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Typical discrete-time GTP protocol

K0 := 1.
FOR n = 1, 2, . . .:

Forecaster makes his move.
Skeptic makes his move.
Reality makes her move.
Kn := Kn−1 + function of the 3 moves.

END FOR.

Kn: Skeptic’s capital.
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Two books

Glenn Shafer and Vladimir Vovk.
Probability and Finance: It’s only a Game!
New York: Wiley, 2001.
Abridged Japanese translation:
��@(�&.G�(5��*S�.
Tokyo: Iwanami Shoten, 2006.

Kei Takeuchi.
ç�.Õ�(uÀVQ
(Mathematics of Betting and Financial Engineering).
Tokyo: Saiensusha, 2004.
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Moving to continuous time

The protocol is predictive and sequential (APD: prequential).

We could try to emulate this in continuous time. Easiest: use
non-standard analysis (Shafer & Vovk, 2001; several working
papers at http://www.probabilityandfinance.com).

Disadvantages:
NSA is not familiar to many people.
Even more important: dependence on the choice of the
infinitesimal atom of time.
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Recent breakthrough

Kei Takeuchi, Masayuki Kumon, and Akimichi Takemura
[TKT].
A new formulation of asset trading games in continuous
time with essential forcing of variation exponent.
August 2007, arXiv:0708.0275 [math.PR]

Non-predictive. Non-sequential.

The key technique: “high-frequency limit order strategies”.
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Non-sequential game-theoretic probability

This talk: two main frameworks.
1 The non-predictive (market) framework: what can be said

about the continuous price process of a traded security
(one, in this talk)? Assumption: the market is efficient
(perhaps in a very weak sense).

2 A free agent (Forecaster) predicts a continuous process.
What is the relation between the predictions and the
realized trajectory? Assumption: you cannot become
infinitely rich gambling against the predictions.

Both frameworks: non-sequential (two-step games); worst-case
results.

Vladimir Vovk Game-theoretic probability in continuous time 6



Non-predictive game-theoretic probability
Predictive game-theoretic probability

Discussion
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1 Non-predictive game-theoretic probability
Emergence of randomness
Emergence of volatility
Emergence of probability

2 Predictive game-theoretic probability
Game-theoretic Brownian motion
Predicting continuous processes
Predicting point processes

3 Discussion
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Basic game

Players: Reality (market) and Skeptic (speculator).

Time: [0,∞).

Two steps of the game:
Skeptic chooses his trading strategy.
Reality chooses a continuous function ω : [0,∞) → R
(the price process).

Ω: all continuous functions ω : [0,∞) → R.
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Processes etc.

Ft , t ∈ [0,∞): the smallest σ-algebra on Ω that makes all
functions ω 7→ ω(s), s ∈ [0, t ], measurable.

A process S: a family of functions St : Ω → R, t ∈ [0,∞), each
St being Ft -measurable; its trajectories: t 7→ St(ω).

Event: any subset of Ω; not necessarily an element of
F := F∞ := ∨tFt .

Stopping times τ : Ω → [0,∞] w.r. to (Ft) and the
corresponding σ-algebras Fτ are defined as usual. Convenient
characterization of Fτ measurability: Galmarino’s test.

Vladimir Vovk Game-theoretic probability in continuous time 10



Non-predictive game-theoretic probability
Predictive game-theoretic probability

Discussion

Emergence of randomness
Emergence of volatility
Emergence of probability

Allowed strategies I

An elementary trading strategy G consists of:
an increasing sequence of stopping times τ1 ≤ τ2 ≤ · · ·
such that, for any ω ∈ Ω, limn→∞ τn(ω) = ∞
for each n = 1, 2, . . ., a bounded Fτn -measurable Mn

To such G and initial capital c ∈ R corresponds the elementary
capital process

KG,c
t (ω) := c +

∞∑
n=1

Mn(ω)
(
ω(τn+1 ∧ t)− ω(τn ∧ t)

