
Generating Concurrency Checks Automatically

Jonathan Hoyland and Matthew Hague

Royal Holloway, University of London

Abstract

This article introduces ATAB, a tool that automatically generates pairwise reachability checks for

action trees. Action trees can be used to study the behaviour of real-world concurrent programs. ATAB

encodes pairwise reachability checks into alternating tree automata (ATA) that determine whether an

action tree has a schedule where any pair of given points in the program are simultaneously reachable.

Because the pairwise reachability problem is undecidable in general ATAB operates under a restricted

form of lock-based concurrency. ATAB produces ATA that are more compact and more efficiently

checkable than those that have been previously used. The process is entirely automated, which simplifies

the process of encoding checks for more complex action trees. The ATA produced are easier to scale

to large numbers of locks than previous constructions.

1 Introduction

Analysing programs can give safety guarantees about their behaviour. Programs can be repre-
sented by action trees. An action tree represents all the actions taken by a program over the
course of its execution as nodes in a tree. Branches in the tree represent different threads in
a multi-threaded program. By analysing the action tree of a program it is possible to derive
properties of the program.

Action trees have been used to analyse software in a number of contexts. Yasukata et
al. [5] analyse a number of Java-like programs using action trees constructed with higher-
order recursion schemes (HORS). Nordhoff et al. [3] use action trees to analyse concurrency
properties of Java programs, and extend an eclipse plug-in to provide more accurate race-
condition detection. The approach is effective because it can analyse very complex programs
without having to account for implementation details, examining only the observable behaviour.

If the action tree of a program can be generated by a fixed set of rules then more properties
can be determined because of the additional structure in the tree. The more expressive the
method used to generate the action tree the more programs can be captured, and thus the more
programs can be analysed. This fact, however, is held in tension with the fact that the more
expressive the method used to generate the action tree the fewer properties can be decided.
Trees with simple constructions are easier to analyse than those with intricate constructions.

In this paper we consider methods for constructing automata that can determine properties
of action trees. Specifically we consider a variant of the pairwise reachability problem: given
an action tree representing a multi-threaded program, and a list of points in the program,
determine whether there is some interleaving of actions of the program such that there are two
threads at a listed point at the same time. Although this problem is undecidable under general
concurrency, it is decidable (and reasonably expressive) for a restricted subset of concurrency
called join lock sensitive (JLS) concurrency. Our construction process is entirely automated,
meaning that even for complex trees it is possible to rapidly construct automata that determine
the pairwise reachability of the tree.

In Section 6 these automata are used to evaluate action trees constructed using HORS,
demonstrating that the automata can be used in practice to determine properties of HORS.
We demonstrate that the automata are substantially more compact, efficient, and extensible



Generating Concurrency Checks Automatically Hoyland and Hague

than those previously used. Furthermore, because the construction is entirely automated, the
process is more robust and practical for large examples.

As discussed later JLS concurrency captures many real world programs because many lan-
guages including Java implement JLS concurrency by default. Furthermore because model-
checking is linear in the size of the program for programs of fixed order, being able to check
even small benchmarks in a matter of seconds suggests that real world programs with low order
should be checkable.

Alternating tree automata (ATA) are an extension of non-deterministic tree automata
(NDTA) that can determine many properties of trees including pairwise reachability. Pairwise
reachability can be used to determine any number of specific properties through the placement
of labels through the tree. For example it is possible to determine if two threads access the
same resource simultaneously, or whether two threads become out of step with each other.

ATAB (ATA Builder) is a tool that takes a pairwise reachability problem, and some proper-
ties of the action tree and produces an ATA that rejects the action tree if it is pairwise reachable.
ATAB translates the pairwise reachability check and the JLS restrictions into a single ATA.
Because the ATA varies based on the number of locks and labels in the action tree automating
this process makes the onerous and delicate task of encoding the JLS rules and reachability
checks for each new action tree much easier.

ATA have previously been constructed to solve the pairwise reachability problem [5]. This
paper’s contribution is the automation of this construction, along with an improvement to the
efficiency of the resulting automata.

Section 2 defines action trees and action tree forests. Section 3 defines the restrictions
needed to make the pairwise reachability problem decidable. Section 4 introduces alternating
tree automaton (ATA), and Section 5 introduces ATAB. In Section 6 the automata constructed
by ATAB are compared to those used by Yasukata et al who used ATA to determine the pairwise
reachability of HORS using HORSAT [1]. The automata produced by ATAB substantially
outperform those used by Yasukata, demonstrating their efficacy.

2 Action Trees

Figure 1: An unschedu-
alable action tree. The
child process cannot ac-
quire Lock1 until after the
join, but the join cannot
complete until after the
child process has termi-
nated.

〈Acq1〉

〈sp〉

〈jo〉

〈Rel1〉

〈$〉

〈Acq1〉

〈Rel1〉

〈$〉

Action trees are a way of expressing the ac-
tions taken by a concurrent program. Each
branch of the action tree represents a new
thread being formed. A non-branching action
tree could be considered a trace of a single
threaded program.

Action trees are a useful mechanism for
analysing programs because they formalise
what the program actually does into a form
that is easy to reason about. They provide a
way to describe any program (written in an
arbitrary language) in a form that is easy to
analyse. Action trees can be constructed and described in a wide variety of ways, but for the
purposes of this document we do not consider their construction until Section 6.

Action trees have four concurrency operators: the 〈sp〉 operator, which spawns a new thread;
the 〈jo〉 operator, which halts a thread until all of it’s children have terminated; and the 〈acqx〉
and 〈relx〉 operators, which acquire and release locks respectively.

2



Generating Concurrency Checks Automatically Hoyland and Hague

Definition 1 (Action Tree). Action trees are formally defined by the following regular recursive
language:

γ ::= ⊥ | 〈$〉 | ` | 〈jo〉 γ | 〈sp〉 γ1 γ2 | 〈Acqi〉 γ | 〈Reqi〉 γ

Here the ` symbol is the set of all program labels which are used to determine pairwise
reachability. 〈jo〉 γ is the join operation, with γ being the action performed after all child
processes have terminated. The spawn operator has two arguments, the continuation of the
root process, and the spawned process. The acquire and release symbols are drawn from the
set {Acqi, Reli | i ∈ [1..k]}, where k is the number of locks. The dollar symbol signifies a thread
has terminated. The ⊥ symbol is used to signify undefined behaviour.

We define the descendant relation in the usual way: n1 ≺ n2 if the path (starting from the
root node) to n1 is a prefix of the path to n2.

Definition 2 (Action sequence). An action sequence is a sequence of nodes in the tree,
n1, n2, . . . , such that

∀i, j. ni 6= nj (1)

∀i, j. ni ≺ nj ⇒ i ≤ j (2)

and ∀i ∀n ∈ Tree. n ≺ ni ⇒ ∃j. nj = n (3)

Line 1 ensures nodes are unique. Line 2 ensures actions occur in the correct order. Line 3
ensures that a node can only appear in the action sequence if all its ancestors appear in the
sequence also.

An action sequence is said to respect joins if for each thread that has a join, it performs no
other actions until all threads it has spawned terminate. An action sequence is said to respect
locks if (i) locks are released before they are reacquired, and (ii) locks are acquired before they
can be released.

An action sequence is considered well-formed if it respects locks and joins. An action tree
is considered well-formed if it has a well-formed action sequence and the right-hand branch of
every spawn, representing a new thread, has a well-formed action sequence.

Definition 3 (Schedulability). An action tree is schedulable if there exists some well-formed
action sequence that either includes every node in the tree, or is infinitely long i.e. either all
threads terminate, or there is always at least one thread that can act1.

It is easy to see that an action tree can be well-formed but unschedulable, for example the
tree in Figure 1.

We say nodes ni and nj are simultaneously reachable if nj occurs after ni in an action
sequence, but before any of ni’s children. That is, given a well-formed action sequence, S :=
[n1, n2, . . . ], a node, ni ∈ S, with children, Childreni, and a second node, nj ∈ S such that
i < j, we say ni and nj are simultaneously reachable if ∀nk ∈ Childreni∩S. j < k. Solving the
pairwise reachability problem involves checking there is some schedule such that a pair of labels
is reached simultaneously. However the various checks that together determine schedulability
do so by checking that the two relevant threads in the tree reach their final node simultaneously.

To examine properties of threads whilst they are still running we mark the points of interest
with labels. By terminating threads at labels the checks detect whether a run has a schedule
that reaches those labelled, now final, states simultaneously. However because labels could
occur at multiple points in a single thread and furthermore the behaviour of a thread after a

1Unlike deadlock freedom, this only requires one action sequence to not deadlock, rather than all action
sequences.

3



Generating Concurrency Checks Automatically Hoyland and Hague

label may affect the reachability of other labels we must analyse each pair of labels individually.
To do this, labels are treated as non-deterministic termination.

A forest of action trees is created such that for each pair of labels, there is a tree that
terminates when they are reached, and ignores all other labels. More specifically, for each pair
of labels, l1, l2, such that the path to l1 is not a prefix of the path to l2 and vice versa, a copy of
the action tree is created where the threads containing the labels are truncated at the label, but
all other threads remain unchanged. Such a tree is detected as pairwise reachable if there exists
some schedule such that the two labels are simultaneously reachable. This forest of trees is then
joined into one larger tree by means of a special 〈br〉 operator. A second forest is then grown by
creating a copy of the first forest for each node labelled by a single-child concurrency operator,
i.e. Acq,Rel, or Jo. For each copy the node in question is replaced with a (terminating) ⊥.
This larger forest is then joined into one larger tree, again with the 〈br〉 operator 2. This second
forest is used to aid in the evaluation of infinite branches, as discussed in Section 4. The larger
tree is then evaluated by taking the conjunction of all the pairwise checks for each action tree,
thus rejecting the entire tree if any pair of labels is reachable.

