κ B and B ≤κ′ C, we can derive A ≤κ′◦κ C under Σ, where κ′ ◦ κ is the
functional composition of κ and κ′.

It is worth pointing out that validity of a signature is not enough anymore
when we consider subtyping entries in signatures. For signature Σ to be
legal, we need the subtyping assumptions in Σ to be coherent in the sense

38This is just for the sake of giving examples. In usual cases, Man (or even Human)
may not be a base type. For instance, we may have Man defined as (49), which is a
subtype of Human through the first projection as coercion, as shown in (51).

(49) Man = Σx:Human. male(x)

(50) Man ≤π1
Human

32

that, informally, all coercions between any two types are equal, i.e., in some
appropriate subsystem,39 if Γ `Σ A ≤κ B and Γ `Σ A ≤κ′ B, then Γ `Σ

κ = κ′ : (A)B.
Introducing subtyping entries makes using type theory for formal se-

mantics much more convenient. First of all, it is now possible for one to
localise subtyping assumptions. In the above, we have given a simple ex-
ample to assume that Man is a subtype of Human. As another example,
we may consider some special subtyping relations that only make sense and
are reasonable in specific phenomena, but not in general. In such cases, the
localised subtyping assumptions in signatures become especially useful. For
instance, only in a cafe or restaurant would it be reasonable to say (56). To
represent such a phenomenon in a cafe, one might reasonably assume the
following subtyping entry (57) in the overall signature, which will then allow
the sentence (56) to be semantically interpreted as intended.

(56) The ham-sandwich left without paying the bill.

(57) Ham-sandwich ≤ Human

We’d like to note that the reference transfers such as above are studied by
Nunberg [63] (and also see [5] for other such examples, among others).

It is worth noting that localisation of subtyping assumptions is very
useful here. In a signature with (57) as an entry, one may then interpret
(56) as intended. In other (most and usual) signatures, one would not be able
to deduce (57) and that is intended as well. If one only had global coercive
subtyping, it would be rather difficult to consider such a phenomenon, if
possible at all.

39It is important that the condition is not stated for the whole system of coercive
subtyping, for otherwise it would become trivial. To see this is the case, we note that the
whole system has the following coercive definition rule:

(CD)
Γ `Σ f : (x:K)K′ Γ `Σ k0 : K0 Γ `Σ K0 ≤κ K

Γ `Σ f(k0) = f(κ(k0)) : [κ(k0)/x]K′

If Σ is incoherent, i.e., K ≤c1 K
′, K ≤c2 K

′ and c1 6= c2, then, by the above rule (and
the βηξ-rules), we’d have that c1 = c2, as shown by (55) – a contradiction.

(55) c1 = λx:K.c1(x) = λx:K.IdK′(c1(x)) = λx:K.IdK′(x) = λx:K.IdK′(c2(x)) =
λx:K.c2(x) = c2

Therefore, it is important to state the coherence condition in the subsystem which does
not contain the above (CD) rule. An interested reader may look at [57] for more details.

33

5.2.2 Manifest Entries

A manifest entry in a signature is of the form (58) which assumes that c
be a constant that behaves exactly like a of type A. Alternatively, one can
think that in any place that we could use an object of type A, we could use
c which actually plays the role of a.

(58) c ∼ a : A

Signatures in LFΣ can be extended with manifest entries:

(∗) `Σ A : Type `Σ a : A c 6∈ dom(Σ)

Σ, c ∼ a : A valid

where Type is the kind of all types (in the object type theory). In fact, such
manifest entries can be introduced by means of special membership entries
with the help of the coercive subtyping mechanism. We now proceed with
its formal description.

As the following example shows, manifest entries allow one to express
things in a more concise and simpler way and can hence considerably reduce
the complexity of semantic representations.

Example 5.2 With manifest entries, the situation in Example 5.1 can be
represented as the following signature:

D ∼ aD : Type, B ∼ aB : D → Prop, G ∼ aG : D → Prop, (59)

where

• aD = {John, Paul, George, Ringo, Brian, Bob} is a finite type;40

• aB : D → Prop, the predicate ‘was a Beatle’, is an inductively de-
fined function such that aB(John) = aB(Paul) = aB(George) =
aB(Ringo) = True and aB(Brian) = aB(Bob) = False; and

• aG : D → Prop, the predicate ‘played guitar’, is an inductively defined
function such that aG(John) = aG(Paul) = aG(George) = True and
aG(Ringo) = aG(Brian) = aG(Bob) = False.

