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Abstract

This paper presents the computational logic foundations of a model of agency called
the KGP (Knowledge, Goals and Plan) model. This model allows the specification of
heterogeneous agents that can interact with each other, and can exhibit both proactive
and reactive behaviour allowing them to function in dynamic environments by adjusting
their goals and plans when changes happen in such environments. KGP provides a highly
modular agent architecture that integrates a collection of reasoning and physical capabili-
ties, synthesised within transitions that update the agent’s state in response to reasoning,
sensing and acting. Transitions are orchestrated by cycle theories that specify the order in
which transitions are executed while taking into account the dynamic context and agent
preferences, as well as selection operators for providing inputs to transitions.

1. Introduction

It is widely acknowledged that the concept of agency provides a convenient and powerful
abstraction to describe complex software entities acting with a certain degree of autonomy
to accomplish tasks, often on behalf of a user (Wooldridge, 2002). An agent in this context
is understood as a software component with capabilities such as reacting, planning and
(inter) acting to achieve its goals in the environment in which it is situated. In this paper,
we present a model of agency, called KGP (Knowledge, Goals and Plan). The model
is hierarchical and highly modular, allowing independent specifications of a collection of
reasoning and physical capabilities, used to equip an agent with intelligent decision making
and adaptive behaviour. The model is particularly suited to open, dynamic environments
where the agents have to adapt to changes in their environment and they have to function
in circumstances where information is incomplete.
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The development of the KGP model was originally motivated by the existing gap be-
tween modal logic specifications (Rao & Georgeff, 1991) of BDI agents (Bratman, Israel, &
Pollack, 1988) and their implementation (for example see the issues raised by Rao, 1996).
Another motivation for the development of KGP comes from our participation in the SOCS
project (SOCS, 2007), where we had the need for an agent model that satisfies several re-
quirements. More specifically, we aimed at an agent model that was rich enough to allow
intelligent, adaptive and heterogeneous behaviour, formal so that it could lent itself well to
formal analysis, and implementable in such a way that the implementation was sufficiently
close to the formal specification to allow verification. Although several models of agency
have been proposed, none satisfies all of the above requirements at once.

To bridge the gap between specification and implementation the KGP model is based
on computational logic (CL). The focus of the work is to extend and synthesise a number
of useful computational logic techniques to produce formal and executable specifications of
agents. For this purpose, the model integrates abductive logic programming (ALP) (Kakas,
Kowalski, & Toni, 1992), logic programming with priorities (Kakas, Mancarella, & Dung,
1994; Prakken & Sartor, 1997) and constraint logic programming (Jaffar & Maher, 1994).
Each of these techniques has been explored in its own right, but their modular integration
within the KGP model explores extensions of each, as well as providing the high level agent
reasoning capabilities.

The KGP model provides a hierarchical architecture for agents. It specifies a collection
of modular knowledge bases, each formalised in CL. These knowledge bases support a collec-
tion of reasoning capabilities, such as planning, reactivity, and goal decision, all of which are
given formal specifications. The model also includes a specification of physical capabilities,
comprising of sensing and actuating. The capabilities are utilised within transitions, that
model how the state of the agent changes as a result of its reasoning, sensing and acting.
Transitions use selection operators providing them with inputs. A control component, called
cycle theory, also formalised in CL, specifies in what order the transitions are executed, de-
pending on the environment, the state of the agent, and the preferences of the agent. The
cycle theory takes the agent control beyond the one-size-fits-all approach used by most
agent models, and allows us to specify agents with different preferences and profiles of be-
haviour (Sadri & Toni, 2005). In particular, whereas the majority of existing agent models
rely upon an “observe-plan-act”, by means of our cycle theory we can model behaviours
such as “observe-revise goals-plan–act” or “observe-plan-sense action preconditions-act” or
“observe-plan-act-plan-act”. We provide one example of cycle theory, that we refer to as
normal, allowing all behaviours above depending on different circumstances (the environ-
ment in which the agent is situated and its preferences). Note also that, with respect to
other agent models, the KGP model allows agents to revise their goals during their life-time,
and observing the environment according to two modalities: active and passive observation.

An agent built with a KGP architecture dynamically determines its goals, plans (par-
tially) how to achieve the goals, interleaves planning with action executions and with making
observations in the environment and receiving any messages from other agents, adapts its
goals and plans to any new information it receives, and any changes it observes, and gener-
ates appropriate reactions.

A number of publications have already described aspects of (an initial version of) the
KGP agents. A precursor of the overall model has been described by Kakas, Mancarella,
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Sadri, Stathis, and Toni (2004b), its planning component has been presented by Mancarella,
Sadri, Terreni, and Toni (2004), its cycle theory has been developed by Kakas, Mancarella,
Sadri, Stathis, and Toni (2004a) and its implementation has been discussed by Stathis et al.
(2004), by Yip, Forth, Stathis, and Kakas (2005), and by Bracciali, Endriss, Demetriou,
Kakas, Lu, and Stathis (2006). In this paper, we provide the full formal specification
of all the components of the KGP model, thus offering the complete technical account
of KGP in one place. In providing this full formal specification, we have adjusted and
further developed the model. In particular, the notion of state and its definition is novel,
the reasoning capabilities have been simplified and some have been added, the physical
capabilities have been extended (to include actuating) and formally defined, the transitions
and the selection operators have been formally defined in full.

The rest of the paper is structured as follows. In Sections 2 and 3 we give an outline of
the model and then review the background information necessary for the full description. In
Sections 4, 5, 6 and 7, respectively, we describe the internal state of KGP agents, their rea-
soning and physical capabilities, and their transitions. In Section 8 we describe the selection
operators which are then used in the cycle theory which is described in Section 9. Following
the detailed description of KGP agents we illustrate the model by a series of examples in
Section 10, and then compare the model with others in the literature in Section 11. Finally,
we conclude the paper in Section 12.

2. KGP Model: Outline

In this Section we give an overview of the KGP agent model and its components, and
provide some informal examples of its functioning. This model relies upon

• an internal (or mental) state, holding the agent Knowledge base (beliefs), Goals (de-
sires) and Plans (intentions),

• a set of reasoning capabilities,

• a set of physical capabilities,

• a set of transition rules, defining how the state of the agent changes, and defined in
terms of the above capabilities,

• a set of selection operators, to enable and provide appropriate inputs to the transitions,

• a cycle theory, providing the control for deciding which transitions should be applied
when.

The model is defined in a modular fashion, in that different activities are encapsulated
within different capabilities and transitions, and the control is a separate module. The
model also has a hierarchical structure, depicted in Figure 1.

2.1 Internal State

This is a tuple 〈KB0,F , C,Σ〉, where:
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Figure 1: A graphical overview of the KGP model

• KB0 holds the beliefs of the agent about the external world in which it is situated
(including past communications), as well as a record of the actions it has already
executed.

• F is a forest of trees whose nodes are goals, which may be executable or not. Each
tree in the forest gives a hierarchical presentation of goals, in that the tree represents
the construction of a plan for the root of the tree. The set of leaves of any tree in F
forms a currently chosen plan for achieving the root of the tree. Executable goals are
actions which may be physical, communicative, or sensing. For simplicity, we assume
that actions are atomic and do not have a duration. Non-executable goals may be
mental or sensing. Only non-executable mental goals may have children, forming
(partial) plans for them. Actions have no children in any tree in F . Each goal has an
associated time variable, which is implicitly existentially quantified within the overall
state and serves two purposes: (1) indicating the time the goal is to be achieved,
which is instantiated if the goal is achieved at an appropriate time, and (2) providing
a unique identifier for that goal. In the remainder of the paper, we will often use the
following terminology for goals in F , when we want to emphasise their role and/or
their nature: the roots of trees in F will be referred to as top-level goals, executable
goals will be referred to as actions, and non-executable goals which are not top-level
goals will be referred to as sub-goals. Top-level goals will be classified as reactive or
non-reactive, as will be explained later. 1 Note that some top-level (reactive) goals
may be actions.

1. Roughly speaking, reactive goals are generated in response to observations, e.g. communications received
from other agents and changes in the environment, for example to repair plans that have already been
generated. Non-reactive goals, on the other hand, are the chosen desires of the agent.
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• C is the Temporal Constraint Store, namely a set of constraint atoms in some given
underlying constraint language. These constrain the time variables of the goals in F .
For example, they may specify a time window over which the time of an action can
be instantiated, at execution time.

• Σ is a set of equalities instantiating time variables with time constants. For example,
when the time variables of actions are instantiated at action execution time, records
of the instantiations are kept in Σ.

2.2 Reasoning Capabilities

KGP supports the following reasoning capabilities:

• Planning, which generates plans for mental goals given as input. These plans consist
of temporally constrained sub-goals and actions designed for achieving the input goals.

• Reactivity, which is used to provide new reactive top-level goals, as a reaction to
perceived changes in the environment and the current plans held by the agent.

• Goal Decision, which is used to revise the non-reactive top-level goals, adapting the
agent’s state to changes in the environment.

• Identification of Preconditions and Identification of Effects for actions, which are used
to determine appropriate sensing actions for checking whether actions may be safely
executed (if their preconditions are known to hold) and whether recently executed
actions have been successful (by checking that some of their known effects hold).

• Temporal Reasoning, which allows the agent to reason about the evolving environment,
and to make predictions about properties, including non-executable goals, holding in
the environment, based on the (partial) information the agent acquires over its life-
time.

• Constraint Solving, which allows the agent to reason about the satisfiability of the
temporal constraints in C and Σ.

In the concrete realisation of the KGP model we provide in this paper, we have chosen
to realise the above capabilities in various extensions of the logic programming paradigm.
In particular, we use (conventional) logic programming for Identification of Preconditions
and Effects, abductive logic programming with constraints (see Section 3.2) for Planning,
Reactivity and Temporal Reasoning, and logic programming with priorities (see Section 3.3)
for Goal Decision.

2.3 Physical Capabilities

In addition to the reasoning capabilities, a KGP agent is equipped with “physical” capabil-
ities, linking the agent to its environment, consisting of

• A Sensing capability, allowing the agent to observe that properties hold or do not
hold, and that other agents have executed actions.

• An Actuating capability, for executing (physical and communicative) actions.
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2.4 Transitions

The state 〈KB0,F , C, Σ〉 of an agent evolves by applying transition rules, which employ the
capabilities as follows:

• Goal Introduction (GI), possibly changing the top-level goals in F , and using Goal
Decision.

• Plan Introduction (PI), possibly changing F and C and using Planning.

• Reactivity (RE), possibly changing the reactive top-level goals in F and C, and using
the Reactivity capability.

• Sensing Introduction (SI), possibly introducing new sensing actions in F for checking
the preconditions of actions already in F .

• Passive Observation Introduction (POI), updating KB0 by recording unsolicited in-
formation coming from the environment, and using Sensing.

• Active Observation Introduction (AOI), possibly updating Σ and KB0, by recording
the outcome of (actively sought) sensing actions, and using Sensing.

• Action Execution (AE), executing all types of actions and as a consequence updating
KB0 and Σ, and using Actuating.

• State Revision (SR), possibly revising F , and using Temporal Reasoning and Con-
straint Solving.

2.5 Cycle and Selection Operators

The behaviour of an agent is given by the application of transitions in sequences, repeatedly
changing the state of the agent. These sequences are not determined by fixed cycles of be-
haviour, as in conventional agent architectures, but rather by reasoning with cycle theories.
Cycle theories define preference policies over the order of application of transitions, which
may depend on the environment and the internal state of an agent. They rely upon the
use of selection operators for detecting which transitions are enabled and what their inputs
should be, as follows:

• action selection for inputs to AE; this selection operator uses the Temporal Reasoning
and Constraint Solving capabilities;

• goal selection for inputs to PI; this selection operator uses the Temporal Reasoning
and Constraint Solving capabilities;

• effect selection for inputs to AOI; this selection operator uses the Identification of
Effect reasoning capability;

• precondition selection for inputs to SI; this selection operator uses the Identification
of Preconditions, Temporal Reasoning and Constraint Solving capabilities;
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The provision of a declarative control for agents in the form of cycle theories is a highly
novel feature of the model, which could, in principle, be imported into other agent systems.
In the concrete realisation of the KGP model we provide in this paper, we have chosen
to realise cycle theories in the same framework of logic programming with priorities and
constraints (see Section 3.3) that we also use for Goal Decision.

Some of the relationships between the capabilities, transitions and the selection operators
are summarised in Tables 2.5 and 2 below. Table 2.5 indicates which capabilities (rows)
are used by which transitions and selection operators. Table 2 indicates which selection
operators are used to compute possible inputs for which transitions in the cycle theory.

Transitions Selection operators
AE AOI GI POI PI RE SR SI fGS fAS fES fPS

sensing x x x
actuating x
|=plan x
|=pre x x
|=GD x
|=react x
|=TR x x x x
|=cs x x x x x x
|=eff x

Table 1: A tabular overview of use of capabilities by transitions and selection operators.
Here, |=plan, |=pre, |=GD, |=react, |=TR, |=cs and |=eff , stand for, respectively, the
planning, identification of preconditions, goal decision, reactivity, temporal rea-
soning, constraint solving and identification of effects (reasoning) capabilities, and
fGS , fAS , fES , fPS stand for, respectively, the goal, action, effect and precondition
selection operators.

AE AOI GI POI PI RE SR SI

fGS x
fAS x
fES x
fPS x

Table 2: A tabular overview of the connections between selection operators and transitions,
as required by the cycle theory. Here, fGS , fAS , fES , fPS stand for, respectively,
the goal, action, effect and precondition selection operators.

Before we provide these components, though, we introduce below informally a scenario
and some examples that will be used to illustrate the technical details of the KGP agent
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model throughout the paper. A full, formal presentation of these as well as additional
examples will be given throughout the paper and in Section 10.

2.6 Examples

We draw all our examples from a ubiquitous computing scenario that we call the San
Vincenzo scenario, presented by de Bruijn and Stathis (2003) and summarised as follows.
A businessman travels for work purposes to Italy and, in order to make his trip easier,
carries a personal communicator, namely a device that is a hybrid between a mobile phone
and a PDA. This device is the businessman’s KGP agent. This agent can be considered
as a personal service agent (Mamdani, Pitt, & Stathis, 1999) (or psa for short) because
it provides proactive information management and flexible connectivity to smart services
available in the global environment within which the businessman travels within.

2.6.1 Setting 1

The businessman’s psa requests from a ‘San Vincenzo Station’ agent, svs, the arrival time
of the train tr01 from Rome. As svs does not have this information it answers with a
refusal. Then later, svs receives information of the arrival time of the tr01 train from a
‘Central Office’ agent, co. When the psa requests the arrival time of tr01 again, svs will
accept the request and provide the information.

This first example requires one to use the Reactivity capability to model rules of inter-
action and the RE transition (a) to achieve interaction amongst agents, and (b) to specify
dynamic adjustments of the agent’s behaviour to changes, allowing different reactions to
the same request, depending on the current situation of the agent. Here, the interaction is a
form of negotiation of resources amongst agents, where resources are items of information.
Thus, the current situation of the agents amounts to what resources/information the agents
currently own.

This example also requires the combination of transitions RE, POI, and AE to achieve
the expected agents’ behaviours, as follows:

1. psa makes the initial request by applying AE

2. svs becomes aware of this request by performing POI (and changing its KB0 accord-
ingly)

3. svs decides to reply with a refusal by performing RE (and adding the corresponding
action to its plan in F)

4. svs utters the refusal by performing AE

5. svs becomes aware, by POI, of the arrival time (modifying its KB0 accordingly)

6. psa makes the second request by applying AE again

7. svs decides to reply with the requested information by performing RE (and adding
the corresponding action to its plan in F) and communicates the information by
performing AE.
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This sequence of transitions is given by the so-called normal cycle theory that we will
see in Section 9.

2.6.2 Setting 2

In preparation of the businessman’s next trip, his psa aims at getting a plane ticket from
Madrid to Denver as well as obtaining a visa to the USA. One possible way to buy plane
tickets is over the internet. Buying tickets this way is usually possible, but not to all
destinations (depending on whether the airlines flying to the destinations sell tickets over
the internet or not) and not without an internet connection. The psa does not currently have
the connection, nor the information that Denver is indeed a destination for which tickets
can be bought online. It plans to buy the ticket over the internet nonetheless, conditionally,
but checks the conditions before executing the planned action. After successfully buying
the ticket, psa focuses on the second goal, of obtaining a visa. This can be achieved by
applying to the USA embassy in Madrid, but the application requires an address in the
USA. This address can be obtained by arranging for a hotel in Denver.