As expanded later, ATAB constructs automata that take a (restricted) forest of well-formed
action trees, and check whether any of the action trees has a schedule that that is pairwise
reachable.

To illustrate this process, consider an example from Gawlitza et al.’s paper.

Example 1 (From [2, Example 1]). Consider a program which spawns two threads and then
performs a join. Each of the spawned threads acquires a lock on a printer, prints something
and terminates. The root thread then prints something and terminates, without acquiring the
printer lock.

The action tree for this is example is shown in Figure 2. To determine whether the printer
could ever be accessed by two threads simultaneously, place a label at each instance of the
〈print〉 action. Now construct a forest that has an action tree for each pair of labels3, joined
into a tree by 〈br〉 as in Figure 3. If any of these subtrees is pairwise reachable then the printer
can be accessed simultaneously by two different threads, causing a clash.

3 Concurrency

JLS concurrency is a restriction on full concurrency that allows for dynamic thread creation and
termination, and nested use of locks. Informally, nested locking is where a thread must always
release its most recently acquired lock before any others it may hold. This pattern of lock
acquisitions and releases is called a well-bracketing, so called because it describes the pattern
formed by brackets in their usual ordering, e.g. ([ ]) is well-bracketed, but ([ )] is not. Dynamic
thread creation and termination consists of spawn operations, which create a new child thread4,
and join operations, which stall a thread until all of its children have terminated.

This particular pattern of concurrency is notable because Gawlitza et al. [2] proved that
the schedulability of JLS action trees is decidable with a regular tree automaton, which is not
true of general action trees. Gawlitza et al. used this to decide the pairwise reachability of JLS
dynamic push-down networks (DPNs). This work was latter extended by Yasukata et al. [5]
to decide the pairwise reachability of JLS HORS. JLS concurrency captures many real world

2For a more detailed explanation of this process see Appendix D.
3The full construction would also have extra branches for each single-child concurrency operator, but as this

tree has no infinite threads we can leave them out for reasons of space safely.
4Locks held by a parent thread do not pass to the child, they remain with the parent thread.

4



Generating Concurrency Checks Automatically Hoyland and Hague

〈br〉

〈sp〉

〈jo〉

〈print〉

〈$〉

〈sp〉

〈acq〉

〈label〉

〈acq〉

〈label〉

〈br〉

〈sp〉

〈jo〉

〈label〉

〈sp〉

〈acq〉

〈label〉

〈acq〉

〈print〉

〈rel〉

〈$〉

〈sp〉

〈jo〉

〈label〉

〈sp〉

〈acq〉

〈print〉

〈rel〉

〈$〉

〈acq〉

〈label〉

Figure 3: An action forest

programs, as nested locking is the default in common languages such as Java. For any type of
JLS tree constructor, if it is possible to decide whether the trees generated are an element of
a regular language then it is possible to decide the pairwise reachability property of such tree
constructors.

Definition 4 (Pairwise reachability). Given an action sequence, S, and a set of labels, Lab,
S is pairwise reachable if it has two threads, u1, u2, that terminate in labels, l1, l2 ∈ Lab, such
that u1 6= u2. The pairwise reachability problem is the problem of deciding, given an action tree
and a set of labels, whether there is a schedulable action sequence with two such paths.

Lemma 1 (Corollary of [5, Theorem 2]). The pairwise reachability of a JLS action tree can be
determined with a regular language.

Proof. JLS schedulability can be expressed as a regular tree language [2]. Given an action tree,
and two labels, l1 and l2, it is possible to determine using a regular tree automaton if the two
labels are simultaneously reachable. As regular tree languages are closed under intersection,
the intersection of an automaton determining JLS schedulability with automata determining
reachability for each pair of labels yields another regular tree automaton. Thus the pairwise
reachability of a JLS action tree can be determined with a regular language.

An action tree is considered join-lock schedulable if there is at least one ordering of actions
that can be run to completion that respects (nested) locks and joins. The set of programs
that respect locks and joins is not simply the intersection of programs that respect locks and
those that respect joins. A program may be lock-schedulable (i.e. have a run that satisfies the
nested locking properties) and be join-schedulable (i.e. have a run that satisfies the spawn and
join rules) but have no schedule that satisfies both properties simultaneously. Furthermore an
analysis not sensitive to joins may be unable to find a lock-schedule, even if one exists, because
the schedule relies on the communication that occurs via the join. This is equally true of an
analysis not sensitive to locks.

Let us reconsider the printer example, Example 1. A join insensitive analysis would report
a possible violation between the root thread and a child thread, being unaware that the root
thread must hang until all its children have terminated. A lock insensitive analysis would also
spuriously report violations, finding a possible violation between the two child threads.

5



Generating Concurrency Checks Automatically Hoyland and Hague

〈sp〉

〈jo〉

〈print〉

〈$〉

〈sp〉

〈acq〉

〈print〉

〈rel〉

〈$〉

〈acq〉

〈print〉

〈rel〉

〈$〉

Figure 2: An ac-
tion tree that ac-
cesses a printer.

We now formally define some of the concepts from the preceeding
paragraph. A locking sequence is a thread eliding all non-locking ac-
tions. Nested locking is when a locking sequence, given a finite number
of locks {Lock1, . . . , Lockk} with the corresponding release and acquires
{Acqi, Reli | i ∈ [1..k]}, is a prefix of the grammar5:

L→ ε | L L | Acq1 L Rel1 | · · · | Acqk L Relk

The locking sequence is also required to respect locks. An action sequence
whose locking sequence has both these properties is referred to as a lock-
well-formed action sequence. A process is considered join-lock-well-formed
if (i) it is lock-well-formed, (ii) there are no actions performed after the
termination action, $, and (iii) if a branch terminates in the $ action then
the corresponding locking sequence is ∈ L, i.e. all locks acquired during
the sequence are released before termination. A join-lock-tree is join-lock
well-formed if all branches are join-lock well-formed. This is a restriction on well-formed action
trees, as defined earlier. ATAB constructs automata that operate over forests of join-lock-well-
formed action trees, and determine if there is an action tree in the forest that has a pairwise
reachable schedule.

Most model checking requirements are expressed in terms of safety properties, rejecting
models for which there exists a path to a state that violates some property. Because regular
tree automata are closed under intersection and complementation, building an automaton that
checks the pairwise reachability of JLS action trees can be achieved by taking a JLS schedu-
lability automaton, Lsched, and a pairwise reachability automaton, L1, and constructing the
automaton ¬(Lsched∩¬L1). This automaton rejects action trees with a schedulable run that vi-
olates L1. In practice we use automata that take action forests, and simply take the conjunction
of the results of the respective action trees.

4 Alternating Tree Automata

To determine whether a tree holds a property ϕ an automaton can be used. There are any
number of different automaton constructions, each with advantages and disadvantages. Alter-
nating tree automata (ATA) are an extension of non-deterministic tree automata (NDTA). ATA
extend NDTA by allowing transitions to contain conjunctions as well as disjunctions. Whereas
NDTA have transitions of the form q0 a→ q1 ∨ q2 ∨ q3, i.e. a transition evaluates a disjunction
of states; ATA have transitions of the form q0 a → q1 ∧ (q2 ∨ q3), i.e. a transition evaluates a
boolean formula over states.

Although regular tree automata, NDTA, and ATA are equi-expressive, this extension is
useful because ATA can have an exponentially more compact representation than NDTA. The
automata needed to decide pairwise reachability can have dozens of states when expressed as
ATA, thus using ATA is more efficient.

Formally an ATA is a four-tuple A := 〈Σ, Q, δ, q1〉 where Σ is a ranked alphabet of symbols
and their arities, Q is a finite set of states, q1 ∈ Q is designated the start state, and δ : Q×Σ→
B+({1..m} ×Q) is a transition function where m is the arity of x ∈ Σ and B+(X) is the set of
boolean formulas over X.

A run of an ATA, A, on a tree, t, is informally defined as a traversal of t, where for each
terminal in t there is some rule in δ that moves the current state of A to some boolean formula,

5Due to the lock-well-formed-ness requirement this grammar is actually a regular language, as it has a finite
nesting depth.

6



Generating Concurrency Checks Automatically Hoyland and Hague

that is evaluated on the terminal’s children. A run is accepting if it meets the acceptance
criteria of the ATA.

An ATA can have a number of different acceptance conditions, but in this document the
trivial Büchi acceptance condition is used. Because we are using ATA, and thus are evaluating
boolean formulae, a run is accepting if the initial state evaluates to true. A state evaluates to
true if either the boolean formula of the rule triggered by the next element of the input tree is
true, or the state is visited infinitely often whilst traversing the input tree. This is equivalent
to a Büchi condition where all states are accepting.

For our JLS checks infinite trees could give false positives because all infinite runs are
accepted. We prevent this by checking forests of finite prefixes of the tree, as constructed in
Section 2. Because we only examine safety properties, i.e. properties that can be determined
after a finite prefix, the forest of prefixes is guaranteed to contain a tree that correctly decides
the property.

ATA can easily be composed together to check multiple properties; solving the pairwise
reachability problem efficiently requires this. To solve the pairwise reachability problem, one
must check that the labels are simultaneously reachable, and that the program is schedulable.
ATAB is the only fully automated tool for constructing these automata, and produces more
compact automata for large numbers of locks than those used by Yasukata et al. [5]

5 ATAB

ATAB is a tool that takes as input (i) the number of locks, (ii) the number of labels, and
(iii) and a list of pairs of labels that are to be checked.

ATAB outputs an ATA that

• assumes that the tree to consume is a forest of join-lock-well-formed action trees.

• checks that no pair of labels given in the input is pairwise reachable.