In other words, Σ1 in Example 5.1 is now expressed by the first entry of (59)
and Σ2 in Example 5.1 by the second and third entries of (59).

40aD is a finite type (not a finite set). Formally, aD is the finite type Fin(6), as defined
in Appendix C, with John = zero(5), Paul = succ(5, zero(4)), etc.

34

Manifest entries in signatures can also be used to represent infinitely
many entities in finitely many entries. Note again that the length of a
signature is always finite and this ability of representing infinite entity makes
it rather handy in many cases. For instance, with traditional membership
entries, we can only describe finite domains as we have done in Example 5.1.
What if the domain D is infinite? This can be done by using a manifest
entry – as in Example 5.2, we can assume that

D ∼ Inf : Type,

where Inf is some inductively defined type with infinitely many objects.
Similarly, one can assume an infinite predicate over the domain, represented
as:

P ∼ P-defn : D → Prop,

where P-defn is also inductively defined.
Manifest entries can be regarded as abbreviations of special membership

entries [46] with the help of the coercive subtyping mechanism [44, 57]. For-
mally, to add the above manifest entry (58) to a signature is to add the
following two entries (60), where 1A(a) is the inductive unit type parame-
terised by A : Type and a : A, whose only object is ∗A(a),41 and ξA,a(x) = a
for every x : 1A(a).

(60) c : 1A(a), 1A(a) ≤ξA,a A

Now, if an expression has a hole that requires a term of type A, we can
use c to fill that hole; then the whole expression is equal to that with the
hole filled by a. For example, if the expression is f(), then f(c) is equal to
f(a) (this is given by the coercive definition rule in coercive subtyping – see
Footnote 39.)

Note that the subtyping entries involving ξ form coherent signatures; in
particular, if for two manifest entries c ∼ a : A and d ∼ b : B we have
1A(a) = 1B(b) and A = B, then ξA,a = ξB,b, as coherence requires. Put
in another way, if the subtyping entries in a signature are coherent, the
signature is coherent since its manifest entries do not cause incoherence.
Therefore, the extension with manifest entries in signatures preserves the
nice properties of the original type theory such as strong normalisation and
logical consistency.

41See Appendix A.4 for the formal specification of the unit types.

35

5.2.3 Meta-theoretic Results

In this subsection, we briefly describe the meta-theoretic results of the ex-
tension of type theories with signatures. The following theorem states that
the extension with signatures well-behaves as expected.

Theorem 5.3 Let T be a type theory specified in LF and TS the extension
of T with signatures (with membership, subtyping and manifest entries in
signatures). Then, TS preserves the meta-theoretic properties of T (such as
logical consistency, Church-Rosser and strong normalisation) for all coherent
signatures. 2

For example, let SN stand for the property of strong normalisation (see
Footnote 29.) A corollary of the above theorem is: signature coherence
implies that SN is preserved, i.e., if T is SN (if Γ ` a : A, then a is strongly
normalising), so is TS for coherent signatures (if Σ is coherent and Γ `Σ

a : A, then a is strongly normalising). It is worth remarking that, since
manifest entries can be faithfully represented by means of membership and
subtyping entries as explained above, to prove the above theorem, one only
needs to study the extension with subtyping entries.

A detailed study of the metatheory is beyond the scope of the current
paper. The interested readers are referred to, for example, Lungu’s PhD
thesis [40, 42] for details, where the conservativity result in [57] has been
extended to the calculi with signatures.

6 Beliefs in MTT-semantics

MTTs provide powerful and flexible tools for various issues in formal seman-
tics, including those which were only dealt with satisfactorily in a model-
theoretic way. One of such issues involves the so-called hyperintensional
problems, which have been studied in various formal frameworks including,
for example, Cresswell [26], Thomason [78], Pollard [65], Fox and Lappin
[32], among others.

One of the hyperintensional problems is that of logical omniscience: for
instance, if an agent believes in (or knows) something, then s/he believes
(or knows) everything that is logically equivalent – this is obviously not the
case as the following example shows, where John is a young boy who is five
years old:

(61) John believes that John is John.

(62) John believes that there are infinitely many prime numbers.

