
Towards Static Analysis of Virtualization-Obfuscated Binaries

Johannes Kinder
School of Computer and Communication Sciences

École Polytechnique Fédérale de Lausanne (EPFL)
Lausanne, Switzerland

johannes.kinder@epfl.ch

Abstract

Virtualization-obfuscation protects a program from
manual or automated analysis by compiling it into
bytecode for a randomized virtual architecture and
attaching a corresponding interpreter. Static analysis
appears to be helpless on such programs, where only
the code of the interpreter is directly visible.

In this paper, we explain the particular challenges
for statically analyzing the combination of interpreter
and bytecode. Static analysis for computing possi-
ble variable values is commonly precise only to the
program location. In the interpreter loop, however,
this combines unrelated data flow information from
different locations of the bytecode program.

To avoid this loss of information, we show how to lift
an existing static analysis to an additional dimension
of location, to become sensitive to the value of the vir-
tual program counter. Thus, the static analysis merges
data flow from equal bytecode locations only. We lift
an existing analysis implemented in the JAKSTAB static
analyzer and present preliminary results for processing
a virtualization-obfuscated binary.

1. Introduction

Virtualization-obfuscation is a strong obfuscation
scheme to harden programs against reverse engineer-
ing [9, 10, 1]. The underlying idea is to translate
program code to instructions (bytecode) for a randomly
generated virtual architecture and to synthesize a cor-
responding interpreter. This interpreter reproduces the
observable behavior of the original program from the
bytecode. Hence, an equivalent but protected version
of the original program can be generated by using
just the interpreter as code and storing the translated
bytecode as data. To a reverse engineer or automated
analyzer, the interpreter is immediately visible, but the

bytecode, which determines the program semantics, is
an incomprehensible data block.

While virtualization-obfuscation sees legitimate use
for protecting key-validation schemes and license man-
agers, it is particularly popular with malware authors.
Due to architecture randomization, the bytecode and
interpreter can vary greatly from one protected instance
to the other, preventing the generation of reliable
malware signatures. But the interpreter by itself is not
malicious and could indeed be protecting a legitimate
program; emitting a warning on just detecting the
presence of the interpreter without knowledge about
the bytecode semantics can lead to false positives.

In earlier work, we have argued for applying static
analysis to x86 binaries, both for verifying specifica-
tions of API contracts [5] and to detect malware [7].
Static analysis can aid reverse engineering by extract-
ing data flow information (invariants) about the pro-
gram behavior. For instance, it can compute bounds for
program variables or detect information flow between
system calls. But when directly applied to a program
protected by virtualization-obfuscation, it computes
data flow information only over the interpreter. The in-
variants computed for locations in the interpreter cover
many different instructions in the bytecode program.
Thus, they are too weak to help reverse engineering
and make automated methods such as malware de-
tection or verification outright impossible. We address
these challenges through the following contributions:
• We isolate and identify the effect of virtualization-

obfuscation. Static analysis is unable to extract
useful information due to effectively becoming
location-insensitive, a phenomenon we call do-
main flattening: abstract states from different,
unrelated locations of the original program are
merged when analyzing the interpreter, requiring
extremely conservative over-approximations.

• We show how to adapt an existing static analysis
to overcome this problem. We can define a lifted

c© 2012 IEEE 19th Working Conference on Reverse Engineering (WCRE 2012)

variant of the static analysis that keeps sepa-
rate abstract states for each value of the virtual
program counter (VPC). The lifted analysis then
achieves the same precision on the obfuscated
code as it would on the unobfuscated code.

• We lift Bounded Address Tracking [5], a static
analysis specifically designed for analyzing bina-
ries, to VPC-sensitivity and discuss the implemen-
tation in the JAKSTAB static analyzer. We present
preliminary results for analyzing an obfuscated
example executable.

2. Background

Using a running example of an interpreter and
program, we now briefly introduce the concepts of
virtualization obfuscation and static analysis.

2.1. Virtualization Obfuscation

Programs protected by virtualization-obfuscation all
share the same general structure of looping over a large
switch statement that distinguishes individual bytecode
instructions. An example of a simple interpreter is
shown in Figure 1. Note that the obfuscation usually
targets binary code; we use a C-style high-level pre-
sentation here for ease of exposition. The original code
translated to bytecode is stored within the static array
code; all data the bytecode processes, including its
stack, is allocated to a second array data. In each
iteration of the loop, the interpreter reads an opcode
from the location in the code array pointed to by
the virtual program counter (VPC). Depending on the
opcode, the interpreter then reads operand addresses
from the code array and performs actions on locations
in the data array. After interpreting an instruction, the
VPC is set to point to the next instruction. For jumps,
the VPC is incremented (conditionally) by the relative
offset to the target address.

