
A Saturation Method for the Modal Mu-Calculus

over Pushdown Systems

M. Haguea, C.-H. L. Onga

aOxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1

3QD, UK

Abstract

We present an algorithm for computing directly the denotation of a modal µ-
calculus formula χ over the configuration graph of a pushdown system. Our
method gives the first extension of the saturation technique to the full modal
µ-calculus. Finite word automata are used to represent sets of pushdown config-
urations. Starting from an initial automaton, we perform a series of automaton
manipulations which compute the denotation by recursion over the structure
of the formula. We introduce notions of under-approximation (soundness) and
over-approximation (completeness) that apply to automaton transitions rather
than runs. Our algorithm is relatively simple and direct, and avoids an im-
mediate exponential blow up. Finally, we show experimentally that the direct
algorithm is more efficient than via a reduction to parity games.

Keywords: Modal Mu-Calculus, Pushdown Systems, Parity Games, Winning
Regions. Global Model Checking. Saturation Methods.

1. Introduction

Pushdown systems — finite-state transition systems equipped with a stack
— are an old model of computation that have recently enjoyed renewed interest
from the software verification community. They accurately model the control
flow of first-order recursive programs [10] (such as C and Java), and lend them-
selves readily to algorithmic analysis. Pushdown systems have played a key rôle
in the automata-theoretic approach to software model checking [2, 8, 16, 21].
Considerable progress has been made in the implementation of scalable model
checkers of pushdown systems. These tools (e.g. Bebop [17] and Moped [16])
are an essential back-end component of such model checkers as SLAM [18].

The modal µ-calculus is a highly expressive language for describing proper-
ties of program behaviour (all standard temporal logics in verification are em-
beddable in it). In a seminal paper [6] at CAV 1996, Walukiewicz showed that
local modal µ-calculus model checking of pushdown systems — or equivalently
[4] the solution of pushdown parity games (i.e. parity games over the config-
uration graphs of pushdown systems) — is EXPTIME-complete. His method

Preprint submitted to Elsevier February 24, 2010

reduces pushdown parity games to finite parity games by a kind of powerset
construction, which is immediately exponential in size.

Whilst local model checking asks if a designated state (of a pushdown system)
satisfies a given property, global model checking computes a finite representation
of the set of states satisfying the property. It is worth noting that global model
checking used to be the norm in verification (CTL and many symbolic model
checkers still perform global model checking). While local model checking can
be expected to have better complexity, global model checking is important when
repeated checks are required (because tests on the representing automata tend
to be comparatively cheap), or where the model checking is only a component
of the verification process.

1.1. Contributions

This paper presents a new algorithm for solving the global model checking
problem for modal µ-calculus over pushdown systems. That is, given a push-
down system P, a modal µ-calculus formula χ(Z) for Z = Z1, . . . , Zn, and
a regular valuation V , our method can directly compute an automaton that
recognises the set Jχ(Z)KP

V of P-configurations satisfying χ(Z) with respect to
V .

We represent the (regular) configuration sets as alternating multi-automata [2].
To evaluate a fixed point formula, our algorithm iteratively expands (when com-
puting least fixed points) or contracts (when computing greatest fixed points)
an approximating automaton until the denotation is precisely recognised. Our
method is a generalisation of Cachat’s for solving Büchi games [19, 20], which
is itself a generalisation of the saturation technique for reachability analysis. A
specialised version of this algorithm was presented in Concur 2009 [5]. This
simplified algorithm computes, using a modal µ-calculus formula as a guide, the
winning regions of a pushdown parity game.

Our algorithm has several advantages:

1. The algorithm is relatively simple and direct. Even though pushdown
graphs are in general infinite, our construction of the automaton that
recognises the denotation follows, in outline, the standard pen-and-paper
calculation of the semantics of modal µ-calculus formulas in a finite tran-
sition system. Through the use of projection, our algorithm is guaranteed
to terminate in a finite number of steps, even though the usual fixed point
calculations may require transfinite iterations. Thanks to projection, the
state-sets of the approximating automata are bounded: during expansion,
the number of transitions increases, but only up to the bound determined
by the finite state-set; during contraction, the number of transitions de-
creases until it reaches zero or stabilises.

2. A conceptual innovation of the correctness argument are valuation sound-
ness and valuation completeness. They are respectively under- and over-
approximation conditions that apply locally to individual transitions of
the automaton, rather than globally to the extensional behaviour of the
automaton (such as runs). By combining these conditions, which reduce

2

the overhead of the proof, we show that our algorithm is both sound and
complete in the usual sense.

3. The algorithm, in essence, combines the product construction — that re-
duces a modal µ-calculus model checking problem to a pushdown parity
game — and the computation of the winning region. However, this di-
rect computation only introduces product states that are relevant to the
evaluation of the current sub-formula (rather than the whole formula),
hence the number of states used is minimised. Since the algorithm is ex-
ponential in the number of states, even a slight reduction in the number
of states can lead to significant improvements in run-times. We confirm
this experimentally in Section 9.

4. Finally, our decision procedure builds on and extends the well-known sat-
uration method, which is the implementation technique of choice of push-
down checkers. In contrast to previous solutions, our algorithm avoids
an immediate exponential explosion, which we believe is important for an
efficient implementation.

1.2. Related work

Cachat [20] and Serre [14] have independently generalised Walukiewicz’ al-
gorithm to provide solutions to the global model-checking problem: they use
the local model-checking algorithm as an oracle to guide the construction of the
automaton recognising the winning region. An alternative approach, introduced
by Piterman and Vardi [11], uses two-way alternating tree automata to navi-
gate a tree representing all possible stacks: after several reductions, including
the complementation of Büchi automata, an automaton accepting the winning
regions can be constructed.

An early technique for analysing modal µ-calculus properties of pushdown
systems is due to Burkart and Steffen [13]. They provide an algorithm for
analysing context-free systems by reduction to a finite equational fixed point
computation. This can be extended to pushdown systems by adding arguments
to the equations, and then performing a computation argument-wise for each of
the exponential number of arguments [12].

At Concur 1997, Bouajjani et al. [2], and, independently, Finkel et al. [3]
(at Infinity 1997), introduced a saturation technique for global model-checking
reachability properties of pushdown systems. This technique was based based
on a string-rewriting algorithm due to Book and Otto [15]. From a finite-word
automaton recognising a given configuration-set C, they perform a backwards-
reachability analysis. By iteratively adding new transitions to the automaton,
the set of configurations that can reach some configuration in C is constructed.
Since the number of new transitions is bounded, the iterative process terminates.
This approach underpins the acclaimed Moped tool.

The saturation technique was generalised by Cachat to compute the win-
ning regions of Büchi games [19]. By using projections, Cachat was able to
show how to compute a single alternation of fixed points. We have generalised
this approach to compute an arbitrary number of fixed points. Furthermore,

3

we believe that the introduction of valuation-soundness and -completeness leads
to a cleaner proof of correctness. An “automaton free” version of Cachat’s ap-
proach was given by Etessami [9]. This approach computes the winning regions
of a Büchi game using data flow equations. To our knowledge, it has not been
applied to parity games, although such an extension may be possible.

2. Preliminaries

2.1. Pushdown Systems

A pushdown system (PDS) is a triple P = (P ,D, Σ⊥) where P is a set of
control states, Σ⊥ := Σ ∪ {⊥} is a finite stack alphabet (we assume ⊥ /∈ Σ),
D ⊆ P × Σ⊥ × P × Σ∗

⊥ is a set of pushdown rules. As is standard, we assume
that the bottom-of-stack symbol ⊥ is neither pushed onto, nor popped from,
the stack. We write 〈p, aw〉 →֒ 〈p′, w′w〉 whenever p a → p′ w′ ∈ D and C to
refer to the set of all pushdown configurations.

2.2. Modal µ-Calculus

Given a set of propositions AP and a disjoint set of variables Z, formulas of
the modal µ-calculus are defined as follows (with x ∈ AP and Z ∈ Z):

ϕ := x | ¬x | Z | ϕ ∧ ϕ | ϕ ∨ ϕ | �ϕ | ♦ϕ | µZ.ϕ | νZ.ϕ .

Thus we assume that the formulas are in positive form, in the sense that negation
is only applied to atomic propositions. Over a pushdown system, the seman-
tics of a formula ϕ are given with respect to a valuation V : Z → P(C) which
maps each free variable to its set of satisfying configurations and an environ-
ment ρ : AP → P(C) mapping each atomic proposition to its set of satisfying
configurations. We then have,

JxKP

V = ρ(x)
J¬xKP

V = C \ ρ(x)
JZKP

V = V (Z)
Jϕ1 ∧ ϕ2K

P

V = Jϕ1K
P

V ∩ Jϕ2K
P

V

Jϕ1 ∨ ϕ2K
P

V = Jϕ1K
P

V ∪ Jϕ2K
P

V

J�ϕKP

V =
{

c ∈ C
∣∣ ∀c′.c →֒ c′ ⇒ c′ ∈ JϕKP

V

}

J♦ϕKP

V =
{

c ∈ C
∣∣ ∃c′.c →֒ c′ ∧ c′ ∈ JϕKP

V

}

JµZ.ϕKP

V =
⋂ {

S ⊆ C
∣∣∣ JϕKP

V [Z 7→S] ⊆ S
}

JνZ.ϕKP

V =
⋃ {

S ⊆ C
∣∣∣ S ⊆ JϕKP

V [Z 7→S]

}

where V [Z 7→ S] updates the valuation V to map the variable Z to the set S.
The operators �ϕ and ♦ϕ assert that ϕ holds after all possible transitions

and after some transition respectively; and the µ and ν operators specify greatest
and least fixed points. Another interpretation of these operators is given below.
For a full discussion of the modal µ-calculus we refer the reader to a survey by
Bradfield and Stirling [7].

4

〈f,⊥〉 〈f, a⊥〉 〈f, aa⊥〉 · · ·

〈p,⊥〉 〈p, a⊥〉 〈p, aa⊥〉 · · ·

Figure 1: The configuration graph of an example pushdown system.