36

In this section, we propose a (new) formal treatment of beliefs in type theory.
In Martin-Löf’s type theory, Ranta [72] has proposed a notion of belief

context to model beliefs as sequences of membership entries each of which
represents a belief of an agent. For an agent h, the belief context of h is a
finite sequence x1 : A1, ..., xn : An, where Ai’s stand for h’s beliefs. A belief
operator Rh is then introduced: Rh(A) informally says that h believes A.
Formally, for any proposition A, Rh(A) is true just in case that A is true
in h’s belief context; in other words, if h’s belief context is x1 : A1, ..., xn :
An, then Rh(A) is true if, and only if, x1 : A1, ..., xn : An ` A true, and
equivalently, if and only if the Π-type Πx1:A1...Πxn:An. A is inhabited.
Unfortunately, although useful in many applications, this notion of belief
context does not solve the problem of hyperintensional problems such as
logical omniscience since whether an agent believes in something is closed
under derivability and hence, for example, if h believes in A (i.e., Rh(A) is
true), then h would believe in every proposition that is logically equivalent
to A.

Our proposal offers a more restrictive and intensional notion to reflect the
idea that, given a collection of beliefs of an agent h, a statement is believed
by h if, and only if, it is intensionally equal to one of the existing beliefs in
the collection of h’s beliefs. Assume that an agent h have n beliefs. Then,
as in (63), the collection of beliefs of h, notation Σh, can be represented as a
predicate over type Fin(n), i.e., a function of type Fin(n) → Prop, where
n : Nat is a natural number and Fin(n) is the finite type with n objects:42

(63) Σh : Fin(n)→ Prop

Now, ‘h believes that ...’ can be formally represented by the belief operator
Bh : Prop → Prop defined in (64) for any proposition P : Prop, where
=Prop is the Leibniz equality between propositions, as defined in §2.2.2 when
Π-types and their uses are discussed.43

(64) Bh(P) = ∃i : Fin(n). Σh(i) =Prop P .

Informally, Bh(P) says that there exists a belief in h’s belief collection that
is the same as P .

42See Appendix C for a more formal description of Fin(n). For notational easiness, in
this section, we abuse the language to use 0, 1, ..., n−1 to stand for the objects of Fin(n).

43Here we work in the impredicative type theory UTT, an impredicative type theory. In
a predicative type theory such as Martin-Löf’s type theory [62], one may use the identity
type Id and a universe U : we shall then have Σh : Fin(n)→ U and Bp : U → U and, for
any A : U , Bh(A) = ∃i:Fin(n). IdU (Σh(i), A).

37

For instance, let j : Human be the semantics of John, who believes n
propositions P1, ..., Pn where, for instance P1 is the proposition in (64) and
none of Pi’s (i = 1, ..., n) is Leibniz equal to the proposition P as expressed
informally as (66). But since P 6=Prop P1, and actually not Leibniz equal to
any of Pi’s, we shall have (67), i.e., John does not believe that (66) is true.

(65) 2 is the only prime number.

(66) {2} is the set of all prime numbers.

(67) ¬Bj(66)

As another example, using the belief operator defined in (64), the sentence
(68) can be interpreted as (69), where j and m interpret John and Mary,
respectively.

(68) John does not believe that Mary believes that ...

(69) ¬Bj(Bm(...))

Note that the Leibniz equality is intensional (see §2.2.3). In particular,
propositional extensionality does not always hold: logical equivalence does
not imply Leibniz equality. For a typical hyperintensional context such as
‘h believes that ...’ where substitution with logically equivalent formulas
does not preserve meanings, our proposed belief operator Bh provides an
intensional treatment in type theory: for propositions P and Q, P ⇔ Q
does not imply that P =Prop Q. Put in another way, if Bh(P) true and
P ⇔ Q true, it is not necessarily the case that Bh(Q) true. So, the belief
operator Bh does not suffer from the problem of logical omniscience.44 This
is in contrast with the traditional possible world semantics or Ranta’s notion
of belief context both of which, as mentioned above, would suffer in such a
hyperintensional context.

The above treatment of beliefs can be genralised to deal with other
hyperintensional problems such as that about knowledge. Similar formal
mechanisms may also used to give semantic interpretations of non-committal
adjectives (see Footnote 26), but we omit the details here.

7 Conclusion

In this paper, we have argued that MTT-semantics can be seen as both
model-theoretic and proof-theoretic, focussing on the arguments for the for-

44Of course, by definition (64), the belief operator is closed under the Leibniz equality
between propositions.

38

mer, partly because it is less discussed and not so easy to appreciate. In par-
ticular, two facets of MTT-semantics’ model-theoretic characteristics have
been illustrated: the first one with types representing collections and the
other with signatures representing situations. It is worth emphasising again
that it may be new to many researchers that a proof-theoretic language can
be employed to give model-theoretic semantics to natural language. MTTs
are such foundational languages.