An obfuscation engine can generate many different
bytecode representations for the same program by
randomizing the virtual instruction set. One degree of
randomness is the mapping from opcodes to bytecode
instructions. But the engine can also merge or split
bytecode instructions into larger or smaller functional
units. Therefore, there is little hope of directly analyz-
ing or pattern matching the bytecode to learn about the
potential behavior of the program.

Currently, there are two main tools for virtualiza-
tion obfuscation, Code Virtualizer (http://oreans.com/
codevirtualizer.php) and VMProtect (http://vmpsoft.
com). Both are advertised for protecting key-validation
methods in shareware programs or license managers,

1 int code = { ... };
2 int data = { ... };
3
4 void interpret() {
5 int vpc = 0, op1, op2;

6 while (true) {
7 switch(code[vpc]) {
8 case 03: // increment
9 op1 = code[vpc + 1];

10 data[op1]++;
11 vpc += 2;
12 break;

13 case 08: // conditional jump
14 op1 = code[vpc + 1];
15 op2 = code[vpc + 2];
16 if (data[op1] <= 0)
17 vpc += data[op2]
18 else
19 vpc += 3;
20 break;

21 case 18: // call ext. function
22 op1 = code[vpc + 1];
23 apiCall(data[op1]);
24 vpc += 2;
25 break;

26 case 52: // assignment
27 op1 = code[vpc + 1];
28 op2 = code[vpc + 2];
29 data[op1] = data[op2];
30 vpc += 3;
31 break;

32 default: // halt
33 return;

34 } // end switch
35 } // end while
36 }

Figure 1. A simple interpreter.

but they are also widely used for encrypting malware.
The architecture randomization provides enough en-
tropy to make it impossible to precisely identify a piece
of malware using the standard fingerprinting tech-
niques employed in end-user anti-virus products. Of-
ten, anti-virus vendors choose to emit generic warnings
on any program for which their heuristic components
determine that it “looks” like it has been protected in
this way—with all the potential for false positives.

2.2. Static Analysis

Static analysis reasons about a program without
executing it. To ensure termination of the analysis, it
introduces abstraction, i.e., it over-approximates the
program semantics and analyzes a superset of all
concrete behaviors of the program. This makes it
dual to dynamic analysis, e.g., testing, which explores
just a subset of the concrete behaviors by concretely
executing the program on some inputs.

A static analysis is defined by an abstract domain

2

http://oreans.com/codevirtualizer.php
http://oreans.com/codevirtualizer.php
http://vmpsoft.com
http://vmpsoft.com

1 void foo(int x){

2 int y=10;
3 y++;
4 y++;

5 if (x > 0) {
6 y++;
7 }
8 else {}

9 apiCall(y);
10 }

2

3

4

5

6

7

8

9

10

x ∈ [−∞;∞]
y ∈ [−∞;∞]

x ∈ [−∞;∞]
y ∈ [10; 10]

x ∈ [−∞;∞]
y ∈ [11; 11]

x ∈ [−∞;∞]
y ∈ [12; 12]

x ∈ [−∞; 0]
y ∈ [12; 12]

x ∈ [1;∞]
y ∈ [12; 12]

x ∈ [1;∞]
y ∈ [13; 13]

x ∈ [−∞;∞]
y ∈ [12; 13]

y = 10

y++

y++

x > 0

x <= 0

y++

apiCall(y)

Figure 2. Unobfuscated example program and its
control flow graph, annotated with abstract states
computed by a static interval analysis.

over which it operates (e.g., intervals) and an abstract
transfer function that computes how the program exe-
cution affects the elements of the abstract domain (e.g.,
x++ changes the interval x ∈ [0; 10] to x ∈ [1; 11]).

Consider the simple unobfuscated example program
in Figure 2. An interval analysis is able to determine
the (precise) bounds for variable y at the site of the
external call in line 9. Starting from an initial state
with infinite, unknown bounds for x and y, the transfer
function for the assignment at line 2 computes a
successor with a single-value interval of [10; 10] for y.
The analysis progresses through lines 3 and 4, updating
the values as annotated in the control flow graph in
Figure 2. From line 5, there are two outgoing control
flow edges, one for each branch of the if statement.
The then branch leads to the restricted interval [1;∞]
for x, the increment at line 6 to y ∈ [13; 13]. The else
branch restricts the interval for x to [−∞; 0]. Both
branches recombine in line 9. Because the analysis just
keeps one interval per variable per location, it has to
merge the intervals from both states. Therefore, x is
again unbounded and y is known to be in the interval
[12; 13], which also constitutes the possible arguments
to the external call in line 9.

For a program with loops, the analysis computes the
transfer function repeatedly until it reaches a fixpoint
over the map from locations to abstract states. To
accelerate the finding of the fixpoint, which might oth-
erwise require an infinite number of steps, the analysis
can apply widening [2]. That is, it over-approximates

the transfer function further to guarantee reaching a
fixpoint in a finite number of steps. In the interval
domain, widening typically involves setting one bound
to infinity or intermediate program-specific constants.