2.3. Approximants

Thanks to the Knaster-Tarski Fixed Point Theorem, the semantics of a fixed
point formula JσZ.χ(Y , Z)KP

V where Y = Y1, . . . , Yn and σ ∈ {µ, ν} can be
given as the limit of the sequence of α-approximants JσαZ.χ(Y , Z)KP

V , where
α ranges over the ordinals and λ ranges over the limit ordinals:

Jσ0Z.χ(Y , Z)KP

V := Init

Jσα+1Z.χ(Y , Z)KP

V := Jχ(Y , Z)KG
V [Z 7→JσαZ.χ(Y ,Z)KPV]

JσλZ.χ(Y , Z)KP

V := ©α<λJσαZ.χ(Y , Z)KP

V

where Init = ∅ and © =
⋃

when σ = µ, and Init is the set of all configurations
and © =

⋂
when σ = ν. The least ordinal κ such that JσκZ.χ(Y , Z)KP

V =
JσZ.χ(Y , Z)KP

V is called the closure ordinal.

Example 2.1. When interpreted in a pushdown graph, JσαZ.χ(Y , Z)Kα∈Ord

may have an infinite closure ordinal. Consider the pushdown graph in Figure 1
(which is a dual of an example of Cachat’s [20]). The proposition p is true only
when the control state is p and f is true only at control state f . In this graph
JµZ1.νZ2. (p ∧ �Z1) ∨ (f ∧ �Z2)K consists of all configurations. However, any
〈f, a an⊥〉 for some n only appears in an approximant of the least fixed point
when 〈f, a a an⊥〉 and 〈p, a an⊥〉 appear in the previous approximant (since �Z2

quantifies over all transitions from 〈f, a an⊥〉). Hence, all 〈p, an⊥〉 must appear
in the α-approximant before any 〈f, an⊥〉 can appear in the (α+1)-approximant.
Thus the first approximant containing all p configurations is the ω-approximant.
It follows that the least fixed point in question has an infinite closure ordinal.
Cachat also shows that a greatest fixed point may also have an infinite closure
ordinal.

2.4. Alternating Multi-Automata

We use alternating multi-automata [2] as a representation of (regular) sets
of configurations. Given a pushdown system (P ,D, Σ) with P = {p1, . . . , pz},
an alternating multi-automaton A is a quintuple (Q, Σ, ∆, I,F) where Q is
a finite set of states, ∆ ⊆ Q× (Σ ∪ {⊥})× 2Q is a set of transitions (we assume
⊥ /∈ Σ), I = {q1, . . . , qz} ⊆ Q is a set of initial states, and F ⊆ Q is a set of
final states. Observe that there is an initial state for each control state of the
pushdown system. We write q

a
−→ Q just if (q, a, Q) ∈ ∆; and define q

ε
−→ {q};

and q
aw
−−→ Q1∪· · ·∪Qn just if q

a
−→ {q1, . . . , qn} and qk

w
−→ Qk for all 1 ≤ k ≤ n.

5

q1

qf

q2

b a

Figure 2: The automaton Aeg accepting 〈p2, ba∗〉.

Finally we define the language accepted by A, L(A), by: 〈pj , w〉 ∈ L(A) just if

qj w
−→ Q for some Q ⊆ F . We further define Lq(A) to be the set of all words

accepted from the state q in A. Henceforth, we shall refer to alternating multi-
automata simply as automata. In cases of ambiguity, we may specify runs of
a particular automaton A with a transition relation ∆ by q

a
−→
A

Q and q
a
−→
∆

Q

respectively.

2.5. Reachability and Projection

Formulas of the form �ϕ and ♦ϕ assert a one-step backwards reachabil-
ity property, which we compute using a simplification of the reachability algo-
rithm [2] due to Bouajjani et al.. Cachat’s extension of this algorithm to Büchi
games [19] requires a technique called projection. Using an example, we briefly
introduce the relevant techniques.

Take a PDS with the rules p1 a → p2 ε and p2 b → p2 ba. The automaton Aeg

in Figure 2 (with qf being the only accepting state) represents a configuration
set C. Let Pre(C) be the set of all configurations that can reach C in exactly one
step. To calculate Pre(C) we first add a new set of initial states — since we don’t
necessarily have C ⊆ Pre(C). By applying p1 a → p2 ε, any configuration of the
form 〈p1, aw〉, where w is accepted from q2 in Aeg, can reach C. Hence we add
an a-transition from q1

new. (Via the pop transition, we reach 〈p2, w〉 ∈ L(Aeg).)
Alternatively, via p2 b → p2 ba, any configuration of the form 〈p2, bw〉, where baw
is accepted from q2 in Aeg, can reach C. The push, when applied backwards,
replaces ba by b. We add a b-transition from q2

new which skips any run over ba
from q2. Figure 3 shows the resulting automaton.

To ensure termination of the Büchi construction, Cachat uses projection,
which replaces a new transition to an old initial state with a transition to the
corresponding new state. Hence, the transition in Figure 3 from q1

new is replaced
by the transition in Figure 4. The old initial states are then unreachable, and
deleted, which, in this case, leaves an automaton with the same states as Figure 2
(modulo the new suffix) but an additional transition. In this sense, the state-set
remains fixed.

3. The Algorithm

We begin by introducing some notation. A literal x̂ is either x or ¬x for an
atomic proposition x. For a modal µ-calculus formula χ, we write FV (χ) for

6

q1
new q1

qf

q2
new q2

b

a

b a

Figure 3: Aeg updated by the rules p1 a → p2 ε and p2 b → p2 ba.

q1
new q1

qf

q2
new q2

b

b aa

Figure 4: The result of projecting the automaton in Figure 3.

the set of free variables of χ. Henceforth we fix a modal µ-calculus formula χ.
We shall assume χ contains no sub-formulas of the form σZ.x̂ or σZ.X with
σ ∈ {µ, ν}. Furthermore, all bound variable names are unique.

The algorithm is given in Procedures 1 to 9. Each procedure returns an
automaton and a set of initial states that give the valuation of the formula it
computes. These sets, I, contain a (unique) state of the form (p, ϕ, c) for each
control state p. In general, ϕ is the formula whose denotation is being computed,
but, in the case of a fixed point, ϕ = Z where Z is the variable bound by the
fixed point. Hence, we introduce the notation

I(p) = (p, ϕ, c) where (p, ϕ, c) ∈ I

to denote the valuation for a given control state p. For a control state p and
character a, let Next(p, a) = { (p′, w) | p a → p′ w }. Most automaton states
are of the form (p, ϕ, c) which represents a working value of the denotation of ϕ
restricted to the control state p. The last element c is an integer that broadly
corresponds to the fixed point depth of ϕ in χ.

We define the projection function

πc(q) =

{
(p, ϕ, c + 1) if q = (p, ϕ, c)
q otherwise

which we lift to sets of states in the obvious way. This projection function can
be compared with the projections discussed in Section 2.5. Here, the states
(p, ϕ, c + 1) correspond to the new initial states, and (p, ϕ, c) to the old.

For an automaton A and variable Z, we say that the variable has the set
of binding states (p, Z, c) for all control states p such that c is the largest value

7

for which (p, Z, c) is in A. We say an automaton A gives a valuation of an
environment if it contains an initial state (p, x̂, ∗) for every atomic proposition
and control state and a binding state for every free variable and control state,
such that, for a given Z, all binding states have the same c. Let QA

Z be the set
of binding states of Z in A and QA

bx be the set of all (p, x̂, ∗). In addition, let
level(p, ϕ, c) = c and A[ϕ/I] be a renaming function on automata that renames
states of the form (p, ϕ′, c) ∈ I to (p, ϕ, c). The sets I will be suitably defined
to avoid name clashes.

We also assume that all automata have (share) the states q∗ and qε
f , where qε

f

is accepting and q∗
a
−→ {q∗} for all a ∈ Σ \ {⊥} and q∗

⊥
−→

{
qε
f

}
. Furthermore,

all transitions of the form q
⊥
−→ Q have Q =

{
qε
f

}
. Finally, we introduce a

comparison operator A � A′, which can be intuitively read as L(A) ⊆ L(A′).
The precise definition is deferred to Definition 5.2.

In Section 6 we give the pre- and post-conditions of each of the given proce-
dures. Correctness is shown in Section 6.

Procedure 1 Denotation(χ, AV , P)

Require: A pushdown system P = (P ,D, Σ), a modal µ-calculus formula χ
and an automaton AV giving valuations for all (unbound) literals.