There are several interesting directions for future work. For example,
it is important to develop further the meaning theories of modern type
theories in general. For instance, it is interesting to study and obtain a
better meaning explanation of an impredicative universe like that found in
UTT. Even just for predicative type theories like that of Martin-Löf, people
may argue that it is still unclear how hypothetical judgements should be
explained satisfactorily. Further studies are called for.

Acknowledgement. The author is very grateful to many researchers for
discussions on related topics including Nicholas Asher, Stergios Chatzikyri-
akidis, Nissim Francez, Justyna Grudziñska, Georgiana Lungu, James McK-
inna, Koji Mineshima, Glyn Morrill, Larry Moss, Aarne Ranta, Christian
Retoré, Sergei Soloviev, among others.

References

[1] Peter Aczel and Nicola Gambino. Collection principles in dependent
type theory. In Paul Callaghan, Zhaohui Luo, James McKinna, and
Robert Pollack, editors, Types for Proofs and Programs: International
Workshop, TYPES 2000, Durham, UK, December 8–12, 2000. Selected
Papers, volume 2277 of LNCS, pages 1–23. Springer-Verlag, 2002.

[2] R. Adams and Z. Luo. Weyls predicative classical mathematics as a
logic-enriched type theory. ACM Transactions on Computational Logic,
11(2), 2010.

[3] The Agda proof assistant (version 2). Available from the web page:
http://appserv.cs.chalmers.se/users/ulfn/wiki/agda.php,
2008.

[4] N. Asher. Lexical Meaning in Context: a Web of Words. Cambridge
University Press, 2012.

39

[5] N. Asher and Z. Luo. Formalisation of coercions in lexical semantics.
Sinn und Bedeutung 17, Paris, 2012.

[6] J. Barwise and J. Perry. Situations and Attitudes. MIT Press, 1983.

[7] C. Bassac, B. Mery, and C. Retoré. Towards a type-theoretical account
of lexical semantics. Journal of Logic, Language and Information, 19(2),
2010.

[8] D. Bekki. Representing anaphora with dependent types. LACL 2014,
LNCS 8535, 2014.

[9] P. Boldini. Formalizing context in intuitionistic type theory. Funda-
menta Informaticae, 42(2):1–23, 2000.

[10] P. Boldini. Formalizing contexts in intuitionistic type theory. Funda-
menta Informaticae, 4(2), 2000.

[11] R. Brandom. Making It Explicit: Reasoning, Representing, and Dis-
cursive Commitment. Harvard University Press, 1994.

[12] R. Brandom. Articulating Reasons: an Introduction to Inferentialism.
Harvard University Press, 2000.

[13] R. Burstall and J. Goguen. Introducing institutions. LNCS 164, 1984.

[14] P. Callaghan and Z. Luo. An implementation of LF with coercive sub-
typing and universes. Journal of Automated Reasoning, 27(1):3–27,
2001.

[15] S. Chatzikyriakidis and Z. Luo. An account of natural language coor-
dination in type theory with coercive subtyping. In Y. Parmentier and
D. Duchier, editors, Proc. of Constraint Solving and Language Process-
ing (CSLP12). LNCS 8114, pages 31–51, Orleans, 2012.

[16] S. Chatzikyriakidis and Z. Luo. Adjectives in a modern type-theoretical
setting. In G. Morrill and J.M Nederhof, editors, Proceedings of Formal
Grammar 2013. LNCS 8036, pages 159–174, 2013.

[17] S. Chatzikyriakidis and Z. Luo. Natural language reasoning in Coq. J.
of Logic, Language and Information, 23, 2014.

[18] S. Chatzikyriakidis and Z. Luo. Proof assistants for natural language
semantics. lacl 2016. nancy. 2016.

40

[19] S. Chatzikyriakidis and Z. Luo. Adjectival and adverbial modification:
The view from modern type theories. J. of Logic, Language and Infor-
mation, 26, 2017.

[20] S. Chatzikyriakidis and Z. Luo. Identity criteria of common nouns and
dot-types for copredication. Oslo Studies in Language, 10(2), 2018.

[21] S. Chatzikyriakidis and Z. Luo. Formal Semantics in Modern Type
Theories. Wiley & ISTE Science Publishing Ltd., 2019. (to appear).