)
(interpretation: the interest rate is zero).
Mn(ω): Skeptic’s bet (or stake) at time τn

KG,c
t (ω): Skeptic’s capital at time t
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Allowed strategies II

A positive capital process is a process S with values in [0,∞]
that can be represented as

St(ω) :=
∞∑

n=1

KGn,cn
t (ω),

where
the elementary capital processes KGn,cn

t (ω) are required to
be positive, for all t and ω

the positive series
∑∞

n=1 cn is required to converge

Compare: the standard definition of expectation for positive
random variables.
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Upper and lower probability

The upper probability of E ⊆ Ω:

P(E) := inf
{
S0
∣∣ ∀ω ∈ Ω : lim inf

t→∞
St(ω) ≥ 1E(ω)

}
,

S ranging over the positive capital processes.

E ⊆ Ω is null if P(E) = 0. Phrases applied to its complement:
almost certain, almost surely (a.s.), for almost all ω.

Lower probability:
P(E) := 1− P(Ec).
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Robustness

Lemma
The definition of upper probability will not change when
lim inft→∞ is replaced by supt∈[0,∞) (and, therefore, by
lim supt→∞).

Proof.
Stop when the capital process hits 1.
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σ-subadditivity

Lemma
For any sequence of subsets E1, E2, . . . of Ω,

P

( ∞⋃
n=1

En

)
≤

∞∑
n=1

P(En).

In particular, a countable union of null sets is null.

Proof.
Countable union of countable sets of elementary capital
processes is still countable.

Contains finite subadditivity as a special case.
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Another definition of null events

Lemma
E ⊆ Ω is null if and only if there exists a positive capital process
S with S0 = 1 such that limt→∞St(ω) = ∞ for all ω ∈ E.

Proof.

Suppose P(E) = 0. For each n = 1, 2, . . ., let Sn be a positive
capital process with Sn

0 = 2−n and lim inft→∞Sn
t ≥ 1. It suffices

to set S :=
∑∞

n=1 Sn.
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Coherence

Somewhat informal definition:
A protocol is coherent if P(Ω) = 1. [Usually equivalent to
P(Ω) > 0.]

Our current protocol is obviously coherent: consider constant
ωs.

Lemma

In a coherent protocol, P(E) ≤ P(E), for all E ⊆ Ω.

Proof.

P(E) > P(E) means P(E) + P(Ec) < 1, and so some positive
capital process makes 1 out of 1− ε < 1.
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Comparison with the TKT definition

TKT do not make the second step (positive capital processes
via positive elementary capital processes).
Advantage: Simpler definition, with coherence obvious (for all

natural protocols I know) and not requiring any
assumptions

Disadvantage: Because of the lack of σ-subadditivity,
complicated statements of theorems (in terms of ε
& δ)
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Qualitative properties of typical trajectories

Qualitative = in terms of order (or order topology)

The textbook properties of typical trajectories of Brownian
motion:

no points of increase [Dvoretzky, Erdős, Kakutani, 1960]; in
particular, not monotonic in any interval
no isolated zeros; the set of zeros is unbounded and has
Lebesgue measure zero
the set of points of local maximum is dense and countable;
each local maximum is strict

Which of these manifestations of randomness continue to hold
for continuous price processes?
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Level sets of the price process

Theorem
Let b ∈ R. Almost surely, the level set

Lω(b) := {t ∈ [0,∞) : ω(t) = b}

has no isolated points in [0,∞).

Proof.
If Lω(b) has an isolated point, there are rational numbers a ≥ 0
and D 6= 0 (let D > 0) such that strictly after the time
inf{t : t ≥ a, ω(t) = b} ω does not take value b before hitting the
value b + D. This event, Ea,D, is null. Apply subadditivity.
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Proof of P(Ea,D) ≤ ε
ε+D

b+D

b

b−ε

a
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Key technique introduced in GTP by TKT
Riemann vs. Lebesgue trading
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Informal discussion: market efficiency

Interpretation: almost certain events are expected to happen in
markets that are efficient to some degree. But does becoming
rich at ∞ really contradict market efficiency?