Within the framework of abstract interpretation [2],
a program analysis is often defined using a smaller
abstract domain by lifting and pointwise extension of
the transfer function. For instance, the full abstract
domain for interval analysis can be constructed by
lifting individual intervals of type (N × N) for single
variables to intervals for all variables Var at all pro-
gram locations L: interval analysis thus represents the
data flow information for the program as a map from
program locations to maps from variables to intervals,
i.e., L→ Var→ (N× N).

In the following we will only consider the common
case of forward analyses that are lifted to individual
program locations, i.e., their abstract domain is a map-
ping D = L → S of locations to abstract states from
the domain S. We will refer to these analyses as being
location-sensitive. For location-sensitive domains, it is
convenient to define transfer functions for individual
statements fc of type S×Stmt→ S, which compute
the successor of an abstract state with respect to a
given statement c from the set of statements Stmt.
The transfer function f :: D→ D for the full domain
is then derived as

f(d) ={(`0 7→ ι)} ∪

` 7→ ⊔
(`′,C,`)∈G

fc(d(`
′))
∣∣∣ ` ∈ L

 ,

where `0 is the program entry point, ι is the initial
abstract state, G ⊆ L× Stmt× L is the control flow
graph, and d(`′) denotes s′ such that `′ 7→ s′ ∈ d.
From an element d of D, i.e., a map from locations
to abstract states, f computes a new map by applying
the per-statement transfer functions along each control
flow edge. At control flow join points, the merging
operator t combines the abstract states from each
incoming edge. Computing the analysis then amounts
to finding the least fixpoint of f starting from the least
(bottom) element of D.

3. Static Analysis of Interpreted Code

When the simple program of Figure 2 is virtualized,
it will appear to the static analyzer as the interpreter
shown in Figure 1, with a control flow graph as shown
in Figure 3. Everything specific to the original program
is stored within the static code and data arrays. In
some sense, the original program “is still there”; after
all, executing the obfuscated version will produce the
same observable behavior. But a static analyzer faces

3

5

6

7

9

10

11

14

15

16

1718

22

23

24

27

28

29

30

33

34

vpc = 0

true

code[vpc]==03

op1 = code[vpc+1]

data[op1]++

vpc += 2

code[vpc]==08

op1 = code[vpc+1]

op2 = code[vpc+2]

data[op1]>0 data[op1]<=0

vpc+=data[op2]
vpc += 3

code[vpc]==18

op1 = code[vpc+1]

apiCall(data[op1])

vpc += 2

code[vpc]==52

op1 = code[vpc+1]

op2 = code[vpc+2]

data[op1] = data[op2]

vpc += 3

default

code = { 52, 01, 02, 03, 01, 03, 01, 08, 00, 03, 03, 01, 18, 01, 00 }
data = { 00, 00, 10, 05 }

Figure 3. Control flow graph and contents of code and data arrays of the virtualization-obfuscated example
program, corresponding to the interpreter in Figure 1. Opcodes in the code array are printed in bold.

severe difficulties in producing useful results for the
obfuscated program.

If the static analyzer is sound, it will always compute
a result that is technically correct. That is, it will
compute a valid over-approximation of the program
semantics. At the very least, the static analyzer will
compute the global invariant “true”, i.e., the most im-
precise element of the abstract domain. The challenge
is to compute an over-approximation that is still precise
enough to prove properties or provide useful informa-
tion to a reverse engineer. In this work, we assume as
the goal of static analysis a precise description of the
set of arguments to an external function call that are
possible in all executions of the program of interest.

3.1. Worked Example

We again look at how a static interval analysis pro-
cesses the—now virtualization-obfuscated—program.
The variables of the original program are no longer
visible; but recall that we are interested in approx-
imating the possible argument values at the site of
the external function call. This requires the analysis to
support array accesses. The length and initial contents
of the arrays are known to the analysis, and we assume
that the analysis precisely abstracts each element as
an individual interval. The obfuscator is free to choose

where to allocate local variables and constants in the
data array and how to initialize them, but here we
assume x and y were allocated at indices 0 and 1,
respectively, and that the static data array is initialized
to {00, 00, 10, 05}, as shown in Figure 3. We write dx
and dy for data[0] and data[1], respectively. As
a parameter of foo, dx can hold any value at the time
of the function call. Finally, we compute the interval
analysis as precisely as possible, i.e., we will not use
an early widening step to accelerate finding a fixpoint
but instead analyze several loop iterations precisely.