[22] A. Church. A formulation of the simple theory of types. J. Symbolic
Logic, 5(1), 1940.

[23] R. Cooper. Records and record types in semantic theory. J. Logic and
Compututation, 15(2), 2005.

[24] The Coq Development Team. The Coq Proof Assistant Reference Man-
ual (Version 8.3), INRIA, 2010.

[25] Th. Coquand and G. Huet. The calculus of constructions. Information
and Computation, 76(2/3), 1988.

[26] M. Cresswell. Hyperintensional logic. Studia Logica, 34, 1975.

[27] H.B. Curry and R. Feys. Combinatory Logic, volume 1. North Holland
Publishing Company, 1958.

[28] R. Dapoigny and P. Barlatier. Modeling contexts with dependent types.
Fundamenta Informaticae, 21, 2009.

[29] R. Dapoigny and P. Barlatier. Modelling contexts with dependent
types. Fundamenta Informaticae, 104, 2010.

[30] D. Dowty. IWord Meaning and Montague Grammar. D. Reidel Pub-
lishing Co., 1979.

[31] M. Dummett. The Logical Basis of Metaphysics. Duckworth, 1991.

[32] R. Fox and S. Lappin. Foundations of Intensional Semantics. Blackwell,
2005.

[33] D. Gallin. Intensional and higher-order modal logic: with applications
to Montague semantics. North-Holland, Amsterdam. 1975.

41

[34] Nicola Gambino and Peter Aczel. The generalised type-theoretic inter-
pretation of constructive set theory. J. Symbolic Logic, 71(1):67–103,
2006.

[35] G. Gentzen. Untersuchungen über das logische schliessen. Mathematis-
che Zeitschrift, 39, 1934.

[36] J. Grudzińska and M. Zawadowski. Generalized quantifiers on depen-
dent types: A system for anaphora. S. Chatzikyriakidis and Z. Luo
(eds.). Modern Perspectives in Type-Theoretical Semantics, 2017.

[37] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.
Journal of the Association for Computing Machinery, 40(1):143–184,
1993.

[38] W. A. Howard. The formulae-as-types notion of construction. In
J. Hindley and J. Seldin, editors, To H. B. Curry: Essays on Com-
binatory Logic. Academic Press, 1980.

[39] R. Kahle and P. Schroeder-Heister, editors. Proof-Theoretic Semantics.
Special Issue of Synthese, 148(3), 2006.

[40] G. Lungu. Subtyping in Signatures. PhD thesis, Royal Holloway, Univ.
of London, 2018.

[41] G. Lungu and Z. Luo. Monotonicity reasoning in formal semantics based
on modern type theories. Logical Aspects of Computational Linguistics
2014 (LACL 2014), Toulouse. LNCS 8535, 2014.

[42] G. Lungu and Z. Luo. On subtyping in type theories with canonical
objects. post-proceedings of the 22nd int. conf. on types for proofs and
programs (types 2016), leibniz international proceedings in informatics.
2018.

[43] Z. Luo. Computation and Reasoning: A Type Theory for Computer
Science. Oxford University Press, 1994.

[44] Z. Luo. Coercive subtyping. Journal of Logic and Computation,
9(1):105–130, 1999.

[45] Z. Luo. A type-theoretic framework for formal reasoning with different
logical foundations. In M. Okada and I. Satoh, editors, Proc of the 11th
Annual Asian Computing Science Conference, volume 4435 of LNCS,
pages 179–194. Tokyo, 2006.

42

[46] Z. Luo. Manifest fields and module mechanisms in intensional type
theory. In S. Berardi, F. Damiani, and U. de’Liguoro, editors, Types
for Proofs and Programs, Proc. of Inter. Conf. of TYPES’08, LNCS
5497., 2009.

[47] Z. Luo. Type-theoretical semantics with coercive subtyping. Semantics
and Linguistic Theory 20 (SALT20), Vancouver, 2010.

[48] Z. Luo. Adjectives and adverbs in type-theoretical semantics. Notes,
2011.

[49] Z. Luo. Contextual analysis of word meanings in type-theoretical se-
mantics. Logical Aspects of Computational Linguistics (LACL’2011).
LNAI 6736, 2011.

[50] Z. Luo. Common nouns as types. In D. Bechet and A. Dikovsky, edi-
tors, Logical Aspects of Computational Linguistics (LACL’2012). LNCS
7351, 2012.