The tool can generate the necessary checks depending on the number of labels and locks.
Schedulability is determined using a variant of the algorithm presented by Gawlitza et al. [2].
There are three properties that together determine whether a tree has a schedule: (i) double final
acquisition, whether a lock is acquired and never released by more than one thread; (ii) child
termination, whether all children of thread terminate in the case of a join; and (iii) deadlock
detection, whether there is some condition such that no thread can advance. These properties,
and the automata that decide them are discussed at length in Appendices A and C, and a
sample automaton is included in Appendix B. These automata are included for completeness
but do not differ substantially from those used by Yasukata et al [5].

If all three properties are unsatisfied then a schedule exists for the actions in the tree. This
simple disjunction works because double final acquisition and child termination are properties
of the action tree rather than an action sequence. That is to say that if any (join-lock-well-
formed) action sequence of an action tree has one of these properties then all action sequences
do. Deadlock detection, on the other hand, is a property that can be true on some schedules
of an action tree, but false on others. Consider an action tree for which half of its schedules
have a deadlock and the other half have a double final acquistion. Such a tree would be found
safe, even though it is not detected as unschedulable by the deadlock detection automaton,
see Subsection 5.1, because if half the schedules have a double final acquisition then all the
schedules do, and thus all the action sequences are found to be unschedulable by the double
final acquisition automaton. Pairwise reachability is also a property of the action tree. Thus
the full ATA is formed of the disjunction of the three properties disjuncted with the pairwise

7



Generating Concurrency Checks Automatically Hoyland and Hague

reachability property, i.e. a forest of action trees is safe if for each action tree (i) all sequences
deadlock, (ii) any sequence has (and thus all sequences have) a double final acquisition, (iii) any
sequence has (and thus all sequences have) non-terminating children, or (iv) any sequence is
not (and thus all sequences are not) pairwise reachable.

5.1 Deadlock Detection

Deadlock detection is the most complex of the three schedulability properties to verify, because
deadlock can happen in two different ways. The first is where a child thread is waiting for a
lock to be released before terminating, but the parent thread will not release the lock until
the child thread terminates. The second case is if there is a cycle of lock acquisitions, where a
group of threads are all waiting on another to continue before continuing themselves. Because
we are concerned with schedulablility, we only consider deadlocking trees unschedulable if all
schedules deadlock. However, it is worth noting that there may be action trees that have a
deadlocking schedule that are not unschedulable6.

5.1.1 Cycle Detection

Detecting cycles is the most complex property determined by the schedulability automaton.
The check is built from a number of instances of the widget shown in Fig 4. Fig 4 determines if
Lockx depends on Locky. Lockx depends on Locky if Lockx directly depends on Locky or Lockx
indirectly depends on Locky. Lockx directly depends on Locky if Locky is acquired after Lockx
is finally acquired. Lockx indirectly depends on Locky if Lockx depends directly on Lockz and
Lockz depends on Locky. To prevent infinite search paths it is important that direct dependence
checks are performed before indirect dependence checks. From this dependency check a cycle
check can be built. There exists a cyclic dependency if there is a lock that depends on itself.

The automaton in Fig 4 detects whether Lockx depends on Locky. In the diagram, hollow
boxes are used to indicate disjunction, and filled boxes to indicate conjunction. Starting at
state qlockx→locky

the automaton loops until Lockx is acquired. When Lockx is acquired the
automaton guesses whether the lock will ever be released. If it guesses that it will not it
continues down the action tree and confirms that the lock is never released, aborting if it is
(qfa). If the lock is never released, i.e. it is finally acquired, the automaton then guesses
whether Lockx depends on Locky directly or indirectly. If it guesses the dependency is direct,
it checks whether Locky is acquired at some point further down the tree (qacqy ). If it is not
acquired then the automaton aborts. If the automaton instead guesses that the dependency
is indirect it guesses which lock is next in the chain. In Fig 4 only Lockz is considered, for
reasons of space. Assuming that Lockz has been guessed, the automaton runs two checks on
the remainder of the tree. First it checks that Lockz is indeed acquired at some future point,
aborting if not (qacqz ). Second it checks that Lockz is dependent on Locky (qlockz→locky

). If
both these checks are positive, then Lockx depends on Locky.

5.2 Example

Consider again the printer example, Example 1. Consider each of the three action trees in the
action forest, shown in Fig 3, individually. The left-most is unschedulable, as there is a double
final acquisition, both of the spawned threads acquire the lock and never release it. The central

6For example the tree
sp (acq1(acq2(rel2(rel1 $))))(acq2(acq1(rel1(rel2 $)))) can deadlock, but would not be detected as unschedula-
ble, as there is a schedule that does not deadlock.

8



Generating Concurrency Checks Automatically Hoyland and Hague

action tree has a deadlock, as the central thread never terminates, and thus the main thread
cannot proceed beyond the join, resulting in deadlock. The right-most action tree is analogous
to the central action tree. Thus none of the action trees is pairwise reachable, and the action
tree forest is safe.

6 Results and Conclusions

qlockx→locky

acqx

qfax

term,
bot, lab

>

relx
⊥

qacqy

acqy

>
qacqz

acqz

>

qlockz→locky

Figure 4: Dependency widget

ATAB can produce ATA for an arbitrary
number of locks. Yasukata’s automata suf-
fer from a lack of pruning impossible runs
early on, and are difficult to scale to a large
number of locks due to the construction of
the cyclic-dependency check. Yasukata’s au-
tomata have direct dependency checks for
each pair of locks, which are used to check for
cycles by manually enumerating every pos-
sible cycle of dependencies at the top level.
ATAB constructs indirect dependency checks
for each pair of locks, and at the top level
simply checks each lock to see if it depends on
itself. Because the indirect dependency check
detects all the possible cyclic paths there are
many fewer checks at the top level. Further-
more, because the dependency check checks
for direct dependency before checking for in-
direct dependency there is much less wasted
computation checking for longer cycles, when
shorter cycles exist.

Yasukata et al. provide a number of benchmarks based on concurrency constructs includ-
ing exceptions, lists, and Java-style “Synchronised” constructs. The benchmarks are described
in detail in Yasukata’s paper [5, pg. 12, 18]. Table 5 compares the speed of checking Ya-
sukata’s ATA against checking those produced by ATAB. The ATA produced by ATAB can
be checked substantially more quickly than those produced by Yasukata. The only check for
which Yasukata’s ATA performs better than the one produced by ATAB is ‘exception wrong’.
On further investigation it transpires that this is because Yasukata’s automaton accidentally
elides the cyclic-dependency check. However, because in this example there is no cycle, the
check appears to pass correctly.

ATAB makes it substantially easier to check HORS for the pairwise reachability property,
and produces better automata than those used by Yasukata. It also makes it easier to construct
automata for higher numbers of locks with a more compact and efficient way of checking for
inter-lock dependencies. The automation of automaton construction also helps prevent mistakes
from slipping in, as they did in Yasukata’s ‘exception wrong’ check.

Although Yasukata shows the problem of model checking JLS HORS is decidable, it is
not an efficient process. The problem is exponential, for an order-k HORS the problem is
k-EXPTIME [4]. This may seem like an impossibly expensive algorithm to run on real-world
examples, however, as Yasukata notes, if the number of locks and the order of the HORS are
fixed then the algorithm is linear in the size of the HORS. This is a very useful result because
it means that even for large programs, if they have relatively few locks, and low order functions

9



Generating Concurrency Checks Automatically Hoyland and Hague

Order # of Locks Yasukata (secs) ATAB (secs)
example 2 1 0.43 0.13
example wrong 2 1 0.38 0.16
exception 3 1 1.14 0.51
exception wrong 3 1 0.09 0.17
list11 4 1 2.36 0.15
list12 4 1 3.66 0.17
sync11 3 2 3.32 1.02
sync12 3 2 4.31 1.27

Figure 5: Benchmarks

then model checking is plausible. Many programs have relatively small requirements in this
regard, thus if it is possible to check toy examples with a given tool, with some effort it should
be possible to analyse any program of that order with the tool.

Further work on automating the construction of ATA that check different properties in-
cluding computation tree logic (CTL) is ongoing. A copy of ATAB is available at https:

//bitbucket.org/jhoyla/ata-builder.

7 Acknowledgments

This work was supported by the Engineering and Physical Sciences Research Council [EP/K035584/1
and EP/K009907/1]

References

[1] C. Broadbent and N. Kobayashi. Saturation-based model checking of higher-order recursion
schemes. In LIPIcs-Leibniz International Proceedings in Informatics, volume 23. Schloss Dagstuhl
LZI, 2013.

[2] T. M. Gawlitza, P. Lammich, M. Müller-Olm, H. Seidl, and A. Wenner. Join-lock-sensitive forward
reachability analysis for concurrent programs with dynamic process creation. In Verification, Model
Checking, and Abstract Interpretation, pages 199–213. Springer, 2011.

[3] B. Nordhoff, M. Müller-Olm, and P. Lammich. Iterable forward reachability analysis of monitor-
dpns. arXiv preprint arXiv:1309.5150, 2013.

[4] C.-H. Ong. On model-checking trees generated by higher-order recursion schemes. In Logic in
Computer Science, 2006 21st Annual IEEE Symposium on, pages 81–90. IEEE, 2006.

[5] K. Yasukata, N. Kobayashi, and K. Matsuda. Pairwise reachability analysis for higher order con-
current programs by higher-order model checking. In CONCUR 2014–Concurrency Theory, pages
312–326. Springer, 2014.

A Widgets

The widgets used to decide the schedulability of an action tree are included here for complete-
ness. The widgets are based on those used by Yasukata et al. in [5].

10

https://bitbucket.org/jhoyla/ata-builder
https://bitbucket.org/jhoyla/ata-builder


Generating Concurrency Checks Automatically Hoyland and Hague

A.1 Pairwise Reachability

To check pairwise reachability the tool generates a widget for each label that checks that no
label terminal appears on more than one branch. Specifically it checks at each spawn whether
both the parent and child threads contain a label. Because labels truncate the remainder of
the thread, if a label can be reached on both branches it can be reached on both branches
simultaneously.