Ensure: A pair (A, I) such that automaton A recognises Jχ1K
P

V from initial
states I.

return Dispatch(AV , χ, 1, P)

Procedure 2 Dispatch(A, ϕ, c, P)

if ϕ = x̂ then
return (A,QA

bx)
else if ϕ = Z then

return (A,QA
Z)

else if ϕ = ϕ1 ∧ ϕ2 then
return And(A, ϕ1, ϕ2, c, P)

else if ϕ = ϕ1 ∨ ϕ2 then
return Or(A, ϕ1, ϕ2, c, P)

else if ϕ = �ϕ1 then
return Box(A, ϕ1, c, P)

else if ϕ = ♦ϕ1 then
return Diamond(A, ϕ1, c, P)

else if ϕ = µZ.ϕ1 then
return LFP (A, Z, ϕ1, c, P)

else if ϕ = νZ.ϕ1 then
return GFP (A, Z, ϕ1, c, P)

end if

8

Procedure 3 And(A, ϕ1, ϕ2, c, P)

((Q1, Σ, ∆1, ,F1), I1) = Dispatch(A, ϕ1, c, P)
((Q2, Σ, ∆2, ,F2), I2) = Dispatch(A, ϕ2, c, P)
A′ = (Q1 ∪ Q2 ∪ I, Σ, ∆1 ∪ ∆2 ∪ ∆′, ,F1 ∪ F2)
where I = { (p, ϕ1 ∧ ϕ2, c) | p ∈ P }

and ∆′ =

{
((p, ϕ1 ∧ ϕ2, c), a, Q1 ∪ Q2)

∣∣∣∣
(I1(p), a, Q1) ∈ ∆1 ∧
(I2(p), a, Q2) ∈ ∆2

}

return (A′, I)

Procedure 4 Or(A, ϕ1 , ϕ2, c, P)

((Q1, Σ, ∆1, ,F1), I1) = Dispatch(A, ϕ1, c, P)
((Q2, Σ, ∆2, ,F2), I2) = Dispatch(A, ϕ2, c, P)
A′ = (Q1 ∪ Q2 ∪ I, Σ, ∆1 ∪ ∆2 ∪ ∆′, ,F1 ∪ F2)
where I = { (p, ϕ1 ∨ ϕ2, c) | p ∈ P }

and ∆′ =

{
((p, ϕ1 ∨ ϕ2, c), a, Q)

∣∣∣∣
(I1(p), a, Q) ∈ ∆1 ∨
(I2(p), a, Q) ∈ ∆2

}

return (A′, I)

Procedure 5 Box(A, ϕ1, c, P)

((Q1, Σ, ∆1, ,F1), I1) = Dispatch(A, ϕ1, c, P)
A′ = (Q1 ∪ I, Σ, ∆1 ∪ ∆′, ,F1)
where I = { (p, �ϕ1, c) | p ∈ P }

and ∆′ =





((p, �ϕ1, c), a, Q)

∣∣∣∣∣∣∣∣

Next(p, a) = {(p1, w1), . . . , (pn, wn)}∧
∧

1≤j≤n

(
I1(pj)

wj

−−→
∆1

Qj

)
∧

Q = Q1 ∪ · · · ∪ Qn





∪

{ ((p, �ϕ1, c), a, {q∗}) | Next(p, a) = ∅ ∧ a 6=⊥ }∪{ (
(p, �ϕ1, c),⊥,

{
qε
f

})
| Next(p,⊥) = ∅

}

return (A′, I)

Procedure 6 Diamond(A, ϕ1, c, P)

((Q1, Σ, ∆1, ,F1), I1) = Dispatch(A, ϕ1, c, P)
A′ = (Q1 ∪ I, Σ, ∆1 ∪ ∆′, ,F1)
where I = { (p, ♦ϕ1, c) | p ∈ P }

and ∆′ =

{
((p, ♦ϕ1, c), a, Q)

∣∣∣∣∣
(p′, w) ∈ Next(p, a)∧

I1(p
′)

w
−−→
∆1

Q

}

return (A′, I)

9

Procedure 7 LFP (A, Z, ϕ1, c, P)

A0 = (Q ∪ Ic, Σ, ∆, ,F)
where Ic = { (p, Z, c) | p ∈ P }
for i = 0 to ω do

(Bi, Ii) = Dispatch(Ai, ϕ1, c + 1, P)
Ai+1 = Proj(Bi[Z/Ii], c)
if Ai+1 � Ai then

return (Ai, Ic)
end if

end for

Procedure 8 GFP (A, Z, ϕ1, c, P)

A0 = (Q ∪ Ic, Σ, ∆ ∪ ∆′, ,F)
where Ic = { (p, Z, c) | p ∈ P }

and ∆′ contains q
a
−→ {q∗} for all a 6=⊥ and q

⊥
−→

{
qε
f

}
for all q ∈ Ic.

for i = 0 to ω do
(Bi, Ii) = Dispatch(Ai, ϕ1, c + 1, P)
Ai+1 = Proj(Bi[Z/Ii], c)
if Ai � Ai+1 then

return (Ai, Ic)
end if

end for

Procedure 9 Proj(A, c)

A′ = A
for all q with level(q) = c + 1 do

Replace each transition q
a
−→ Q in A′ with q

a
−→ πc(Q).

end for
for all q with level(q) = c do

Remove q from A′.
end for
for all q = (p, ϕ′, c + 1) in A′ for some p and ϕ′ do

Rename q to (p, ϕ′, c).
end for
return A’

10

(p, p, ∗)⊥

q∗⊥

(f, f, ∗)⊥

Figure 5: The automaton giving initial valuations of p and f .

4. Example

We present a fully worked example of the algorithm. Take the pushdown
system presented in Example 2.1. The pushdown system has the rules

p⊥→ f ⊥ f ⊥→ f ⊥
p a → p f a → f a a

f a → p a .

We will evaluate the formula µZ1.νZ2. (p ∧ �Z1)∨(f ∧ �Z2). Initially we begin
with an automaton evaluating the propositions p and f , and containing the
states qε

f and q∗ as described in Section 3. This automaton is shown in figure 5.
For visual convenience, we have omitted the states (p, f, ∗) and (f, p, ∗) since
they have no outgoing transitions. Also, instead of including the final state
qε
f , we annotate each state with the subscript ⊥ to indicate that the current

state will accept on reading the bottom of stack symbol. Furthermore, since all
remaining transitions are a-transitions, we will elide this label.

After fixing the initial automaton we begin to evaluate the formula. To
evaluate the least fixed point of Z1, we introduce an initial valuation of Z1 that
has no outgoing transitions. We then increment c, and evaluate the greatest
fixed point of Z2 with the initial valuation of Z1. This begins by assigning C to
Z2. The automaton after these steps is shown in Figure 6.

After creating the initial assignments to Z1 and Z2 we increment c again
and evaluate the formula (p ∧ �Z1) ∨ (f ∧ �Z2). This recurses down the sub-
formulas in turn until p, f, Z1 or Z2 are reached, at which point the existing
valuations are used. The recursion then returns, generating states giving valu-
ations of the formulas �Z1, (p ∧ �Z1), �Z2 and (f ∧ �Z2). Finally the states
for ((p ∧ �Z1) ∨ (f ∧ �Z2)) are computed. The result is shown in Figure 7.

Alternating transitions q
a
−→ {q1, q2} are illustrated using forking arrows.

At this point we have completed a recursive call of the greatest fixed point
computation of Z2. The value of ((p ∧ �Z1) ∨ (f ∧ �Z2)) is the new value of
Z2, so we rename these states to value Z2 (with c = 3). We now perform the
projections. In this case, only the transition from (p, �Z2, 3) to (p, Z2, 2) is
affected, being replaced by a transition to (p, Z2, 3). Then we delete the old
valuation of Z2 (that is, all level 2 states) and rename all level 3 states to level
2 states. This gives a new valuation of Z2 shown in Figure 8.

11

(p, p, ∗)⊥

(f, f, ∗)⊥

(p, Z1, 1)

q∗⊥

(f, Z1, 1)

(p, Z2, 2)⊥

(f, Z2, 2)⊥

Figure 6: The automaton after introducing initial valuations of Z1 and Z2.

The automaton in Figure 8 is quite cumbersome. However, for presentational
purposes, we can hide all states except those for Z2. This is shown in Figure 9.
It is important to remember that the hidden states have not been deleted.

We now repeat the iteration, calculating the next value of Z2. This is shown
in Figure 10. We then perform the projection, renaming and deletion opera-
tion on this automaton and repeat the iteration until the automaton remains
unchanged1 from one iteration to the next. That is, a fixed point has been
reached. At this point we have concluded the first greatest fixed point compu-
tation. The result is given in Figure 11, with some states hidden for clarity.

The result of the greatest fixed point computation gives the next value for Z1

in the least fixed point computation. We perform the projection, renaming and
deletion in the same way as the greatest fixed point case, and obtain Figure 12.
We then recompute the greatest fixed point of Z2 with this new value of Z1.
This begins with the automaton in Figure 13.

We repeat this greatest fixed point computation, obtaining new values of Z1

until the least fixed point of Z1 has been computed. Figure 14 shows the final
automaton, with the states (p, Z1, 1) and (f, Z1, 1) giving the denotation of the
original formula. The reader can verify that all configurations are accepted, as
required (recall, all stacks must end with the ⊥ character). At this point we
remind the reader that many states of the form (p, ϕ, 1) have been omitted from
the diagram because they are unreachable from (p, Z1, 1) and (f, Z1, 1), which
are the interesting states in this example.

1This is a simplification of the termination conditions, which are given precisely in Sec-
tion 5.

12

(p, p, ∗)⊥

(f, f, ∗)⊥

(p, Z1, 1)

q∗⊥

(f, Z1, 1)

(p, (p ∧ �Z1), 3) (p, �Z1, 3) (p, Z2, 2)⊥

(p, (· · · ∨ · · ·), 3) (f, (p ∧ �Z1), 3) (f, �Z1, 3) (f, Z2, 2)⊥

(f, (· · · ∨ · · ·), 3)⊥ (p, (f ∧ �Z2), 3) (p, �Z2, 3)⊥

(f, (f ∧ �Z2), 3)⊥ (f, �Z2, 3)⊥

Figure 7: The automaton after evaluating (p ∧ �Z1) ∨ (f ∧ �Z2).

1
3

(p, p, ∗)⊥

(f, f, ∗)⊥

(p, Z1, 1)

q∗⊥

(f, Z1, 1)

(p, (p ∧ �Z1), 2) (p, �Z1, 2)

(p, Z2, 2) (f, (p ∧ �Z1), 2) (f, �Z1, 2)

(f, Z2, 2)⊥ (p, (f ∧ �Z2), 2) (p, �Z2, 2)⊥

(f, (f ∧ �Z2), 2)⊥ (f, �Z2, 2)⊥

Figure 8: The automaton after projecting, deleting and renaming.

1
4

(p, p, ∗)⊥

(f, f, ∗)⊥

(p, Z1, 1)

q∗⊥

(f, Z1, 1)

(p, Z2, 2)

(f, Z2, 2)⊥

Figure 9: The automaton in Figure 8 with some states hidden for presentational purposes.