The almost certain properties in this talk: if they fail to happen,
they will do so “before ∞”, and Skeptic can become infinitely
rich at that time. For example: Skeptic can become arbitrarily
rich immediately after an isolated point in Lω(b) is observed.

The situation with, e.g., convergence is completely different:
Doob’s upcrossings argument only shows that Skeptic will
become rich at infinity (but not earlier) if the price process does
not converge to a point in [−∞,∞].
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Corollary

Corollary

For each b ∈ R, it is almost certain that the set Lω(b) is perfect,
and so either is empty or has the cardinality of continuum.

Proof.
Since ω is continuous, the set Lω(b) is closed and so, by the
previous theorem perfect. Non-empty perfect sets in R always
have the cardinality of continuum.
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Two completely uncertain events

E ⊆ Ω is completely uncertain if P(E) = 1 and P(E) = 0.

Two standard properties of typical trajectories of Brownian
motion become completely uncertain for continuous price
processes.

Proposition
Let b ∈ R. The following events are completely uncertain:

1 the Lebesgue measure of Lω(b) is zero;
2 the set Lω(b) is unbounded.

Proof.
Consider constant ω.
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Non-increase

t ∈ [0,∞) is a point of semi-strict increase for ω if there exists
δ > 0 such that ω(s) ≤ ω(t) < ω(u) for all s ∈ ((t − δ)+, t) and
u ∈ (t , t + δ).

Theorem
Almost surely, ω has no points of semi-strict increase [or
decrease].

Proved in measure-theoretic probability: Dvoretzky, Erdős, and
Kakutani 1960 (Brownian motion), Dubins and Schwarz 1965
(continuous martingales). Proof of the game-theoretic result
(non-trivial) can be extracted from Burdzy’s proof of the DEK
1960 result.
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Corollary

Corollary
Almost surely, ω is monotone in no open interval, unless it is
constant in that interval.

Proof.
Direct demonstration (for the case of increase): each interval of
monotonicity where ω is not constant contains a rational time
point a after which ω increases by a rational amount D > 0
before hitting the level ω(a) again; this event, denoted Ea,D, is
null. It remains to apply subadditivity.
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Maxima: definitions

Interval [t1, t2] ⊆ [0,∞) is an interval of local maximum for ω if:
ω is constant on [t1, t2] but not constant on any larger
interval containing [t1, t2];
there exists δ > 0 such that ω(s) ≤ ω(t) for all
s ∈ ((t1 − δ)+, t1) ∪ (t2, t2 + δ) and all t ∈ [t1, t2].

Where t1 = t2: “interval” 7→ “point”.

Ray [t ,∞) is a ray of local maximum for ω if
ω is constant on [t ,∞) but not constant on any larger ray
[s,∞), s ∈ (0, t);
there exists δ > 0 such that ω(s) ≤ ω(t) for all
s ∈ ((t − δ)+, t).
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Cont.

Strict: “≤” 7→ “<.

t ∈ [0,∞) is a point of constancy for ω if there exists δ > 0 such
that ω(s) = ω(t) for all s ∈ ((t − δ)+, t + δ); all other points
t ∈ [0,∞) points of non-constancy.
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Maxima: statement

Corollary
Almost surely, every interval of local maximum is a point, all
points and the ray (if it exists) of local maximum are strict, the
set of points of local maximum is countable, and any
neighborhood of any point of non-constancy contains a point of
local maximum.

Proof.
I will only prove the first statement (the rest are as easy). If ω
had an interval of local maximum [t1, t2] with t1 6= t2, t2 would be
a point of semi-strict decrease. Alternatively: use a direct
argument. Therefore: no such [t1, t2] can even be an interval of
local maximum “on the right”.
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Nowhere differentiability

A simple game-theoretic version of the classical result about
Brownian motion (Paley, Wiener, Zygmund 1933):

Corollary
Almost surely, ω does not have a non-zero derivative anywhere.