This example illustrates the form of “partial” planning adopted by the KGP model
(where non-executable sub-goals as well as actions may be part of plans) and shows how
the combination of transition PI with SI and AE allows the psa agent to deal with partial
information, to generate conditional plans and plans with several “layers”, as follows:

1. psa is initially equipped with the top-level goals to get a ticket to Denver and to
obtain a visa (through an earlier application of GI)

2. by PI for the first goal, psa adds a “partial” plan to its F , of buying a ticket online
subject to sub-goals that there is an internet connection available and that online
tickets can be bought to Denver; these sub-goals are sensing goals

3. by SI, sensing actions are added to F to evaluate the sensing sub-goals in the envi-
ronment

4. these sensing actions are executed by AE (and KB0 is modified accordingly)

5. depending on the sensed values of the sensing sub-goals the buying action may or
may not be executed by AE; let us assume in the remainder of the example that this
action is executed

6. SR is applied to eliminate all actions (since they have already been executed), sub-
goals and top-level goal of getting a ticket to Denver (since they have been achieved)

7. by PI for the remaining top-level goal of obtaining a visa, psa adds a plan to fill in
an application form (action) and acquiring a residence address in Denver (sub-goal)

8. the action cannot be executed, as psa knows that the businessman is not resident in
the USA; further PI introduces a plan for the sub-goal of booking a hotel (action) for
the subgoal of acquiring a residence address in Denver

9. AE executes the booking action

293



Kakas, Mancarella, Sadri, Stathis & Toni

10. AE executes the action of applying for a visa

11. SR eliminates all actions (since they have already been executed), sub-goal and top-
level goal of getting a visa (since they have been achieved).

3. Background

In this section we give the necessary background for the reasoning capabilities and the cycle
theory of KGP agents, namely:

• Constraint Logic Programming, pervasive to the whole model,

• Abductive Logic Programming, at the heart of the Planning, Reactivity and Temporal
Reasoning capabilities, and

• Logic Programming with Priorities, at the heart of the Goal Decision capability and
Cycle Theories.

3.1 Constraint Logic Programming

Constraint Logic Programming (CLP) (Jaffar & Maher, 1994) extends logic programming
with constraint predicates which are not processed as ordinary logic programming predicates,
defined by rules, but are checked for satisfiability and simplified by means of a built-in,
“black-box” constraint solver. These predicates are typically used to constrain the values
that variables in the conclusion of a rule can take (together with unification which is also
treated via an equality constraint predicate). In the KGP model, constraints are used
to determine the value of time variables, in goals and actions, under a suitable temporal
constraint theory.

The CLP framework is defined over a structure < consisting of a domain D(<) and a set
of constraint predicates which includes equality, together with an assignment of relations
on D(<) for each such constraint predicate. In CLP, constraints are built as first-order
formulae in the usual way from primitive constraints of the form c(t1, . . . , tn) where c is a
constraint predicate symbol and t1, . . . , tn are terms constructed over the domain, D(<),
of values. Then the rules of a constraint logic program, P , take the same form as rules in
conventional logic programming given by

H ← L1, . . . , Ln

with H an (ordinary) atom, L1, . . . , Ln literals, and n ≥ 0. Literals can be positive, namely
ordinary atoms, or negative, namely of the form notB, where B is an ordinary atom,
or constraint atoms over <. The negation symbol not indicates negation as failure (first
introduced by Clark, 1978). All variables in H and Li are implicitly universally quantified,
with scope the entire rule. H is called the head (or the conclusion) and L1, . . . , Ln is called
the body (or the conditions) of a rule of the form above. If n = 0, the rule is called a fact.

A valuation, ϑ, of a set of variables is a mapping from these variables to the domain
D(<) and the natural extension which maps terms to D(<). A valuation ϑ, on the set of all
variables appearing in a set of constraints C, is called an <-solution of C iff Cϑ, obtained by
applying ϑ to C, is satisfied, i.e. Cϑ evaluates to true under the given interpretation of the
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constraint predicates and terms. This is denoted by ϑ |=< C. A set C is called <-solvable
or <-satisfiable, denoted by |=< C, iff it has at least one <-solution, i.e. ϑ |=< C for some
valuation ϑ.

One way to give the meaning of a constraint logic program P is to consider the ground-
ing of the program over its Herbrand base and all possible valuations, over D(<), of its
constraint variables. In each such rule, if the ground constraints C in the body are eval-
uated to true then the rule is kept with the constraints C dropped, otherwise the whole
rule is dropped. Let ground(P ) be the resulting ground program. The meaning of P is
then given by the meaning |=LP of ground(P ), for which there are many different possible
choices (Kakas, Kowalski, & Toni, 1998). The resulting overall semantics for the constraint
logic program P will be referred to as |=LP (<). More precisely, given a constraint logic
program P and a conjunction N ∧ C (where N is a conjunction of non-constraint literals
and C is a conjunction of constraint atoms), in the remainder of the paper we will write

P |=LP (<) N ∧ C

to denote that there exists a ground substitution ϑ over the variables of N ∧ C such that:

• ϑ |=< C

• ground(P ) |=LP Nϑ.

3.2 Abductive Logic Programming with Constraints

An abductive logic program with constraints is a tuple 〈<, P,A, I〉 where:

• < is a structure as in Section 3.1

• P is a constraint logic program, namely a set of rules of the form

H ← L1, . . . , Ln

as in Section 3.1

• A is a set of abducible predicates in the language of P . These are predicates not
occurring in the head of any clause of P (without loss of generality, see (Kakas et al.,
1998)). Atoms whose predicate is abducible are referred to as abducible atoms or
simply as abducibles.

• I is a set of integrity constraints, that is, a set of sentences in the language of P . All
the integrity constraints in the KGP model have the implicative form

L1, . . . , Ln ⇒ A1 ∨ . . . ∨Am (n ≥ 0,m > 0)

where Li are literals (as in the case of rules) 2, Aj are atoms (possibly the special
atom false). The disjunction A1∨ . . .∨Am is referred to as the head of the constraint
and the conjunction L1, . . . , Ln is referred to as the body. All variables in an integrity
constraint are implicitly universally quantified from the outside, except for variables
occurring only in the head, which are implicitly existentially quantified with scope the
head itself.

2. If n = 0, then L1, . . . , Ln represents the special atom true.
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Given an abductive logic program with constraints 〈<, P, A, I〉 and a formula (query)
Q, which is an (implicitly existentially quantified) conjunction of literals in the language
of P , the purpose of abduction is to find a (possibly minimal) set of (ground) abducible
atoms Γ which, together with P , “entails” (an appropriate ground instantiation of) Q, with
respect to some notion of “entailment” that the language of P is equipped with, and such
that the extension of P by Γ “satisfies” I (see (Kakas et al., 1998) for possible notions
of integrity constraint “satisfaction”). Here, the notion of “entailment” is the combined
semantics |=LP (<), as discussed in Section 3.1.

Formally, given a query Q, a set ∆ of (possibly non-ground) abducible atoms, and a
set C of (possibly non-ground) constraints, the pair (∆, C) is an abductive answer (with
constraints) for Q, with respect to an abductive logic program with constraints 〈<, P, A, I〉,
iff for all groundings σ for the variables in Q,∆, C such that σ |=< C, it holds that

(i) P ∪∆σ |=LP (<) Qσ, and

(ii) P∪∆σ |=LP (<) I, i.e. for each B ⇒ H ∈ I, if P∪∆σ |=LP (<) B then P∪∆σ |=LP (<) H.

Here, ∆σ plays the role of Γ in the earlier informal description of abductive answer. Note
also that, by (ii), integrity constraints are not classical implications.

Note also that, when representing knowledge as an abductive logic program, one needs
to decide what should go into the logic program, what in the integrity constraints and what
in the abducibles. Intuitively, integrity constraints are “normative” in that they need to be
enforced, by making sure that their head holds whenever their body does (by condition (ii)
above), whereas logic programming rules enable, with the help of abducibles, the derivation
of given goals (by condition (i) above). Finally, abducibles are chosen amongst the literals
that cannot be derived by means of logic programming rules. In this paper, we will repre-
sent reactive constraints (that are condition-action rules forcing the reactive behaviour of
agents) as integrity constraints, thus to some extent addressing this knowledge representa-
tion challenge posed by abductive logic programming by imposing a sort of “structure” on
the abductive logic programs we use.

The notion of abductive answer can be extended to take into account an initial set
of (possibly non-ground) abducible atoms ∆0 and an initial set of (possibly non-ground)
constraint atoms C0. In this extension, an abductive answer for Q, with respect to

(〈<, P,A, I〉, ∆0, C0)

is a pair (∆, C) such that

(i) ∆ ∩∆0 = {}
(ii) C ∩ C0 = {}, and

(iii) (∆ ∪ ∆0, C ∪ C0) is an abductive answer for Q with respect to 〈<, P,A, I〉 (in the
earlier sense).

It is worth noticing that an abductive answer (∆, C) for the query true with respect to

(〈<, P,A, I〉, ∆0, C0)
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should be read as the fact that the abducibles in ∆0 ∪ ∆, along with the constraints in
C0 ∪ C, guarantee the overall consistency with respect to the integrity constraints given in
I. This will be used for the specification of some capabilities of KGP agents.

In the remainder of the paper, for simplicity, we will omit < from abductive logic
programs, which will be written simply as triples 〈P, A, I〉. In addition, all abductive logic
programs that will present in KGP are variants of a core event calculus (Kowalski & Sergot,
1986), that we will define in Section 5.1.1.

3.3 Logic Programming with Priorities

For the purposes of this paper, a logic program with priorities over a constraint structure
<, referred to as T , consists of four parts:

(i) a low-level or basic part P , consisting of a logic program with constraints; each rule
in P is assigned a name, which is a term; e.g. one such rule could be

n(X, Y ) : p(X) ← q(X,Y ), r(Y )

with name n(X,Y ) naming each ground instance of the rule;

(ii) a high-level part H, specifying conditional, dynamic priorities amongst rules in P or
H; e.g. one such priority could be

h(X) : m(X) Â n(X) ← c(X)

to be read: if (some instance of) the condition c(X) holds, then (the correspond-
ing instance of) the rule named by m(X) should be given higher priority than (the
corresponding instance of) the rule named by n(X). The rule itself is named h(X);

(iii) an auxiliary part A, which is a constraint logic program defining (auxiliary) predicates
occurring in the conditions of rules in P, H and not in the conclusions of any rule in
P or H;

(iv) a notion of incompatibility which, for our purposes, can be assumed to be given as a
set of rules defining the predicate incompatible/2, e.g.

incompatible(p(X), p′(X))

to be read: any instance of the literal p(X) is incompatible with the corresponding
instance of the literal p′(X). We assume that incompatibility is symmetric and always
includes that r Â s is incompatible with s Â r for any two rule names r, s. We refer
to the set of all incompatibility rules as I.

Any concrete LPP framework is equipped with a notion of entailment, which we de-
note by |=pr, that is defined on top of the underlying logic programming with constraints
semantics |=LP (<). This is defined differently by different approaches to LPP but they all
share the following pattern. Given a logic program with priorities T = 〈P,H, A, I〉 and a
conjunction α of ground (non-auxiliary) atoms, T |=pr α iff

(i) there exists a subset P ′ of the basic part P such that P ′ ∪A |=LP (<) α, and
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(ii) P ′ is “preferred” wrt H∪A over any other subset P ′′ of P that derives (under |=LP (<))
a conclusion that is incompatible, wrt I, with α.

Each framework has its own way of specifying what is meant for one sub-theory P ′ to be
“preferred” over another sub-theory P ′′. For example, in existing literature (Kakas et al.,
1994; Prakken & Sartor, 1996; Kowalski & Toni, 1996; Kakas & Moraitis, 2003), |=pr is
defined via argumentation. This is also the approach that we adopt, relying on the notion
of an admissible argument as a sub-theory that is (i) consistent (does not have incompatible
conclusions) and (ii) whose rules do not have lower priority, with respect to the high-level
part H of our theory, than those of any other sub-theory that has incompatible conclusions
with it. The precise definition of how sets of rules are to be compared again is a matter of
choice in each specific framework of LPP.

Given such a concrete definition of admissible sub-theories, the preference entailment,
T |=prα, is then given by:

(i) there exists a (maximal) admissible sub-theory T ′ of T such that T ′ |=LP (<) α, and

(ii) for any α that is incompatible with α there does not exist an admissible sub-theory
T ′′ of T such that T ′′ |=LP (<) α.

When only the first condition of the above is satisfied we say that the theory T cred-
ulously prefers or possibly prefers α. When both conditions are satisfied we say that the
theory sceptically prefers α.

4. The State of KGP Agents

In this Section we define formally the concept of state for a KGP agent. We also introduce
all the notation that we will use in the rest of the paper in order to refer to state components.
Where necessary, we will also try to exemplify our discussion with simple examples.

4.1 Preliminaries

In the KGP model we assume (possibly infinite) vocabularies of:

• fluents, indicated with f, f ′, . . .,

• action operators, indicated with a, a′, . . .,

• time variables, indicated with τ, τ ′, . . .,

• time constants, indicated with t, t′, . . . , 1, 2, . . ., standing for natural numbers (we also
often use the constant now to indicate the current time)

• names of agents, indicated with c, c′, . . . .

• constants, other than the ones mentioned above, normally indicated with lower case
letters, e.g. r, r1, . . .
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• a given constraint language, including constraint predicates <,≤, >,≤, =, 6=, with re-
spect to some structure < (e.g. the natural numbers) and equipped with a notion of
constraint satisfaction |=< (see Section 3.1).

We assume that the set of fluents is partitioned into two disjoint sets:

• mental fluents, intuitively representing properties that the agent itself is able to plan
for so that they can be satisfied, but can also be observed, and

• sensing fluents, intuitively representing properties which are not under the control of
the agent and can only be observed by sensing the external environment.

For example, problem fixed and have resource may represent mental fluents, namely
the properties that a (given) problem has been fixed and a (given) resource should be ob-
tained, whereas request accepted and connection on may represent sensing fluents, namely
the properties that a request for some (given) resource is accepted and that some (given)
connection is active. Note that it is important to distinguish between mental and sensing
fluents as they are treated differently by the control of the agent: mental fluents need to
be planned for, whereas sensing fluents can only be observed. This will be clarified later in
the paper.

We also assume that the set of action operators is partitioned into three disjoint sets:

• physical action operators, representing actions that the agent performs in order to
achieve some specific effect, which typically causes some changes in the environment;

• communication action operators, representing actions which involve communications
with other agents;

• sensing action operators, representing actions that the agent performs to establish
whether some fluent (either a sensing fluent or an expected effect of some action)
holds in the environment, or whether some agent has performed some action.

For example, sense(connection on, τ) is an action literal representing the act of sens-
ing whether or not a network connection is on at time τ , do(clear table, τ) is an ac-
tion literal representing the physical action of removing every item on a given table, and
tell(c1, c2, request(r1), d, τ) is an action literal representing a communication action which
expresses that agent c1 is requesting from agent c2 the resource r1 within a dialogue with
identifier d, at time τ3.

Each fluent and action operator has an associated arity: we assume that this arity is
greater than or equal to 1, in that one argument (the last one, by convention) is always
the time point at which a given fluent holds or a given action takes place. This time point
may be a time variable or a time constant. Given a fluent f of arity n > 0, we refer
to f(s1, . . . , sn−1, x) and ¬f(s1, . . . , sn−1, x), where each si is a constant and x is a time
variable or a time constant as (timed) fluent literals 4. Given a fluent literal `, we denote by `

3. The role of the dialogue identifier will become clearer in Section 10. Intuitively, this is used to “link”
communication actions occurring within the same dialogue.

4. Note that ¬ represents classical negation. Negation as failure occurs in the model only within the
knowledge bases of agents, supporting the reasoning capabilities and the cycle theory. All other negations
in the state are to be understood as classical negations.
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its complement, namely ¬f(s1, . . . , sn−1, x) if ` is f(s1, . . . , sn−1, x), and f(s1, . . . , sn−1, x) if
` is ¬f(s1, . . . , sn−1, x). Examples of fluent literals are have resource(pen, τ), representing
that a certain resource pen should be obtained at some time τ , as well as (the ground)
¬on(box, table, 10), representing that at time 10 (a certain) box should not be on (a certain)
table.

Note that we assume that fluent literals are ground except for the time parameter. This
will allow us to keep the notation simpler and to highlight the crucial role played by the
time parameter. Given this simplification, we will often denote timed fluent literals simply
by `[x].

Given an action operator a of arity n > 0, we refer to a(s1, . . . , sn−1, x), where each si

is a constant and x is a time variable or time constant, as a (timed) action literal. Similarly
to the case of fluent literals, for simplicity, we will assume that timed action literals are
ground except possibly for the time. Hence, we will often denote timed action literals by
a[x].

We will adopt a special syntax for sensing actions, that will always have the form (x is
either a time variable or a time constant):

• sense(f, x), where f is a fluent, or

• sense(c : a, x), where c is the name of an agent and a is an action operator.

In the first case, the sensing action allows the agent to inspect the external environment in
order to check whether or not the fluent f holds at the time x of sensing. In the second
case, the sensing action allows the agent to determine whether, at time x, another agent c
has performed some action a.

We will now define formally the concept of state 〈KB0,F , C, Σ〉 of an agent.

4.2 Forest: F
Each node in each tree in F is:

• either a non-executable goal, namely a (non-ground) timed fluent literal,

• or an executable goal, namely a (non-ground) timed action literal.