[51] Z. Luo. Formal Semantics in Modern Type Theories: Is It Model-
theoretic, Proof-theoretic, or Both? Invited talk at Logical Aspects of
Computational Linguistics 2014 (LACL 2014), Toulouse. LNCS 8535
(pp 177-188). 2014.

[52] Z. Luo. Formal semantics in modern type theories with coercive sub-
typing. Linguistics and Philosophy, 35(6):491–513, 2012.

[53] Z. Luo. Proof irrelevance in type-theoretical semantics. Logic and Algo-
rithms in Computational Linguistics 2018 (LACompLing2018), Studies
in Computational Intelligence (SCI), 2019.

[54] Z. Luo and P. Callaghan. Coercive subtyping and lex-
ical semantics (extended abstract). LACL’98 (extended
abstracts), available in request to the first author or as
http://www.cs.rhul.ac.uk/home/zhaohui/LACL98.abstract.ps,
1998.

[55] Z. Luo and F. Part. Subtyping in type theory: Coercion contexts and
local coercions (extended abstract). TYPES 2013, Toulouse, 2013.

[56] Z. Luo and R. Pollack. LEGO Proof Development System: User’s
Manual. LFCS Report ECS-LFCS-92-211, Dept of Computer Science,
Univ of Edinburgh, 1992.

43

[57] Z. Luo, S. Soloviev, and T. Xue. Coercive subtyping: theory and im-
plementation. Information and Computation, 223:18–42, 2012.

[58] P. Martin-Löf. An intuitionistic theory of types: predicative part. In
H.Rose and J.C.Shepherdson, editors, Logic Colloquium’73, 1975.

[59] P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.

[60] P. Martin-Löf. On the meanings of the logical constants and the justifi-
cations of the logical laws. Nordic Journal of Philosophical Logic, 1(1),
1996.

[61] R. Montague. Formal Philosophy. Yale University Press, 1974. Col-
lected papers edited by R. Thomason.

[62] B. Nordström, K. Petersson, and J. Smith. Programming in Martin-
Löf’s Type Theory: An Introduction. Oxford University Press, 1990.

[63] G. Nunberg. Transfers of meaning. Journal of Semantics, 12(2):109–
132, 1995.

[64] B. Partee. Possible Worlds in Model-Theoretic Semantics: A Linguistic
Perspective. In A. Sture, editor, Possible Worlds in Humanities, Arts
and Sciences, 1988.

[65] C. Pollard. Hyperintensions. Journal of Logic and Computation, 18(2),
2008.

[66] P. Portner. What is Meaning? Foundamentals of Formal Semantics.
Blackwell, 2005.

[67] D. Prawitz. Natural Deduction, a Proof-Theoretic Study. Lmqvist and
Wiksell, 1965.

[68] D. Prawitz. Towards a foundation of a general proof theory. In P.
Suppes et al., editor, Logic, Methodology, and Phylosophy of Science
IV, 1973.

[69] D. Prawitz. On the idea of a general proof theory. Synthese, 27, 1974.

[70] J. Pustejovsky. The Generative Lexicon. MIT, 1995.

[71] F.P. Ramsey. The foundations of mathematics. Proceedings of the
London Mathematical Society, 25:338–384, 1925.

44

[72] A. Ranta. Type-Theoretical Grammar. Oxford University Press, 1994.

[73] A. Ranta. Constructive type theory. In S. Lappin and C. Fox (eds.)
The Handbook of Contemporary Semantic Theory (2nd ed.). Wiley-
Blackwell., 2015.

[74] C. Retoré. The Montagovian generative lexicon λTyn: a type theo-
retical framework for natural language semantics. In R. Matthes and
A. Schubert, editors, Proc of TYPES2013, 2013.

[75] B.A.W. Russell. The Principles of Mathematics. Routledge, 1903. Pa-
perback edition, 1992.

[76] J. Saeed. Semantics. Wiley-Blackwell, 1997.

[77] G. Sundholm. Proof theory and meaning. D. Gabbay and F. Guenthner
(eds.). Handbook of Philosophical Logic, Vol III, 1986.

[78] R. Thomason. A model theory for propositional attitudes. Linguistics
and Philosophy, 4, 1980.

[79] A.N. White and B.A.W. Russell. Principia Mathematica. Cambridge
University Press, 2nd edition, 1925.

[80] T. Xue and Z. Luo. Dot-types and their implementation. Logical Aspects
of Computational Linguistics (LACL 2012). LNCS 7351, 2012.