Fig 6 shows a simplified version of the pairwise reachability widget. The widget rejects
trees where the parent and child of a spawn both have a label. When put together with
the schedulability widgets the automata will reject only trees that are both schedulable and
pairwise reachable. In the figure state q1lab is only false when both the parent and child thread
are labeled, and thus only trees with a path with this property are rejected. At a spawn there
are three possible ways for a path to fulfill this property. Either the parent thread will have two
instances of the label, the child thread will have two instances of the label, or both the parent
and child have one instance of the label.

A.2 Double Final Acquisition

q2lab

sp

child

parent child

q1lab

lab

⊥

Figure 6: Pairwise reachability widget

A lock is said to be finally acquired if it
a thread holding the lock terminates with-
out releasing it. If a lock is finally acquired
on two different threads then the tree is un-
schedualable because whichever thread finally
acquires the lock first prevents the second
thread from ever acquiring it.

Fig 7 shows a simplified version of the dou-
ble final acquisition widget. At each spawn
the automata guesses if the lock is finally ac-
quired on both the parent and child thread. If
this is the case the automata accepts, because
the tree is unschedualable. The qr∗ states in-
dicate the lock is released, the qa∗ states that
it has been acquired. The number, e.g. the 2 in qa2lock refers to the number of times the lock
is guessed to have been acquired. Because the ATA is a top-down automaton it cannot know
in advance how many times a lock has been acquired, and thus guesses at each spawn that it
has been finally acquired twice. When a spawn happens whilst in the state qa2lock the child
thread enters the qr2lock state. This is beacause only the parent thread keeps the lock.

A.3 Child Termination

Child termination simply enforces the join primitive. At a spawn, the automata guesses if the
parent thread will contain a join, and if so ensures termination of the child thread. If there is
a join on the parent thread and a label or a ⊥ on the child thread then the automata accepts
because the program is unschedualable.

A.4 Join-Lock Dependence

11



Generating Concurrency Checks Automatically Hoyland and Hague

qr2lock

sp

parent child

qr1lock

qa2lock

sp

parent

child

parent child

qa1lock

$, bot, lab

>

acq

req

acq

req

Figure 7: Double final acquisition widget

qb0

sp

parent child

qbjo

jo

>

qbbot

lab
bot
>

Figure 8: Child termination wid-
get

qba lock

sp

parent

qbkeep
rel

⊥

jo

>

child

qbuse
acq

>

sp

parent

child

parent

parent

qbjo

jo

>

rel

acq

child

qbr lock

Figure 9: Join-lock dependence widget

Detecting a join-lock dependence is relatively
simple. If a thread holding a lock, represented
by state qbalock, is followed by a spawn then
the automaton guesses if there is a join on the
parent thread. If there is a join on the parent
thread before a release, and the child thread
or a child of the child thread uses the lock
in question then the automaton accepts the
tree as unschedualable. When determining if
the childs children use the lock, the child must
have a join, ensuring that its children finish to
ensure the behaviour of the join is respected.
Otherwise a child could terminate leaving a
grandchild thread running, leading the par-
ents join to appear satisfied erroneously.

A.5 The Complete Construc-
tion

The ATA is constructed with a master state
that performs all of the first transtitions of
all the separate subautomata as a function
of unioning the subautomata. The ATA is
formed of the following automata:

• For each pair of labels being checked, a
pairwise reachability automaton.

• For each lock a double final acquisition
automaton

• For each lock a child termination au-
tomaton

12



Generating Concurrency Checks Automatically Hoyland and Hague

• For each lock a join-lock dependence au-
tomaton.

• For each pair of locks a cycle-detection
automaton.

B Sample Alternating Tree Automaton

This is an automaton generated by ATAB that checks whether label1 and label2 are reachable
for a two lock action tree.

q0 acq_1 -> ((1, q1_label1) \/ (1, q1_label2) \/ ((1, qa2_lock1) \/ (1, qb_a_lock1)) \/

((1, qr2_lock2) \/ (1, qb_r_lock2)) \/ (1, qb_0) \/ ((1, q_tca_lock1_lock1) \/ (1,

q_tca_lock2_lock2)) \/ ((1, q_tca_lock1_lock1) \/ ((1, q_fa_lock1) /\ ((1,

q_acq_lock1) \/ ((1, q_acq_lock2) /\ (1, q_tca_lock2_lock1))))) \/ ((1,

q_tca_lock1_lock2) \/ ((1, q_fa_lock1) /\ (1, q_acq_lock2)))).

q0 rel_1 -> ((1, q1_label1) \/ (1, q1_label2) \/ ((1, qr2_lock2) \/ (1, qb_r_lock2)) \/

(1, qb_r_lock1) \/ (1, qb_0) \/ ((1, q_tca_lock1_lock1) \/ (1, q_tca_lock2_lock2))

).

q0 acq_2 -> ((1, q1_label1) \/ (1, q1_label2) \/ ((1, qr2_lock1) \/ (1, qb_r_lock1)) \/

((1, qa2_lock2) \/ (1, qb_a_lock2)) \/ (1, qb_0) \/ ((1, q_tca_lock1_lock1) \/ (1,

q_tca_lock2_lock2)) \/ ((1, q_tca_lock2_lock1) \/ ((1, q_fa_lock2) /\ (1,

q_acq_lock1))) \/ ((1, q_tca_lock2_lock2) \/ ((1, q_fa_lock2) /\ ((1, q_acq_lock2)

\/ ((1, q_acq_lock1) /\ (1, q_tca_lock1_lock2)))))).

q0 rel_2 -> ((1, q1_label1) \/ (1, q1_label2) \/ ((1, qr2_lock1) \/ (1, qb_r_lock1)) \/

(1, qb_r_lock2) \/ (1, qb_0) \/ ((1, q_tca_lock1_lock1) \/ (1, q_tca_lock2_lock2))

).

q0 label_1 -> true.

q0 label_2 -> true.

q0 sp -> ((1, q1_label1) /\ (2, q1_label1) \/ ((1, q1_label2) /\ (2, q1_label2)) \/

((1, qr2_lock1) \/ (2, qr2_lock1) \/ ((1, qr1_lock1) /\ (2, qr1_lock1))) \/ ((1,

qb_r_lock1) \/ (2, qb_r_lock1)) \/ ((1, qr2_lock2) \/ (2, qr2_lock2) \/ ((1,

qr1_lock2) /\ (2, qr1_lock2))) \/ ((1, qb_r_lock2) \/ (2, qb_r_lock2)) \/ ((1, qb_0

) \/ ((2, qb_0) \/ ((1, qb_jo) /\ (2, qb_bot)))) \/ ((1, q_tca_lock1_lock1) \/ (1,

q_tca_lock2_lock2)) \/ ((2, q_tca_lock1_lock1) \/ (2, q_tca_lock2_lock2))).

q0 jo -> ((1, q1_label1) \/ (1, q1_label2) \/ ((1, qr2_lock1) \/ (1, qb_r_lock1)) \/

((1, qr2_lock2) \/ (1, qb_r_lock2)) \/ (1, qb_0) \/ ((1, q_tca_lock1_lock1) \/ (1,

q_tca_lock2_lock2))).

q0 br -> ((1, q0) /\ (2, q0)).

q0 term -> true.

q0 bot -> true.

q1_label1 acq_1 -> (1, q1_label1).

q1_label1 rel_1 -> (1, q1_label1).

q1_label1 acq_2 -> (1, q1_label1).

q1_label1 rel_2 -> (1, q1_label1).

q1_label1 label_1 -> false.

q1_label1 label_2 -> true.

q1_label1 sp -> ((1, q1_label1) /\ (2, q1_label1)).

q1_label1 jo -> (1, q1_label1).

q1_label1 br -> true.

q1_label1 term -> true.

q1_label1 bot -> true.

13



Generating Concurrency Checks Automatically Hoyland and Hague

q1_label2 acq_1 -> (1, q1_label2).

q1_label2 rel_1 -> (1, q1_label2).

q1_label2 acq_2 -> (1, q1_label2).

q1_label2 rel_2 -> (1, q1_label2).

q1_label2 label_1 -> true.

q1_label2 label_2 -> false.

q1_label2 sp -> ((1, q1_label2) /\ (2, q1_label2)).

q1_label2 jo -> (1, q1_label2).

q1_label2 br -> true.

q1_label2 term -> true.

q1_label2 bot -> true.

qr2_lock1 acq_1 -> (1, qa2_lock1).

qr2_lock1 rel_1 -> false.

qr2_lock1 acq_2 -> (1, qr2_lock1).

qr2_lock1 rel_2 -> (1, qr2_lock1).

qr2_lock1 label_1 -> false.

qr2_lock1 label_2 -> false.

qr2_lock1 sp -> ((1, qr2_lock1) \/ (2, qr2_lock1) \/ ((1, qr1_lock1) /\ (2, qr1_lock1))

).

qr2_lock1 jo -> (1, qr2_lock1).

qr2_lock1 br -> true.

qr2_lock1 term -> false.

qr2_lock1 bot -> false.

qr1_lock1 acq_1 -> (1, qa1_lock1).

qr1_lock1 rel_1 -> false.

qr1_lock1 acq_2 -> (1, qr1_lock1).

qr1_lock1 rel_2 -> (1, qr1_lock1).

qr1_lock1 label_1 -> false.

qr1_lock1 label_2 -> false.

qr1_lock1 sp -> ((1, qr1_lock1) \/ (2, qr1_lock1)).

qr1_lock1 jo -> (1, qr1_lock1).

qr1_lock1 br -> true.

qr1_lock1 term -> false.

qr1_lock1 bot -> false.

qa2_lock1 acq_1 -> false.

qa2_lock1 rel_1 -> (1, qr2_lock1).

qa2_lock1 acq_2 -> (1, qa2_lock1).

qa2_lock1 rel_2 -> (1, qa2_lock1).

qa2_lock1 label_1 -> false.

qa2_lock1 label_2 -> false.

qa2_lock1 sp -> ((1, qa2_lock1) \/ (2, qr2_lock1) \/ ((1, qa1_lock1) /\ (2, qr1_lock1))

).

qa2_lock1 jo -> (1, qa2_lock1).

qa2_lock1 br -> true.

qa2_lock1 term -> false.

qa2_lock1 bot -> false.

qa1_lock1 acq_1 -> false.

qa1_lock1 rel_1 -> (1, qr1_lock1).