An example of a tree in F is given in Figure 2, where p2 is some given problem that
the agent (c1) needs to fix by getting two resources r1 and r2, and where the agent has
already decided to get r1 from some other agent c2 and has already planned to ask c2 by
the communication action tell(c1, c2, request(r1), d, τ4). For example, in the San Vincenzo
scenario, p2 may be “transfer to airport needs to be arranged”, r1 may be a taxi, and c2
a taxi company, needed for transportation to some train station, and finally r2 may be a
train ticket.

Note that the time variable τ in non-executable goals `[τ ] and actions a[τ ] in (any tree
in) F is to be understood as a variable that is existentially quantified within the whole state
of the agent. Whenever a goal or action is introduced within a state, its time variable is to
be understood as a distinguished, fresh variable, also serving as its identifier.
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problem fixed(p2, τ1)
PPPPPPPPPP

³³³³³³³³³³
have resource(r1, τ2)

tell(c1, c2, request(r1), d, τ4)

have resource(r2, τ3)

Figure 2: An example tree in F

As indicated in Section 2, roots of trees are referred to as top-level goals, executable
goals are often called simply actions, non-executable goals may be top-level goals or sub-
goals. For example, in Figure 2, the node with identifier τ1 is a top-level goal, the nodes
with identifiers τ2, τ3 are sub-goals and the node with identifier τ4 is an action.

Notation 4.1 Given a forest F and a tree T ∈ F :

• for any node n of T , parent(n, T ), children(n, T ), ancestors(n, T ), siblings(n, T ),
descendents(n, T ), will indicate the parent of node n in T , the children of n in T ,
etc. and leaf(n, T ) will have value true if n is a leaf in T , false otherwise.

• for any node n of F , parent(n,F), children(n,F), ancestors(n,F), siblings(n,F),
descendents(n,F), leaf(n,F) will indicate the parent(n, T ) for the tree T in F where
n occurs, etc. (T is unique, due to the uniqueness of the time variable identifying
nodes).

• nodes(T ) will represent the set of nodes in T , and nodes(F) will represent the set
nodes(F) =

⋃
T ∈F nodes(T ).

Again, as indicated in Section 2, each top-level goal in each tree in F will be either
reactive or non-reactive. We will see, in Section 7, that reactive top-level goals are in-
troduced into the state by the RE transition whereas non-reactive top-level goals are in-
troduced by the GI transition. For example, F of agent c1 may consist of the tree in
Figure 2, with root a non-reactive goal, as well as a tree with root the reactive goal (action)
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tell(c1, c2, accept request(r3), d′, τ5). This action may be the reply (planned by agent c1)
to some request for resource r3 by agent c2 (for example, in the San Vincenzo scenario, r3

may be a meeting requested by some colleague).

Notation 4.2 Given a forest F
• Rootsr(F) (resp. Rootsnr(F)) will denote the set of all reactive (resp. non-reactive)

top-level goals in F
• nodesr(F) (resp. nodesnr(F)) will denote the subset of nodes(F) consisting of nodes

in all trees whose root is in Rootsr(F) (resp. Rootsnr(F))

• r(F) (resp. nr(F)) stands for the reactive (resp. non-reactive) part of F , namely the
set of all trees in F whose root is in Rootsr(F) (resp. Rootsnr(F)).

Trivially, r(F) and nr(F) are disjoint, and F= r(F) ∪ nr(F).

4.3 Temporal Constraint Store: C
This is a set of constraint atoms, referred to as temporal constraints, in the given underlying
constraint language. Temporal constraints refer to time constants as well as to time variables
associated with goals (currently or previously) in the state.

For example, given a forest with the tree in Figure 2, C may contain τ1 > 10, τ1 ≤ 20,
indicating that the top-level goal (of fixing problem p2) needs to be achieved within the time
interval (10, 20], τ2 < τ1, τ3 < τ1, indicating that resources r1 and r2 need to be acquired
before the top-level goal can be deemed to be achieved, and τ4 < τ2, indicating that the
agent needs to ask agent c2 first. Note that we do not need to impose that τ2 and τ3 are
executed in some order, namely C may contain neither τ2 < τ3, nor τ3 < τ2.

4.4 Agents’ Dynamic Knowledge Base: KB0

KB0 is a set of logic programming facts in the state of an agent, recording the actions which
have been executed (by the agent or by others) and their time of execution, as well as the
properties (i.e. fluents and their negation) which have been observed and the time of the
observation. Formally, these facts are of the following forms:

• executed(a, t) where a[t] is a ground action literal, meaning that action a has been
executed by the agent at time t.

• observed(`, t) where `[t] is a ground fluent literal, meaning that ` has been observed
to hold at time t.

• observed(c, a[t′], t) where c is an agent’s name, different from the name of the agent
whose state we are defining, t and t′ are time constants, and a[t′] is a (ground) action
literal. This means that the given agent has observed at time t that agent c has
executed the action a at time t′ 5.

5. We will see that, by construction, it will always be the case that t′ ≤ t. Note that the time of executed
actions, t′, and the time of their observation, t, will typically be different in any concrete implementation
of the KGP model, as they depend, for example, on the time of execution of transitions within the
operational trace of an agent.
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Note that all facts in KB0 are variable-free, as no time variables occur in them. Facts
of the first kind record actions that have been executed by the agent itself. Facts of the
second kind record observations made by the agent in the environment, excluding actions
executed by other agents, which are represented instead as facts of the third kind.

For example, if the action labelled by τ4 in Figure 2 is executed (by the AE transition)
at time 7 then executed(tell(c1, c2, request(r1), d), 7) will be added to KB0. Moreover, if,
at time 9, c1 observes (e.g. by transition POI) that it has resource r2, then the observation
observed(have resource(r2), 9) will be added to KB0. Finally, KB0 may contain

observed(c2, tell(c2, c1, request(r3), d′, 1), 6)

to represent that agent c1 has become aware, at time 6, that agent c2 has requested, at the
earlier time 1, resource r3 from c1.

4.5 Instantiation of Time Variables: Σ

When a time variable τ occurring in some non-executable goal `[τ ] or some action a[τ ] in F
is instantiated to a time constant t (e.g. at action execution time), the actual instantiation
τ = t is recorded in the Σ component of the state of the agent. For example, if the action
labelled by τ4 in Figure 2 is executed at time 7, then τ4 = 7 will be added to Σ.

The use of Σ allows one to record the instantiation of time variables while at the same
time keeping different goals with the same fluent distinguished. Clearly, for each time
variable τ there exists at most one equality τ = t in Σ.

Notation 4.3 Given a time variable τ , we denote by Σ(τ) the time constant t, if any, such
that τ = t ∈ Σ.

It is worth pointing out that the valuation of any temporal constraint c ∈ C will always
take the equalities in Σ into account. Namely, any ground valuation for the temporal
variables in c must agree with Σ on the temporal variables assigned to them in Σ. For
example, given Σ = {τ = 3} and C = {τ1 > τ}, then τ1 = 10 is a suitable valuation,
whereas τ1 = 1 is not.

5. Reasoning Capabilities

In this section, we give detailed specifications for the various reasoning capabilities, spec-
ified within the framework of ordinary logic programming (for Temporal Reasoning and
Identification of Preconditions and Effects), of Abductive Logic Programming with Con-
straints (Section 3.2, for Planning and Reactivity), of Logic Programming with Priorities
with Constraints (Section 3.3, for Goal Decision), of constraint programming (Section 3.1,
for Constraint Solving).

The reasoning capabilities are defined by means of a notion of “entailment” with respect
to an appropriate knowledge base (and a time point now, where appropriate), as follows:
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• |=TR and KBTR for Temporal Reasoning, where KBTR is a constraint logic program
and a variant of the framework of the Event Calculus (EC) for reasoning about actions,
events and changes (Kowalski & Sergot, 1986) 6;

• |=now
plan and KBplan for Planning, where KBplan is an abductive logic program with

constraints, extending KBTR;

• |=now
react and KBreact for Reactivity, where KBreact is an extension of KBplan, incorpo-

rating additional integrity constraints representing reactive rules;

• |=pre and KBpre, where KBpre is a logic program contained in KBTR;

• |=eff and KBeff , where KBeff is a logic program contained in KBTR;

• |=now
GD and KBGD, where KBGD is a logic program with priorities and constraints.

The constraint solving capability is defined in terms of an “entailment” |=cs which is
basically |=< as defined in Section 3.1.

5.1 Temporal Reasoning, Planning, Reactivity, Identification of Preconditions
and Effects: EC-based Capabilities

These reasoning capabilities are all specified within the framework of the event calculus
(EC) for reasoning about actions, events and changes (Kowalski & Sergot, 1986). Below,
we first give the core EC and then show how to use it to define the various capabilities in
this section.

5.1.1 Preliminaries: Core Event Calculus

In a nutshell, the EC allows one to write meta-logic programs which “talk” about object-
level concepts of fluents, events (that we interpret as action operators) 7, and time points.
The main meta-predicates of the formalism are:

• holds at(F, T ) - a fluent F holds at a time T ;

• clipped(T1, F, T2) - a fluent F is clipped (from holding to not holding) between times
T1 and T2;

• declipped(T1, F, T2) - a fluent F is declipped (from not holding to holding) between
times T1 and T2;

• initially(F ) - a fluent F holds at the initial time, say time 0;

• happens(O, T ) - an operation O happens at a time T ;

• initiates(O, T, F ) - a fluent F starts to hold after an operation O at time T ;

6. A more sophisticated, abductive logic programming version of |=TR and KBTR is given by Bracciali and
Kakas (2004).

7. In this section we use the original event calculus terminology of events instead of operators, as in the
rest of the paper.

304



Computational Logic Foundations of KGP Agents

• terminates(O, T, F ) - a fluent F ceases to hold after an operation O at time T .

Roughly speaking, the last two predicates represent the cause-effects links between op-
erations and fluents in the modelled world. We will also use a meta-predicate

• precondition(O,F ) - the fluent F is one of the preconditions for the executability of
the operation O.

Fluent literals in an agent’s state are mapped onto the EC as follows. The EC-like rep-
resentation of a fluent literal f [τ ] (resp. ¬f [τ ]) in an agent’s state is the atom holds at(f, τ)
(resp. holds at(¬f, τ)). Moreover, when arguments other than the time variable need to be
considered, the EC representation of a fluent literal f(x1, . . . , xn, τ) (resp. ¬f(x1, . . . , xn, τ))
is holds at(f(x1, . . . , xn), τ) (resp. holds at(¬f(x1, . . . , xn), τ). 8

Similarly, action literals in the state of an agent can be represented in the EC in a
straightforward way. Given an action literal a[τ ] its EC representation is happens(a, τ).
When arguments other than time are considered, as e.g. in a(x1, . . . , xn, τ), the EC repre-
sentation is given by happens(a(x1, . . . xn), τ).

In the remainder of the paper, with an abuse of terminology, we will sometimes refer
to f(x1, . . . , xn) and ¬f(x1, . . . , xn) interchangeably as fluent literals or fluents (although
strictly speaking they are fluent literals), and to a(x1, . . . xn) interchangeably as action
literals or action operators (although strictly speaking they are action literals).

The EC allows one to represent a wide variety of phenomena, including operations with
indirect effects, non-deterministic operations, and concurrent operations (Shanahan, 1997).

The core EC we use in this paper consists of two parts: domain-independent rules and
domain-dependent rules. The basic domain-independent rules, directly borrowed from the
original EC, are:

holds at(F, T2) ← happens(O, T1), initiates(O, T1, F ),
T1 < T2, not clipped(T1, F, T2)

holds at(¬F, T2) ← happens(O, T1), terminates(O, T1, F ),
T1 < T2, not declipped(T1, F, T2)

holds at(F, T ) ← initially(F ), 0 ≤ T, not clipped(0, F, T )
holds at(¬F, T ) ← initially(¬F ), 0 ≤ T, not declipped(0, F, T )
clipped(T1, F, T2) ← happens(O, T ), terminates(O, T, F ), T1 ≤ T < T2

declipped(T1, F, T2) ← happens(O, T ), initiates(O, T, F ), T1 ≤ T < T2

The domain-dependent rules define initiates, terminates, and initially, e.g. in the case
of setting 2.6.1 in Section 2.6 we may have

initiates(tell(C, svs, inform(Q, I), D), T, have info(svs,Q, I)) ←
holds at(trustworthy(C), T )

initially(¬have info(svs, arrival(tr01), I)

8. Note that we write holds at(¬f(x1, . . . , xn), τ) instead of not holds at(f(x1, . . . , xn), τ), as done e.g. by
Shanahan, 1997, because we want to reason at the object-level about properties being true or false in the
environment. We use not within the meta-level axioms of the event calculus (see below) to implement
persistence.
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initially(trustworthy(co))

Namely, an action by agent C of providing information I concerning a query Q to the
agent svs (the “San Vincenzo station” agent) initiates the agent svs having the information
about Q, provided that C is trustworthy. Moreover, initially agent co (the “Central Office”
agent) is trustworthy, and agent svs has no information about the arrival time of tr01. The
conditions for the rule defining initiates can be seen as preconditions for the effects of the
operator tell to take place. Preconditions for the executability of operators are specified by
means of a set of rules (facts) defining the predicate precondition, e.g.

precondition(tell(svs, C, inform(Q, I), D), have info(svs, Q, I))

namely the precondition for agent svs to inform any agent C of I about Q is that svs indeed
has information I about Q.

Notice that the presence in the language of fluents and their negation, e.g. f and ¬f ,
poses the problem of “inconsistencies”, i.e. it may be the case that both holds at(f, t) and
holds at(¬f, t) can be derived from the above axioms and a set of events (i.e. a given set
of happens atoms). However, it can easily be shown that this is never the case, provided
that the domain-dependent part does not contain two conflicting statements of the form
initially(f) and initially(¬f) since inconsistencies cannot be caused except at the initial
time point (see e.g. Miller & Shanahan, 2002, p. 459).

In the remainder of the paper we will assume that the domain-dependent part is always
consistent for our agents.

To allow agents to draw conclusions from the contents of KB0, which represents the
“narrative” part of the agent’s knowledge, we add to the domain-independent rules the
following bridge rules:

holds at(F, T2) ← observed(F, T1), T1 ≤ T2, not clipped(T1, F, T2)
holds at(¬F, T2) ← observed(¬F, T1), T1 ≤ T2, not declipped(T1, F, T2)
happens(O, T ) ← executed(O, T )
happens(O, T ) ← observed( , O[T ], )

Notice that these bridge rules make explicit the translation from the state representation
to the EC representation of fluents and actions we have mentioned earlier on in this section.
Note also that we assume that a fluent holds from the time it is observed to hold. This
choice is dictated by the rationale that observations can only be considered and reasoned
upon from the moment the agent makes them. On the other hand, actions by other agents
have effect from the time they have been executed 9.

Having introduced the ability to reason with narratives of events and observations, we
need to face the problem of “inconsistency” due to conflicting observations, e.g. an agent
may observe that both a fluent and its negation hold at the same time. As we have done

9. If the time of the action is unknown at observation time, then the last rule above may be replaced by
happens(O, T ) ← observed( , O[ ], T )
namely the value of a fluent is changed according to observations from the moment the observations

are made.
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above for the set of initially atoms, we will assume that the external world is consistent
too, i.e. it can never happen that both observed(f, t) and observed(¬f, t) belong to KB0,
for any fluent f and time point t.

However, we still need to cope with the frame consistency problem, which arises, e.g.
given observations observed(f, t) and observed(¬f, t′), with t 6= t′. This issue is analogous
to the case when two different events happen at the same time point and they initiate and
terminate the same fluent. In the original EC suitable axioms for the predicates clipped
and declipped are added, as given above, to avoid both a fluent and its negation holding at
the same time after the happening of two such events at the same time. We adopt here a
similar solution to cope with observations, namely by adding the following two axioms to
the domain-independent part:

clipped(T1, F, T2) ← observed(¬F, T ), T1 ≤ T < T2

declipped(T1, F, T2) ← observed(F, T ), T1 ≤ T < T2

This solution may be naive in some circumstances and more sophisticated solutions may
be adopted, as e.g. the one proposed by Bracciali and Kakas (2004).

5.1.2 Temporal Reasoning

The temporal reasoning capability is invoked by other components of the KGP model
(namely the Goal Decision capability, the State Revision transition and some of the se-
lection operators, see Section 7) to prove or disprove that a given (possibly temporally
constrained) fluent literal holds, with respect to a given theory KBTR. For the purposes
of this paper KBTR is an EC theory composed of the domain-independent and domain-
dependent parts as given in Section 5.1.1, and of the “narrative” part given by KB0. Then,
given a state S, a fluent literal `[τ ] and a possibly empty set 10 of temporal constraints TC,
the temporal reasoning capability |=TR is defined as

S |=TR `[τ ] ∧ TC iff KBTR |=LP (<) holds at(`, τ) ∧ TC.