After the initialization of vpc to [0; 0], the static
analysis follows the program into the interpreter loop.
The abstract state for line 6 of the interpreter is thus
{vpc 7→ [0; 0], dx ∈ [−∞;∞], dy ∈ [0; 0]}. The opcode
of the first bytecode instruction stored at code[0] is
52, with operands 01 (location of y) and 02 (loca-
tion of the constant 10), corresponding to the initial
assignment in line 2 of the original program (Fig-
ure 2). Therefore, the static analysis determines only
the fourth case (assignment) of the switch statement to
be reachable in the current state. Inside the case block
in lines 26–31, the interpreter assigns the constant 10 to
y using the local variables op1 and op2 to temporarily
hold their data array indices. Finally, it increments
the VPC by 3 to point to the next instruction. The
static interval analysis is able to represent all these

4

facts precisely. For each variable, it only determines a
single value to be feasible in the current state. Upon
leaving the case block to line 34, the state has become
{vpc 7→ [3; 3], dx ∈ [−∞;∞], dy ∈ [10; 10]}.

The next instruction is analyzed only in the next
iteration of the interpreter loop. After computing the
abstract successor along the back-edge of the while-
loop from location 34 to 6, the analysis merges abstract
states at line 6. The new abstract state at line 6 now
becomes {vpc 7→ [0; 3], dx ∈ [−∞;∞], dy ∈ [0; 10]},
over-approximating both the state before and after
executing line 2 of the original program.

At this stage, the interval for the VPC already
includes the operands of the previous bytecode instruc-
tion, whose values 01 and 02 can be misinterpreted as
opcodes. A carefully designed analysis with a precise
transfer function will still be able to deduce, however,
that besides the fourth, only the first and default cases
of the switch statement are feasible. By evaluating the
assumption against the array contents, the analysis is
able to narrow down vpc for each case. The default
case exits the program, and the final state of the
fourth case does not change. At the beginning of
the first case, the abstract state at line 9 becomes
{vpc 7→ [3; 3], dx ∈ [−∞;∞], dy ∈ [0; 10]}. After
evaluating all statements in the case block, the final
state is {vpc 7→ [5; 5], dx ∈ [0; 0], dy ∈ [1; 11]}.

Again, this state is merged after processing the back-
edge of the while loop, this time to yield {vpc 7→
[0; 5], dx ∈ [−∞;∞], dy ∈ [0; 11]} at line 6. Notice
that the first case necessarily remains feasible. But
now it can also be reached with a vpc of 5, so the
edge code[vpc]==03 can only restrict the value of
vpc to [3; 5]. Accordingly, op1 is read from [4; 6] and
determined to be [1; 3]. The increment in line 10 can
thus no longer be determined precisely, resulting in
a weak update: the data array locations from 1 to 3
may have been incremented by 1. Besides y, this in-
cludes the constant used to initialize y and the relative
offset used for the conditional jump. Therefore, the
imprecision causes the analysis to lose track of which
indices in the code array constitute proper opcodes.
Furthermore, analysis also continues to loop through
the first case, each time increasing the intervals for y
and the constants. As a result, the analysis is unable
to determine precise bounds for the call argument y.

3.2. Domain Flattening

The example shows that classic static analysis can-
not achieve reasonably precise results on virtualization-
obfuscated programs. Location-sensitive static analysis
merges all domain elements at the same program

location. In a virtualization-obfuscated program, all
instructions of the original program, each of which
was located at an individual program location, are
interpreted using the same locations. Instructions of
the same type share just the same case in the inter-
preter loop. But all instructions share the remainder of
the interpretation loop. Therefore, all abstract states
that would have been separate in the original pro-
gram are merged into a single one in the obfuscated
program. Therefore, virtualization-obfuscation effec-
tively reduces a location-sensitive static analysis to
a location-insensitive one. We call this effect domain
flattening, as it removes one dimension of sensitivity
from the abstract domain.

Thus it is clear that location-sensitive analysis, a
reasonable trade-off between precision and cost in
static analysis of regular programs, is unsuited for an-
alyzing virtualization-obfuscated programs. In regular
programs, the strategy of merging abstract states at
locations is effective as long as all concrete program
states at this location are sufficiently similar such that
they can be summarized by a precise invariant. In
virtualization-obfuscated code, invariants computed in
the interpreter loop have to cover the entire execution
of the original program. Regular abstract domains are
not able to generate precise invariants for this scope.

The main insight that we are going to exploit in the
next section is that virtualization obfuscation requires
analyses not just to be location-sensitive, but also to be
precise to a second dimension of program location—
the virtual program counter.

4. VPC-Sensitive Static Analysis

We now show how to modify the components of
an existing location-sensitive static analysis to work in
presence of virtualization-obfuscation.

4.1. Lifting Abstract Domains

The main idea to make an analysis VPC-sensitive
and hence robust against domain flattening is to equip
its abstract domain D with an additional dimension of
program locations for representing the virtual program
counter. The value of the VPC is itself determined by
the analysis and represented as an abstract value.