Proof.
A point where a non-zero derivative exists is a point of
semi-strict increase or decrease.
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Mixed game/measure-theoretic lemma

Lemma
Suppose P(E) = 1, where E ∈ F and P is a probability
measure on (Ω,F) which makes the process Xt(ω) := ω(t) a
martingale w.r. to the filtration (Ft). Then P(E) = 1.

Proof.
Any elementary capital process is a local martingale under P,
and so P(E) < 1 in conjunction with Ville’s inequality for
positive supermartingales would contradict the assumption that
P(E) = 1.
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Necessity of various conditions

Proposition
The following events are completely uncertain:

1 ω is constant on [0,∞);
2 for some t ∈ (0,∞), [t ,∞) is the ray of local maximum

for ω;
3 ω′(t) exists for no t ∈ [0,∞).

Proof.
Consider the following random processes: constant; Brownian
motion; stopped Brownian motion.
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Sources of volatility

What creates volatility?
News?
Merely the process of trading?

Our model: 2 is true [perhaps 1 is also true].
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Strong variation

For each p ∈ (0,∞) and [u, v ] with 0 ≤ u < v < ∞, the strong
p-variation of ω ∈ Ω over [u, v ] is

var[u,v ]
p (ω) := sup

κ

n∑
i=1

|ω(ti)− ω(ti−1)|p ,

where n ranges over N and κ over all partitions
u = t0 < t1 < · · · < tn = v of [u, v ].

There exists a unique number vex[u,v ](ω) ∈ [0,∞] (strong
variation exponent of ω over [u, v ]) such that:

var[u,v ]
p (ω)

{
< ∞ when p > vex[u,v ](ω)

= ∞ when p < vex[u,v ](ω)

Notice: vex[u,v ](ω) /∈ (0, 1).
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Emergence of volatility

Theorem
For almost all ω ∈ Ω,

∀[u, v ] : vex[u,v ](ω) = 2 or ω|[u,v ] is constant.

Alternatively: vex[u,v ](ω) ∈ {0, 2}.
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Related results I

Measure-theoretic probability:
Lévy (1940): for Brownian motion, vex = 2 a.s.
Lepingle (1976): continuous semimartingales
Bruneau (1979): simple (almost game-theoretic) proof of
the measure-theoretic result; can be adapted to prove the
game-theoretic result

Game-theoretic probability:
Shafer and Vovk (2003): uses NSA
Takeuchi, Kumon, Takemura (2007): more complicated
statement
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Related results II

“Semi-game-theoretic” probability:
Rogers (1997): fractional Brownian motion Bh admits
arbitrage unless h = 1/2.
Kawada and Kôno (1973) + Marcus and Rosen (2006)
[perhaps earlier]: vex Bh = 1/h a.s.
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Brownian motion via time change

The previous results suggest: a continuous price process is
Brownian motion, up to a time change.

Similar to the Dubins–Schwarz (but not Dambis’s) result.
Except: now probability is not postulated but emerges.

Problem: the intrinsic life span of the price process can be
finite.
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Price process with a finite intrinsic life span
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Restricted probability

For any B ⊆ Ω, restricted version of upper probability:

P(E ; B) := inf
{
S0
∣∣ ∀ω ∈ B : lim inf

t→∞
St(ω) ≥ 1E(ω)

}
= P(E ∩ B),

with S ranging over the positive capital processes. (Used only
when P(B) = 1.)

Restricted lower probability:

P(E ; B) := 1− P(Ec ; B) = P(E ∪ Bc).

The analogue in measure-theoretic probability: E 7→ P(E ∩ B).
(Not related to conditional probability P(E | B).)
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Quadratic variation I

For each n ∈ N, let Dn := {k2−n : k ∈ Z} and define stopping
times T n

k inductively by

T n
0 (ω) := inf {t ≥ 0 : ω(t) ∈ Dn} ,

T n
k (ω) := inf

{
t ≥ T n

k−1 : ω(t) ∈ Dn & ω(t) 6= ω(T n
k−1)

}
, k = 1, 2, . . . .