For example, given the EC formulation in Section 5.1.1 for setting 2.6.1 in Section 2.6,
if the state S = 〈KB0,F , C, Σ〉 for agent svs contains

KB0 = {observed(co, tell(co, svs, inform(arrival(tr01), 18), d, 15), 17)},

then S |=TR have info(svs, arrival(tr01), 18, τ) ∧ τ > 20.

5.1.3 Planning

A number of abductive variants of the EC have been proposed in the literature to deal with
planning problems, e.g. the one proposed by Shanahan, 1989. Here, we propose a novel
variant, somewhat inspired by the E-language (Kakas & Miller, 1997), to allow situated
agents to generate partial plans in a dynamic environment.

We will refer to KBplan = 〈Pplan, Aplan, Iplan〉 as the abductive logic program where:

10. Here and in the remainder of the paper sets are seen as conjunctions, where appropriate.
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• Aplan = {assume holds, assume happens}, namely we consider two abducible predi-
cates, corresponding to assuming that a fluent holds or that an action occurs, respec-
tively, at a certain time point;

• Pplan is obtained by adding to the core EC axioms and the “narrative” given by KB0

the following rules
happens(O, T ) ← assume happens(O, T )
holds at(F, T ) ← assume holds(F, T )

• Iplan contains the following set of integrity constraints

holds at(F, T ), holds at(¬F, T ) ⇒ false
assume happens(O, T ), precondition(O, P ) ⇒ holds at(P, T )
assume happens(O, T ), not executed(O, T ), time now(T ′) ⇒ T > T ′

These integrity constraints in Iplan prevent the generation of (partial) plans which are
unfeasible. The first integrity constraint makes sure that no plan is generated which entails
that a fluent and its negation hold at the same time. The second integrity constraint makes
sure that, if a plan requires an action to occur at a certain time point, the further goal of
enforcing the preconditions of that action to hold at that time point is taken into account
in the same plan. This means that, if those preconditions are not already known to hold,
the plan will need to accommodate actions to guarantee that they will hold at the time of
execution of the action. Finally, the last integrity constraint forces all assumed unexecuted
actions in a plan to be executable in the future, where the predicate time now( ) is meant
to return the current time.

It is worth recalling that, in concrete situations, Pplan and Iplan will also contain domain-
dependent rules and constraints. Domain-dependent rules may be needed not only to define
initiates, terminates, initially and precondition, but they may also contain additional
rules/integrity constraints expressing ramifications, e.g.

holds at(f, T ) ⇒ holds at(f1, T ) ∨ . . . ∨ holds at(fn, T )
for some specific fluents in the domain. Moreover, integrity constraints may represent
specific properties of actions and fluents in the domain. As an example, a domain-dependent
constraint could express that two actions of some type cannot be executed at the same time,
e.g.

holds at(tell(c,X, accept request(R), D), T ),
holds at(tell(c,X, refuse request(R), D), T ) ⇒ false

Intuitively, constructing a (partial) plan for a goal (that is a given leaf node in the
current forest) amounts to identifying actions and further sub-goals allowing to achieve the
goal, while assuming that all other nodes in the forest, both executable and non-executable,
are feasible. Concretely, the abductive logic program KBplan supports partial planning as
follows. Whenever a plan for a given goal requires the agent to execute an action, a[τ ] say,
the corresponding atom assume happens(a, τ) is assumed, which amounts to intending
to execute the action (at some concrete time instantiating τ). On the other hand, if a
plan for a given goal requires to plan for a sub-goal, `[τ ] say, the corresponding atom
assume holds(`, τ) may be assumed, which amounts to setting the requirement that further
planning will be needed for the sub-goal itself. Notice that if only total plans are taken into
account, no atoms of the form assume holds( , ) will ever be generated.
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Formally, let KBnow
plan be KBplan ∪ {time now(now)}, where now is a time constant (in-

tuitively, the time when the planning capability is invoked). Then, the planning capability
|=now

plan is specified as follows 11.

Let S = 〈KB0,F , C, Σ〉 be a state, and G = `[τ ] be a mental goal labeling a leaf node
in a tree T of F . Let also

CA = {assume happens(a, τ ′) | a[τ ′] ∈ nodes(F)},
CG = {assume holds(`′, τ ′) | `′[τ ′] ∈ nodes(F) \ {`[τ ]}}

and

• ∆0 = CA ∪ CG
• C0 = C ∪ Σ.

Then,
S, G |=now

plan (Xs, TC)

iff

Xs = {a[τ ′] | assume happens(a, τ ′) ∈ ∆} ∪ {`′[τ ′] | assume holds(`′, τ ′) ∈ ∆}

for some (∆, TC) which is an abductive answer for holds at(`, τ), wrt (KBnow
plan, ∆0, C0). If

no such abductive answer exists, then S, G |=now
plan ⊥, where ⊥ is used here to indicate failure

(i.e. that no such abductive answer exists).

As an example, consider setting 2.6.2 in Section 2.6. The domain-dependent part of
KBplan for agent psa (looking after the businessman in our scenario) contains

initiates(buy ticket online(From, To), T, have ticket(From, To))
precondition(buy ticket online(From, To), available connection)
precondition(buy ticket online(From, To), available destination(To))

The goal G is have ticket(madrid, denver, τ). Assume F only consists of a single tree
consisting solely of the root G, thus CA = CG = {}. Then, S, G |=now

plan (Xs, TC) where

Xs = {buy ticket online(madrid, denver, τ ′),
available connection(τ ′′), available destination(denver, τ ′′′)}

and TC = {τ ′ < τ, τ ′ = τ ′′ = τ ′′′, τ ′ > now}.

5.1.4 Reactivity

This capability supports the reasoning of reacting to stimuli from the external environment
as well as to decisions taken while planning.

As knowledge base KBreact supporting reactivity we adopt an extension of the knowledge
base KBplan as follows. KBreact = 〈Preact, Areact, Ireact〉 where

• Preact = Pplan

11. For simplicity we present the case of planning for single goals only.
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• Areact = Aplan

• Ireact = Iplan ∪RR

where RR is a set of reactive constraints, of the form

Body ⇒ Reaction, TC

where

• Reaction is either assume holds(`, T ), `[T ] being a timed fluent literal, or
assume happens(a, T ), a[T ] being a timed action literal, 12 and

• Body is a non-empty conjunction of items of the form (where `[X] is a timed fluent
literal and a[X] is a timed action literal, for any X):

(i) observed(`, T ′),

(ii) observed(c, a[T ′], T ′′),

(iii) executed(a, T ′),

(iv) holds at(`, T ′),

(v) assume holds(`, T ′),

(vi) happens(a, T ′),

(vii) assume happens(a, T ′),

(viii) temporal constraints on (some of) T, T ′, T ′′

which contains at least one item from one of (i), (ii) or (iii).

• TC are temporal constraints on (some of) T, T ′, T ′′.

As for integrity constraints in abductive logic programming, all variables in Body are
implicitly universally quantified over the whole reactive constraint, and all variables in
Reaction, TC not occurring in Body are implicitly existentially quantified on the righthand
side of the reactive constraint. 13

Notice that Body must contain at least a trigger, i.e. a condition to be evaluated
in KB0. Intuitively, a reactive constraint Body ⇒ Reaction, TC is to be interpreted as
follows: if (some instantiation of) all the observations in Body hold in KB0 and (some
corresponding instantiation of) all the remaining conditions in Body hold, then (the ap-
propriate instantiation of) Reaction, with associated (the appropriate instantiation of) the

12. Here and below, with an abuse of notation, we use the notions of timed fluent and action literals liberally
and allow them to be non-ground, even though we have defined timed fluent and action literals as ground
except possibly for the time parameter.

13. Strictly speaking, syntactically reactive constraints are not integrity constraints (due to the presence of a
conjunction, represented by “,”, rather than a disjunction in the head). However, any reactive constraint
Body ⇒ Reaction, TC can be transformed into an integrity constraint Body ⇒ New with a new clause
New ← Reaction, TC in Preact. Thus, with an abuse of notation, we treat reactive constraints as
integrity constraints.
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temporal constraints TC, should be added to F and C, respectively. Notice that Reaction
is an abducible so that no planning is performed by the reactivity capability.

Formally, let KBnow
react be the theory KBreact ∪ {time now(now)}, where now is a time

constant (intuitively, the time when the capability is invoked). Then, the reactivity capa-
bility |=now

react is specified as follows. Let S = 〈KB0,F , C,Σ〉 be a state. Let

CA = {assume happens(a, τ) | a[τ ] ∈ nodesnr(F)},

CG = {assume holds(`, τ) | `[τ ] ∈ nodesnr(F)}

and

• ∆0 = CA ∪ CG

• C0 = C ∪ Σ.

Then,
S |=now

react (Xs, TC)

iff
Xs = {a[τ ] | assume happens(a, τ) ∈ ∆} ∪ {`[τ ] | assume holds(`, τ) ∈ ∆}

for some (∆, TC) which is an abductive answer for the query true wrt (KBnow
react, ∆0, C0). If

no such abductive answer exists, then S |=now
react ⊥, where ⊥ is used here to indicate failure

(i.e. that no such abductive answer exists).

As an example, consider setting 2.6.1 in Section 2.6, and KBplan as given in Sections 5.1.1
and 5.1.3. Let RR of agent svs consist of:

observed(C, tell(C, svs, request(Q), D, T0), T ), holds at(have info(svs, Q, I), T )
⇒ assume happens(tell(svs, C, inform(Q, I), D), T ′), T ′ > T

observed(C, tell(C, svs, request(Q), D, T0), T ), holds at(no info(svs,Q), T )
⇒ assume happens(tell(svs, C, refuse(Q), D), T ′), T ′ > T

Then, given now = 30 and S = 〈KB0,F , C, Σ〉 with

KB0 = {observed(co, tell(co, svs, inform(arrival(tr01), 18), d1, 15), 17),
observed(psa, tell(psa, svs, request(arrival(tr01)), d2, 20), 22)}

we obtain

S |=now
react ({tell(svs, psa, inform(arrival(tr01), 18), d2, τ)}, τ > 30).

5.1.5 Identification Of Preconditions

This capability is used by KGP agents to determine the preconditions for the executability
of actions which are planned for. These preconditions are defined in the domain-dependent
part of the EC by means of a set of rules of the form precondition(O, F ), representing that
the fluent F is a precondition for the executability of an action with action operator O (see
5.1.1). Let KBpre be the subset of KBTR containing the rules defining precondition( , ).
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Then the identification of preconditions capability |=pre is specified as follows. Given a state
S = 〈KB0,F , C, Σ〉 and a timed action literal a[τ ]

S, a[τ ] |=pre Cs

iff

Cs =
∧{`[τ ] | KBpre |=LP precondition(a, `)}14.

5.1.6 Identification Of Effects

This capability is used by KGP agents to determine the effects of actions that have already
been executed, in order to check whether these actions have been successful. Note that
actions may have been unsuccessful because they could not be executed, or were executed
but they did not have the expected effect. Both are possible in situations where the agent
does not have full knowledge about the environment in which it is situated.

These effects are defined in the domain-dependent part of the EC by means of the set of
rules defining the predicates initiates and terminates. Let KBeff be the theory consisting
of the domain-dependent and domain-independent parts of the EC, as well as the narrative
part KB0. Then, the identification of effects |=eff is specified as follows. Given a state
S = 〈KB0,F , C, Σ〉 and an action operator a[t],

S, a[t] |=eff `

iff

• ` = f and KBeff |=LP initiates(a, t, f)

• ` = ¬f and KBeff |=LP terminates(a, t, f)

5.2 Constraint Solving

The Constraint Solving capability can be simply defined in terms of the structure < and
the |=< notion presented in Section 3.1. Namely, given a state S = 〈KB0,F , C, Σ〉 and a
set of constraints TC:

• S |=cs TC iff |=< C ∧ Σ ∧ TC;

• there exists a total valuation σ such that S, σ |=cs TC iff there exists a total valuation
σ such that σ |=< C ∧ Σ ∧ TC.

5.3 Goal Decision

The Goal Decision reasoning capability allows the agent to decide, at a given time point,
the (non-reactive) top-level goals to be pursued, for which it will then go on to generate
plans aiming at achieving them. The generated goals are the goals of current preferred
interest but this interest may change over time.

14. We assume that
∧{} = true.
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The Goal Decision capability operates according to a theory, KBGD, in which the agent
represents its goal preference policy. KBGD includes KBTR and thus the dynamic, observed
knowledge, KB0, in the current state of the agent. KBGD is expressed in a variant of LPP
described in Section 3.3, whereby the rules in the lower or basic part P of the LPP theory
T have the form (T being a possibly empty sequence of variables):

n(τ, T ) : G[τ, T ] ← B[T ], C[T ]
where

• τ is a time variable, existentially quantified with scope the head of the rule and not a
member of T ;

• all variables except for τ are universally quantified with scope the rule;

• the head G[τ, T ] of the rule consists of a fluent literal conjoined with a (possibly
empty) set of temporal constraints, represented as 〈`[τ ], TC[τ, T ]〉;

• B(T ) is a non-empty conjunction of literals on a set of auxiliary predicates that can
include atoms of the form holds at(`, T ′), where `[T ′] is a timed fluent literal, and the
atom time now(T ′′) for some variables T ′, T ′′;

• the conditions of the rule are constrained by the (possibly empty) temporal constraints
C[T ].

Any such rule again represents all of its ground instances under any total valuation of
the variables in T that satisfies the constraints C[T ]. Each ground instance is named by the
corresponding ground instance of n(τ, T ). Intuitively, when the conditions of one such rule
are satisfied at a time now that grounds the variable T ′′ with the current time at which the
capability is applied, then the goal in the head of the rule is sanctioned as one of the goals
that the agent would possibly prefer to achieve at this time. The decision whether such a
goal is indeed preferred would then depend on the high-level or strategy part H of KBGD,
containing priority rules, as described in Section 3.3, between the rules in the lower-part or
between other rules in H. These priority rules can also include temporal atoms of the form
holds at(`, T ′) and the atom time now(T ′′) in their conditions.

To accommodate this form of rules we only need to extend our notion of incompatibility
I in T to be defined on conclusions 〈`(τ), TC[τ, T ]〉. To simplify the notation, in the
remainder we often write 〈`(τ), TC〉 instead of 〈`(τ), TC[τ, T ]〉.

The incompatibility I can be defined in different ways. For example, a (relatively) weak
notion of incompatibility is given as follows. Two pairs 〈`1(τ1), TC1〉 and 〈`2(τ2), TC2〉 are
incompatible iff for every valuation σ such that TC1 and TC2 are both satisfied, the ground
instances of `1(τ1)σ and `2(τ2)σ are incompatible. A stronger notion would require that
it is sufficient for only one such valuation σ to exist that makes the corresponding ground
literals incompatible.

Let us denote by KBnow
GD the theory KBGD ∪ {time now(now)}, where now is a time

constant. Then, the goal decision capability, |=now
GD , is defined directly in terms of the

preference entailment, |=pr, of LPP (see Section 3.3), as follows.
Given a state S = 〈KB0,F , C,Σ〉,

S |=now
GD Gs
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where

Gs = {G1, G2, . . . , Gn}, n ≥ 0, Gi = 〈`i(τi), TCi〉 for all i = 1, . . . , n

iff Gs is a maximal set such that

KBnow
GD |=pr 〈`1(τ1), TC1〉 ∧ . . . ∧ 〈`n(τn), TCn〉.

This means that a new set of goals Gs is generated that is currently (sceptically) preferred
under the goal preference policy represented in KBGD and the current information in KB0.
Note that any two goals in Gs are necessarily compatible with each other. There are two
special cases where there are no sceptically preferred goals at the time now. The first one
concerns the case where there are no goals that are currently sanctioned by the (lower-part)
of KBGD. When this is so |=now

GD returns an empty set of goals (n = 0). The second special
case occurs when there are at least two goals which are each separately credulously preferred
but these goals are incompatible which each other. Then S |=now

GD ⊥, where ⊥ is used to
indicate failure in identifying new goals to be pursued.

As an example, consider the San Vincenzo scenario where the psa agent needs to de-
cide whether to return home or to recharge its battery. The agent’s goals are categorised
and assigned priority according to their category and possibly other factors. The KBGD

expressing this is given as follows:

• The low-level part contains the rules:

n(rh, τ1) : 〈return home(τ1), {τ1 < T ′}〉 ←
holds at(finished work, T ),
holds at(¬at home, T ),
time now(T ),
T ′ = T + 6

n(rb, τ2) : 〈recharge battery(τ2), {τ2 < T ′}〉 ←
holds at(low battery, T ),
time now(T ),
T ′ = T + 2

• The auxiliary part contains, in addition to KBTR and KB0, the following rules that
specify the category of each goal and the relative urgency between these categories:

typeof(return home, required)
typeof(recharge battery, operational)
more urgent wrt type(operational, required)
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• The incompatibility part consists of

incompatible(return home(T ), recharge battery(T ))

Namely, the two goals are pairwise incompatible, i.e. the agent can only do one of
these goals at a time.