We lift D to VPC-sensitivity by mapping abstract
VPC values to elements of D. In the new domain
D̂, each abstract state is then specific not only to
the program location, but to the pair of location and
VPC value. In the general case of a location-sensitive
program analysis defined over an abstract domain

5

D = L→ S, the lifted domain becomes D̂ = V→ D,
where V is the domain of abstract VPC values.

Many domains, such as the domain of intervals,
maintain abstract states S = Var→ U as maps from
variables to abstract values from some per-variable
domain U and hence have the structure E = L →
Var → U. For such domains, we can use the same
domains for individual variables as for abstracting the
VPC. We therefore set V = U and define the lifted
domain as Ê = U→ L→ Var→ U.

4.2. Extending the Transfer Function

The transfer function f̂ for the lifted abstract domain
is based on a pointwise extension of f to maps from
abstract VPC values to elements of the original domain
D. In the same way as fc is applied to each location
separately in location-sensitive analysis, we here apply
it separately to the abstract states mapped to pairs of
locations and VPC values. It remains to define the
computation of a successor VPC value from a triple
(` 7→ v 7→ s), so that the abstract successor state
is mapped to the correct VPC value. In general, the
transfer function can be freely defined as long as it
over-approximates the concrete transfer function. But
for the common case of abstract domains E mapping
locations to maps from variables to abstract values, we
now describe a method for automatically deriving the
lifted transfer function for Ê.

Existing virtualization-obfuscators dedicate a partic-
ular register to storing the VPC (likely for performance
reasons). This is not a fixed requirement, however; the
VPC might be temporarily stored in various memory
regions before it is used for reading the next instruction
opcode. Therefore, we only require that the storage
location of the VPC be unique for a particular program
location. We further assume the existence of a function
vpcLoc(`) for reliably detecting the storage location
of the VPC. If the VPC is not a fixed register, it
could be detected by tracing the data flow from the
location of switch jumps, following assignments during
successor computation. In general, finding the VPC can
also involve multiple refinement steps with candidate
VPC locations or manual analysis.

We can now build the transfer function for a domain
D̂ = U→ L→ S with S = Var→ U. Each domain
element v 7→ ` 7→ s is computed by the transfer
function from elements v′i 7→ `′i 7→ s′i, such that
• (`′i, C, `) ∈ G is a control flow edge,
• v = fc(s

′
i)(vpcLoc(`)) is the new VPC value in

the successor of s′i, and
• s =

⊔
i fc(s

′
i) is joined from all abstract states

with equal location ` and VPC v.

5

6

7

9

10

11

34

Interval for y (data[1])

vpc ∈ [3; 3] [5; 5] [10; 10] [12; 12]

⊥ ⊥ ⊥ ⊥

[10; 10] [11; 11] [12; 12] [12; 13]

[10; 10] [11; 11] [12; 12] [12; 13]

[10; 10] [11; 11] [12; 12] ⊥

[10; 10] [11; 11] [12; 12] ⊥

[11; 11] [12; 12] [13; 13] ⊥

[11; 11] [12; 12] [13; 13] [12; 13]

vpc = 0

true

code[vpc]==03

op1 = code[vpc+1]

data[op1]++

vpc += 2

Figure 4. Excerpt of the interpreter (case 1 for
increment operations), as analyzed by a VPC-
sensitive interval analysis. The table shows the two
dimensions of abstract states, program location
and abstract VPC values.

Here, s(x) denotes the abstract value the variable x is
mapped to in s. Note that the lifted transfer function
applies the merging operator t only for states at the
same program location where the VPC evaluates to the
same value, i.e., it is VPC-sensitive.

Example. Figure 4 shows the effect the VPC-lifting has
on an interval analysis applied to the running example.
For brevity, we just show case 1 of the interpreter
loop, and only the abstract VPC values corresponding
to the indices of the three increment instructions and
the external call in the bytecode array. The special
value ⊥ marks unreachable combinations of program
location and VPC: the VPC cannot be 3 before entering
the loop at line 6; for a VPC of 12 (the location of
the conditional jump opcode) the first case (lines 9–
11) is not reachable, because control flows through the
second case. At the end of the loop (line 34), the in-
tervals are identical to those that the location-sensitive
analysis determined for the respective locations in the
unobfuscated program (see Figure 2).

4.3. Widening and Termination

We have to adapt an existing widening operator of
the original analysis to ensure termination of the lifted
analysis. An immediate way to define widening for
the lifted domain is to apply the widening operator for

6

the original domain in a pointwise manner. However,
lifting creates a crossproduct of the original domain
with the potentially infinite domain of VPC values,
whereas program locations are always finite. This
means that, while pointwise widening prevents infinite
iterations for abstract states at identical VPC values
and program locations, infinitely many different VPC
values might accumulate at the same program location.