For each t ∈ [0,∞) and ω ∈ Ω, define

An
t (ω) :=

∞∑
k=0

(
ω(T n

k ∧ t)− ω(T n
k−1 ∧ t)

)2

(with T n
−1 := 0) and set

At(ω) := lim sup
n→∞

An
t (ω), At(ω) := lim inf

n→∞
An

t (ω).
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Quadratic variation II

Lemma
For almost all ω ∈ Ω:

∀t ∈ [0,∞) : At(ω) = At(ω);
the function t ∈ [0,∞) 7→ At(ω) := At(ω) = At(ω) is almost
surely an element of Ω.

τs := inf
{

t ≥ 0 : A|[0,t) = A|[0,t) ∈ C[0, t) & sup
u<t

Au = sup
u<t

Au ≥ s
}

Lemma
τs is a stopping time.
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Convention

An event stated in terms of A∞, such as A∞ = ∞, happens if
and only if A = A and A∞ := A∞ = A∞ satisfies the given
condition.

We will later restrict P and P to events such as A∞ = ∞.
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Images I

Let P : 2Ω → [0, 1] (such as P or P) and f : Ω → Ψ.
The image (or pushforward) Pf−1 : 2Ψ → [0, 1] is

Pf−1(E) := P(f−1(E)).

Time change tc : Ω → R[0,∞): for each ω ∈ Ω, tc(ω) is defined
to be s 7→ ω(τs), s ∈ [0,∞) (with ω(∞) := 0). For each c ∈ R,
Qc and Qc are the images of

E ⊆ Ω 7→ P(E ;ω(0) = c, A∞ = ∞),

E ⊆ Ω 7→ P(E ;ω(0) = c, A∞ = ∞),

respectively, under tc.
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Images II

For any S > 0, restricted time change tcS is defined by

∀ω ∈ Ω : tcS(ω) := tc(ω)|[0,S].

The corresponding images are

Qc,S := P( · ;ω(0) = c, τS < ∞) tc−1
S ,

Qc,S := P( · ;ω(0) = c, τS < ∞) tc−1
S .

Lemma

P(ω(0) = c, A∞ = ∞) = 1 (and so P(ω(0) = c, A∞ ≥ S) = 1 for
each S > 0).
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Notation for Brownian motion

For c ∈ R, Wc is the probability measure on (Ω,F)
corresponding to Brownian motion over time period [0,∞)
started from c.

For all c ∈ R and S > 0, Wc,S is the probability measure on
(C[0, S],FS) (FS is now a σ-algebra on C[0, S]) corresponding
to Brownian motion over time period [0, S] started from c.
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Theorem: emergence of BM

Theorem
1 For almost all ω, the function

A(ω) : t ∈ [0,∞) 7→ At(ω) := At(ω) = At(ω)

exists, is an increasing element of Ω with A0(ω) = 0, and
has the same intervals of constancy as ω.

2 For all c ∈ R,
Qc |F = Qc |F = Wc .

3 For any c ∈ R and S > 0,

Qc,S|FS = Qc,S|FS = Wc,S.
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Remark

The theorem depends on the arbitrary choice of the sequence
of partitions (Dn) to define the quadratic variation process A.

To make this less arbitrary, we could consider all partitions
whose mesh tends to zero fast enough and which are definable
in the standard language of set theory (≈ Wald’s suggested
requirement for von Mises’s collectives).
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Corollary I: points of increase

Corollary
Almost surely, ω has no points of semi-strict increase.