5. Termination

5.1. Comparing Automata

We begin by defining the � operator described intuitively in Section 3. Ob-
serve that if we have q

a
−→ Q and q

a
−→ Q′ with Q ⊆ Q′, then acceptance from Q′

implies acceptance from Q. That is, the transition to Q′ can, in some sense, be
simulated by the transition to Q. Furthermore, acceptance from any q that is
not qε

f implies acceptance from q∗ (trivially). Using these observations, we can
provide a simple test implying that L(A) ⊆ L(A′). In the following definition,
Q ≪ Q′ can be taken to mean an accepting run from Q′ implies an accepting
run from Q.

Definition 5.1. For all non-empty sets of states Q and Q′, we define

Q ≪ Q′ :=
(
(q∗ ∈ Q ⇒ ∃q.q 6= qε

f ∧ q ∈ Q′) ∧ (∀q 6= q∗.q ∈ Q ⇒ q ∈ Q′)
)

We define � by extending this definition to automata as follows.

Definition 5.2. For automata A and A′ with state-sets Q and Q′ respectively,
we define A � A′ just if for all q ∈ Q ∩ Q′, a and Q, if q

a
−→
A

Q then for some

Q′, q
a
−→
A′

Q′ and Q′ ≪ Q.

By induction, � can be applied to full runs. Observe that this implies, for
each shared state q, Lq(A) ⊆ Lq(A

′). Since A and A′ need not share the same

15

(p, p, ∗)⊥

(f, f, ∗)⊥

(p, Z1, 1)

q∗⊥

(f, Z1, 1)

(p, (p ∧ �Z1), 3) (p, �Z1, 3) (p, Z2, 2)⊥

(p, (· · · ∨ · · ·), 3) (f, (p ∧ �Z1), 3) (f, �Z1, 3) (f, Z2, 2)⊥

(f, (· · · ∨ · · ·), 3)⊥ (p, (f ∧ �Z2), 3) (p, �Z2, 3)⊥

(f, (f ∧ �Z2), 3)⊥ (f, �Z2, 3)⊥

Figure 10: The automaton after the second evaluation of (p ∧ �Z1) ∨ (f ∧ �Z2).

1
6

(p, p, ∗)⊥

(f, f, ∗)⊥

(p, Z1, 1)

q∗⊥

(f, Z1, 1)

(p, Z2, 2)

(f, Z2, 2)⊥

Figure 11: The result of the first greatest fixed point calculation with some states hidden for
presentational purposes.

(p, p, ∗)⊥

(f, f, ∗)⊥

q∗⊥

(p, Z1, 1)

(f, Z1, 1)⊥

Figure 12: The automaton after projecting, deleting and renaming for the new valuation of
Z1.

17

(p, p, ∗)⊥

(f, f, ∗)⊥

(p, Z1, 1)

q∗⊥

(f, Z1, 1)⊥

(p, Z2, 2)⊥

(f, Z2, 2)⊥

Figure 13: The automaton before computing the next fixed point of Z2.

(p, p, ∗)⊥

(f, f, ∗)⊥

q∗⊥

(p, Z1, 1)⊥

(f, Z1, 1)⊥

Figure 14: The final automaton.

18

state set, one of the consequences of using ≪ is that q∗ can take the place of a
state that is not shared between the automata. This is important after the first
iteration of the greatest fixed point computations, since the recursive call may
add states that were not in the initial automaton A0.

Lemma 5.1. For automata A and A′ with state-sets Q and Q′ respectively, if
A � A′ then for all q ∈ Q∩Q′, w and Q, if q

w
−→
A

Q then for some Q′, q
w
−→
A′

Q′

and Q′ ≪ Q.

Proof. We prove for all Q1 ⊆ Q, Q2 ⊆ Q′ and w that, if Q2 ≪ Q1 and
Q1

w
−→
A

Q′
1 for some Q′

1, then there exists Q′
2 such that Q2

w
−→
A′

Q′
2 and Q′

2 ≪ Q′
1.

We proceed by induction over the length of w.
Let Q1 =

{
q1
1 , . . . , q1

n

}
. We have that q1

i

a
−→
A

Qi
1 for all 1 ≤ i ≤ n and

Q′
1 = Q1

1 ∪ · · · ∪ Qn
1 . When a =⊥, the property is immediate from A � A′

and the assumed format of ⊥-transitions. Otherwise a 6=⊥ and for each q1
i

there are two cases. Either q∗ ∈ Q2 or q1
i ∈ Q2. In the first case, we have

q∗
a
−→
A′

Qi
2 where Qi

2 = {q∗}, and hence Qi
2 ≪ Qi

1. In the second case, we

have, from A � A′ some transition q1
i

a
−→
A′

Qi
2 with Qi

2 ≪ Qi
1. Thus, we have

Q′
2 = Q1

2 ∪ · · · ∪Qn
2 ≪ Q1

1 ∪ · · · ∪Qn
1 = Q′

1 as required. This concludes the base
case.

Inductively, assume w = aw′ and a run Q1
a
−→
A

Q′′
1

w′

−→
A

Q′
1. By repeating

the above argument we have Q2
a
−→
A′

Q′′
2 with Q′′

2 ≪ Q′′
1 . Then, by induction

over the length of the run we have Q′′
2

w′

−→
A′

Q′
2 with Q′

2 ≪ Q′
1. This gives us the

required run over aw. �

To prove termination, we will require the notion of an expansion.

Definition 5.3. Given an automaton A with state-set Q, we define

Expand(A) :=
{

q
a
−→ Q′

∣∣∣ q
a
−→ Q in A and Q ≪ Q′ ⊆ Q

}
.

To test termination of the fixed point computations, we compare Expand(Ai+1)
and Expand(Ai). In the following proofs we assume both automata share the
same state-set.

Lemma 5.2. Expand(A) ⊆ Expand(A′) if and only if A � A′.

Proof. First we assume Expand(A) ⊆ Expand(A′). Take q
a
−→ Q in A. Then

q
a
−→ Q ∈ Expand(A). We have q

a
−→ Q ∈ Expand(A′), and therefore q

a
−→ Q′ is

a transition of A′ with Q′ ≪ Q.
In the other direction, we assume q

a
−→ Q in A implies q

a
−→ Q′ in A′. Take

q
a
−→ Q ∈ Expand(A). We need q

a
−→ Q ∈ Expand(A′). We have some q

a
−→ Q′

in A with Q′ ≪ Q. Hence, we have q
a
−→ Q′′ in A′ with Q′′ ≪ Q. Hence,

19

q
a
−→ Q ∈ Expand(A′) as required. �

We extend the property to runs. Hence Expand(A) ⊆ Expand(A′) implies
L(A) ⊆ L(A′).

Lemma 5.3. If Expand(A) ⊆ Expand(A′) then whenever q
w
−→ Q in A then

there is some Q′ ≪ Q with q
w
−→ Q′ in A′.

Proof. This follows directly from Lemma 5.2 and Lemma 5.1. �

5.2. Algorithm Termination

We prove the following to show termination.

Lemma 5.4 (Termination). The algorithm satisfies the following properties.

1. Each subroutine introduces a fixed set of new states, independent of the
automaton A given as input (but may depend on the other parameters).
Transitions are only added to these new states.

2. For two input automata A1 and A2 (giving valuations of the same envi-
ronments) such that A1 � A2, then the returned automata A′

1 and A′
2,

respectively, satisfy A′
1 � A′

2.

3. The algorithm terminates.

Proof. The first of these conditions is trivially satisfied by all constructions,
hence we omit the proofs. Similarly, termination is trivial for all procedures
except the fixed point constructions. We will say a procedure is monotonic if
is satisfies the second condition. The second and third conditions will be show
by mutual induction over the recursion (structure of the formula). The cases x̂
and Z are immediate.

Case And(A, ϕ1, ϕ2, c, P):

Take A � A′ both giving valuations for V . After the recursive calls we have
A1 � A′

1 and A2 � A′
2. New transitions are only added to new states, which are

the same in A1 and A′
1 (as part of the termination conditions), and similarly for

A2 and A′
2. Let the results for the intersection be A∧ and A′

∧ respectively. For

all p we have (p, ϕ1 ∧ϕ2, c)
a

−−→
A∧

Q derived from I1(p)
a

−−→
A1

Q1 and I2(p)
a

−−→
A2

Q2.

Hence we have I1(p)
a

−−→
A′

1

Q′
1 and I2(p)

a
−−→
A′

2

Q′
2 and thus (p, ϕ1 ∧ ϕ2, c)

a
−−→
A′

∧

Q′

such that Q′ = Q′
1 ∪ Q′

2 ≪ Q1 ∪ Q2 = Q as required.

Case Or(A, ϕ1 , ϕ2, c, P):

Take A � A′ both giving valuations for V . After the recursive calls we have
A1 � A′

1 and A2 � A′
2. New transitions are only added to new states, which are

the same in A1 and A′
1 (as part of the termination conditions), and similarly for

A2 and A′
2. Let the results for the disjunction be A∨ and A′

∨ respectively. For

20

all p we have (p, ϕ1 ∨ ϕ2, c)
a

−−→
A∨

Q derived from I1(p)
a

−−→
A1

Q or I2(p)
a

−−→
A2

Q.

Hence we have I1(p)
a

−−→
A′

1

Q′ or I2(p)
a

−−→
A′

2

Q′ and thus (p, ϕ1∨ϕ2, c)
a

−−→
A′

∨

Q′ such

that Q′ ≪ Q as required.

Case Box(A, ϕ1, c, P):

Take A � A′ both giving valuations for V . After the recursive calls we have A1 �
A′

1. New transitions are only added to new states, which are the same in A1 and
A′

1 (as part of the termination conditions). Let the results for the box be A� and

A′
�

respectively. Take a new transition (p, �ϕ1, c)
a

−−→
A�

Q. Since the case when

Next(p, a) = ∅ is immediate, let Next(p, a) = {(p1, w1), . . . , (pn, wn)}. We have

Q = Q1∪· · ·∪Qn where for each 1 ≤ i ≤ n we have I1(pi)
wi−−→
A1

Qi. By A1 � A′
1

we have I1(pi)
wi−−→
A′

1

Q′
i with Qi ≪ Q′

i. Hence, we have (p, �ϕ1, c)
a

−−→
A′

�

Q′ with

Q′ = Q′
1 ∪ · · · ∪ Q′

n ≪ Q1 ∪ · · ·Qn = Q as required.

