

Department of Computer Science. Royal Holloway, University of London

<section-header><section-header><section-header><text><text><text><text><text>

Type of data sets: data matrix

If data objects have the same fixed set of numeric attributes, then the data objects can be thought of as points in a multi-dimensional space, where each dimension represents a distinct attribute.

Such data set can be represented by an **m** by **n** matrix, where there are **m** rows, one for each object, and **n** columns, one for each attribute

	C_I	C_2	C_3	-	C_n
Obs I	I	I	0		I
Obs 2	0	0	I	-	0
	-	-	-	-	-
Obs n	I	0	I	-	0

Department of Computer Science. Royal Holloway, University of London

Ш

Type of data sets: document data Each document becomes a "term" vector, - each term is a component (attribute) of the vector, - the value of each component is the number of times the corresponding term occurs in the document. book tittle search price sales time 5 0 L 3 0 L. Document I Document 2 L 3 5 0 0 3 3 I Т 0 0 Document 3 L 3 3 2 Document 4 L Т 2

Type of data sets: transaction data

A special type of record data, where

– each record (transaction) involves a set of items.
– For example, consider a grocery store. The set of products purchased by a customer during one shopping trip constitute a transaction, while the individual products that were purchased are the item

ID	ltem	
I	Bread, Coke, Milk	
2	Beer, Bread	
3	Beer, Coke, Diaper, Milk	
4	Beer, Bread, Diaper, Milk	
5	Coke, Diaper, Milk	

Department of Computer Science. Royal Holloway, University of London

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><table-row><table-container>

Origins of data mining

<section-header><text><text><text><text><page-footer>

Data mining examples:

- Blockbuster Entertainment mines its video rental history database to recommend rentals to individual customers.
- Amazon mines customer's profile to offer new books/ products.
- And so on with Banks, Supermarkets, etc.

Department of Computer Science. Royal Holloway, University of London

Data mining tasks

- Association Rule Discovery [Descriptive]
- Classification [Predictive]
- Clustering [Descriptive]
- Sequential Pattern Discovery [Descriptive]
- Regression [Predictive]
- Deviation Detection [Predictive]

Department of Computer Science. Royal Holloway, University of London

Association Rules discovery

ID Item I Bread, Coke, Milk 2 Beer Bread	
2 Beer Bread	
/ Beer Bread	
$\xrightarrow{1} \qquad \text{Milk} \qquad \qquad$	Coke
3 Beer, Coke, Diaper, Milk {Diaper, Milk}	Roor
4 Beer, Bread, Diaper, Milk	Deer
5 Coke, Diaper, Milk	

Classification example II

Fraud Detection, predict fraudulent cases in credit card transactions.

Approach:

Use credit card transactions and the information on its account-holder as attributes.

-When does a customer buy, what does he buy, how often he pays on time, etc

Label past transactions as fraud or fair transactions. This forms the class attribute.

Learn a model for the class of the transactions.

Use this model to detect fraud by observing credit card transactions on an account

Department of Computer Science. Royal Holloway, University of London

Clustering example II

<text><image>

<section-header><equation-block><equation-block><text><text><equation-block><equation-block><equation-block>

[1] Pang-NingTan, Michael Stein 2005.	bach and Vipin Kumar. Introduction to Data Mining. Addison Wesley.
[2] Christopher M. Bishop. Patter	rn Recognition and Machine Learning. Springer, 2007.
[3] Soumen Chakrabarti. Mining 2003.	the Web, Discovering Knowledge from Hypertext Data. M. Kaufmann.
[4] Oded Maimon and Lior Rokad	ch, Data Mining and Knowledge Discovery Handbook. Springer. 2005.
[5] Ian Witten, Alistair Moffat and Documents and Images. 2nd. Ed	Timothy Bell. Managing Gigabytes. Compressing and Indexing I. M. Kaufman.1999.
[6] Ian Witten and Frank Eibe. D	ata Mining: Practical Machine Learning Tools and
Techniques, 2nd Ed., M. Kaufma	nn, 2005.
[7] Margaret Dunham. Data Mini	ng: Introductory and Advanced Topics, Prentice Hall, 2003.