Proof.
By Part 3 of Theorem and the Dvoretzky–Erdős–Kakutani
result, the upper probability is zero that there is a point t of
semi-strict increase such that At < S < A∞ for S ∈ Q. Such S
will exist: At(ω) < A∞(ω) (except for ω in a null set) for any
point t of semi-strict increase of ω follows from Part 1 of
Theorem.
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Corollary II: volatility exponent

Corollary

For almost all ω ∈ Ω: for all 0 ≤ u < v < ∞, vex[u,v ](ω) ∈ {0, 2}.

Proof.
Similar but slightly messier.
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Full proofs and further details

Vladimir Vovk.
Continuous-time trading and emergence of randomness.
http://probabilityandfinance.com, Working
Paper 24. Last revised January 2008.

Vladimir Vovk.
Continuous-time trading and emergence of volatility.
http://probabilityandfinance.com, Working
Paper 25. Last revised December 2007.

Vladimir Vovk.
Continuous-time trading and emergence of probability. To
appear on
http://probabilityandfinance.com.
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Idea

There is a new player (Forecaster) who tries to predict ω (to be
denoted X ). Two simple cases:

Continuous ω (as before). Hope: the Wiener process will
emerge.
“Counting” ω. Hope: the Poisson process will emerge.

But first: the even simpler Lévy game.
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Lévy game I

Still a game between 2 players. (Forecaster is not an active
player as yet.)

An elementary trading strategy G: stopping times τ1 ≤ τ2 ≤ · · · ,
as before, and, for each n ∈ N, a pair of bounded
Fτn -measurable functions, Mn and Vn. Elementary capital
process:

KG,c
t (ω) := c +

∞∑
n=1

(
Mn(ω)

(
ω(τn+1 ∧ t)− ω(τn ∧ t)

)
+Vn(ω)

((
ω2(τn+1∧ t)− (τn+1∧ t)

)
−
(
ω2(τn ∧ t)− (τn ∧ t)

)))
.
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Lévy game II

Mn(ω) and Vn(ω): Skeptic’s stakes or bets (on ω(t) and
ω2(t)− t , respectively) chosen at time τn.

positive capital process
upper and lower probability

}
as before

Coherence: follows immediately from the existence of
measure-theoretic Brownian motion.
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Emergence of the Wiener measure II

Countable subadditivity ∴ P is an outer measure in
Carathéodory’s sense. Recall: A ⊆ Ω is P-measurable if, for
each E ⊆ Ω,

P(E) = P(E ∩ A) + P(E ∩ Ac).

Standard result (Carathéodory, 1914): the family A of all
P-measurable sets is a σ-algebra and the restriction of P to A is
a probability measure on (Ω,A).

Theorem

Each event A ∈ F is P-measurable, and the restriction of P to F

coincides with the Wiener measure W = W0 on (Ω,F). In
particular, P(A) = P(A) = W (A) for each A ∈ F.
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Open problem

What is the class A of all P-measurable subsets of Ω?

Can be easily shown:

Proposition

Each set A ∈ FW in the completion of F w.r. to W is
P-measurable.

Specific question: A = FW ?
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Another definition of trading strategies

Let
(Ft , t ∈ [0,∞)): filtration on some set Ω

Γ = Rd for some d ∈ {1, 2}
µ: adapted càdlàg process (basic martingale)

An elementary trading strategy G consists of:
stopping times τ1 ≤ τ2 ≤ · · · , as before
for each n ∈ N, a bounded Fτn -measurable Γ-valued Mn
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Another definition of probability

Elementary capital process:

KG,c
t (ω) := c +

∞∑
n=1

Mn(ω) ·
(
µτn+1∧t − µτn∧t

)
.

Positive capital process, upper and lower probability: as before.
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Dambis game: informal picture

Skeptic chooses a trading strategy.
Forecaster chooses continuous B : [0,∞) → R and
continuous increasing A : [0,∞) → [0,∞) with A(0) = 0;
for simplicity A(∞) = ∞.
Reality chooses continuous X : [0,∞) → R.

The interaction between Forecaster and Reality: not formalized.
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Example of Forecaster’s strategy

B(t) :=

∫ t

0
b(s, X (s))ds, A(t) :=

∫ t

0
a2(s, X (s))ds

for some functions b and a.