14



Generating Concurrency Checks Automatically Hoyland and Hague

qa1_lock1 acq_2 -> (1, qa1_lock1).

qa1_lock1 rel_2 -> (1, qa1_lock1).

qa1_lock1 label_1 -> true.

qa1_lock1 label_2 -> true.

qa1_lock1 sp -> ((1, qa1_lock1) \/ (2, qr1_lock1)).

qa1_lock1 jo -> (1, qa1_lock1).

qa1_lock1 br -> false.

qa1_lock1 term -> true.

qa1_lock1 bot -> true.

qr2_lock2 acq_1 -> (1, qr2_lock2).

qr2_lock2 rel_1 -> (1, qr2_lock2).

qr2_lock2 acq_2 -> (1, qa2_lock2).

qr2_lock2 rel_2 -> false.

qr2_lock2 label_1 -> false.

qr2_lock2 label_2 -> false.

qr2_lock2 sp -> ((1, qr2_lock2) \/ (2, qr2_lock2) \/ ((1, qr1_lock2) /\ (2, qr1_lock2))

).

qr2_lock2 jo -> (1, qr2_lock2).

qr2_lock2 br -> true.

qr2_lock2 term -> false.

qr2_lock2 bot -> false.

qr1_lock2 acq_1 -> (1, qr1_lock2).

qr1_lock2 rel_1 -> (1, qr1_lock2).

qr1_lock2 acq_2 -> (1, qa1_lock2).

qr1_lock2 rel_2 -> false.

qr1_lock2 label_1 -> false.

qr1_lock2 label_2 -> false.

qr1_lock2 sp -> ((1, qr1_lock2) \/ (2, qr1_lock2)).

qr1_lock2 jo -> (1, qr1_lock2).

qr1_lock2 br -> true.

qr1_lock2 term -> false.

qr1_lock2 bot -> false.

qa2_lock2 acq_1 -> (1, qa2_lock2).

qa2_lock2 rel_1 -> (1, qa2_lock2).

qa2_lock2 acq_2 -> false.

qa2_lock2 rel_2 -> (1, qr2_lock2).

qa2_lock2 label_1 -> false.

qa2_lock2 label_2 -> false.

qa2_lock2 sp -> ((1, qa2_lock2) \/ (2, qr2_lock2) \/ ((1, qa1_lock2) /\ (2, qr1_lock2))

).

qa2_lock2 jo -> (1, qa2_lock2).

qa2_lock2 br -> true.

qa2_lock2 term -> false.

qa2_lock2 bot -> false.

qa1_lock2 acq_1 -> (1, qa1_lock2).

qa1_lock2 rel_1 -> (1, qa1_lock2).

qa1_lock2 acq_2 -> false.

qa1_lock2 rel_2 -> (1, qr1_lock2).

qa1_lock2 label_1 -> true.

15



Generating Concurrency Checks Automatically Hoyland and Hague

qa1_lock2 label_2 -> true.

qa1_lock2 sp -> ((1, qa1_lock2) \/ (2, qr1_lock2)).

qa1_lock2 jo -> (1, qa1_lock2).

qa1_lock2 br -> false.

qa1_lock2 term -> true.

qa1_lock2 bot -> true.

qb_0 acq_1 -> (1, qb_0).

qb_0 rel_1 -> (1, qb_0).

qb_0 acq_2 -> (1, qb_0).

qb_0 rel_2 -> (1, qb_0).

qb_0 label_1 -> false.

qb_0 label_2 -> false.

qb_0 sp -> ((1, qb_0) \/ ((2, qb_0) \/ ((1, qb_jo) /\ (2, qb_bot)))).

qb_0 jo -> (1, qb_0).

qb_0 br -> false.

qb_0 term -> false.

qb_0 bot -> false.

qb_jo acq_1 -> (1, qb_jo).

qb_jo rel_1 -> (1, qb_jo).

qb_jo acq_2 -> (1, qb_jo).

qb_jo rel_2 -> (1, qb_jo).

qb_jo label_1 -> false.

qb_jo label_2 -> false.

qb_jo sp -> (1, qb_jo).

qb_jo jo -> true.

qb_jo br -> false.

qb_jo term -> false.

qb_jo bot -> false.

qb_bot acq_1 -> (1, qb_bot).

qb_bot rel_1 -> (1, qb_bot).

qb_bot acq_2 -> (1, qb_bot).

qb_bot rel_2 -> (1, qb_bot).

qb_bot label_1 -> true.

qb_bot label_2 -> true.

qb_bot sp -> (1, qb_bot).

qb_bot jo -> (1, qb_bot).

qb_bot br -> false.

qb_bot term -> false.

qb_bot bot -> true.

qb_a_lock1 acq_1 -> (1, qb_a_lock1).

qb_a_lock1 rel_1 -> (1, qb_r_lock1).

qb_a_lock1 acq_2 -> (1, qb_a_lock1).

qb_a_lock1 rel_2 -> (1, qb_a_lock1).

qb_a_lock1 label_1 -> false.

qb_a_lock1 label_2 -> false.

qb_a_lock1 sp -> ((1, qb_a_lock1) \/ (2, qb_r_lock1) \/ ((1, qb_keep_lock1) /\ (2,

qb_use_lock1))).

qb_a_lock1 jo -> (1, qb_a_lock1).

qb_a_lock1 br -> false.

16



Generating Concurrency Checks Automatically Hoyland and Hague

qb_a_lock1 term -> false.

qb_a_lock1 bot -> false.

qb_r_lock1 acq_1 -> (1, qb_a_lock1).

qb_r_lock1 rel_1 -> (1, qb_r_lock1).

qb_r_lock1 acq_2 -> (1, qb_r_lock1).

qb_r_lock1 rel_2 -> (1, qb_r_lock1).

qb_r_lock1 label_1 -> false.

qb_r_lock1 label_2 -> false.

qb_r_lock1 sp -> ((1, qb_r_lock1) \/ (2, qb_r_lock1)).

qb_r_lock1 jo -> (1, qb_r_lock1).

qb_r_lock1 br -> false.

qb_r_lock1 term -> false.

qb_r_lock1 bot -> false.

qb_use_lock1 acq_1 -> true.

qb_use_lock1 rel_1 -> (1, qb_use_lock1).

qb_use_lock1 acq_2 -> (1, qb_use_lock1).

qb_use_lock1 rel_2 -> (1, qb_use_lock1).

qb_use_lock1 label_1 -> false.

qb_use_lock1 label_2 -> false.

qb_use_lock1 sp -> ((1, qb_use_lock1) \/ ((1, qb_jo) /\ (2, qb_use_lock1))).

qb_use_lock1 jo -> (1, qb_use_lock1).

qb_use_lock1 br -> false.

qb_use_lock1 term -> false.

qb_use_lock1 bot -> false.

qb_keep_lock1 acq_1 -> (1, qb_keep_lock1).

qb_keep_lock1 rel_1 -> false.

qb_keep_lock1 acq_2 -> (1, qb_keep_lock1).

qb_keep_lock1 rel_2 -> (1, qb_keep_lock1).

qb_keep_lock1 label_1 -> false.

qb_keep_lock1 label_2 -> false.

qb_keep_lock1 sp -> (1, qb_keep_lock1).

qb_keep_lock1 jo -> true.

qb_keep_lock1 br -> false.

qb_keep_lock1 term -> false.

qb_keep_lock1 bot -> false.

qb_a_lock2 acq_1 -> (1, qb_a_lock2).

qb_a_lock2 rel_1 -> (1, qb_a_lock2).

qb_a_lock2 acq_2 -> (1, qb_a_lock2).

qb_a_lock2 rel_2 -> (1, qb_r_lock2).

qb_a_lock2 label_1 -> false.

qb_a_lock2 label_2 -> false.

qb_a_lock2 sp -> ((1, qb_a_lock2) \/ (2, qb_r_lock2) \/ ((1, qb_keep_lock2) /\ (2,

qb_use_lock2))).

qb_a_lock2 jo -> (1, qb_a_lock2).

qb_a_lock2 br -> false.

qb_a_lock2 term -> false.

qb_a_lock2 bot -> false.

qb_r_lock2 acq_1 -> (1, qb_r_lock2).