The VPC values encode the finitely many loca-
tions of instructions within the finite bytecode array.
Intuitively, a finite number of abstract VPC values
should therefore suffice to distinguish all indices. The
VPC values are not guaranteed to point to valid array
indices, however. An interpreter might compute the
next valid VPC value using multiple steps, involving
arbitrarily many intermediate values. Consequently, we
need to allow widening across different VPC values to
always guarantee termination of the analysis.

There are several options for implementing a suit-
able widening operator. It only has to satisfy the
condition that it will reach a fixpoint within a finite
number of steps. One possible strategy is to trigger
widening once a certain threshold of VPC values has
been exceeded; a reasonable bound can be given by the
size of the static data present in the program. Widening
can then proceed in two steps:

1) Once the threshold is exceeded for some location
`, all abstract states si with vi 7→ ` 7→ si for all
VPC values vi are merged into a single state for
a summary VPC, i.e., into

⊔V
i vi 7→ ` 7→

⊔
i si,

where tV merges abstract VPC values and t
merges abstract states. Each new VPC value at `
is subsequently merged as well.

2) As new VPC values are merged into the summary
VPC, regular widening is applied over the sum-
mary VPC to guarantee termination. In intervals,
for instance, one bound can be set to infinity.

5. Lifting Bounded Address Tracking

We now give an adapted formalization of Bounded
Address Tracking (BAT) [5], a static analysis targeted
specifically to binaries, and apply our lifting to derive
a VPC-sensitive variant.

5.1. BAT as Static Analysis

Abstract Addresses. The elementary abstract values
in BAT are abstract addresses. Abstract addresses are
pairs (r, o) consisting of an abstract memory region
r ∈ R and an offset o ∈ N. The set of memory regions
R consists of the stack, allocated heap regions, and the
global address space. Offsets are defined using integers

for ease of exposition (the implementation supports
bitvector values of different word lengths). Because
of the lack of types in binaries, pointers are indis-
tinguishable from integers. Therefore, regular integer
values are represented as abstract addresses within
the global address space. Memory region identifiers
represent the statically unknown base address to which
the respective region is allocated at runtime, which is
0 for the global address space.

For each region r, the special abstract address (r,>)
represents an address where the offset is unknown
within a region. This is used to abstract multiple offsets
when a variable can take more values than are feasible
to represent precisely. Finally, the single special value
(>R,>) represents an unknown offset within an also
unknown region. The set of abstract memory addresses
A is thus defined as A = {(>R,>)}∪ (R× (N∪>)).

Abstract Domain. Intuitively, BAT is similar to a con-
crete semantics. It is defined over a powerset of map-
pings from variables (registers and memory locations)
to values (abstract addresses). These mappings are ba-
sically concrete machine states using abstract addresses
instead of concrete addresses, i.e., if we assume an
order over program variables, they are represented by
vectors A× . . .×A. An abstract state is a set of these
vectors such that it over-approximates the reachable
concrete states at a program location. Formally, the
abstract domain is defined as L → P(A × . . . ×A),
i.e., a map from program locations to sets of vectors
of abstract addresses. Merging of two states is defined
as computing the union of the two vector sets.

Note that BAT differs from common abstract do-
mains such as intervals: those domains map each
location to a map from variables to abstract values,
whereas BAT maps each location to a set of maps from
variables to abstract values.

Transfer Function. The transfer function is defined
as updating each individual value vector according to
the effects of the respective statement. The updates
follow the concrete semantics, with special rules for
treating unknown offsets and regions (details can be
found in [5]). The critical component to make the
analysis feasible in practice is the value bounding
that takes place when computing the successor states:
for each variable, BAT only allows at most k distinct
values across all value vectors in the abstract state.
If a variable exceeds this bound, its value (r, o) is
abstracted in two steps. First, all offsets are merged to
(r,>). Second, if there are also more than k regions,
all values are merged to (>R,>).

Effectively, BAT is thus relational, path and context
sensitive up to a certain bound of variable values per

7

location. This guarantees termination of the analysis by
preventing an infinite accumulation of states in loops
or recursive function calls. The variable bound can
be adjusted according to the available computational
resources. Path sensitivity prevents merging of infor-
mation and thus allows a “brute-force” approach to the
analysis of a virtualization-obfuscated program. Due
to domain flattening, this approach requires high value
bounds, however. Otherwise, BAT will have to merge
values after a few iterations of the interpreter loop and
will lose track of the values of code and data pointers.

5.2. VPC-Sensitive BAT

To equip BAT with VPC-sensitivity, the abstract
domain and transfer function have to be adapted.

Abstract Domain. The lifted abstract domain for BAT
is defined as A → L → P(A × . . . × A) and uses
abstract addresses as the value domain for VPC values.
To apply our lifting, we exploit that in regular BAT,
an abstract state associated with a location is a set
of vectors. The lifting to VPC-sensitivity is therefore
equivalent to partitioning the set of vectors according
to the value of the VPC in each vector.