• The high-level part contains the following priority rule:

gd pref(X, Y ) : n(X, ) ≺ n(Y, ) ← typeof(X,XT ),
typeof(Y, Y T ),
more urgent wrt type(XT, Y T ).

Then, for now = 1 and current state S = 〈KB0,F , C, Σ〉 such that finished work and
away from home both hold (by temporal reasoning) at time now, we have that

S |=now
GD {〈return home(τ1), {τ1 < 7}〉}.

Suppose instead that KB0 contains observed(low battery, 1). Then, using the weak
notion of incompatibility, requiring that

for every σ such that σ |=cs {τ1 < 7, τ2 < 3}
it holds that incompatible(return home(τ1)σ, recharge battery(τ2)σ)

we have:

S |=now
GD {〈return home(τ1), {τ1 < 7}〉, 〈recharge battery(τ2), {τ2 < 3}〉}.

Indeed, for σ = {τ1 = 3, τ2 = 2}, incompatible(return home(3), recharge battery(2)) does
not hold. However, using the stronger notion of incompatibility, requiring that

there exists σ such that σ |=cs {τ1 < 7, τ2 < 3}
it holds that incompatible(return home(τ1)σ, recharge battery(τ2)σ)

we have:

S |=now
GD {〈recharge battery(τ2), {τ2 < 3}〉}.

Suppose now that KBGD contains a second operational goal 〈replace part(τ3), {τ3 < 5}〉
that is also sanctioned by a rule in its lower part at time now = 1. Then under the stronger
form of incompatibility the goal decision capability at now = 1 will return ⊥ as both these
operational goals are credulously preferred but none of them is sceptically preferred.
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6. Physical Capabilities

In addition to the reasoning capabilities we have defined so far, an agent is equipped with
physical capabilities that allow it to experience the world in which it is situated; this world
consists of other agents and/or objects that provide an environment for the agents in which
to interact and communicate.

We identify two types of physical capabilities: sensing and actuating. In representing
these capabilities we abstract away from the sensors and the actuators that an agent would
typically rely upon to access and affect the environment. We will also assume that these
sensors and actuators are part of the agent’s body, which we classify as an implementation
issue (Stathis et al., 2004).

The physical sensing capability models the way an agent interacts with its external
environment in order to inspect it, e.g. to find out whether or not some fluent holds at
a given time. On the other hand, the physical actuating capability models the way an
agent interacts with its external environment in order to affect it, by physically executing
its actions.

We represent the sensing physical capability of an agent as a function of the form:

sensing(L, t) = L′

where:

• L is a (possibly empty) set of

– fluent literals f ,

– terms of the form c : a (meaning that agent c has performed action a),

all to be sensed at a concrete time t, and

• L′ is a (possibly empty) set of elements s′ such that

– s′ is a term f : v, f being a fluent and v ∈ {true, false}, meaning that fluent f
has been observed to have value v (namely to be true or to be false) at time t,
or

– s′ is a term of the form c : a[t′], c being an agent name and a being an action,
meaning that agent c has performed action a at time t′.

Note that physical sensing requires the time-stamp t to specify the time at which it is
applied within transitions. Note also that, given a non-empty set L, sensing(L, t) may be
partial, e.g. for some fluent f ∈ L, it can be that neither f : true ∈ L′, nor f : false ∈ L′.

Similarly, we represent the physical actuating capability as a function

actuating(As, t) = As′

where:

• As is a set of action literals {a1, · · · , an}, n > 0, that the agent instructs the body to
actuate at time t;
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• As′ ⊆ As is the subset of actions that the body has actually managed to perform.

The meaning of an action a belonging to As and not belonging to As′ is that the physical
actuators of the agent’s body were not able to perform a in the current situation. It is worth
pointing out that if an action a belongs to As′ it does not necessarily mean that the effects
of a have successfully been reached. Indeed, some of the preconditions of the executed
action (i) may have been wrongly believed by the agent to be true at execution time (as
other agents may have interfered with them) or (ii) the agent may have been unaware of
these preconditions. For example, after having confirmed availability, the agent may have
booked a hotel by sending an e-mail, but (i) some other agent has booked the last available
room in the meanwhile, or (ii) the agent did not provide a credit card number to secure the
booking. In other words, the beliefs of the agent (as held in KB0) may be incorrect and/or
incomplete.

In Section 7 and Section 8 below, we will see that AOI (Active Observation Introduction)
can be used to check effects of actions (identified by the fES effect selection operator, in
turn using the |=eff reasoning capability) after actions have been executed. Moreover, SI
(Sensing Introduction) can be used to check preconditions of actions (identified by the fPS

precondition selection operator, in turn using the |=pre reasoning capability) just before they
are executed, to make sure that the actions are indeed executable. Overall, the following
cases may occur:

• an action belongs to As′ because it was executed and

– its preconditions held at the time of execution and its effects hold in the envi-
ronment after execution;

– its preconditions were wrongly believed to hold at the time of execution (because
the agent has partial knowledge of the environment or its KBplan is incorrect)
and as a consequence its effects do not hold after execution;

– its preconditions were known not to hold at the time of execution (e.g. because
the agent observed only after having planned that they did not hold, but had no
time to -replan) and as a consequence its effects do not hold after execution;

• an action belongs to As\As′ because it was not executed (the body could not execute
it).

The actuating physical capability does not check preconditions/effects: this is left
to other capabilities called within transitions before and/or after the transition invoking
actuating, as we will show below. As before, the way the body will carry out the actions
is an implementation issue (Stathis et al., 2004).

7. Transitions

The KGP model relies upon the state transitions GI, PI, RE, SI, POI, AOI, AE, SR, defined
below using the following representation

(T)
〈KB0,F , C, Σ〉 X

〈KB′
0,F ′, C′, Σ′〉

now
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where T is the name of the transition, 〈KB0,F , C, Σ〉 is the agent’s state before the tran-
sition is applied, X is the input for the transition, now is the time of application of the
transition, 〈KB′

0,F ′, C′, Σ′〉 is the revised state, resulting from the application of the transi-
tion T with input X at time now in state 〈KB0,F , C, Σ〉. Please note that most transitions
only modify some of the components of the state. Also, for some transitions (namely GI,
RE, POI, SR) the input X is always empty and will be omitted. For the other transitions
(namely PI, SI, AOI, AE) the input is always non-empty (see Section 9) and is selected by
an appropriate selection operator (see Section 8).

Below we define each transition formally, by defining 〈KB′
0,F ′, C′, Σ′〉. Note that we

assume that each transition takes care of possible renaming of time variables in the output
of capabilities (if a capability is used by the transition), in order to guarantee that each
goal/action in the forest is univocally identified by its time variable.

7.1 Goal Introduction

This transition takes empty input. It calls the Goal Decision capability to determine the
new (non-reactive) top-level goals of the agent. If this capability returns a set of goals,
this means that the circumstances have now possibly changed the preferred top-level goals
of the agent and the transition will reflect this by changing the forest in the new state to
consist of one tree for each new (non-reactive) goal. On the other hand, if the Goal Decision
capability does not return any (non-reactive) goals (namely it returns ⊥) the state is left
unchanged, as, although the goals in the current state are no longer sceptically preferred
they may still be credulously preferred and, since there are no others to replace them, the
agent will carry on with its current plans to achieve them.

(GI)
〈KB0,F , C, Σ〉
〈KB0,F ′, C′, Σ〉 now

where, given that S = 〈KB0,F , C,Σ〉

(i) If S |=now
GD ⊥, then

– F ′ = F
– C′ = C

(ii) otherwise, if S |=now
GD Gs and Gs 6= ⊥, then

– F ′ is defined as follows:

∗ nr(F ′) = {Tg[τ ] | 〈g[τ ], 〉 ∈ Gs} where Tg[τ ] is a tree consisting solely of the
root g[τ ]

∗ r(F ′) = {}
– C′ = {TC | 〈 , TC〉 ∈ Gs}

This transition drops (top-level) goals that have become “semantically” irrelevant (due
to changed circumstances of the agent or changes in its environment), and replaces them
with new relevant goals. We will see, in Section 7.8, that goals can also be dropped because
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of the book-keeping activities of the State Revision (SR) transition, but that transition can
never add to the set of goals.

Note that, as GI will replace the whole forest in the old state by a new forest, it is
possible that the agent looses valuable information that it has in achieving its goals, when
one of the new preferred goals of the agent is the same as (or equivalent to) a current goal.
This effect though can be minimized by calling (in the cycle theory) the GI transition only
at certain times, e.g. after the current goals have been achieved or timed-out. Alternatively,
the earlier formalisation of the GI transition could be modified so that, in case (ii), for all
goals in Gs that already occur (modulo their temporal variables and associated temporal
constraints) as roots of (non-reactive) trees in F , these trees are kept in F ′. A simple way
to characterise (some of) these goals is as follows. Let

Xs = {〈g[τ ], TC, τ = τ ′〉 | 〈g[τ ], TC〉 ∈ Gs,

g[τ ′] ∈ Rootsnr(F) and
|=cs C iff |=cs (C ∪ TC ∪ {τ = τ ′})}

Gs′ = {〈g[τ ], TC〉 | 〈g[τ ], TC, τ = τ ′〉 ∈ Xs}

The new constraints on goals in Gs′ are equivalent to the old constraints in C. For example,
Gs may contain

G = 〈have ticket(madrid, denver, τ2), {τ2 < 12}〉
with have ticket(madrid, denver, τ1) ∈ Rootsnr(F) and C = {τ1 < 12}.

Then, G definitely belongs to Gs′. Let

newC =
⋃

〈 ,TC,τ=τ ′〉∈Xs

TC ∪ {τ = τ ′}.

Case (ii) can be redefined as follows, using these definitions of Xs, Gs′ and newC:

(ii′) otherwise, if S |=now
GD Gs and Gs 6= ⊥, then, if it is not the case that |=cs C ∪ newC,

then F ′ and C′ are defined as in the earlier case (ii), otherwise (if |=cs C ∪ newC):

– F ′ is defined as follows:

∗ nr(F ′) = {Tg[τ ] | 〈g[τ ], 〉 ∈ Gs \Gs′} ∪ F(Xs)
where Tg[τ ] is a tree consisting solely of the root g[τ ] and
F(Xs) is the set of all trees in F with roots goals of the form g[τ ′] such that
〈g[τ ], , τ = τ ′〉 ∈ Xs

∗ r(F ′) = {}
– C′ = C ∪ {TC | 〈 , TC〉 ∈ Gs \Gs′} ∪ newC.

Note that we keep all temporal constraints in the state, prior to the application of GI,
but we force all variables of new goals that remain in the state after GI to be rewritten
using the old identifiers of the goals.
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7.2 Reactivity

This transition takes empty input. It calls the Reactivity capability in order to determine the
new top-level reactive goals in the state (if any), leaving the non-reactive part unchanged.
If no new reactive goals exist, the reactive part of the new state will be empty.

(RE)
〈KB0,F , C, Σ〉
〈KB0,F ′, C′, Σ〉 now

where, given that S = 〈KB0,F , C,Σ〉:
(i) If S |=now

react ⊥, then

• F ′ is defined as follows:
– r(F ′) = {}
– nr(F ′) = nr(F)

• C′ = C
(ii) otherwise, if S |=now

react (X s, TC), then

• F ′ is defined as follows:
– nr(F ′) = nr(F)
– r(F ′) = {Tx[τ ] | x[τ ] ∈ X s}

where Tx[τ ] is a tree consisting solely of the root x[τ ]
• C′ = C ∪ TC

Note that there is an asymmetry between case (ii) of GI and case (ii) of RE, as GI
eliminates all reactive goals in this case, whereas RE leaves all non-reactive goals unchanged.
Indeed, reactive goals may be due to the choice of specific non-reactive goals, so when the
latter change the former need to be re-evaluated. Instead, non-reactive goals are not affected
by newly acquired reactive goals (that are the outcome of enforcing reactive rules).

Note also that in case (ii), similarly to GI, as RE replaces the whole (reactive) forest
in the old state by a new (reactive) forest, it is possible that the agent loses valuable
information that it has in achieving its reactive goals, when one of the new reactive goals
is the same as (or equivalent to) a current goal. A variant of case (ii) for RE, mirroring the
variant given earlier for GI and using |=cs as well, can be defined to avoid this problem.

7.3 Plan Introduction

This transition takes as input a non-executable goal in the state (that has been selected by
the goal selection operator, see Section 8) and produces a new state by calling the agent’s
Planning capability, if the selected goal is a mental goal, or by simply introducing a new
sensing action, if the goal is a sensing goal.

(PI)
〈KB0,F , C,Σ〉 G

〈KB0,F ′, C′, Σ〉 now

where G is the input goal (selected for planning in some tree T in F , and thus a leaf, see
Section 8) and
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F ′ = (F \ {T | G is a leaf in T }) ∪ New

C′ = C ∪ TC

where New and TC are obtained as follows, S being 〈KB0,F , C, Σ〉.
(i) if G is a mental goal: let S,G |=now

plan P . Then,

– either P = ⊥ and
New = {T } and TC = {},

– or P = (X s, TC) and
New = {T ′} where T ′ is obtained from T by adding each element of X s as a
child of G.

(ii) if G = `[τ ] is a sensing goal, and a child of a goal G′ in T :

New = {T ′} where T ′ is T with (a node labelled by) sense(`, τ ′) as a new child of G′

(here τ ′ is a new time variable) and

TC = {τ ′ ≤ τ}.
(iii) if G = `[τ ] is a sensing goal, and the root of T :

New = {T , T ′} where T ′ is a tree consisting solely of the root (labelled by) sense(`, τ ′)
(here τ ′ is a new time variable) and

TC = {τ ′ ≤ τ}.

7.4 Sensing Introduction

This transition takes as input a set of fluent literals that are preconditions of some actions
in the state and produces a new state by adding sensing actions as leaves in (appropriate)
trees in its forest component. Note that, when SI is invoked, these input fluent literals are
selected by the precondition selection operator, and are chosen amongst preconditions of
actions that are not already known to be true (see Section 8).

(SI)
〈KB0,F , C, Σ〉 SPs

〈KB0,F ′, C′, Σ〉 now

with SPs a non-empty set of preconditions of actions (in the form of pairs “precondition,
action”) in some trees in F , where, given that:

- New = {〈`[τ ], A, sense(`, τ ′)〉 | 〈`[τ ], A〉 ∈ SPs and τ ′ is a fresh variable}
- addSibling(T , A, SA) denotes the tree obtained by adding all elements in SA as new

siblings of A to the tree T such that leaf(A, T )

then

F ′ = F \ {T | leaf(A, T ) and 〈`[τ ], A〉 ∈ SPs}
∪ {addSibling(T , A, SA) | leaf(A, T ) and

SA = {sense(`, τ ′)|〈`[τ ], A, sense(`[τ ′])〉 ∈ New}}

C′ = C ∪ {τ ′ < τ | 〈`[τ ], , sense(`[τ ′])〉 ∈ New}
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Basically, for each fluent literal selected by the precondition selection operator as a
precondition of an action A, a new sensing action is added as a sibling of A, and the
constraint expressing that this sensing action must be performed before A is added to the
current set of temporal constraints.

7.5 Passive Observation Introduction

This transition updates KB0 by adding new observed facts reflecting changes in the en-
vironment. These observations are not deliberately made by the agent, rather, they are
“forced” upon the agent by the environment. These observations may be properties in the
form of positive or negative fluents (for example that the battery is running out) or actions
performed by other agents (for example messages addressed to the agent).

(POI)
〈KB0,F , C, Σ〉
〈KB′

0,F , C, Σ〉 now

where, if sensing(∅, now) = L, then

KB′
0 = KB0 ∪

{observed(f, now) | f : true ∈ L} ∪
{observed(¬f, now) | f : false ∈ L} ∪
{observed(c, a[t], now) | c : a[t] ∈ L}.

7.6 Active Observation Introduction

This transition updates KB0 by adding new facts deliberately observed by the agent, which
seeks to establish whether or not some given fluents hold at a given time. These fluents are
selected by the effect selection operator (see Section 8) and given as input to the transition.
Whereas POI is not “decided” by the agent (the agent is “interrupted” and forced an
observation by the environment), AOI is deliberate. Moreover, POI may observe fluents
and actions, whereas AOI only considers fluents (that are effects of actions executed by the
agent, as we will see in Section 8 and in Section 9).

(AOI)
〈KB0,F , C,Σ〉 SFs

〈KB′
0,F , C, Σ〉 now

where SFs = {f1, . . . , fn}, n > 0, is a set of fluents selected for being actively sensed (by
the effect selection operator), and, if sensing(SFs, now) = L, then

KB′
0 = KB0 ∪

{observed(f, now) | f : true ∈ L} ∪
{observed(¬f, now) | f : false ∈ L}.