In the language of measure-theoretic probability, Forecaster
models Reality by the SDE

dXt = b(t , Xt)dt + a(t , Xt)dWt .

In general: B is the “trend process” and A is the “volatility
process” for X (X −B and (X −B)2 −A are [local] martingales).
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Definition of the Dambis game

Ω is the set of all triples (B, A, X ) (as above).

Ft , t ∈ [0,∞): the smallest σ-algebra that makes all functions
(B, A, X ) 7→ (B(s), A(s), X (s)), s ∈ [0, t ], measurable.

The basic martingale:

µt(ω) :=
(

X (t)− B(t), (X (t)− B(t))2 − A(t)
)

,

where ω := (B, A, X ).
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Game-theoretic Dambis result

Theorem
Let s > 0,

τs := inf {t : A(t) = s} .

Then X (τs)− B(τs) ∼ N0,s in the sense that

P (X (τs)− B(τs) ∈ E) = P (X (τs)− B(τs) ∈ E) = N0,s(E)

for all E ∈ B(R).

Vovk (1993): time-changed X − B is Wiener process. (But the
statement in that paper is more awkward than the statement for
the Lévy game, since only elementary capital processes are
considered.)
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Measure-theoretic results

Dubins–Schwarz 1965 and Dambis 1965 are usually mentioned
together but in fact they are very different: the former is
non-predictive and the latter is predictive. The difference is
much less pronounced in measure-theoretic probability.

The case B = 0 and A(t) = t : Lévy’s characterization of
Brownian motion.
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Definitions for the Meyer–Papangelou game

Ω is the set of all pairs (A, X ), where A is as before and
X : [0,∞) → {0, 1, 2, . . .} is a càdlàg function with X (0) = 0
and all jumps of size 1 (“counting function”).

Ft , t ∈ [0,∞): the smallest σ-algebra that makes all functions
(A, X ) 7→ (A(s), X (s)), s ∈ [0, t ], measurable.

The basic martingale:

µt := X (t)− A(t).
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Game-theoretic Meyer–Papangelou result

Theorem
Let s > 0,

τs := inf {t : A(t) = s} .

Then X (τs) ∼ Ps, where Ps is the Poisson distribution with
parameter s, in the sense that

P (X (τs) ∈ E) = P (X (τs) ∈ E) = Ps(E), ∀E ⊆ {0, 1, . . .}.

Vovk (1993): time-changed X is Poisson process (in a weak
sense).
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Measure-theoretic results

Time-changed point processes become Poisson process:
Meyer (1971) and Papangelou (1972).

When A(t) = t : cf. Watanabe’s (1964) characterization of
Poisson process.
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Proofs

Vladimir Vovk.
Game-theoretic Brownian motion.
http://probabilityandfinance.com, Working
Paper 26. Last revised January 2008.

Vladimir Vovk.
Forecasting point and continuous processes: prequential
analysis.
Test, 2:189–217, 1993.
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Question
Will the Lévy game remain coherent if the measurability
restrictions on stopping times and stakes are dropped?

Positive answer → simpler and more intuitive definitions (≈
as in discrete-time GTP)
Negative answer: a counter-intuitive phenomenon akin to
the Banach–Tarski paradox

Related question: will dropping the requirement that M and V
should be bounded lead to loss of coherence?
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Philosophy: relation between MTP and GTP

Spectrum of views:
MTP is enough
GTP will eventually supplant MTP
middle way: MTP and GTP have always co-existed and will
always co-exist

Perhaps: the right philosophy will eventually be determined by
the mathematical results we eventually get. This talk’s
mathematics: philosophically leans to the middle way.
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MTP

MTP
MTP

GTP

Complete uncertainty

GTP
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Our goal: push out both areas, red (MTP) and blue (GTP).

Will the gap shrink or expand?

Thank you for your attention!
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