Transfer Function. To implement the transfer function
for individual abstract states, we modify the counting
of abstract addresses per variable to respect the par-
titioning. VPC-sensitive BAT allows at most k distinct
values across all value vectors in the same partition. If
the bound is exceeded for a variable x at a VPC value
v and location `, all abstract address values for x in
states si such that v 7→ ` 7→ si are merged. The new
VPC value of each successor state is directly extracted
from value vectors as explained in Section 4.2.

As discussed in Section 4.3, we need to modify
the widening step in the lifted domain to guarantee
termination. We introduce an additional bound m on
the number of distinct VPC values tracked per location.
Once this bound is reached, the VPC is widened in
the same manner as regular abstract addresses. All
states at this location whose VPC value is subsumed
by the new summary VPC are joined and thus their
value counts combined. This may lead to additional
over-approximation of program variables. In practice,
m should be set to a high (but finite) value to prevent
premature widening.

6. Experiments

We now briefly discuss our prototype implementa-
tion and present preliminary experimental results on
virtualization-obfuscated binaries.

6.1. Implementation

We implemented our analysis in the JAKSTAB static
analysis platform for binaries [4]. JAKSTAB is based
on the theory of abstract interpretation [2]. It over-
approximates the semantics of a binary program taking
the instruction fetch into account. Therefore, it does not
require a control flow graph, which is not available for
binaries. Instead, it processes the program beginning
at the entry point of the executable, disassembling and
analyzing the program one instruction at a time.

In each iteration of its analysis cycle, JAKSTAB
reads the bytes pointed to by the current program
counter value, decodes the next instruction, and trans-
lates it into an intermediate language. Branch instruc-
tions are then resolved into one or more control flow
edges, based on the current abstract state. For indirect
branches, the abstract state determines which target
addresses are feasible. Non-branch instructions are
simply transformed into a control flow edge pointing
to the fall-through successor [6].

These explicit control flow edges allow JAKSTAB
to compute successor states using the statement-wise
transfer functions of a given abstract domain. The
abstract states serve two purposes: they are used by the
resolving-step to compute jump targets, and, as usual
in static analysis, they are used to verify specifications.
If the collection of all abstract states does not violate
a property, the property is proven to hold.

JAKSTAB has been released as open source and can
be obtained, along with a prototypical implementation
of VPC-sensitive BAT, from http://www.jakstab.org.

6.2. Obfuscation and Analysis Targets

For our experiments, we relied on an obfuscation
tool operating on source code that is part of an ongoing
research project at the University of Arizona. Using a
research obfuscator instead of VMProtect or CodeVir-
tualizer allows us to study virtualization-obfuscation
in isolation without additional layers of protection and
other noise. Our prototype does not provide a complete
end-to-end solution for analyzing obfuscated binaries
but instead focuses on the particular effects of virtual-
ization. Nevertheless, we are working on extending our
prototype to support in-the-wild obfuscated binaries.

As evaluation target we use a simple program for
iteratively computing and finally printing the nth Fi-
bonacci number, where n is supplied as a command
line argument. The program is obfuscated and subse-
quently compiled to binary before analysis. To evaluate
the precision of the analysis, we count the number of
distinct possible arguments that the analysis can detect

8

http://www.jakstab.org

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100
 0

 30

 60

 90

 120

 150

 180
D

is
c
o

v
e

re
d

 A
rg

u
m

e
n

t
V

a
lu

e
s

V
e

c
to

rs
 (

T
h

o
u

s
a

n
d

s
)

Value Bound (k)

VPC-BAT Values
Vectors

BAT Values
Vectors

Figure 5. Discovered argument values and gener-
ated value vectors vs. value bound.

for the final external call to printf, before invariably
widening the values (since the Fibonacci sequence
grows to infinity, an exhaustive presentation of all
values is impossible). This metric is representative
for an application in malware detection, for example,
where possible arguments to external system calls
are evaluated against a malware specification [7]. In
fact, most reverse engineering applications will have
similar precision requirements, since at the very least
they require a precise set of possible VPC values for
each location. For instance, extracting a license check
function requires to identify a precise sequence of VPC
values that necessarily precede some event (such as
creating a new window using an API call).

6.3. Results

We analyzed the obfuscated Fibonacci example with
JAKSTAB using both standard BAT and VPC-sensitive
BAT, with varying value bounds k. VPC-sensitive BAT
encountered 108 distinct VPC values in all configu-
rations. We used a VPC-bound of m = 2000 so the
analysis never merged different VPC values.