17



Generating Concurrency Checks Automatically Hoyland and Hague

qb_r_lock2 rel_1 -> (1, qb_r_lock2).

qb_r_lock2 acq_2 -> (1, qb_a_lock2).

qb_r_lock2 rel_2 -> (1, qb_r_lock2).

qb_r_lock2 label_1 -> false.

qb_r_lock2 label_2 -> false.

qb_r_lock2 sp -> ((1, qb_r_lock2) \/ (2, qb_r_lock2)).

qb_r_lock2 jo -> (1, qb_r_lock2).

qb_r_lock2 br -> false.

qb_r_lock2 term -> false.

qb_r_lock2 bot -> false.

qb_use_lock2 acq_1 -> (1, qb_use_lock2).

qb_use_lock2 rel_1 -> (1, qb_use_lock2).

qb_use_lock2 acq_2 -> true.

qb_use_lock2 rel_2 -> (1, qb_use_lock2).

qb_use_lock2 label_1 -> false.

qb_use_lock2 label_2 -> false.

qb_use_lock2 sp -> ((1, qb_use_lock2) \/ ((1, qb_jo) /\ (2, qb_use_lock2))).

qb_use_lock2 jo -> (1, qb_use_lock2).

qb_use_lock2 br -> false.

qb_use_lock2 term -> false.

qb_use_lock2 bot -> false.

qb_keep_lock2 acq_1 -> (1, qb_keep_lock2).

qb_keep_lock2 rel_1 -> (1, qb_keep_lock2).

qb_keep_lock2 acq_2 -> (1, qb_keep_lock2).

qb_keep_lock2 rel_2 -> false.

qb_keep_lock2 label_1 -> false.

qb_keep_lock2 label_2 -> false.

qb_keep_lock2 sp -> (1, qb_keep_lock2).

qb_keep_lock2 jo -> true.

qb_keep_lock2 br -> false.

qb_keep_lock2 term -> false.

qb_keep_lock2 bot -> false.

q_fa_lock1 acq_1 -> (1, q_fa_lock1).

q_fa_lock1 rel_1 -> false.

q_fa_lock1 acq_2 -> (1, q_fa_lock1).

q_fa_lock1 rel_2 -> (1, q_fa_lock1).

q_fa_lock1 label_1 -> true.

q_fa_lock1 label_2 -> true.

q_fa_lock1 sp -> (1, q_fa_lock1).

q_fa_lock1 jo -> (1, q_fa_lock1).

q_fa_lock1 br -> false.

q_fa_lock1 term -> true.

q_fa_lock1 bot -> true.

q_acq_lock1 acq_1 -> true.

q_acq_lock1 rel_1 -> (1, q_acq_lock1).

q_acq_lock1 acq_2 -> (1, q_acq_lock1).

q_acq_lock1 rel_2 -> (1, q_acq_lock1).

q_acq_lock1 label_1 -> false.

q_acq_lock1 label_2 -> false.

18



Generating Concurrency Checks Automatically Hoyland and Hague

q_acq_lock1 sp -> ((1, q_acq_lock1) \/ (2, q_acq_lock1)).

q_acq_lock1 jo -> (1, q_acq_lock1).

q_acq_lock1 br -> false.

q_acq_lock1 term -> false.

q_acq_lock1 bot -> false.

q_fa_lock2 acq_1 -> (1, q_fa_lock2).

q_fa_lock2 rel_1 -> (1, q_fa_lock2).

q_fa_lock2 acq_2 -> (1, q_fa_lock2).

q_fa_lock2 rel_2 -> false.

q_fa_lock2 label_1 -> true.

q_fa_lock2 label_2 -> true.

q_fa_lock2 sp -> (1, q_fa_lock2).

q_fa_lock2 jo -> (1, q_fa_lock2).

q_fa_lock2 br -> false.

q_fa_lock2 term -> true.

q_fa_lock2 bot -> true.

q_acq_lock2 acq_1 -> (1, q_acq_lock2).

q_acq_lock2 rel_1 -> (1, q_acq_lock2).

q_acq_lock2 acq_2 -> true.

q_acq_lock2 rel_2 -> (1, q_acq_lock2).

q_acq_lock2 label_1 -> false.

q_acq_lock2 label_2 -> false.

q_acq_lock2 sp -> ((1, q_acq_lock2) \/ (2, q_acq_lock2)).

q_acq_lock2 jo -> (1, q_acq_lock2).

q_acq_lock2 br -> false.

q_acq_lock2 term -> false.

q_acq_lock2 bot -> false.

q_tca_lock1_lock1 acq_1 -> ((1, q_tca_lock1_lock1) \/ ((1, q_fa_lock1) /\ ((1,

q_acq_lock1) \/ ((1, q_acq_lock2) /\ (1, q_tca_lock2_lock1))))).

q_tca_lock1_lock1 rel_1 -> (1, q_tca_lock1_lock1).

q_tca_lock1_lock1 acq_2 -> (1, q_tca_lock1_lock1).

q_tca_lock1_lock1 rel_2 -> (1, q_tca_lock1_lock1).

q_tca_lock1_lock1 label_1 -> false.

q_tca_lock1_lock1 label_2 -> false.

q_tca_lock1_lock1 sp -> ((1, q_tca_lock1_lock1) \/ (2, q_tca_lock1_lock1)).

q_tca_lock1_lock1 jo -> (1, q_tca_lock1_lock1).

q_tca_lock1_lock1 br -> false.

q_tca_lock1_lock1 term -> false.

q_tca_lock1_lock1 bot -> false.

q_tca_lock1_lock2 acq_1 -> ((1, q_tca_lock1_lock2) \/ ((1, q_fa_lock1) /\ (1,

q_acq_lock2))).

q_tca_lock1_lock2 rel_1 -> (1, q_tca_lock1_lock2).

q_tca_lock1_lock2 acq_2 -> (1, q_tca_lock1_lock2).

q_tca_lock1_lock2 rel_2 -> (1, q_tca_lock1_lock2).

q_tca_lock1_lock2 label_1 -> false.

q_tca_lock1_lock2 label_2 -> false.

q_tca_lock1_lock2 sp -> ((1, q_tca_lock1_lock2) \/ (2, q_tca_lock1_lock2)).

q_tca_lock1_lock2 jo -> (1, q_tca_lock1_lock2).

q_tca_lock1_lock2 br -> false.

19



Generating Concurrency Checks Automatically Hoyland and Hague

q_tca_lock1_lock2 term -> false.

q_tca_lock1_lock2 bot -> false.

q_tca_lock2_lock1 acq_1 -> (1, q_tca_lock2_lock1).

q_tca_lock2_lock1 rel_1 -> (1, q_tca_lock2_lock1).

q_tca_lock2_lock1 acq_2 -> ((1, q_tca_lock2_lock1) \/ ((1, q_fa_lock2) /\ (1,

q_acq_lock1))).

q_tca_lock2_lock1 rel_2 -> (1, q_tca_lock2_lock1).

q_tca_lock2_lock1 label_1 -> false.

q_tca_lock2_lock1 label_2 -> false.

q_tca_lock2_lock1 sp -> ((1, q_tca_lock2_lock1) \/ (2, q_tca_lock2_lock1)).

q_tca_lock2_lock1 jo -> (1, q_tca_lock2_lock1).

q_tca_lock2_lock1 br -> false.

q_tca_lock2_lock1 term -> false.

q_tca_lock2_lock1 bot -> false.

q_tca_lock2_lock2 acq_1 -> (1, q_tca_lock2_lock2).

q_tca_lock2_lock2 rel_1 -> (1, q_tca_lock2_lock2).

q_tca_lock2_lock2 acq_2 -> ((1, q_tca_lock2_lock2) \/ ((1, q_fa_lock2) /\ ((1,

q_acq_lock2) \/ ((1, q_acq_lock1) /\ (1, q_tca_lock1_lock2))))).

q_tca_lock2_lock2 rel_2 -> (1, q_tca_lock2_lock2).

q_tca_lock2_lock2 label_1 -> false.

q_tca_lock2_lock2 label_2 -> false.

q_tca_lock2_lock2 sp -> ((1, q_tca_lock2_lock2) \/ (2, q_tca_lock2_lock2)).

q_tca_lock2_lock2 jo -> (1, q_tca_lock2_lock2).

q_tca_lock2_lock2 br -> false.

q_tca_lock2_lock2 term -> false.

q_tca_lock2_lock2 bot -> false.

C Automata Proofs

Gawlitza et al. prove that an automaton that determines the four properties (i) double final
acquisition, (ii) child termination, (iii) join-lock deadlocks, and (iv) lock-acquisition-cycle dead-
locks determines schedulability [2]. We give the following constructions and prove that they
meet each critereon respectively. Together with the cycle-detection automata in Section 5.1.1
these automata meet all the criteria for determining join-lock-sensitive schedulability. Thus
when disjuncted together with the pairwise reachability automaton at the end of this section
they form an automaton that rejects join-lock-sensitive schedulable trees that are pairwise
reachable. This disjunction is correct because all the properties bar lock-acquisition cycle dead-
lock detection are true of all action sequences in a tree or none and thus if any action sequence
is unschedulable then all of them are. That is to say although finding one action sequence with
one of these properties näıvely doesn’t imply that all action sequences are unschedulable, in all
cases bar lock-acquisiton-cycle detection this does hold. In the case of lock-acquisiton-cycle de-
tection, the automaton rejects only if all action sequences are unschedulable. Näıvely one might
assume that if half the action sequences have lock-acquisiton-cycles, and the other half are un-
schedulable for some other reason the tree would not be detected as safe. However consider an
action tree, A with the action sequences S that are partitioned into SA and SB . Let all action
sequences in SA have lock-acquisiton-cycles, and all action sequences in SB have double final
acquisitions (DFAs), and further, let no action sequences in SB have a lock-acquisiton-cycle.
Because the lock-acquisiton-cycle detecting automaton only considers a tree safe if all action

20



Generating Concurrency Checks Automatically Hoyland and Hague

sequences have lock-acquisiton-cycles, the lock-acquistion-cycle automaton would not consider
A safe, as some action sequences do not have lock-acquisition cycles. Thus it might be näıvely
assumed that the tree could be improperly detected as schedulable, as potentially not all action
sequences in SA have DFAs. However, because DFA is a tree property, all action sequences
must have this property or not, thus, if SB is non-empty, then all action sequences, including
those in SA have DFAs, and thus the tree is correctly detected as safe.