Case Diamond(A, ϕ1, c, P):

Take A � A′ both giving valuations for V . After the recursive calls we have
A1 � A′

1. New transitions are only added to new states, which are the same in
A1 and A′

1 (as part of the termination conditions). Let the results for the box

be A♦ and A′
♦ respectively. Take a new transition (p, ♦ϕ1, c)

a
−−→
A♦

Q. Take some

(p′, w′) ∈ Next(p, a). We have I1(p
′)

w′

−−→
A1

Q. By A1 � A′
1 we have I(p′)

w′

−−→
A′

1

Q′

with Q′ ≪ Q. Hence, we have (p, ♦ϕ1, c)
a

−−→
A′

♦

Q′ with Q′ ≪ Q as required.

Case LFP (A, Z, ϕ1, c, P):

Note that the state-set of A0 is a subset of the states of A1 (since it does not
contain the states introduced by the recursive call). However, for all i ≥ 1, all
Ai have the same states. Initially we have A0 � A1 since the shared states of
A0 and A1 are either given by A (and hence have the same transitions), or have
no transitions in A0. Since the recursive call is monotonic, and the projections
do not affect monotonicity, we have by induction that Ai � Ai+1 for all i. For
all i ≥ 1, we have by Lemma 5.2 that Expand(Ai) ⊆ Expand(Ai+1). Since the
set of states is fixed, we must eventually have Expand(Ai) = Expand(Ai+1)
and hence Ai+1 � Ai, resulting in termination.

Monotonicity follows directly from the monotonicity of the recursive call,
and that the projections do not affect the monotonicity property.

Case GFP (A, Z, ϕ1, c, P):

Note that the state-set of A0 is a subset of the states of A1 (since it does not
contain the states introduced by the recursive call). However, for all i ≥ 1, all
Ai have the same states. Initially we have A1 � A0 since the shared states of
A0 and A1 are either given by A (and hence have the same transitions), or have
transitions to q∗ or qε

f that always imply ≪ as required. Since the recursive

21

call is monotonic, and the projections do not affect monotonicity, we have by
induction that Ai+1 � Ai for all i. For all i ≥ 1, we have by Lemma 5.2
that Expand(Ai+1) ⊆ Expand(Ai). Since the set of states is fixed, we must
eventually have Expand(Ai) = Expand(Ai+1) and hence Ai � Ai+1, resulting
in termination.

Monotonicity follows directly from the monotonicity of the recursive call,
and that the projections do not affect the monotonicity property. �

5.3. Complexity

The algorithm runs in EXPTIME. Let m be the nesting depth of the fixed
points of the formula and n be the number of states in AV . We introduce at
most k = |P| · |χ| ·m states to the automaton. Hence, there are at most (n + k)
states in the automaton during any stage of the algorithm. The fixed point
computations iterate up to an O

(
2O(n+k)

)
number of times. Each iteration has

a recursive call, which takes up to O
(
2O(n+k)

)
time. Hence the algorithm is

O
(
2O(n+k)

)
overall.

6. Correctness

6.1. Valuation Soundness and Completeness

To prove correctness, we will introduce the notion of a valuation profile,
which is a mapping V : Q → Σ∗⊥. Intuitively, a valuation profile maps each
state of a automaton to a set of words that should be accepted from that state.
For example, V (q∗) = Σ∗⊥ since all valid stacks are accepted from q∗. Similarly,
V (qε

f) = {ε}. Note that we overload V to represent valuation profiles and modal
µ-calculus valuations. It will be clear from the context which usage is intended.

Given a valuation profile V and some c, we can extract a modal µ-calculus
valuation Vc as follows. Let Vc(Z) = { 〈p, w〉 | w ∈ V (p, Z, c′) } where c′ is the
largest c′ ≤ c such that V (p, Z, c′) is defined.

We introduce valuation soundness and valuation completeness based on a
profile V . We prove that all subroutines of the algorithm have this property.
First, it is worth taking some time to understand the benefits of valuation
soundness and completeness in proving the correctness of the algorithm.

The main challenge in proving correctness is to show that the projections
do not cause any violations to correctness: the rest of the algorithm can be
seen, rather straightforwardly, to be correct. Given a transition from some
state (p, ϕ, c + 1) to a set of states Q, the effect of the projections is to replace
every occurrence of (p, ϕ, c) in Q with (p, ϕ, c + 1). Valuation soundness and
completeness formalises the intuition that these two states represent two working
values of the same denotation. Hence, replacing one with the other will maintain
correctness.

More precisely valuation soundness captures the observation that the ex-
istence of an a-transition in an automaton means that the a character can be

22

prepended to any word accepted by the destination of the transition. For an au-
tomaton to be valuation sound with respect to some V , then all of its transitions
must be in accordance with V .

Definition 6.1. Given a valuation V , an automaton A is V -sound just if, for
all q, a and w, if A has a transition q

a
−→ Q such that w ∈ V (q′) for all q′ ∈ Q,

then a w ∈ V (q).

By induction on the length of the word, valuation soundness extends to runs
of an automaton. We then obtain that all accepting runs are sound.

Lemma 6.1. Let A be a V -sound automaton.

1. For all q, w and w′, if A has a run q
w
−→ Q such that w′ ∈ V (q′) for all

q′ ∈ Q, then w w′ ∈ V (q).

2. For all q ∈ QA, Lq(A) ⊆ V (q).

Proof. (i) We prove by induction on the length of the word w. When w = a,

the property is just V -soundness. Take w = au and some run q
a
−→ Q

u
−→ Q′

such that for all q′ ∈ Q′, we have w ∈ V (q′). By the induction hypothesis, we

have the property for the run Q
u
−→ Q′. Hence, we have for all q′ ∈ Q that,

uw′ ∈ V (q′). Thus, from V -soundness, we have auw′ ∈ V (q).

(ii) Take an accepting run q
w
−→ Qf of A. We have for all q′ ∈ Qf =

{
qε
f

}
,

ε ∈ V (q′). Thanks to (i), we have w ∈ V (q). �

Valuation completeness is the dual notion to valuation soundness. It says
that if a character can begin a word that should be accepted from a given
state, then there should be a transition that witnesses this. Furthermore, the
transition should be in accordance with the given valuation V .

Definition 6.2. Given a valuation V , an automaton A is V -complete just if,
for all q, a and w, if a w ∈ V (q) then A has a transition q

a
−→ Q such that

w ∈ V (q′) for all q′ ∈ Q.

By induction on the length of the word, valuation completeness extends to
runs. Furthermore, an accepting run always exists when required.

Lemma 6.2. Let A be a V -complete automaton.

1. For all q, w and w′, if w w′ ∈ V (q) then A has a run q
w
−→ Q such that

w′ ∈ V (q′) for all q′ ∈ Q.

2. For all q ∈ QA, V (q) ⊆ Lq(A).

Proof. (i) The proof is by induction on the length of the word w. When
w = a, the property is simply V -completeness. Take w = au and some q with
auw′ ∈ V (q). From V -completeness, we have a transition q

a
−→ Q such that for

all q′ ∈ Q, we have uw ∈ V (q′). By induction on the length of the word, we

have a run Q
u
−→ Q′ satisfying the property. Hence, we have q

a
−→ Q

u
−→ Q′ as

required.

23

(ii) Take w ∈ V (q). Instantiating (i) with w′ = ε, we know A has a run

q
w
−→ Q. Every state in Q must be accepting because ε is only accepted from

accepting states and there can be no 〈pj , ε〉 satisfying any denotation because ε
is not a valid stack. �

6.2. Algorithm Correctness

To define the correctness conditions we need to define the extension of a
valuation profile by a formula ϕ. For a variable Z bound in ϕ, we denote by ϕZ

the sub-formula of ϕ that binds Z.

Definition 6.3. Given a valuation profile V , we define V c
ϕ for a given c and ϕ

such that for sub-formulas ϕ′ of ϕ

V c
ϕ(p, ϕ′, c′) =






V (p, ϕ′, c′) if c′ < c{
w

∣∣∣ 〈p, w〉 ∈ JϕZKP

(V c
ϕ)c

}
if ϕ′ = Z and c′ = c

{
w

∣∣∣ 〈p, w〉 ∈ Jϕ′KP

(V c
ϕ)c

}
otherwise

.

(Note that this definition is circular. The definition can be made recursive by
valuing the variables in order of alternation depth.)

We are now ready to state the correctness conditions.

Definition 6.4 (Correctness Conditions). The correctness conditions are
as follows. Let A be the input automaton, ϕ be the input formula2, c be the
input level and A′ be the result.

1. We only introduce level c states.

2. If A is V -sound, A′ is V c
ϕ-sound.

3. If A is V -complete, A′ is V c
ϕ-complete.

We say that a procedure is V -sound/complete if the second/third condition
is satisfied. That each procedure only introduces level c states is straightforward,
hence we only show V -soundness and -completeness.

Lemma 6.3 (Valuation Soundness). The algorithm is V -sound.

Proof. The proof is by induction over the recursion. The base cases x̂ and Z
are immediate.

Case And(A, ϕ1, ϕ2, c, P):

By assumption, A is valuation sound with respect to some V . Furthermore,
by induction, A1 and A2 are valuation sound with respect to V c

ϕ1
and V c

ϕ2

respectively.

2For cases such as And(A, ϕ1, ϕ2, c, P) we take, as appropriate ϕ = ϕ1 ∧ ϕ2.

24

We claim A′ is sound with respect to V c
ϕ1∧ϕ2

. This only has to be shown for
the new transitions ((p, ϕ1 ∧ ϕ2, c), a, Q1 ∪ Q2) derived from (I1(p), a, Q1) and
(I2(p), a, Q2). Suppose some w such that for all q ∈ Q1 ∪ Q2, w ∈ V c

ϕ1∧ϕ2
(q).