[81] T. Xue, Z. Luo, and S. Chatzikyriakidis. Propositional forms of judge-
mental interpretations. Proc of Workshop on Natural Language and
Computer Science. Oxford, 2018.

A Formal Rules of Some Type Constructors

We give the inference rules for several type constructors. They are presented
as in MTTs without signatures. To obtain the rules of these types in an MTT
with signatures, one can simply change ` into `Σ.

A.1 Π-types

(Π)
Γ ` A type Γ, x:A ` B type

Γ ` Πx:A.B type

45

(Abs)
Γ, x:A ` b : B

Γ ` λx:A.b : Πx:A.B

(App)
Γ ` f : Πx:A.B Γ ` a : A

Γ ` f(a) : [a/x]B

(Conv)
Γ, x:A ` b : B Γ ` a : A

Γ ` (λx:A.b)(a) = [a/x]b : [a/x]B

A.2 Disjoint Union Types

(+)
Γ ` A type Γ ` B type

Γ ` A+B type

(Inl)
Γ ` a : A Γ ` B type

Γ ` inl(a) : A+B

(Inr)
Γ ` b : B Γ ` A type

Γ ` inr(b) : A+B

(Case)
Γ ` c : A+B Γ, x:A ` f(x) : C(inl(x)) Γ, y:B ` g(y) : C(inr(y))

Γ ` case(x.f(x), y.g(y), c) : C(c)

(Case1)
Γ ` a : A Γ, x:A ` f(x) : C(inl(x)) Γ, y:B ` g(y) : C(inr(y))

Γ ` case(x.f(x), y.g(y), inl(a)) = f(a) : C(inl(a))

(Case2)
Γ ` b : B Γ, x:A ` f(x) : C(inl(x)) Γ, y:B ` g(y) : C(inr(y))

Γ ` case(x.f(x), y.g(y), inr(b)) = g(b) : C(inr(b))

A.3 Prop and Logical Propositions

(Prop1)
Γ valid

Γ ` Prop type

(Prop2)
Γ ` A : Prop

Γ ` A type

(∀) Γ ` A type Γ, x:A ` P : Prop

Γ ` ∀x:A.P : Prop

(AbsP)
Γ, x:A ` b : P

Γ ` λx:A.b : ∀x:A.P

46

(AppP)
Γ ` f : ∀x:A.P Γ ` a : A

Γ ` f(a) : [a/x]P

(ConvP)
Γ, x:A ` b : P Γ ` a : A

Γ ` (λx:A.b)(a) = [a/x]b : [a/x]B

A.4 The Parameterised Unit Type

(F1)
Γ ` A type Γ ` a : A

Γ ` 1A(a) type

(I1)
Γ ` A type Γ ` a : A

Γ ` ∗A(a) : 1A(a)

(E1)
Γ ` A type Γ ` a : A Γ ` c : C(∗A(a)) Γ, x:1A(a) ` C(x) type

E(A, a,C, c) : (x:1A(a))C(x)

(C1)
Γ ` A type Γ ` a : A Γ ` c : C(∗A(a)) Γ, x:1A(a) ` C(x) type

E(A, a,C, c, ∗A(a)) = c : C(∗A(a))

B The Formal System LFΣ

LFΣ extends LF, the logical framework described in Chapter 9 of [43], by
adding signatures to its judgement forms and inference rules. In the logical
framework LFΣ (and LF), types are called kinds in order to be distinguished
from types in the object type theory. Type theories can be specified in a
logical framework such as Martin-Löf’s logical framework [62] or its typed
version LF [43]. We extend LF with signatures to obtain LFΣ.

B.1 LFΣ

LFΣ has the following six forms of judgements:

• Σ valid, which asserts that Σ is a valid signature.

• `Σ Γ, which asserts that Γ is a valid context under Σ.

• Γ `Σ K kind, which asserts that K is a kind in Γ under Σ.

• Γ `Σ k : K, which asserts that k is an object of kind K in Γ under Σ.

• Γ `Σ K1 = K2, which asserts that K1 and K2 are equal kinds in Γ
under Σ.

47

• Γ `Σ k1 = k2 : K, which asserts that k1 and k2 are equal objects of
kind K in Γ under Σ.