7.7 Action Execution

This transition updates KB0, recording the execution of actions by the agent. The actions
to be executed are selected by the action selection operator (see Section 8) prior to the
transition, and given as input to the transition.
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(AE)
〈KB0,F , C,Σ〉 SAs

〈KB′
0,F , C, Σ′〉 now

where SAs is a non-empty set of actions selected for execution (by the action selection
operator), and

• let A be the subset of all non-sensing actions in SAs and S be the subset of all sensing
actions in SAs;

• let sensing(S′, now) = L′, where S′ = {f | sense(f, τ) ∈ S}
• let sensing(S′′, now) = L′′, where S′′ = {c : a | sense(c : a, τ) ∈ S}
• let actuating(A′, now) = A′′, where A′ = {a | a[τ ] ∈ A}.
Then:

KB′
0 = KB0 ∪

{executed(a, now) | a ∈ A′′} ∪
{observed(f, now) | f : true ∈ L′} ∪
{observed(¬f, now) | f : false ∈ L′}
{observed(c, a[t], now) | c : a[t] ∈ L′′ and

∃σ such that σ |=cs C ∧ τ = t where sense(c : a, τ) ∈ S}

and

Σ′ = Σ ∪ {τ = now | a[τ ] ∈ SAs ∧ a ∈ A′′} ∪
{τ = now | sense(f, τ) ∈ SAs ∧ (f : ) ∈ L′} ∪
{τ = t | c : a[t] ∈ L′′ and ∃σ such that σ |=cs C ∧ τ = t where sense(c : a, τ) ∈ S}.

7.8 State Revision

The SR transition revises a state by removing all timed-out goals and actions and all goals
and actions that have become obsolete because one of their ancestors is already believed to
have been achieved. We will make use of the following terminology.

Notation 7.1 Given a state S, a timed fluent literal `[τ ], a timed fluent literal or action
operator x[τ ], and a time-point now:

• achieved(S, `[τ ], now) stands for

there exists a total valuation σ such that S, σ |=cs τ ≤ now and S |=TR `[τ ]σ

• timed out(S, x[τ ], now) stands for

there exists no total valuation σ such that S, σ |=cs τ > now.
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Then, the specification of the transition is as follows.

(SR)
〈KB0,F , C, Σ〉
〈KB0,F ′, C, Σ〉 now

where F ′ is the set of all trees in F pruned so that nodes(F ′) is the biggest subset of
nodes(F) consisting of all goals/actions x[τ ] in some tree T in F such that (here S =
〈KB0,F , C,Σ〉):

(i) ¬timed out(S, x[τ ], now), and

(ii) if x is an action operator, it is not the case that executed(x, t) ∈ KB0 and (τ = t) ∈ Σ,
and

(iii) if x is a fluent literal, ¬achieved(S, x[τ ], now), and

(iv) for every y[τ ′] ∈ siblings(x[τ ],F)

– either y[τ ′] ∈ siblings(x[τ ],F ′),
– or y[τ ′] 6∈ siblings(x[τ ],F ′) and

∗ if y is a fluent literal then achieved(S, y[τ ′], now),
∗ if y is an action literal then executed(y, t) ∈ KB0 and τ ′ = t ∈ Σ,

and

(v) if x is a sensing action operator, x[τ ] = sense(`, τ), then

– either there exists a[τ ′] ∈ siblings(x[τ ],F ′) such that ` is a precondition of a (i.e.
S, a[τ ′] |=pre Cs and `[τ ′] ∈ Cs) and τ < τ ′ ∈ C,

– or there exists `[τ ′] ∈ siblings(x[τ ],F ′) such that ` is a sensing fluent and τ <
τ ′ ∈ C, and

(vi) x[τ ] is a top-level goal or parent(x[τ ],F) = P and P ∈ nodes(F ′).
All conditions above specify what SR keeps in the trees in the forest in the state. Intu-

itively, these conditions may be understood in terms of what they prevent from remaining
in such trees:

• condition (i) removes timed-out goals and actions,

• condition (ii) removes actions that have already been executed,

• condition (iii) removes goals that are already achieved,

• condition (iv) removes goals and actions whose siblings are already timed out and
thus deleted, by condition (i),

• condition (v) removes sensing actions for preconditions of actions that have been
deleted and for sensing goals that have been deleted,

• condition (vi) recursively removes actions and goals whose ancestors have been re-
moved.

The following example illustrates how SR is used to provide adjustment of the agent’s
goals and plans in the light of newly acquired information.
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7.9 Setting 3

The agent psa has the goal to have a museum ticket for some (state-run) museum that the
businessman wants to visit, and a plan to buy the ticket. But before executing the plan psa
observes that it is the European Heritage day (ehd for short), via an appropriate “message”
from another agent mus (representing the museum), stating that all state-run museums in
Europe give out free tickets to anybody walking in on that day. Then, the psa’s goal is
already achieved and both goal and plan are deleted from its state.

Let the agent’s initial state be 〈KB0,F , C, Σ〉 with:

Σ = { } = KB0

F = {T }
C = {τ1 ≤ 10, τ2 = τ3, τ3 < τ1}

where T consists of a top-level goal g1 = have(ticket, τ1), with two children,

g2 = have money(τ2) and a1 = buy(ticket, τ3), 15

and further assuming that KBTR contains

initiates(ehd, T, have(ticket))
initiates(buy(O), T, have(O))
precondition(buy(O), have money).

The remaining knowledge bases do not play any useful role for the purposes of this
example, and can therefore be considered to be empty. The “message” from the museum
agent mus is added to KB0 via POI, e.g. at time 6, in the following form:

observed(mus, ehd(5), 6)

i.e. at time 6 it is observed that at time 5 mus has announced that all state-run museums
in Europe are free on that day. Then, via SR, at time 8 say, g1, g2 and a1 are eliminated
from F , as g1 is already achieved.

8. Selection Operators

The KGP model relies upon selection operators:

• fGS (goal selection, used to provide input to the PI transition);

• fPS (precondition selection, used to provide input to the SI transition);

• fES (effect selection, used to provide input to the AOI transition);

• fAS (action selection, used to provide input to the AE transition).

15. g1 and a1 can be reactive or not, as this does not matter for this example.
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Selection operators are defined in terms of (some of the) capabilities (namely Temporal
Reasoning, Identification of Preconditions and Effects and Constraint Solving).

At a high-level of description, the selection operators can all be seen as returning the set
of all items from a given initial set that satisfy a certain number of conditions. For example,
given a state 〈KB0,F , C, Σ〉, the goal selection operator returns the set of all non-executable
goals in trees in F that satisfy some conditions; the precondition selection operator returns
the set of all pairs, each consisting of (i) a timed fluent literal which is a precondition of
some action in some tree in F and (ii) that action, satisfying some conditions; the effect
selection operator returns the set of all fluent literals which are effects of actions already
executed (as recorded in KB0) that satisfy some conditions; the action selection operator
returns the set of all actions in trees in F that satisfy some conditions.

The selection operators are formally defined below.

8.1 Goal Selection

Informally, the set of conditions for the goal selection operator is as follows. Given a state
S = 〈KB0,F , C, Σ〉 and a time-point t, the set of goals selected by fGS is a singleton set
consisting of a non-executable goal G in some tree in F such that at time t:

1. G is not timed out,

2. no ancestor of G is timed out,

3. no child of any ancestor of G is timed out,

4. neither G, nor any ancestor of G in any tree in F is already achieved.

5. G is a leaf

Intuitively, condition 1 ensures that G is not already timed-out, conditions 2-3 impose
that G belongs to a “still feasible” plan for some top-level goal in F , and condition 4 makes
sure that considering G is not wasteful.

Note that, as already mentioned in Section 5.1.3, for simplicity we select a single goal.
Formally, given a state S = 〈KB0,F , C, Σ〉 and a time-point t, let G(S, t) be the set of all
non-executable goals `[τ ] ∈ nodes(F) such that:

1. ¬timed out(S, `[τ ], t)

2. ¬timed out(S,G, t) for each G ∈ ancestors(`[τ ],F),

3. ¬timed out(S,X, t) for each X ∈ nodes(F) such that X is the child of some P ∈
ancestors(`[τ ],F)

4. ¬achieved(S, G, t) for each G ∈ {`[τ ]} ∪ ancestors(`[τ ],F)

5. leaf(G,F)

Then, if G(S, t) 6= {}:
fGS(S, t) = {G} for some G ∈ G(S, t).

Otherwise, fGS(S, t) = {}.
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8.2 Effect Selection

Informally, the set of conditions for the effect selection operator is as follows. Given a state
S = 〈KB0,F , C, Σ〉 and a time-point t, fES selects all fluents f such that f or ¬f is one of
the effects of some action a[τ ] that has “recently” been executed.

Note that such f (or ¬f) may not occur in F but could be some other (observable)
effect of the executed action, which is not necessarily the same as the goal that the action
contributes to achieving. For example, in order to check whether an internet connection is
available, the agent may want to observe that it can access a skype network even though
it is really interested in opening a browser (as it needs a browser in order to perform a
booking online).

Formally, given a state S = 〈KB0,F , C, Σ〉 and a time-point now, the set of all (timed)
fluents selected by fES is the set of all (timed) fluents f [τ ] such that there is an action
operator a with

1. executed(a, t′) ∈ KB0, t′ = τ ∈ Σ and now − ε < t′ < now, where ε is a sufficiently
small number (that is left as a parameter here), and

2. S, a[τ ] |=eff `, where ` = f or ` = ¬f .

8.3 Action Selection

Informally, the set of conditions for the action selection operator is as follows. Given a state
S = 〈KB0,F , C,Σ〉 and a time-point t, the set of all actions selected by fAS is defined as
follows. Let X (S, t) be the set of all actions A in trees in F such that:

1. A can be executed,

2. no ancestor of A is timed out,

3. no child of any ancestor of A is timed out,

4. no ancestor of A is already satisfied,

5. no precondition of A is known to be false,

6. A has not already been executed.

Then fAS(S, t) ⊆ X (S, t) such that all actions in fAS(S, t) are executable concurrently
at t.

Intuitively, conditions 2-4 impose that A belongs to a “still feasible” plan for some top-
level goals in F . Note that condition 1 in the definition of X (S, t) is logically redundant,
as it is also re-imposed by definition of fAS(S, t). However, this condition serves as a first
filter and is thus useful in practice.

Formally, given a state S = 〈KB0,F , C,Σ〉, and a time-point t, the set of all actions
selected by fAS is defined as follows. Let X (S, t) be the set of all actions a[τ ] occurring as
leaves of some trees in F such that:

327



Kakas, Mancarella, Sadri, Stathis & Toni

1. there exists a total valuation σ such that S, σ |=cs τ = t, and

2. ¬timed out(S,G, t) for each G ∈ ancestors(a[τ ],F), and

3. ¬timed out(S,X, t) for each X ∈ children(G,F) and G ∈ ancestors(a[τ ],F), and

4. ¬achieved(S, G, t) for each G ∈ ancestors(a[τ ],F), and

5. let S, a[τ ] |=pre Cs and Cs = `1[τ ] ∧ . . . ∧ `n[τ ];

if n > 0, then for no i = 1, . . . , n there exists a total valuation σ such that S, σ |=cs

τ = t and S |=TR `i[τ ]σ, and

6. there exists no t′ such that τ = t′ ∈ Σ and executed(a, t′) ∈ KB0.

The formalisation of condition 6 allows for other instances of action A to have been
executed. Then,

fAS(S, t) = {a1[τ1], . . . , am[τm]} ⊆ X (S, t)

(where m ≥ 0), such that there exists a total valuation σ for the variables in C such that
S, σ |=cs τ1 = t ∧ . . . ∧ τm = t.

Note that the definition of the action selection operator can be extended to take into
account a notion of urgency with respect to the temporal constraints. However, such an
extension is beyond the scope of this work.

8.4 Precondition Selection

Informally, the set of conditions for the precondition selection operator is as follows. Given
a state S = 〈KB0,F , C,Σ〉 and a time-point t, the set of preconditions (of actions in
F) selected by fPS is the set of all pairs 〈C, A〉 of (timed) preconditions C and actions
A ∈ nodes(F) such that:

1. C is a precondition of A and

2. C is not known to be true in S at t, and

3. A is one of the actions that could be selected for execution if fAS would be called at
the current time.

The reason why this selection operator returns pairs, rather then simply preconditions,
is that the transition SI, which makes use of the outputs of this selection operator, needs to
know the actions associated with the preconditions. This is because SI introduces sensing
actions for each precondition returned and has to place these sensing actions as siblings of
the associated actions in F , as seen in Section 7.4.

Formally, given a state S = 〈KB0,F , C, Σ〉 and a time-point t, the set of all preconditions
of actions selected by fPS is the set of all pairs 〈C,A〉 of (timed) preconditions C and actions
A ∈ nodes(F) such that:

1. A = a[τ ], and S, a[τ ] |=pre Cs and C is a conjunct in Cs, and
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2. there exists no total valuation σ for the variables in C such that S, σ |=cs τ = t and
S |=TR Cσ, and

3. A ∈ X (S, t), where X (S, t) is as defined in Section 8.3.

9. Cycle Theory

The behaviour of KGP agents results from the application of transitions in sequences,
repeatedly changing the state of the agent. These sequences are not fixed a priori, as
in conventional agent architectures, but are determined dynamically by reasoning with
declarative cycle theories, giving a form of flexible control. Cycle theories are given in the
framework of Logic Programming with Priorities (LPP) as discussed in Section 3.

9.1 Formalisation of Cycle Theories.

Here we use the following new notations:

• T (S,X, S′, t) to represent the application of transition T at time t in state S given
input X and resulting in state S′, and

• ∗T (S,X) to represent that transition T can potentially be chosen as the next transition
in state S, with input X.

Recall that, for some of the transitions, X may be the empty set {}, as indicated in Section 7.
Formally, a cycle theory Tcycle consists of the following parts.

• An initial part Tinitial, that determines the possible transitions that the agent could
perform when it starts to operate. Concretely, Tinitial consists of rules of the form

∗T (S0, X) ← C(S0, X)

which we refer to via the name R0|T (S0, X). These rules sanction that, if conditions
C hold in the initial state S0 then the initial transition could be T , applied to state
S0 and input X. For example, the rule

R0|GI(S0, {}) : ∗GI(S0, {}) ← empty forest(S0)

sanctions that the initial transition should be GI, if the forest in the initial state S0

is empty.

Note that C(S0, X) may be empty, and, if non-empty, C(S0, X) may refer to the
current time via a condition time now(t). For example, the rule

R0|PI(S0, G) : ∗PI(S0, G) ← Gs = fGS(S0, t), Gs 6= {}, G ∈ Gs, time now(t)

sanctions that the initial transition should be PI, if the forest in the initial state S0

contains some goal that can be planned for at the current time (in that the goal
selection operator picks that goal).

• A basic part Tbasic that determines the possible transitions following given transitions,
and consists of rules of the form

∗T ′(S′, X ′) ← T (S, X, S′, t), EC(S′, X ′)
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which we refer to via the name RT |T ′(S′, X ′). These rules sanction that, after transi-
tion T has been executed, starting at time t in the state S and resulting in state S′,
and the conditions EC evaluated in S′ are satisfied, then transition T ′ could be the
next transition to be applied in S′, with input X ′.16 EC are enabling conditions as
they determine when T ′ can be applied after T . They also determine input X ′ for T ′,
via calls to selection operators. As for the initial part of Tcycle, EC may be empty
and, if not, may refer to the current time. For example, the rule

RAE|PI(S′, G) : ∗PI(S′, G) ← AE(S, As, S′, t),
Gs = fGS(S′, t′), Gs 6= {}, G ∈ Gs, time now(t′)

sanctions that PI should follow AE if at the current time there is some goal in the
current state that is selected by the goal selection function.

• A behaviour part Tbehaviour that contains rules describing dynamic priorities amongst
rules in Tbasic and Tinitial. Rules in Tbehaviour are of the form

RT |T ′(S,X ′) Â RT |T ′′(S, X ′′) ← BC(S, X ′, X ′′)

with T ′ 6= T ′′, which we will refer to via the name PT
T ′ÂT ′′ . Recall that RT |T ′(·) and

RT |T ′′(·) are (names of) rules in Tbasic∪Tinitial. Note that, with an abuse of notation,
T could be 0 in the case that one such rule is used to specify a priority over the first
transition to take place, in other words, when the priority is over rules in Tinitial.
These rules in Tbehaviour sanction that, after transition T , if the conditions BC hold,
then we prefer the next transition to be T ′ over T ′′. The conditions BC are behaviour
conditions as they give the behavioural profile of the agent. For example, the rule

PT
GIÂT ′ : RT |GI(S, {}) Â RT |T ′(S, X) ← empty forest(S)

sanctions that GI should be preferred to any other transition after any transition that
results into a state with an empty forest. As for the other components of Tcycle, the
conditions BC may refer to the current time.

• An auxiliary part including definitions for any predicates occurring in the enabling
and behaviour conditions.

• An incompatibility part, in effect expressing that only one (instance of a) transition
can be chosen at any one time.

Hence, Tcycle is an LPP-theory where: (i) P = Tinitial ∪ Tbasic, and (ii) H = Tbehaviour.