Then, we have w ∈ V c
ϕ1

(q) and w ∈ V c
ϕ2

(q). Since A1 and A2 are sound, this
implies aw ∈ V c

ϕ1
(I1(p)) and aw ∈ V c

ϕ2
(I2(p)) and hence aw ∈ V c

ϕ1∧ϕ2
(p, ϕ1 ∧

ϕ2, c) as required.

Case Or(A, ϕ1 , ϕ2, c, P):

By assumption, A is valuation sound with respect to some V . Furthermore,
by induction, A1 and A2 are valuation sound with respect to V c

ϕ1
and V c

ϕ2

respectively.
We claim A′ is sound with respect to V c

ϕ1∨ϕ2
(Z, c′). This only has to be

shown for the new transitions ((p, ϕ1 ∨ ϕ2, c), a, Q) derived from (I1(p), a, Q)
or (I2(p), a, Q). By symmetry, we only handle the first case. Suppose some w
such that for all q ∈ Q, w ∈ V c

ϕ1∨ϕ2
(q). Then, we have w ∈ V c

ϕ1
(q). Since A1

is sound, this implies aw ∈ V c
ϕ1

(I1(p)) and hence aw ∈ V c
ϕ1∨ϕ2

(p, ϕ1 ∨ ϕ2, c) as
required.

Case Box(A, ϕ1, c, P):

We assume that A is valuation sound with respect to some valuation V . By in-
duction A1 is valuation sound with respect to V c

ϕ1
. We show that A′ is valuation

sound with respect to V c
�ϕ1

.

We first deal with the case when Next(p, a) = ∅. In this case, the valuation of
�ϕ1 contains all words of the form aw for some w. Hence, all added transitions
are trivially sound.

Otherwise, take a new transition ((p, �ϕ1, c), a, Q) derived from the value of

Next(p, a) = {(p1, w1), . . . , (pn, wn)} and for all 1 ≤ j ≤ n, the runs I1(pj)
wj

−−→
A1

Qj, with Q = Q1 ∪Qn. Suppose for some w, w ∈ V c
�ϕ1

(q) for all q ∈ Q. By val-

uation soundness of A1 we know wjw ∈ V c
�ϕ1

(I1(pj)) and hence, since all tran-

sitions from 〈p, aw〉 lead to configurations satisfying ϕ1, aw ∈ V c
�ϕ1

(p, �ϕ1, c)
as required.

Case Diamond(A, ϕ1, c, P):

We assume that A is valuation sound with respect to some valuation V . By in-
duction A1 is valuation sound with respect to V c

ϕ1
. We show that A′ is valuation

sound with respect to V c
♦ϕ1

.
Take a new transition ((p, ♦ϕ1, c), a, Q) derived from some (p′, w′) ∈ Next(p, a)

and the run I1(p
′)

w′

−−→
A1

Q. Suppose for some w, w ∈ V c
♦ϕ1

(q) for all q ∈ Q. By

valuation soundness of A1 we know w′w ∈ V c
♦ϕ1

(I1(p
′)) and hence, since there is

a transition from 〈p, aw〉 to a configuration satisfying ϕ1, aw ∈ V c
♦ϕ1

(p, ♦ϕ1, c)
as required.

Case LFP (A, Z, ϕ1, c, P):

By assumption A is sound with respect to V . Let Vµ = V c
µZ.ϕ1

. Initially, A0 is
valuation sound with respect to Vµ since there are no transitions from the new

25

states. Hence, we assume the case for Ai and prove it for Ai+1. By induction
over the recursion, Bi is sound with respect to Vµ. Since Ii are sound with
respect to ϕ1 and (abusing notation) µZ.ϕ1 = ϕ1(µZ.ϕ1) we have that Bi[Z/Ii]
remains Vµ sound.

Take any transition ((p, ϕ, c), a, Q) in Ai+1 and any w such that for all q ∈ Q
we have w ∈ Vµ(q). Consider the corresponding transition ((p, ϕ, c + 1), a, Q′)
in Bi[Z/Ii]. All states q in Q′ that are not level c or c+1 remain in Q, hence we
have w ∈ Vµ(q). Furthermore, since the level c valuation of Z equals the level
c + 1 valuation, we have w ∈ Vµ(q) for all level c and c + 1 states. Hence, by
soundness of Bi[Z/Ii] we know aw ∈ Vµ(p, ϕ, c+1) and therefore aw ∈ Vµ(p, ϕ, c)
as required.

Case GFP (A, Z, ϕ1, c, P):

By assumption A is sound with respect to V . Let να be JναZ.ϕ1KVc
. We begin,

with a minor diversion.
Assume, Ai is valuation sound with respect to

Vα+1(p, ϕ, c′) =






V (p, ϕ, c′) if c′ < c{
w

∣∣ 〈p, w〉 ∈ να+1
}

if ϕ = Z and c = c′{
w

∣∣ 〈p, w〉 ∈ JϕK(Vc [Z 7→να])

}
otherwise

.

We show Ai+1 is sound with respect to

Vα+2(p, ϕ, c′) =






V (p, ϕ, c′) if c′ < c{
w

∣∣ 〈p, w〉 ∈ να+2
}

if ϕ = Z and c = c′{
w

∣∣ 〈p, w〉 ∈ JϕK(Vc[Z 7→να+1])

}
otherwise

.

Let V c+1
α′ = (Vα′)c+1

ϕ1
. By induction, Bi is sound with respect to V c+1

α+1 , which
values Z as να+1.

Take any ((p, Z, c), a, Q) in Ai+1 and w such that w ∈ Vα+2(q). Take the
corresponding transition (Ii(p), a, Q′) in Bi. For all q ∈ Q′ that are not level c
or c + 1 we know q ∈ Q and hence w ∈ Vα+2(q) which is a subset of Vα+1(q).
For level c states the same subset argument holds. For level c + 1 the valua-
tions are the same. Hence, the pre-conditions for the soundness condition are
satisfied, and from the soundness of Bi we know aw ∈ V c+1

α+1 (Ii(p)) = µα+2 =
Vα+2(p, Z, c), as required.

Take any ((p, ϕ, c), a, Q) with ϕ 6= Z in Ai+1 and w such that w ∈ Vα+2(q).
Take the corresponding transition ((p, ϕ, c + 1), a, Q′) in Bi. For all q ∈ Q′ that
are not level c or c +1 we know q ∈ Q and hence w ∈ Vα+2(q) which is a subset
of Vα+1(q). For level c states the same subset argument holds. For level c+1 the
valuations are the same. Hence, the pre-conditions for the soundness condition
are satisfied, and from the soundness of Bi we know aw ∈ V c+1

α+1 (p, ϕ, c + 1) =
Vα+2(p, ϕ, c), as required.

Thus, Ai+1 is sound with respect to Vα+2 as required.
We are now ready to prove the main result by induction over the ordinals.

We have that, A′ = Ai = Ai+1. A0 is trivially sound with respect to V0. Then,
by the argument above, Ai is sound with respect to Vi. The case of a successor

26

ordinal also follows from the above. For a limit ordinal λ, we have soundness
for all α < λ. Since Since θλ =

⋂
α<λ θα, the result follows because each config-

uration in the limit appears in all smaller approximants, and we are sound for
all smaller approximants (and trivially for the zeroth approximant). To regain
the induction hypothesis for successor ordinals, we simply apply the successor
construction once, which keeps all (p, ϕ, c) where ϕ 6= Z sound for the limit,
while (p, Z, c) becomes sound for νλ+1. �

Lemma 6.4 (Valuation Completeness). The algorithm is V -complete.

Proof. The proof is by induction over the recursion. The base cases x̂ and Z
are immediate.

Case And(A, ϕ1, ϕ2, c, P):

By assumption, A is valuation complete with respect to some V . Furthermore,
by induction, A1 and A2 are valuation complete with respect to V c

ϕ1
and V c

ϕ2

respectively. We have V c
ϕ1∧ϕ2

as above. We claim A′ is complete with respect to
this valuation. This only has to be shown for the new states of the form qnew =
(p, ϕ1 ∧ ϕ2, c). Suppose aw ∈ V c

ϕ1∧ϕ2
(qnew). This implies aw ∈ V c

ϕ1
(I1(p))

and aw ∈ V c
ϕ2

(I2(p)). Since A1 and A2 are valuation complete, we have some
transitions (I1(p), a, Q1) and (I2(p), a, Q2) such that for all q ∈ Q1 ∪ Q2, w ∈
V c

ϕ1∧ϕ2
(q). This implies the transition ((p, ϕ1 ∧ϕ2, c), a, Q1 ∪Q2) is in A′. This

transition witnesses completeness.

Case Or(A, ϕ1 , ϕ2, c, P):

By assumption, A is valuation complete with respect to some V . Furthermore,
by induction, A1 and A2 are valuation complete with respect to V c

ϕ1
and V c

ϕ2

respectively. Take V c
ϕ1∨ϕ2

as above. We claim A′ is complete with respect to
this valuation. This only has to be shown for the new states of the form qnew =
(p, ϕ1 ∨ ϕ2, c). Suppose aw ∈ V c

ϕ1∨ϕ2
(qnew). This implies aw ∈ V c

ϕ1
(I1(p)) or

aw ∈ V c
ϕ2

(I2(p)). We assume the first case by symmetry. Since A1 is valuation
complete, we have some transition (I1(p), a, Q) such that for all q ∈ Q, w ∈
V c

ϕ1
(q). This implies the transition ((p, ϕ1∨ϕ2, c), a, Q) is in A′. This transition

witnesses completeness.

Case Box(A, ϕ1, c, P):

We are given that A is valuation complete with respect to some valuation V ,
and by induction we have completeness of A1 with respect to V c

ϕ1
. We show A′

is complete with respect to V c
�ϕ1

.

In the case that Next(p, a) = ∅, we either have a =⊥ and the transition from

(p, �ϕ1, c) to
{
qε
f

}
witnesses completeness, or we have a 6=⊥ and the transition

from (p, �ϕ1, c) to {q∗} witnesses completeness.
Otherwise, assume we have aw such that aw ∈ V c

�ϕ1
(p, �ϕ1, c) and Next(p, a) =

{(p1, w1), . . . , (pn, wn)}. Hence, for all 1 ≤ j ≤ n, we have wjw ∈ V c
�ϕ1

(I1(pj)).