The inference rules of LFΣ are given below, where 〈〉 is the empty se-
quence and dom(p1 : K1, ... pn : Kn) = {p1, ..., pn}.45

Signatures and Contexts46

〈〉 valid
〈〉 `Σ K kind c 6∈ dom(Σ)

Σ, c : K valid
(∗)

`Σ,c:K,Σ′ Γ

Γ `Σ,c:K,Σ′ c : K

Σ valid

`Σ 〈〉
Γ `Σ K kind x 6∈ dom(Γ)

`Σ Γ, x : K
(∗) `Σ Γ, x : K,Γ′

Γ, x : K,Γ′ `Σ x : K

Equality Rules

Γ `Σ K kind

Γ `Σ K = K

Γ `Σ K = K ′

Γ `Σ K ′ = K

Γ `Σ K = K ′ Γ `Σ K ′ = K ′′

Γ `Σ K = K ′′

Γ `Σ k : K

Γ `Σ k = k : K

Γ `Σ k = k′ : K

Γ `Σ k′ = k : K

Γ `Σ k = k′ : K Γ `Σ k′ = k′′ : K

Γ `Σ k = k′′ : K

Γ `Σ k : K Γ `Σ K = K ′

Γ `Σ k : K ′
Γ `Σ k = k′ : K Γ `Σ K = K ′

Γ `Σ k = k′ : K ′

The Kind Type

Γ valid

Γ `Σ Type kind

Γ `Σ A : Type

Γ `Σ El(A) kind

Γ `Σ A = B : Type

Γ `Σ El(A) = El(B)

Dependent Product Kinds

Γ `Σ K kind Γ, x:K `Σ K ′ kind

Γ `Σ (x:K)K ′ kind

Γ `Σ K1 = K2 Γ, x:K1 `Σ K ′1 = K ′2
Γ `Σ (x:K1)K ′1 = (x:K2)K ′2

Γ, x:K `Σ k : K ′

Γ `Σ [x:K]k : (x:K)K ′
Γ `Σ K1 = K2 Γ, x:K1 `Σ k1 = k2 : K

Γ `Σ [x:K1]k1 = [x:K2]k2 : (x:K1)K

Γ `Σ f : (x:K)K ′ Γ `Σ k : K

Γ `Σ f(k) : [k/x]K ′
Γ `Σ f = f ′ : (x:K)K ′ Γ `Σ k1 = k2 : K

Γ `Σ f(k1) = f ′(k2) : [k1/x]K ′

Γ, x:K `Σ k′ : K ′ Γ `Σ k : K

Γ `Σ ([x:K]k′)(k) = [k/x]k′ : [k/x]K ′
Γ `Σ f : (x:K)K ′ x /∈ FV (f)

Γ `Σ [x:K]f(x) = f : (x:K)K ′
45For those who are familiar with LF, it may be easier to note that, besides the rules for

signatures, all of the inference rules of LF (i.e., those in Figures 9.1 and 9.2 of Chapter 9 of
[43]) become inference rules of LFΣ after replacing ` by `Σ (and changing the judgement
form ‘Γ valid’ to ‘`Σ Γ’).

46Note that the assumptions in a signature or in a context can be derived – this is
characterised by the rules marked by (∗).

48

B.2 Σ-types in LFΣ

In LFΣ, various type constructors can be specified by declaring constants as
done in LF [43]. For instance, the specification of Σ-types in LFΣ can be
specified by declaring the following constants:

Σ : (A:Type)(B:(A)Type)Type

pair : (A:Type)(B:(A)Type)(x:A)(y:B(x)Σ(A,B)

π1 : (A:Type)(B:(A)Type)(p:Σ(A,B))A

π2 : (A:Type)(B:(A)Type)(p:Σ(A,B))B(π1(p))

with π1(A,B, pair(A,B, a, b)) = a and π2(A,B, pair(A,B, a, b)) = b. Then,
the rules in Figure 1 are all derivable (note that, for pairs (a, b), we use
pair(a, b) in LFΣ-notation). Detailed explanations are omitted.

C The Finite Types Fin(n)

Let Nat be the type of natural numbers. Then, Fin(n), parameterised by
natural number n, consists of n objects. The introduction rules for Fin(n)
are as follows.

Γ `Σ n : Nat

Γ `Σ zero(n) : Fin(n+ 1)

Γ `Σ n : Nat Γ `Σ i : Fin(n)

Γ `Σ succ(n, i) : Fin(n+ 1)

We omit its elimination and computation rules. Abusing the language, one
may adopt her/his own choice to denote the objects of a finite type. For
instance, in Example 5.2 in §5.2.2, John, Paul, George, Ringo, Brian,
and Bob are used to denote the objects of aD which is Fin(6).

49