9.2 Operational Trace

The cycle theory Tcycle of an agent is responsible for its behaviour, in that it induces an
operational trace of the agent, namely a (typically infinite) sequence of transitions

T1(S0, X1, S1, t1), . . . , Ti(Si−1, Xi, Si, ti), Ti+1(Si, Xi+1, Si+1, ti+1), . . .

such that
16. Note that in order to determine that T ′ is a possible transition after T , with a rule of the earlier form,

one only needs to know that T has been applied and resulted into the state S′. This is conveyed by the
choice of name: RT |T ′(S

′, X ′). In other words, by using a Prolog notation, we could have represented
the rule as ∗T ′(S′, X ′) ← T ( , , S′, ), EC(S′, X ′). Thus, the rule is “Markovian”.
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• S0 is the given initial state;

• for each i ≥ 1, ti is given by the clock of the system (ti < ti+i);

• (Tcycle − Tbasic) ∪ {time now(t1)} |=pr ∗T1(S0, X1);

• for each i ≥ 1

(Tcycle − Tinitial) ∪ {Ti(Si−1, Xi, Si, ti), time now(ti+1)} |=pr ∗Ti+1(Si, Xi+1)

namely each (non-final) transition in a sequence is followed by the most preferred transition,
as specified by Tcycle. If, at some stage, the most preferred transition determined by |=pr is
not unique, we choose one arbitrarily.

9.3 Normal Cycle Theory

The normal cycle theory is a concrete example of cycle theory, specifying a pattern of
operation where the agent prefers to follow a sequence of transitions that allows it to achieve
its goals in a way that matches an expected “normal” behaviour. Other examples of possible
cycle theories can be found in the literature (Kakas, Mancarella, Sadri, Stathis, & Toni,
2005; Sadri & Toni, 2006).

Basically, the “normal” agent first introduces goals (if it has none to start with) via GI,
then reacts to them, via RE, and then repeats the process of planning for them, via PI,
executing (part of) the chosen plans, via AE, revising its state, via SR, until all goals are
dealt with (successfully or revised away). At this point the agent returns to introducing
new goals via GI and repeating the above process. Whenever in this process the agent
is interrupted via a passive observation, via POI, it chooses to introduce new goals via
GI, to take into account any changes in the environment. Whenever it has actions which
are “unreliable”, in the sense that their preconditions definitely need to be checked, the
agent senses them (via SI) before executing the action. Whenever it has actions which are
“unreliable”, in the sense that their effects definitely need to be checked, the agent actively
introduces actions that aim at sensing these effects, via AOI, after having executed the
original actions. If initially the agent is equipped with some goals, then it would plan for
them straightaway by PI.

The full definition of the normal cycle theory is given in the appendix. This is used to
provide the control in the examples of the next section. Here, note that, although the normal
cycle theory is based on the classic observe-plan-act cycle of agent control, it generalises
this in several ways giving more flexibility on the agent behaviour to adapt to a changing
environment. For example, the goals of the agent need not be fixed but can be dynamically
changed depending on newly acquired information. Let us illustrates this feature with a
brief example here. Suppose that the current state of our agent contains the top-level non-
reactive goal 〈return home(τ1), {τ1 < 7}〉 and that a POI occurs which adds an observation
observed(low battery, 2) at time 2. A subsequent GI transition generated by the normal
cycle theory introduces a new goal 〈recharge battery(τ2), {τ2 < 3}〉 which, depending on
the details of KBGD, either replaces the previous goal or adds this as an additional goal.
The normal cycle theory will next choose to do a PI transition for the new and more urgent
goal of recharging its battery.
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10. Examples

In this section we revisit the examples introduced in Section 2.6 and used throughout the
paper to illustrate the various components of the KGP model. Overall, the aim here is
to illustrate the interplay of the transitions, and how this interplay provides the variety of
behaviours afforded by the KGP model, including reaction to observations, generation and
execution of conditional plans, and dynamic adjustment of goals and plans.

Unless specified differently, we will assume that Tcycle will be the normal cycle theory
presented in Section 9.3. We will provide any domain-dependent definition in the auxiliary
part of Tcycle explicitly, where required.

10.1 Setting 1 Formalised

We formalise here the initial state, knowledge bases and behaviour of svs for Setting 1
described in Section 2.6.1.

10.1.1 Initial State

For simplicity, the observations, goals and the plan of svs can be assumed to be empty
initially. More concretely let the (initial) state of svs be

KB0 = { }
F = { }
C = { }
Σ = { }

10.1.2 Knowledge Bases

Following Section 5.1.4, we formulate the reactivity knowledge base for agent svs in terms
of the utterances query ref, refuse, inform inspired by the FIPA specifications for com-
municative acts (FIPA, 2001a, 2001b). However, although we use the same names of
communicative acts as in the FIPA specification, we do not adopt here their “mentalistic”
semantic interpretation in terms of pre- and post-conditions. Thus, KBsvs

react is formulated
as:

observed(C, tell(C, svs, query ref(Q), D, T0), T ), holds at(have info(Q, I), T )
⇒ assume happens(tell(svs, C, inform(Q, I), D), T ′), T ′ > T

observed(C, tell(C, svs, query ref(Q), D, T0), T ), holds at(no info(Q), T )
⇒ assume happens(tell(svs, C, refuse(Q), D), T ′), T ′ > T

assume happens(tell(svs, C, inform(Q, I), D), T ),
assume happens(tell(svs, C, refuse(Q), D), T ′)
⇒ false

assume happens(A, T ), not executable(A) ⇒ false

executable(tell(svs, C, S, D)) ← C 6= svs
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initially(no info(arrival(tr01))

precondition(tell(svs, C, inform(Q, I), D), have info(Q, I))

initiates(tell(C, svs, inform(Q, I), D), T, have info(Q, I))

terminates(tell(C, svs, inform(Q, I), D), T, no info(Q))

10.1.3 Behaviour

To illustrate the behaviour of the psa we will assume that this agent requests from svs, at
time 3, say, the arrival time of tr01. svs receives a request from psa at time 5 for the arrival
time of tr01. Via POI at time 5 svs records in its KB0:

observed(psa, tell(psa, svs, query ref(arrival(tr01)), d, 3), 5)

where d is the dialogue identifier. Then, via RE, at time 7, say, svs modifies its state by
adding to F a tree T rooted at an action a1 to answer to psa. This action a1 is a refusal
represented as:

a1 = tell(svs, psa, refuse(arrival(tr01)), d, τ),

and the temporal constraint τ > 7 is added to C.
The refusal action is generated via the Reactivity capability because svs does not have

information about the requested arrival time. svs executes the planned action a1 at time
10, say, via the AE transition, instantiating its execution time, adding the following record
to KB0:

executed(tell(svs, psa, refuse(arrival(tr01)), d), 10),

and updating Σ by adding τ = 10 to it.
Suppose then that svs makes two observations as follows. At time 17 svs receives

information of the arrival time (18) of the tr01 train from co. Via POI, svs records in its
KB0

17:

observed(co, tell(co, svs, inform(arrival(tr01), 18), d′, 15), 17).

Assume further that at time 25 svs receives another request from psa about the arrival
time of tr01 and, via POI, svs records in its KB0:

observed(psa, tell(psa, svs, query ref(arrival(tr01)), d′′, 20), 25)

with a new dialogue identifier d′′. This leads to a different answer from svs to the query of
psa. svs adds an action to its state to answer psa with the arrival time. This is done again
via RE, say at time 28. A new tree is added in F rooted at the (reactive) action

tell(svs, psa, inform(arrival(tr01), 18), d′′, τ ′),

and the new temporal constraint τ ′ > 28 is added to C.
Via AE, svs executes the action, instantiating its execution time to 30, say, and adding

the following record

17. d′ is the identifier of the dialogue within which this utterance has been performed, and would typically
be different from the earlier d.
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executed(tell(svs, psa, inform(arrival(tr01), 18), d′′), 30)

to KB0, and adding τ ′ = 30 to Σ.
Eventually, SR will clear the planned (and executed) actions from the F component of

the state of svs.

10.2 Setting 2 Formalised

We formalise here the initial state, knowledge bases and behaviour of psa for Setting 2
described in Section 2.6.2.

10.2.1 Initial State

Let us assume that initially the state of psa is as follows:

KB0 = { }
F = {T1, T2}
C = {τ1 < 15, τ2 < 15}
Σ = { }

where T1 and T2 consist of a goals (respectively):

g1 = have ticket(madrid, denver, τ1) and
g2 = have visa(usa, τ2).

10.2.2 Knowledge Bases

To plan for goal g1, the KBpsa
plan contains:

initiates(buy ticket online(From, To), T, have ticket(From, To))
precondition(buy ticket online(From, To), available connection)
precondition(buy ticket online(From, To), available destination(To)).

To plan for goal g2, the KBpsa
plan contains:

initiates(apply visa(usa), T, have visa(usa))
precondition(apply visa(usa), have address(usa))
initiates(book hotel(L), T, have address(usa)) ← holds(in(L, usa), T ).

10.2.3 Behaviour

When PI is called on the above state, at time 2, say, it generates a partial plan for the goal,
changing the state as follows. The goal g1 acquires three children in T1. These are:

g11 = available connection(τ11),
g12 = available destination(denver, τ12),
a13 = buy ticket online(madrid, denver, τ13).

Also, consequently, the set of temporal constraints is updated to:

C = {τ1 < 15, τ2 < 15, τ11 = τ13, τ12 = τ13, τ13 < τ1, τ1 > 2}.
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The action a13 is generated as an action that initiates goal g1. Moreover, every plan that
is generated must satisfy the integrity constraints in KBplan. In particular, any precondition
of actions in the tree that do not already hold must be generated as sub-goals in the tree.
This is why g11 and g12 are generated in the tree as above.

Now via the transition SI, the following sensing actions are added to T1 as siblings of
action a13

18:

a14 = sense(available connection, τ14)
a15 = sense(available destination(denver), τ15)

and the constraints

τ14 = τ15, τ14 < τ13

are added to C.
Then, via AE, these two sensing actions are executed (before the original action a1),

and KB0 is updated with the result of the sensing as follows. Suppose these two actions are
executed at time 5. Consider the first action that senses the fluent available connection. If
this fluent is confirmed by the physical sensing capability, i.e. if available connection : true
is in X such that

sensing({available connection, available destination}, 5) = X,

then observed(available connection, 5) is added to KB0. On the other hand, if

available connection : false

is in X as above, then observed(¬available connection, 5) is added to KB0. In both cases
τ14 = 5 is added to Σ.

If neither of these cases occurs, i.e. if the sensing capability cannot confirm either of
available connection or ¬available connection, then no fact is added to KB0. Similarly
for the other precondition, available destination. Let us assume that after this step of AE,
KB0 becomes

observed(available connection, 5)
observed(available destination(denver), 5)

AE can then execute the original action a13. Note that the agent might decide to execute
the action even if one or both preconditions are not known to be satisfied after the sensing.
If g1 is achieved, SR will eliminate it and a13, a14, a15, g11, g12 from the state. In the
resulting state, F = {T2}, and PI is called, say at time 6. This results in generating a
partial plan for g2, and changing the state so that in T2 the root g2 has children

a21 = apply visa(usa, τ21)
g22 = have address(usa, τ22)

and τ21 < τ2, τ22 = τ21 are added to C. Then, further PI, say at time 7, introduces

a23 = book hotel(denver, τ23)

18. For this we assume that the auxiliary part of Tcycle contains the rule
unreliable pre(As) ← buy ticket online( , , ) ∈ As
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as a child of g22 in T2, and adding τ23 < τ22 to C. Then, AE at time 8 executes a23, adding it
to KB0, and further AE at time 9 executes a22, also updating KB0. Finally, SR eliminates
all actions and goals in T2 and returns an empty F in the state.

11. Related Work

Many proposals exist for models and architectures of individual agents based on com-
putational logic foundations (see e.g. the survey by Fisher, Bordini, Hirsch, & Torroni,
2007). Some of these proposals are based on logic programming, for example IMPACT (Ar-
isha, Ozcan, Ross, Subrahmanian, Eiter, & Kraus, 1999; Subrahmanian, Bonatti, Dix,
Eiter, Kraus, Ozcan, & Ross, 2000), AAA (Balduccini & Gelfond, 2008; Baral & Gelfond,
2001), DALI (Costantini & Tocchio, 2004), MINERVA (Leite, Alferes, & Pereira, 2002),
GOLOG (Levesque, Reiter, Lesperance, Lin, & Scherl, 1997), and IndiGolog (De Giacomo,
Levesque, & Sardiña, 2001). Other proposals are based on modal logic or first-order logic
approaches, for example the BDI model (Bratman et al., 1988; Rao & Georgeff, 1997) and
its extensions to deal with normative reasoning (Broersen, Dastani, Hulstijn, Huang, &
van der Torre, 2001), Agent0 (Shoham, 1993), AgentSpeak (Rao, 1996) and its variants,
3APL (Hindriks, de Boer, van der Hoek, & Meyer, 1999) and its variants (Dastani, Hobo,
& Meyer, 2007).

At a high level of comparison there are similarities in the objectives of most existing
computational logic models of agency and KGP, in that they all aim at specifying knowledge-
rich agents with certain desirable behaviours. There are also some similarities in the finer
details of the KGP model and some of the above related work, as well as differences.

A feature of the KGP which, to the best of our knowledge, is novel is the declarative
and context-sensitive specification of an agent’s cycle. To avoid a static cycle of control
(Rao & Georgeff, 1991; Rao, 1996), KGP relies upon a cycle theory which determines, at
run time, given the circumstances and the individual profile of the agent, what the next
step should be. The cycle theory is sensitive to both solicited and unsolicited information
that the agent receives from its environment, and helps the agent to adapt its behaviour
to the changes it experiences. The approach closest to our work is that of 3APL (Hindriks
et al., 1999) as extended by Dastani, de Boer, Dignum, and Meyer (2003), which provides
meta-programming constructs for specifying the cycle of an agent such as goal selection,
plan expansion, execution, as well as if-then-else and while-loop statements. Unlike the
imperative constructs of 3APL, KGP uses a set of selection operators that can be extended
to model different behaviours and types of agents. A flexible ordering of transitions is then
obtained using preference reasoning about which transitions can be applied at a specific
point in time. These preferences may change according to external events or changes in the
knowledge of the agent.

Another central distinguishing feature of the KGP model, in comparison with existing
models, including those based on logic programming, is its modular integration within
a single framework of abductive logic programming, temporal reasoning, constraint logic
programming, and preference reasoning based on logic programming with priorities, in order
to support a diverse collection of capabilities. Each one of these is specified declaratively
and equipped with its own provably correct computational counterpart (see Bracciali,
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Demetriou, Endriss, Kakas, Lu, Mancarella, Sadri, Stathis, Terreni, & Toni, 2004, for a
detailed discussion).

Compared with existing logic programming approaches KGP has two main similarities
with MINERVA (Leite et al., 2002), an architecture that exploits computational logic and
gives both declarative and operational semantics to its agents. Unlike KGP, a MINERVA
agent consists of several specialised, possibly concurrent, sub-agents performing various
tasks, and relies upon MDLP (Multidimensional Dynamic Logic Programming) (Leite et al.,
2002). MDLP is the basic knowledge representation mechanism of an agent in MINERVA,
which is based on an extension of answer-set programming and explicit rules for updating
the agent’s knowledge base. In KGP instead we integrate abductive logic programming and
logic programming with priorities combined with temporal reasoning.

Closely related to our work in KGP is the logic-based agent architecture for reasoning
agents of Baral and Gelfond (2001). This architecture assumes that the state of an agent’s
environment is described by a set of fluents that evolve over time in terms of transitions
labelled by actions. An agent is also assumed to be capable of correctly observing the state
of the environment, performing actions, and remembering the history of what happened in
it. The agent’s knowledge base consists of an action description part specifying the internal
agent transitions, which are domain specific and not generic as in KGP. The knowledge
base also contains what the agent observes in the environment including its own actions,
as in KGP’s KB0. The temporal aspects of agent transitions are specified in the action
language AL implemented in A-Prolog, a language of logic programs under the answer-
set programming semantics. The answer sets of domain specific programs specified in AL
correspond to plans that in KGP are hypothetical narratives of the abductive event calculus.
The control of the agent is based on a static observe-think-act cycle, an instance of the KGP
cycle theories. A more recent and refined account of the overall approach has given rise to
the AAA Architecture, see (Balduccini & Gelfond, 2008) for an overview.

DALI (Costantini & Tocchio, 2004) is a logic programming language designed for exe-
cutable specification of logical agents. Like KGP, DALI attempts to provide constructs to
represent reactivity and proactivity in an agent using extended logic programs. A DALI
agent contains reactive rules, events, and actions aimed at interacting with an external
environment. Behaviour (in terms of reactivity or proactivity) of a DALI agent is triggered
by different event types: external, internal, present, and past events. All the events and
actions are time stamped so as to record when they occur. External events are like the
observations in KGP, while past events are like past observations. However, KGP does not
support internal events but has instead the idea of transitions that are called by the cycle
theory to trigger reactive or proactive behaviour.