27

By completeness of A1 we have runs I1(pj)
wj

−−→
A1

Qj such that for all q ∈ Qj ,

w ∈ V c
�ϕ1

(q). Hence, the transition ((p, �ϕ1, c), a, Q1 ∪ · · · ∪ Qn) witnesses
completeness.

Case Diamond(A, ϕ1, c, P):

We are given that A is valuation complete with respect to some valuation V ,
and by induction we have completeness of A1 with respect to V c

ϕ1
. We show A′

is complete with respect to V c
♦ϕ1

.
Assume some aw such that aw ∈ V c

♦ϕ1
(p, ♦ϕ1, c) and take (p′, w′) ∈ Next(p, a)

such that we have 〈p′, w′w〉 ∈ V c
♦ϕ1

(I1(p
′)). By completeness of A1 we have a

run I1(p
′)

w′

−−→
A1

Q such that for all q ∈ Q, w ∈ V c
♦ϕ1

(q). Hence, the transition

((p, ♦ϕ1, c), a, Q) witnesses completeness.

Case LFP (A, Z, ϕ1, c, P):

By assumption A is complete with respect to V . Let µα be JµαZ.ϕ1KVc
. We

begin, as before, with a minor diversion.
Assume, Ai is valuation complete with respect to

Vα+1(p, ϕ, c′) =






V (p, ϕ, c′) if c′ < c{
w

∣∣ 〈p, w〉 ∈ µα+1
}

if ϕ = Z and c = c′{
w

∣∣ 〈p, w〉 ∈ JϕK(Vc[Z 7→µα])

}
otherwise

.

We show Ai+2 is complete with respect to

Vα+2(p, ϕ, c′) =






V (p, ϕ, c′) if c′ < c{
w

∣∣ 〈p, w〉 ∈ µα+2
}

if ϕ = Z and c = c′{
w

∣∣ 〈p, w〉 ∈ JϕK(Vc [Z 7→µα+1])

}
otherwise

.

Let V c+1
α′ = (Vα′)c+1

ϕ1
. By induction, Bi is complete with respect to V c+1

α+1 , which
values Z as µα+1.

For each (p, Z, c) in Ai+1, take some aw ∈ Vα+2(p, Z, c) = µα+2. Since
µα+2 = ϕ(µα+1) we have that aw ∈ V c+1

α+1 (Ii(p)) from the completeness of Bi.
Hence there was a complete transition (Ii(p), a, Q) in Bi. For all states q ∈ Q
not of level c or c + 1, the completeness conditions remain satisfied after the
projections in Ai+1. For level c state (p′, ϕ, c) we know that w ∈ Vα+1(p

′, ϕ, c)
which is a subset of Vα+2(p

′, ϕ, c) and we are done. For a level c + 1 state
(p′, ϕ, c+1) we know w ∈ V c+1

α+1 (p′, ϕ, c+1) which is also a subset of Vα+2(p
′, ϕ, c),

hence we are done.
For each (p, ϕ, c) in Ai+1 with ϕ 6= Z, take some aw ∈ Vα+2(p, ϕ, c) =

ϕ1(µ
α+1). From the completeness of Bi there was a complete transition ((p, ϕ, c+

1), a, Q) in Bi. For all states q ∈ Q not of level c or c+1, the completeness condi-
tions remain satisfied after the projections in Ai+1. For a level c state (p′, ϕ′, c)
we know that w ∈ Vα+1(p

′, ϕ′, c) which is a subset of Vα+2(p
′, ϕ′, c) and we are

done. For a level c+1 state (p′, ϕ′, c+1) we know w ∈ V c+1
α+1 (p′, ϕ′, c+1) which

is also a subset of Vα+2(p
′, ϕ′, c), hence we are done.

28

Thus, Ai+1 is complete with respect to Vα+2 as required.
We are now ready to prove the main result by induction over the ordinals.

Trivially, A′ = Ai = Ai+1 (for some i ≥ 1) is sound with respect to V0. This
is because A0 is complete with respect to the extension of V mapping Z to µ0,
and the recursive call ensures completeness with respect to the full V0. The case
of a successor ordinal was shown above. For a limit ordinal λ, we have com-
pleteness for Vα for all α < λ. Since µλ =

⋃
α<λ µα, the result follows because

each configuration in the limit appears in some smaller approximant, and the
transition witnessing completeness for the approximant witnesses completeness
for the limit. To regain the induction hypothesis for successor ordinals, we sim-
ply apply the successor construction once, which keeps all (p, ϕ, c) where ϕ 6= Z
complete for the limit, while (p, Z, c) becomes complete for µλ+1.

Case GFP (A, Z, ϕ1, c, P):

By assumption A is complete with respect to V . Initially, A0 is valuation
complete with respect to the extension of V that values Z as JνZ.ϕ1KVc

. After
the first iteration, using a specialisation of the argument below, we have that
A1 is complete with respect to V c

νZ.ϕ1
, which we will abbreviate as Vν .

We assume completeness with respect to Vν for Ai and prove it for Ai+1.
By induction over the recursion, Bi is complete with respect to Vν . Since Ii are
complete and νZ.ϕ1 = ϕ1(νZ.ϕ1) we have that Bi[Z/Ii] remains Vν complete.

Take any aw ∈ Vν(p, ϕ, c). Since Vν(p, ϕ, c) = Vν(p, ϕ, c + 1) we have a tran-
sition ((p, ϕ, c + 1), a, Q) in Bi[Z/Ii] that witnesses completeness for Bi[Z/Ii].
From this transition we have ((p, ϕ, c), a, πc(Q)) in Ai+1. For all q ∈ Q of level
less than c we have from Bi that w ∈ Vν(q). For q of level c and c + 1 we have
w ∈ Vν(πc(q)) from Vν(p′, ϕ′, c) = Vν(p′, ϕ′, c + 1) for all p′ and ϕ′. Hence we
have a transition witnessing completeness, as required. �

7. Termination and Correctness of Denotation(χ, AV , P)

Termination and valuation soundness and completeness for the called sub-
routines are given in Lemma 5.4, Lemma 6.3 and Lemma 6.4.

Theorem 7.1. Let (A, I) = Denotation(χ, AV , P) where AV describes a valu-
ation V . The states I of A give the denotation JχKP

V .

Proof. Observe that AV is automatically V -sound and -complete. There
are two cases when χ is not x̂ or Z. Either I = { (p, Z, 1) | p ∈ P } when
χ = σZ.ϕ(Z) for σ ∈ {µ, ν}, or I = { (p, χ, 1) | p ∈ P } otherwise. In both
cases, from Lemma 6.3 with Lemma 6.1 and Lemma 6.4 with Lemma 6.2 we
have the theorem as required. �

29

8. Application to Parity Games

We have described a new algorithm for computing directly the denotation of
a modal µ-calculus formula χ over a pushdown system. This is an extension of a
parity games algorithm presented at Concur [5]. The parity games algorithm
takes advantage of the following modal µ-calculus description — appearing in
Walukiewicz’ 1996 paper [6]3 — of Élöıse’s winning regions of a pushdown parity
game G.

WE = JµZ1.νZ2. . . . µZm−1.νZm.ϕE(Z1, . . . , Zm)KGV

where m is the maximum parity (assumed even), V is a valuation of the vari-
ables4, and

ϕE(Z1, . . . , Zm) :=



E ⇒
∧

c∈{1,...,m}

(c ⇒ ♦Zc)



 ∧



¬E ⇒
∧

c∈{1,...,m}

(c ⇒ �Zc)





where E is an atomic proposition asserting the current configuration is Élöıse’s
and, for 1 ≤ c ≤ m, c asserts that the priority of the current control state is c.

Hence, we obtain an algorithm for computing Élöıse’s winning regions of
a pushdown parity game as a corollary of our main result. However, a naive
application of the algorithm presented here will introduce many extra interme-
diate states in computing ϕE . The algorithm presented in Concur can be seen
as an optimised version of the modal µ-calculus algorithm for the special case
of parity games. Conversely, our direct algorithm for modal µ-calculus can be
expected to require fewer states than a reduction to parity games followed by
an application of the parity games algorithm. However, it is possible that these
additional states do not have a significant effect on performance (they may be
effectively ignored during the computation). Hence, we show experimentally in
the next section that each algorithm outperforms the other on the tasks they
are designed for.

To obtain the parity games algorithm presented at Concur we compute the
fixed points as presented in Section 3. However, we replace the computation of
ϕE(Z1, . . . , Zm) with the algorithm in Procedure 10 where Ω : P− > {1, . . . , m}
assigns colours to control states and Eloise(p) holds whenever Élöıse owns p and
analogously for Abelard(p). In essence, Procedure 10 simply evaluates �ZΩ(p)

on all states p owned by Abelard, and ♦ZΩ(p) when the state is owned by

Élöıse. The required correctness and monotonicity proofs for Procedure 10 are
straightforward and omitted.

9. Experimental Results

We constructed a prototypical explicit state implementation of the algorithm
described here for computing the denotation of a modal µ-calculus formula

3Equivalent characterisations are presented by, e.g., Arnold and Niwinski [1]
4The valuation is initially empty since the formula has no free variables.