C.1 Double Final Acquisition

A tree is said to have a DFA if there are two threads, t1, t2 such that t1 6= t2, that ter-
minate whilst holding the same lock. That is to say ∃l ∈ Locks. ∃t1, t2 ∈ Threads. t1 6=
t2 ∧ t1 finally acquires l ∧ t2 finally acquires l. Because there is a finite and fixed number of
locks we can replace the ∃ with a disjunction over all the locks. For each lock, x, we create an
instance of the DFA automaton Dx

Dx is formed by the power construction of two smaller automata. A lock deteriming au-
tomaton FAx and a spawn finding automaton S. Informally FAx returns true if there is a
thread that finally acquires lockx. Formally FAx := 〈Σ, {qrx, qax}, qrx, δFAx〉 where:

Σ ={〈sp〉 : 2, 〈jo〉 : 1, 〈$〉 : 0, 〈⊥〉 : 0}
∪ {〈label〉 : 0 | label ∈ Labels}
∪ {〈acqy〉 : 1, 〈rely〉 : 1 | y ∈ Locks}

and δFAx
= {qrx 〈sp〉 → (1, qrx) ∧ (2, qrx),

qrx 〈jo〉 → (1, qrx),

qrx 〈$〉 → false,

qrx 〈⊥〉 → false}
∪
{qrx 〈label〉 → false | label ∈ Label}
∪
{qrx 〈acqy〉 → (1, qrx),

qrx 〈rely〉 → (1, qrx) | y ∈ Locks/x}
∪
{qrx 〈acqx〉 → (1, qax),

qrx 〈relx〉 → false}
∪
{qax 〈sp〉 → (1, qax) ∧ (2, qrx),

qax 〈jo〉 → (1, qax),

qax 〈$〉 → true,

qax 〈⊥〉 → true}
∪
{qax 〈label〉 → true | label ∈ Label}
∪

21



Generating Concurrency Checks Automatically Hoyland and Hague

{qax 〈acqy〉 → (1, qax),

qax 〈rely〉 → (1, qax) | y ∈ Locks/x}
∪
{qax 〈acqx〉 → false,

qax 〈relx〉 → (1, qrx)}

S returns true if there is a spawn such that on both the parent and child branch there is a
terminating thread. Formally S := 〈Σ, {q2, q1}, q1, δS〉 where:

δS = {q2 〈sp〉 → ((1, q2) ∨ (2, q2)) ∨ ((1, q1) ∧ (2, q1)),

q2 〈jo〉 → (1, q2),

q2 〈$〉 → false,

q2 〈⊥〉 → false}
∪
{q2 〈label〉 → false | label ∈ Label}
∪
{q2 〈acqy〉 → (1, q2),

q2 〈rely〉 → (1, q2) | y ∈ Locks}
∪
{q1 〈sp〉 → (1, q1) ∧ (2, q1),

q1 〈jo〉 → (1, q1),

q1 〈$〉 → true,

q1 〈⊥〉 → true}
∪
{q1 〈label〉 → true | label ∈ Label}
∪
{q1 〈acqy〉 → (1, q1),

q1 〈rely〉 → (1, q1) | y ∈ Locks}

To prove that Dx is correct we must show that L(FAx ∩S) accepts all trees with DFA and
rejects those that do not. First we show that FAx accepts only threads that finally acquire
lockx. We note that the only state that has any true outgoing edges is qax. Therefore only
when terminating in state qax can the tree be accepted7. Only three actions lead to a change of
state, qrx〈acqx〉, qax〈relx〉, and qax〈sp〉. The last of these, qax〈sp〉, keeps the parent thread in
the same state, and sends the child thread to qrx. Because qrx is the start state, this means that
all threads start in state qrx. This means that any threads that terminate without performing
an 〈acqx〉 are rejected. Because all threads start with no locks, any thread that terminates
without performing an 〈acqx〉 does not finally acquire lockx, because they never acquire the

7Because we are evaluting using trivial Büchi acceptance condition infinite paths are returned as true.
However we can ignore infinite trees because the action tree forest will contain a finite prefix that will be
correctly rejected.

22



Generating Concurrency Checks Automatically Hoyland and Hague

lock. Because we require trees to be lock-well-formed the pattern of lock acquisitions and
releases within a thread must be a prefix of (〈acqx〉〈relx〉)∗, i.e. a lock must be acquired once,
and then released once before beginning again. Thus if FAx is in state qax then lockx has been
acquired exactly one more times than it has been released, and thus the thread holds the lock.
Therefore if the thread terminates whilst FAx is in state qax, the thread terminates holding the
lock, and thus finally acquires the lock. If FAx terminates in state qax it returns true. If FAx

is in state qrx the thread has acquired and released the thread an equal number of times, and
thus does not hold the lock. If FAx terminates in state qrx then the lock has not been finally
acquired because it is not held. If FAx terminates in state qrx it returns false. Therefore FAx

returns true iff there is a thread that finally acquires lockx.
Next we show that S only accepts trees with two terminating threads.

Lemma 2. For any two distinct threads then there is exactly one 〈sp〉 such that the parent
branch has one thread and the child branch has the other.

Proof. Given that the input is a tree, for there to be two distinct threads there must be a
〈sp〉 that separates them. There can only be one 〈sp〉 that separates them because given a
separating 〈sp〉 any 〈sp〉 that occurs higher up the tree must have them both on the same
branch, as branches of a tree do not rejoin, by definition. Any 〈sp〉 that occurs after the
separating 〈sp〉 will only have one of the threads, again as trees do not rejoin. Therefore the
two threads have a single separating 〈sp〉.

S is looking for two distinct terminating threads and by Lemma 2, those two threads are
separated by a single 〈sp〉. On reaching a spawn in the tree S non-deterministically decides
if the spawn is the separating spawn. If not it searches the parent and child branches for the
separating spawn. If it is the separating spawn S checks both branches satisfy state q1. q1
accepts any tree with a terminating thread. Thus if both branches satisfy q1 then there are two
distinct terminating threads in the tree.

The intersection of L(FAx) with L(S) will accept any tree with two terminating branches
that also finally acquire lockx, which is the definition of DFA.

C.2 Child Termination

A tree is considered unschedulable if it has a parent thread with a 〈jo〉 with a corresponding
child thread that doesn’t perform the terminate action 〈$〉. We detect this property using an
automaton T := 〈Σ, {qb0, qbjo, qbbot}, qb0, δT 〉 where:

Σ ={〈sp〉 : 2, 〈jo〉 : 1, 〈$〉 : 0, 〈⊥〉 : 0}
∪ {〈label〉 : 0 | label ∈ Labels}
∪ {〈acqy〉 : 1, 〈rely〉 : 1 | y ∈ Locks}

and

δT = {qb0 〈sp〉 → ((1, qb0) ∨ (2, qb0)) ∨ ((1, qbjo) ∧ (2, qbbot)),

qb0 〈jo〉 → (1, qb0),

qb0 〈$〉 → false,

qb0 〈⊥〉 → false}
∪
{qb0 〈label〉 → false | label ∈ Label}
∪

23



Generating Concurrency Checks Automatically Hoyland and Hague

{qb0 〈acqy〉 → (1, qb0),

qb0 〈rely〉 → (1, qb0) | y ∈ Locks}
∪
{qbjo 〈sp〉 → (1, qbjo)

qbjo 〈jo〉 → true,

qbjo 〈$〉 → false,

qbjo 〈⊥〉 → false}
∪
{qbjo 〈label〉 → false | label ∈ Label}
∪
{qbjo 〈acqy〉 → (1, qbjo),

qbjo 〈rely〉 → (1, qbjo) | y ∈ Locks}
∪
{qbbot 〈sp〉 → (1, qbbot) ∧ (2, qbbot)

qbbot 〈jo〉 → false,

qbbot 〈$〉 → true,

qbbot 〈⊥〉 → false}
∪
{qbbot 〈label〉 → false | label ∈ Label}
∪
{qbbot 〈acqy〉 → (1, qbbot),

qbbot 〈rely〉 → (1, qbbot) | y ∈ Locks}

Using Lemma 2 we can see that there must be a 〈sp〉 that separates the parent thread with the
〈jo〉 from the non-terminating child. As it traverses the tree qb0 non-deterministically decides
if a spawn is the separating spawn. If it is not it searches the child and parent branches for
the separating spawn. If it is then it checks the parent thread does indeed contain a 〈jo〉.
qrjo ensures that scoping is obeyed by only searching the parent thread for the 〈jo〉. qrjo
returns true if the parent thread has a 〈jo〉. qrjo returns false in all other circumstances8. qbbot
similarly searches for threads that terminate without performing the terminate action, 〈$〉. In
this case threads that are infinite also return true, which is required to make this check safe.
Thus together T accepts runs where there is a parent thread that has a 〈jo〉, and a child thread
that does not terminate in a terminate action.

C.3 Join-Lock Interaction

The join-lock dependency automaton determines whether there is a dependency between a join
and a lock. That is to say, there is a thread that acquires a lock, spawns a child thread that
depends on the lock, and performs a join without releasing the lock. This is unschedulable,
and thus safe, because the parent requires the child to terminate before it will release the lock
and the child will not terminate until the lock is released. This is the only possible pattern

8Again with the caveat on infinite threads as discussed in the section on DFA.

24



Generating Concurrency Checks Automatically Hoyland and Hague

for join-lock dependency because joins only affect children that occur before the 〈jo〉, and thus
the spawn must occur before the join to be dependant on it. Further the lock acquisition must
occur before the child is spawned, or there is a schedule whereby the child acquires and releases
the lock before the parent. Finally the lock release must not occur before the 〈jo〉 because if
the lock is released before the 〈jo〉 it can be acquired by the child thread before the child has
to terminate. Thus the 〈acqx〉 ≺ 〈sp〉 ≺ 〈jo〉.

Using Lemma 2 we note there is a single spawn that separates the parent thread with the
join from the child thread that depends on the lock. We split the tree into three sections, the
section before the separating spawn, and the two sections after. We then need to evaluate three
different properties, (i) that the section before the separating spawn holds lockx, (ii) that the
parent thread after the spawn has a join before it releases lockx, and (iii) that the child thread
depends on lockx..