IndiGolog (De Giacomo et al., 2001) is a high-level programming language for robots
and intelligent agents that supports, like KGP, on-line planning, sensing and plan execution
in dynamic and incompletely known environments. It is a member of the Golog family of
languages (Levesque et al., 1997) that use a Situation Calculus theory of action to perform
the reasoning required in executing the program. Instead in the KGP model we rely on
abductive logic programming and logic programming with priorities combined with tem-
poral reasoning. Instead of the Situation Calculus in KGP we use the Event Calculus for
temporal reasoning, but our use of the Event Calculus is not a prerequisite of the model as
in InterRaP (Müller, Fischer, & Pischel, 1998), but can be replaced with another temporal
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reasoning framework, if needed. Apart from the difference between the use of the Situa-
tion and Event Calculi, in IndiGolog goals cannot be decided dynamically, whereas in the
KGP model they change dynamically according to the specifications in the Goal Decision
capability.

There is an obvious similarity of the KGP model with the BDI model (Bratman et al.,
1988) given by the correspondence between KGP’s knowledge, goals and plan and BDI’s
beliefs, desires and intentions, respectively. Apart from the fact that the BDI model is
based on modal logic, in KGP the knowledge (beliefs in BDI) is partitioned in modules,
to support the various reasoning capabilities. KGP also tries to bridge the gap between
specification and the practical implementation of an agent. This gap has been criticized in
BDI by Rao (1996), when he developed the AgentSpeak(L) language. The computational
model of AgentSpeak(L) has been formally studied by d’Inverno and Luck (1998), while
recent implementations of the AgentSpeak interpreter have been incorporated in the Jason
platform (Bordini & Hübner, 2005). Like the KGP implementation in PROSOCS (Bracciali
et al., 2006), the Jason implementation too seeks to narrow the gap between specification
and executable BDI agent programs. Jason also extends BDI with new features like belief
revision (Alechina, Bordini, Hübner, Jago, & Logan, 2006).

A particular line of work in BDI is that of Padgham and Lambrix (2005), who investigate
how the notion of capability can be integrated in the BDI Logic of Rao and Georgeff (1991),
so that a BDI agent can reason about its own capabilities. A capability in this work is
informally understood as the ability to act rationally towards achieving a particular goal,
in the sense of having an abstract plan type that is believed to achieve the goal. Formally,
the BDI logic of Rao and Georgeff is extended to incorporate a modality for capabilities
that constrains agent goals and intentions to be compatible with what the agent believes
are its capabilities. A set of compatibility axioms are then presented detailing the semantic
conditions to capture the desired inter-relationships among an agent’s beliefs, capabilities,
goals, and intentions. The work also summarises how the extensions of the BDI model can
be implemented by adapting the BDI interpreter to include capabilities, further arguing the
benefits of the extension over the original BDI Interpreter of Rao and Georgeff (1992).

In KGP capabilities equate to the reasoning capabilities of an agent that allow the agent
to plan actions from a given state, react to incoming observations, or decide upon which
goals to adopt. However, in KGP, we do not use capabilities at the level of an agent’s
domain specific knowledge to guide the agent in determining whether or not it is rational
to adopt a particular goal.

The issue of the separation between specification and implementation exists between
the KGP model and Agent0 (Shoham, 1993), and its later refinement PLACA (Thomas,
1995). Two other differences between the KGP and Agent0 and PLACA are the explicit
links that exist in the KGP model amongst the goals (in the structuring of the forest in the
agent state) and the richer theories in the KGP that specify priorities amongst potential
goals which are not restricted to temporal orderings. These explicit links are exploited
when revising goals and state, via the Revision transition, in the light of new information
or because of the passage of time.

The BOID architecture (Broersen et al., 2001) extends the well known BDI model (Rao
& Georgeff, 1992) with obligations, thus giving rise to four main components in representing
an agent: beliefs, obligations, intentions and desires. The focus of BOID is to find ways of
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resolving conflicts amongst these components. In order to do so they define agent types,
including some well known types in agent theories such as realistic, selfish, social and simple
minded agents. The agent types differ in that they give different priorities to the rules for
each of the four components. For instance, the simple minded agent gives higher priority to
intentions, compared to desires and obligations, whereas a social agent gives higher priority
to obligations than desires. They use priorities with propositional logic formulae to specify
the four components and the agent types.

The existing KGP model already resolves some of the conflicts that BOID tries to ad-
dress. For example, if there is a conflict between a belief and a prior intention, which means
that an intended action can no longer be executed due to the changes in the environment,
the KGP agent will notice this and will give higher priority to the belief than the prior
intention, allowing the agent in effect to retract the intended action and, time permitting,
to replan for its goals. The KGP model also includes a notion of priority used in the Goal
Decision capability and the cycle theory that controls the behaviour of the agent. The
KGP model has also been extended to deal with normative concepts, the extended model is
known as N-KGP (Sadri, Stathis, & Toni, 2006). What N-KGP has in common with BOID
is that it seeks to extend KGP with the addition of obligations. The N-KGP model also
extends the notion of priorities by incorporating them amongst different types of goals and
actions. A detailed comparison of N-KGP with related work is presented by Sadri, Stathis,
and Toni (2006).

There are features that are included in some other approaches that are absent in the
KGP model. BDI and, more so, the IMPACT system (Arisha et al., 1999; Subrahmanian
et al., 2000) allow agents to have in their knowledge bases representations of the knowledge
of other agents. These systems allow the agents both some degree of introspection and the
ability to reason about other agents’ beliefs and reasoning. The KGP model to this date
does not include any such features. IMPACT also allows the incorporation of legacy sys-
tems, possibly using diverse languages, and has a richer knowledge base language including
deontic concepts and probabilities. Similarly, the 3APL, system is based on a combination
of imperative and logic programming languages, and includes an optimisation component
absent from the KGP. This component in 3APL includes rules that identify if in a given
situation the agent is pursuing a suboptimal plan, and help the agent find a better way
of achieving its goals. 3APL also includes additional functionalities such as learning (van
Otterlo, Wiering, Dastani, & Meyer, 2003), which our model does not currently support.
2APL (Dastani et al., 2007) is an extension of 3APL with goals and goal-plan rules as well
as external and internal events. 2APL has a customisable (via graphical interface) cycle
which is fixed once customised.

12. Conclusions

We have presented the computational logic foundations of the KGP model of agency. The
model allows the specification of heterogeneous agents that can interact with each other, and
can exhibit both proactive and reactive behaviour allowing them to function in dynamic
environments by adjusting their goals and plans when changes happen in such environ-
ments. KGP incorporates a highly modular agent architecture that integrates a collection
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of reasoning and sensing capabilities, synthesised within transitions, orchestrated by cycle
theories that take into account the dynamic context and agent preferences.

The formal specification of the KGP components within computational logic has the
major advantage of facilitating both a formal analysis of the model and a direct verifiable
implementation. This formal analysis has been started by Sadri and Toni (2006), where
we give a formal analysis of KGP agents by exploring their effectiveness in terms of goal
achievement, and reactive awareness, and the impact of their reasoning capabilities towards
progress in goal achievement. An implementation of a precursor of this model, described
by Kakas et al. (2004b), has already been developed within the PROSOCS platform of
Stathis et al. (2004) upon provably correct computational counterparts defined for each
component of the model as given by Kakas et al. (2004b). Concrete choices for these
computational counterparts have been described by Bracciali et al. (2004). The resulting
development framework allows the deployment and testing of the functionality of the earlier
variant of KGP agents. Deployment of these agents relies upon the agent template designed
by Stathis et al. (2002), which builds upon previous work with the head/body metaphor
described by Steiner et al. (1991) and Haugeneder et al. (1994), and the mind/body archi-
tecture introduced by Bell (1995) and recently used by Huang, Eliens, and de Bra (2001).
This development platform has been applied to a number of practical applications, and,
in particular, to ambient intelligence by Stathis and Toni (2004). Also, Sadri (2005) has
provided guidelines for specifying applications using KGP agents. Future work includes im-
plementing and deploying the revised KGP model given in this paper: we envisage that this
will pose limited conceptual challenges, as we will be able to capitalise on our experience
in implementing and deploying the precursor of this model.

Sadri, Stathis, and Toni (2006) have explored how the precursor of the KGP agent
model can be augmented with normative features allowing agents to reason about and
choose between their social and personal goals, prohibitions and obligations. It would be
interesting to continue this work for the finalised KGP model given in this paper.

Sadri and Toni (2005) have developed a number of different profiles of behaviour,
defined in terms of specific cycle theories, and formally proved their advantages in given
circumstances. It would be interesting to explore this dimension further, to characterise
different agent personalities and provide guidance, through formal properties, as to the
type of personality needed for applications.

Future work also includes extending the model to incorporate (i) other reasoning ca-
pabilities, including knowledge revision (e.g. by Inductive Logic Programming), and more
sophisticated forms of temporal reasoning, including identifying explanations for unexpected
observations, (ii) introspective reasoning and reasoning about the beliefs of other agents,
(iii) further experimentation with the model via its implementation, and (iv) development
of a concurrent implementation.
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Appendix A. Normal Cycle Theory

We give here the main parts of the normal Tcycle, but exclude others, for example the
definitions for incompatible and the auxiliary part, including definitions for predicates such
as empty forest, unreliable pre etc. For more details see (Kakas et al., 2005).

Tinitial: This consists of the following rules:
R0|GI(S0, {}) : ∗GI(S0, {}) ← empty forest(S0)
R0|AE(S0, As) : ∗AE(S0, As) ← empty non executable goals(S0), As = fAS(S0, t),

As 6= {}, time now(t)
R0|PI(S0, G) : ∗PI(S0, G) ← Gs = fGS(S0, t), Gs 6= {}, G ∈ Gs, time now(t)

Tbasic: This consists of the following rules:

• The rules for deciding what might follow an AE transition are as follows:
RAE|PI(S′, G) : ∗PI(S′, G) ← AE(S,As, S′, t), Gs = fGS(S′, t′), Gs 6= {},

G ∈ Gs, time now(t′)
RAE|AE(S′, As′) : ∗AE(S′, As′) ← AE(S,As, S′, t), As′ = fAS(S′, t′),

As′ 6= {}, time now(t′)
RAE|AOI(S′, Fs) : ∗AOI(S′, Fs) ← AE(S,As, S′, t), Fs = fES(S′, t′),

Fs 6= {}, time now(t′)
RAE|SR(S′) : ∗SR(S′, {}) ← AE(S, As, S′, t)
RAE|GI(S′, {}) : ∗GI(S′, {}) ← AE(S, As, S′, t)

Namely, AE could be followed by another AE, or by a PI, or by an AOI, or by a SR, or by
a GI, or by a POI.

• The rules for deciding what might follow SR are as follows
RSR|PI(S′, G) : ∗PI(S′, G) ← SR(S, {}, S′, t), Gs = fGS(S′, t′), Gs 6= {}, G ∈ Gs,

time now(t′)
RSR|GI(S′, {}) : ∗GI(S′, {}) ← SR(S, {}, S′, t), Gs = fGS(S′, t′), Gs = {},

time now(t′)
RSR|AE(S′, As) : ∗AE(S′, As) ← SR(S, {}, S′, t), As = fGS(S′, t′), As 6= {},

time now(t′)
Namely, SR can only be followed by PI or GI or AE, depending on whether or not there
are goals to plan for in the state.

• The rules for deciding what might follow PI are as follows
RPI|AE(S′, As) : ∗AE(S′, As) ← PI(S, G, S′, t), As = fAS(S′, t′), As 6= {},

time now(t′)
RPI|SI(S′, Ps) : ∗SI(S′, Ps) ← PI(S,G, S′, t), Ps = fPS(S′, t′), Ps 6= {}, time now(t′)

The second rule is here to allow the possibility of sensing the preconditions of an action
before its execution.

• The rules for deciding what might follow GI are as follows
RGI|RE(S′, {}) : ∗RE(S′, {}) ← GI(S, {}, S′, t)
RGI|PI(S′, G) : ∗PI(S′, G) ← GI(S, {}, S′, t), Gs = fGS(S′, t′), Gs 6= {}, G ∈ Gs,

time now(t′)
Namely, GI can only be followed by RE or PI, if there are goals to plan for.

• The rules for deciding what might follow RE are as follows
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RRE|PI(S′, G) : ∗PI(S′, G) ← RE(S, {}, S′, t), Gs = fGS(S′, t′), Gs 6= {}, G ∈ Gs,
time now(t′)

RRE|SI(S′, Ps) : ∗SI(S′, Ps) ← RE(S, {}, S′, t), Ps = fPS(S′, t′), Ps 6= {},
time now(t′)

• The rules for deciding what might follow SI are as follows
RSI|AE(S′, As) : ∗AE(S′, As) ← SI(S, Ps, S′, t), As = fAS(S′, t′), As 6= {},

time now(t′)
RSI|SR(S′, {}) : ∗SR(S′, {}) ← SI(S, Ps, S′, t)

• The rules for deciding what might follow AOI are as follows
RAOI|AE(S′, As) : ∗AE(S′, As) ← AOI(S, Fs, S′, t), As = fAS(S′, t′), As 6= {},

time now(t′)
RAOI|SR(S′, {}) : ∗SR(S′, {}) ← AOI(S, Fs, S′, t)
RAOI|SI(S′, Ps) : ∗SI(S′, Ps) ← AOI(S, Fs, S′, t), Ps = fPS(S′, t′), Ps 6= {},

time now(t′)
• The rules for deciding what might follow POI are as follows

RPOI|GI(S′, {}) : ∗GI(S′, {}) ← POI(S, {}, S′, t)
Tbehaviour: This consists of the following rules:
• GI should be given higher priority if there are no trees in the state:

PT
GIÂT ′ : RT |GI(S, {}) Â RT |T ′(S,X) ← empty forest(S)

for all transitions T, T ′, T ′ 6= GI, and with T possibly 0 (indicating that if there are no
trees in the initial state of an agent, then GI should be its first transition).
• GI is also given higher priority after a POI:

PPOI
GIÂT : RPOI|GI(S′, {}) Â RPOI|T (S, {}, S′)

for all transitions T 6= GI.
• After GI, the transition RE should be given higher priority:

PGI
REÂT : RGI|RE(S, {}) Â RGI|T (S,X)

for all transitions T 6= RE.
• After RE, the transition PI should be given higher priority:

PRE
PIÂT : RRE|PI(S, G) Â RRE|T (S, X)

for all transitions T 6= PI.
• After PI, the transition AE should be given higher priority, unless there are actions in
the actions selected for execution whose preconditions are “unreliable” and need checking,
in which case SI will be given higher priority:

PPI
AEÂT : RPI|AE(S,As) Â RPI|T (S, X) ← not unreliable pre(As)

for all transitions T 6= AE.
PPI

SIÂAE : RPI|SI(S, Ps) Â RPI|AE(S, As) ← unreliable pre(As)
• After SI, the transition AE should be given higher priority

PSI
AEÂT : RSI|AE(S,As) Â RSI|T (S, X)

for all transitions T 6= AE.
• After AE, the transition AE should be given higher priority until there are no more
actions to execute in the state, in which case either AOI or SR should be given higher
priority, depending on whether there are actions which are “unreliable”, in the sense that
their effects need checking, or not:

342



Computational Logic Foundations of KGP Agents

PAE
AEÂT : RAE|AE(S, As) Â RAE|T (S,X)

for all transitions T 6= AE. Note that, by definition of Tbasic, the transition AE is applicable
only if there are still actions to be executed in the state.

PAE
AOIÂT : RAE|AOI(S, Fs) Â RAE|T (S, X)) ← BCAE

AOI|T (S, Fs, t), time now(t)
for all transitions T 6= AOI, where the behaviour condition BCAE

AOI|T (S, Fs, t) is defined (in
the auxiliary part) by:

BCAE
AOI|T (S, FS, t) ← empty executable goals(S, t), unreliable effect(S, t)

Similarly, we have:
PAE

SRÂT : RAE|SR(S, {}) Â RAE|T (S, X)) ← BCAE
SR|T (S, t), time now(t)

for all transitions T 6= SR where:
BCAE

SR|T (S, t) ← empty executable goals(S, t), not unreliable effect(S, t)
Here, we assume that the auxiliary part of Tcycle specifies whether a given set of actions
contains any “unreliable” action, in the sense expressed by unreliable effect, and defines
the predicate empty executable goals.
• After SR, the transition PI should have higher priority:

PSR
PIÂT : RSR|PI(S,G) Â RSR|T (S, X))

for all transitions T 6= PI.
Note that, by definition of Tbasic, the transition PI is applicable only if there are still goals
to plan for in the state. If there are no actions and goals left in the state, then rule RGI|T
would apply.
• In the initial state PI should be given higher priority:

P0
PIÂT : R0|PI(S, G) Â R0|T (S,X)

for all transitions T 6= PI. Note that, by definition of Tinitial below, the transition PI is
applicable initially only if there are goals to plan for in the initial state.
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