30

Procedure 10 PhiE(A, ϕ1, c, P)

Let (Q1, Σ, ∆1, ,F1) = A
and Ik = QZk

for all 1 ≤ k ≤ m in
A′ = (Q1 ∪ I, Σ, ∆1 ∪ ∆′, ,F1)
where I = { (p, ϕE , c) | p ∈ P } and

∆′ =





((p, ϕE , c), a, Q)

∣∣∣∣∣∣∣

Eloise(p)∧
(p′, w) ∈ Next(p, a)∧

IΩ(p)(p
′)

w
−−→
∆1

Q





∪






((p, ϕE , c), a, Q)

∣∣∣∣∣∣∣∣∣∣

Abelard(p)∧
Next(p, a) = {(p1, w1), . . . , (pn, wn)}∧

∧
1≤j≤n

(
IΩ(p)(pj)

wj

−−→
∆1

Qj

)
∧

Q = Q1 ∪ · · · ∪ Qn






∪

{ ((p, ϕE , c), a, {q∗}) | Abelard(p) ∧ Next(p, a) = ∅ ∧ a 6=⊥ }∪{ (
(p, ϕE , c),⊥,

{
qε
f

})
| Abelard(p) ∧ Next(p,⊥) = ∅

}

return (A′, I)

for a given PDS. We have also implemented the winning regions construction
presented at Concur [5]. Both algorithms are implemented in OCaml.

We compared the two algorithms on randomly generated problems. We gen-
erated 1352 pairs of PDS and modal µ-calculus formulas and compared the deno-
tation approach with the game approach for evaluating the formula. Similarly,
we generated 1391 pushdown parity games and compared the two approaches
for computing Élöıse’s winning region of the game.

Each PDS was of size n, ranging from 5 to 150. Each generated PDS had n
states and n characters. The number of transitions ranged between n2 and 2n2

and were, with equal probability, of the form p a → p′ w where the length of w
was either 0, 1 or 2. Each modal µ-calculus formula had a maximum connective
depth of 5, a minimum fixed point depth of 2, lengths between 6 and 23 and up
to 10 propositions, with each proposition having a 10% probability of holding
at a given pair of control state and top of stack character. Furthermore, we
insisted that each bound variable occurred within at least one � or ♦ operator.
Each game had either 2 or 3 colours, and each control state had an equal chance
of belonging to Élöıse or Abelard.

We ran the experiments on a 1GHz AMD Dual Core with 4Gb of RAM.
A timeout of 10 minutes was set. When beginning with a modal µ-calculus
instance, there were 184 instances where both algorithms failed, 41 instances
where the denotation approach failed only, and 49 where only the game approach
failed. When beginning with a parity game, the game approach completed in
all cases, but the denotation approach failed 184 times. In the cases where both
approaches succeeded, we compared the performance both in terms of runtime
and the maximum number of transitions of the multi-automaton at any point
during the computation. Both metrics were used because the runtime may

31

Denotation
Time

Denotation
Transitions

Game
Time

Game
Transitions

−
20

0
−

10
0

0
10

0
20

0

Figure 15: The percentage difference in the performance of the two algorithms for computing
the denotation of a formula and the winning region of a game, both in terms of time and
maximum number of transitions. A negative value indicates that the denotation approach
was superior, and a positive value favours the game approach. The label indicates whether
the problem instance was a modal µ-calculus formula, or a parity game. Each violin plot
compares both approaches for the stated problem and performance metric.

be sensitive to particular implementation details such as data structures. We
computed the percentage differences in the figures as follows, where µ represents
the value for the denotation approach, and g the value for the game approach,

100 ×
µ − g

(µ + g)/2
.

That is, the difference is given as a percentage of the average of the two values.
Since we did not take the absolute difference, a negative value indicates that the
denotation value was the lowest (best), and a positive value vice versa. Note
that, using this approach, the maximum percentage difference is ±200%.

We then analysed and plotted the data using the statistical package R. Vio-
lin plots of the data are shown in Figure 15. The width of a violin plot indicates
the (relative) number of data points for the appropriate percentage difference.
Hence, we can immediately see that, in general, the denotation approach outper-

32

formed the game approach for computing the denotation of a modal µ-calculus
formula, whilst the game approach works best for constructing the winning re-
gion of a parity game. When computing the denotation of a formula, the mean
percentage time difference was -96 (with 95% confidence interval [-100,-91]) and
the transition difference was -71 (C.I. [-73,-69]). When computing the winning
region of a parity game, the mean percentage time difference was 182 (C.I.
[181,182]) and the transition difference was 175 (C.I. [175,175]). All results are
rounded to zero decimal places.

The spread of the differences is tightest when constructing the winning region
of a parity game. This is likely to be because both the game approach and the de-
notation approach evaluate the formula µZ1.νZ2. . . . µZm−1.νZm.ϕE(Z1, . . . , Zm).
However, whilst the game approach optimises the computation of ϕE(Z1, . . . , Zm)
into one step, the denotation approach computes each sub-formula in turn.
Hence, a predictable slow down is to be expected.

When building the denotation of a modal µ-calculus formula, although the
direct denotation approach did outperform the game approach in most cases,
it did not do so as reliably. We expect that this is because the structure of a
formula can vary a lot more than the structure of a game. Furthermore, the
translation from formula to game may have the effect of optimising the compu-
tation in two ways. Firstly, identical sub-formulas will be identified, avoiding
repeated computation. Secondly, if, for example, a formula contains two nested
fixed points of the same kind (that is, the fixed points do not alternate), then
the resulting game will have one priority representing both fixed points. Hence,
only a single fixed point iteration will be required. At present, the denotation
approach will perform two nested iterations, one for each fixed point. Both of
these observations suggest possibilities for future optimisation.

10. Conclusion and Future Work

We have presented a direct algorithm for computing the denotation of a
modal µ-calculus formula over a given pushdown system. This generalises pre-
vious work presented in Concur 2009 which gives an algorithm for computing
the winning regions of a pushdown parity game [5]. Although the two problems
are inter-reducible, we have shown experimentally that each algorithm is bet-
ter at solving the problem for which it was designed. Hence the two algorithms
complement each other. Conditions such as fairness that are naturally expressed
as parity conditions can be evaluated most effectively with the parity games al-
gorithm, whilst general modal µ-calculus properties are better evaluated using
the denotation approach.

In the case of parity games, we would like to be able to compute, in addition
to the winning regions, the winning strategies of a given game. Analogously,
when computing the denotation of a formula, we would also like to be able to
generate proof trees. These are pressing avenues of future work.

The challenge is to apply our implementation to real world examples. A
symbolic implementation would be desirable, but it is unclear how to combine
a symbolic representation of the pushdown system with the use of alternating

33

multi-automata. A complementary approach is to use an abstraction-refinement
loop to minimise the size of the pushdown systems.

[1] A. Arnold and D. Niwiński. Rudiments of µ-Calculus. Elsevier, Amsterdam,
The Netherlands, 2001.

[2] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown
automata: Application to model-checking. In International Conference on
Concurrency Theory, pages 135–150, 1997.

[3] A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to model
checking pushdown systems. In Proc. 2nd Int. Workshop on Verification of
Infinite State Systems (INFINITY’97), Bologna, Italy, July 11–12, 1997,
volume 9 of Electronic Notes in Theor. Comp. Sci. Elsevier, 1997.

[4] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determi-
nacy. In SFCS ’91: Proceedings of the 32nd annual symposium on Foun-
dations of computer science, pages 368–377, Washington, DC, USA, 1991.
IEEE Computer Society.

[5] M. Hague and C.-H. L. Ong. Winning regions of pushdown parity games:
A saturation method. In CONCUR, 2009. To appear.

[6] I. Walukiewicz. Pushdown processes: Games and model checking. In Ra-
jeev Alur and Thomas A. Henzinger, editors, Proceedings of the Eighth In-
ternational Conference on Computer Aided Verification CAV, volume 1102,
pages 62–74, New Brunswick, NJ, USA, / 1996. Springer Verlag.

[7] J. C. Bradfield and C. P. Stirling. Modal logics and mu-calculi: An intro-
duction. In Handbook of Process Algebra, pages 293–330, 2001.

[8] J. Esparza, A. Kučera, and S. Schwoon. Model-checking LTL with regular
valuations for pushdown systems. In Proc. of TACS 2001, number 2215 in
Lecture Notes in Computer Science, pages 306–339, 2001.

[9] K. Etessami. Analysis of recursive game graphs using data flow equations.
In VMCAI, pages 282–296, 2004.

[10] N. D. Jones and S. S. Muchnick. Even simple programs are hard to analyze.
In POPL ’75: Proceedings of the 2nd ACM SIGACT-SIGPLAN symposium
on Principles of programming languages, pages 106–118, New York, NY,
USA, 1975. ACM.

[11] N. Piterman and M. Y. Vardi. Global model-checking of infinite-state sys-
tems. In CAV, pages 387–400, 2004.

[12] O. Burkart and B. Steffen. Composition, decomposition and model checking
of pushdown processes. Nordic J. of Computing, 2(2):89–125, 1995.

[13] O. Burkart and B. Steffen. Model checking the full modal mu-calculus for
infinite sequential processes. Theor. Comput. Sci., 221(1-2):251–270, 1999.

34

[14] O. Serre. Note on winning positions on pushdown games with ω-regular
conditions. Information Processing Letters, 85:285–291, 2003.

[15] R. V. Book and F. Otto. String-Rewriting Systems. Springer-Verlag, 1993.

[16] S. Schwoon. Model-checking Pushdown Systems. PhD thesis, Technical
University of Munich, 2002.

[17] T. Ball and S. K. Rajamani. Bebop: A symbolic model checker for boolean
programs. In Proceedings of the 7th International SPIN Workshop on SPIN
Model Checking and Software Verification, pages 113–130, London, UK,
2000. Springer-Verlag.

[18] T. Ball and S. K. Rajamani. The SLAM project: Debugging system soft-
ware via static analysis. In Conference Record of POPL’02: The 29th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 1–3, Portland, Oregon, January 16–18, 2002.

[19] T. Cachat. Symbolic strategy synthesis for games on pushdown graphs.
In ICALP ’02: Proceedings of the 29th International Colloquium on Au-
tomata, Languages and Programming, pages 704–715, London, UK, 2002.
Springer-Verlag.

[20] T. Cachat. Games on Pushdown Graphs and Extensions. PhD thesis,
RWTH Aachen, 2003.

[21] T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown systems
and their application to interprocedural dataflow analysis. Sci. Comput.
Program., 58(1-2):206–263, 2005.

35