To evaluate these properties we construct three sub-automata, JL1
x,JL

2
x,JL

3
x. Together

these form the automaton JLx, which accepts trees with the property above. JL1
x is a slightly

modified version of the lock acquisition automata used in the DFA construction to decide
whether lockx has been acquired. We reject threads that terminate, as we are looking for paths
that extend threads with the 〈acqx〉 . . . 〈sp〉 pattern, and expand the qbax〈sp〉 rule to accept
threads that terminate at the separating 〈sp〉9. Specifically JL1

x := 〈Σ, {qbax, qbrx}, δJL1
x
, qbrx〉

where

Σ ={〈sp〉 : 2, 〈jo〉 : 1, 〈$〉 : 0, 〈⊥〉 : 0}
∪ {〈label〉 : 0 | label ∈ Labels}
∪ {〈acqy〉 : 1, 〈rely〉 : 1 | y ∈ Locks}

and δJL1
x

= {qbrx 〈sp〉 → (1, qbrx) ∧ (2, qbrx),

qbrx 〈jo〉 → (1, qbrx),

qbrx 〈$〉 → false,

qbrx 〈⊥〉 → false}
∪
{qbrx 〈label〉 → false | label ∈ Label}
∪
{qbrx 〈acqy〉 → (1, qbrx),

qbrx 〈rely〉 → (1, qbrx) | y ∈ Locks/x}
∪
{qbrx 〈acqx〉 → (1, qbax),

qbrx 〈relx〉 → false}
∪
{qbax 〈sp〉 → ((1, qbax) ∨ (2, qbrx)) ∨ (>),

qbax 〈jo〉 → (1, qbax),

qbax 〈$〉 → false,

qbax 〈⊥〉 → false}
∪

9In practice we disjunct the rule with (1, qbkeepx)∧(2, qbusex), but for the purposes of the proof we disjunct
the rule with > and examine postfixes of the language accepted by JL1

x.

25



Generating Concurrency Checks Automatically Hoyland and Hague

{qbax 〈label〉 → false | label ∈ Label}
∪
{qbax 〈acqy〉 → (1, qbax),

qbax 〈rely〉 → (1, qbax) | y ∈ Locks/x}
∪
{qbax 〈acqx〉 → false,

qbax 〈relx〉 → (1, qbrx)}

The only trees that can be accepted are those that have a 〈sp〉 whilst JL1
x is in state qbax. By

the same logic used in Appendix C.1, JL1
x can only be in state qbax if the tree holds lockx.

Therefore JL1
x accepts trees that reach a spawn whilst holding lockx.

JL2
x accepts trees that have a 〈jo〉 before they have an 〈relx〉. Formally JL2

x := 〈Σ, {qbkeepx}, δJL2
x
, qbkeepx〉

where

δJL2
x

= {qbkeepx 〈sp〉 → (1, qbkeepx),

qbkeepx 〈jo〉 → true,

qbkeepx 〈$〉 → false,

qbkeepx 〈⊥〉 → false}
∪
{qbkeepx 〈label〉 → false | label ∈ Label}
∪
{qbkeepx 〈acqy〉 → (1, qbkeepx),

qbkeepx 〈rely〉 → (1, qbkeepx) | y ∈ Locks/x}
∪
{qbkeepx 〈acqx〉 → (1, qbkeepx),

qbkeepx 〈relx〉 → false}

JL2
x only examines the parent thread, because both joins and releases that occur on child

threads do not affect the parent thread, i.e. they are in a different scope. JL2
x accepts on 〈jo〉,

and rejects on 〈relx〉. Because only actions on the parent thread are relevant, the actions must
be scheduled linearly, thus the first to occur on the parent thread is the first to be scheduled.
Therefore any thread with a 〈jo〉 before a 〈relx〉 must schedule the 〈jo〉 before any (in scope)
〈relx〉 and vice versa10. This is the property required for JLx

JL3
x accepts if the child thread depends on lockx. A thread, t, is said to depend on lockx

if it acquires it, or if one of its children acquires it and the child terminates11. If we drop the
property that the child must terminate the child may never schedule the acquisition, and thus
the property may not hold. Therefore to decide if t depends on lockx each generation must

10If the thread has neither a 〈jo〉 or a 〈relx〉, but continues infinitely it would under a trivial Büchi condition
be accepted, however because of the construction of the action tree forest this case is correctly distinguished.

11Note this definition differs from the definition of one lock depending on another.

26



Generating Concurrency Checks Automatically Hoyland and Hague

require its child to terminate. Formally JL3
x := 〈Σ, {qbusex, qbjo}, δJL3

x
, qbusex〉 where:

δJL3
x

= {qbusex 〈sp〉 → (1, qbusex) ∨ ((1, qbjo) ∧ (2, qbusex)),

qbusex 〈jo〉 → (1, qbusex),

qbusex 〈$〉 → false,

qbusex 〈⊥〉 → false}
∪
{qbusex 〈label〉 → false | label ∈ Label}
∪
{qbusex 〈acqy〉 → (1, qbusex),

qbusex 〈rely〉 → (1, qbusex) | y ∈ Locks/x}
∪
{qbusex 〈acqx〉 → true,

qbusex 〈relx〉 → false}
∪
{qbjo 〈sp〉 → (1, qbjo),

qbjo 〈jo〉 → true,

qbjo 〈$〉 → false,

qbjo 〈⊥〉 → false}
∪
{qbjo 〈label〉 → false | label ∈ Label}
∪
{qbjo 〈acqy〉 → (1, qbjo),

qbjo 〈rely〉 → (1, qbjo) | y ∈ Locks}

JL3
x determines if t depends on lockx, if there is an 〈acqx〉 on the parent thread then JL3

x

accepts, and the definition of dependence is met. The only method to ensure that all children
terminate is using joins. If some child uses lockx then only if all of its ancestor threads ensure
their children terminate can we guarentee the 〈acqx〉 is scheduled12. Together JL1

x,JL
2
x,JL

3
x

determine the three properties defined at the start, and thus when constructed into the overall
automaton JLx determine join-lock dependence.

12If all ancestor threads ensure termination but the 〈acqx〉 in unschedulable for some other reason, this will
be picked up by one of the other automata.

27



Generating Concurrency Checks Automatically Hoyland and Hague

C.4 Pairwise Reachability

The pairwise reachability automaton, PRl, detects whether label l ∈ Label is pairwise reach-
able. Formally PRl := 〈Σ, {q2l, q1l}, q2l, δPRl

〉 where:

δPRl
= {q2l 〈sp〉 → ((1, q2l) ∧ (2, q2l)) ∧ ((1, q1l) ∨ (2, q1l)),

q2l 〈jo〉 → (1, q2l),

q2l 〈$〉 → true,

q2l 〈⊥〉 → true}
∪
{q2l 〈label〉 → true | label ∈ Label}
∪
{q2l 〈acqy〉 → (1, q2l),

q2l 〈rely〉 → (1, q2l) | y ∈ Locks}
∪
{q1l 〈sp〉 → (1, q1l) ∧ (2, q1l),

q1l 〈jo〉 → (1, q1l),

q1l 〈$〉 → true,

q1l 〈⊥〉 → true}
∪
{q1l 〈label〉 → true | label ∈ Label}
∪
{q1l 〈l〉 → false}
∪
{q1l 〈acqy〉 → (1, q1l),

q1l 〈rely〉 → (1, q1l) | y ∈ Locks}

Informally q2l determines whether all paths are label free. Using Lemma 2 we can see that
for this to be false there must be a 〈sp〉 that separates two threads that do terminate in 〈l〉.
Because we are looking for a negative property, i.e. there is not a label we invert the pattern
used in the other automata. For the automaton to reject it asserts every thread pair is not
pairwise reachable. Thus at each spawn it checks both that there are no later spawns that are
pairwise reachable, but also that the spawn in question is not pairwise reachable. q1l checks a
thread for any occurance of the label, rejecting if it is found, thus the disjunction of q1l over a
parent and child returns false if both the parent and child contain the label. Thus the entire
automata evaluates to false if there is a 〈sp〉 that separates two threads that can reach l.

D Action Forest Construction

Take an action tree T on which you wish to determine the pairwise reachability of two sets of
nodes in the tree, P 1, P 2, i.e. that it is possible to reach a node from P 1 and a node from
P 2 simultaneously. We define the function Croplabel (T, P 1, P 2) = [T(1,1) . . . T(n,m)] where n is
the number of nodes in P 1 and m is the number of nodes in P 2. T(i,j) = T truncated at node

28



Generating Concurrency Checks Automatically Hoyland and Hague

P 1
i , which replaced with l1, and also truncated at node P 2

j , which is replaced with l2. We then
define the branching function brk that takes k trees and outputs a forest.

brk T1 . . . Tk = 〈br〉 T1 (〈br〉 T2 (. . . 〈br〉 Tk−1 Tk) . . . )
Let Tb = brn·m(Croplabel (T, P 1, P 2)). To account for each finite prefix of the thread for

each instance of a single-child concurrency operator, 〈acq〉, 〈rel〉, 〈jo〉 we define a tree where the
operator is replaced with ⊥. Formally we define:

Cropoperator T = [T1 . . . Tq] where Ti = T truncated at the ith concurrency operator13replaced
with ⊥.

These trees are also joined into a single larger forest with brk The action tree forest is thus
constructed as:

brq (Cropoperator (Tb))

13For any linear ordering of concurrency operators in the tree.

29


	Introduction
	Action Trees
	Concurrency
	Alternating Tree Automata
	ATAB
	Deadlock Detection
	Cycle Detection

	Example

	Results and Conclusions
	Acknowledgments
	Widgets
	Pairwise Reachability
	Double Final Acquisition
	Child Termination
	Join-Lock Dependence
	The Complete Construction

	Sample Alternating Tree Automaton
	Automata Proofs
	Double Final Acquisition
	Child Termination
	Join-Lock Interaction
	Pairwise Reachability

	Action Forest Construction