Figure 5 shows the number of precise argument
values discovered and the number of distinct variable
vectors generated against k (each vector is a unique
mapping of variables to abstract addresses). Table 1
provides additional detail for some of the data points.
We can see that regular BAT is unable to yield any
precise information about the call arguments below a
value bound of k = 60, whereas VPC-sensitive BAT
starts discovering values from k = 1 and shows a
linear relation between k and the number of argument
values. In fact, the number of different arguments
detected is k + 2; this is equal to the two base cases,
which are checked explicitly, and one additional value
per tracked value in the iteration. Regular BAT also

Table 1. Detailed results

Analysis k Args Vectors Time Mem (MB) Sound

BAT 10 0 5610 4s 68.7 n
BAT 40 0 149000 >5m 129.3 n
BAT 60 1 147000 >5m 134.7 n
BAT 70 32 19800 13s 75.9 n

V-BAT 1 3 2121 3s 19.7 y
V-BAT 10 12 5181 4s 27.2 y
V-BAT 30 32 11981 10s 107.5 y
V-BAT 70 72 25581 40s 71.2 y

starts discovering arguments from k = 60 on. From
k = 68 also linearly, but at a slower rate of about k

2
and at a higher cost in the number of value vectors
generated. Between bounds 30 and 68, regular BAT
times out after 5 minutes, having generated about
150’000 vectors. For these bounds, the information
loss from widening leads to exploring many infeasible
paths through the interpreter. Above 68, regular BAT
prevents the information loss by the “brute force” of
fully path-sensitive analysis.

In all experiments, however, regular BAT was unable
to resolve several memory writes and had to perform
weak updates to the global address space. Under strict
semantics, this weak update also affects the static data
area of the program, including imports; the analysis
was unsound in that it could not explore the control
flow to an address that was potentially overwritten.
The analysis thus failed to compute a sound over-
approximation of the program behavior. VPC-sensitive
BAT, on the other hand, finished with a sound and
precise over-approximation in all cases.

As with all Java programs, JAKSTAB’s memory us-
age statistics reported in Table 1 should be taken with
a grain of salt. Due to garbage collection, there is no
linear relationship between the number of vectors and
the allocated heap memory. We can see, however, that
VPC-sensitive BAT incurs a memory cost comparable
to, or even lower than, regular BAT.

7. Related Work

Rolles [9] discussed how to deobfuscate virtual-
ized programs, showing that the protection offered
by virtualization-obfuscations is vulnerable to man-
ual attacks. Sharif et al. [10] presented a pioneering
approach to automatic reverse engineering of such
programs. They determine the semantics of bytecode
instructions in order to deobfuscate the program. These
kinds of approaches face difficulties with obfusca-
tors that generate bytecode instructions at different
granularities. In general, deobfuscation of virtualized

9

bytecode with the purpose of deriving a regular binary
is similar to decompilation.

Coogan et al. [1] showed how to successfully apply
dynamic analysis to detect code influencing system call
arguments in virtualization-obfuscated binaries. They
analyze dependencies within a single trace, with the
goal of distinguishing the dependencies within the
interpreter from those due to the original program.
Their work is unique in that it abstracts from the
specific virtualization engine used. Their detection of
calls and returns contains promising ideas for adapting
interprocedural analyses, which we plan to investigate
in future work. However, the approach suffers from the
same incompleteness as any dynamic analysis; code
that was not executed is not subsequently analyzed.

The net effect of virtualization-obfuscation is similar
to control-flow flattening. Control-flow flattening splits
the program into basic blocks and links them via a
dispatcher loop and a virtual program counter (called
dispatcher variable [11]). The main difference to vir-
tualization is that program locations are not folded,
i.e., for each original program location, there is one
in the obfuscated program. Thus, only the dispatcher
loop can cause merging of unrelated abstract states.
Udupa et al. [11] showed that this can be resolved
by cloning the shared program locations and using
constant propagation to trace the dispatcher variable.
In virtualization, however, the additional sharing of
code for individual instructions prevents this approach
from being effective. Due to loops, a potentially infinite
number of locations would be cloned if one were to
apply the same approach directly.

Finally, the idea of lifting an abstract domain to
increase its precision is also found in the trace par-
titioning domain [8], which adds a degree of path
sensitivity to an existing analysis. ESP [3] similarly
improves the precision of a static analysis by lifting it
with respect to the states of a property automaton.

8. Conclusion

Virtualization-obfuscators pose a significant chal-
lenge, but their specific effects can be precisely char-
acterized. We showed how to add an additional di-
mension to the location-sensitivity of an existing static
analysis to make it robust against this kind of obfus-
cation. Experiments on a toy example show promising
results; we are working on extending the applicability
of our prototype to in-the-wild code examples.

Acknowledgments. The author would like to thank
Christian Collberg and Sam Martin for generously
providing the obfuscated code sample.

References

[1] K. Coogan, G. Lu, and S. K. Debray. Deob-
fuscation of virtualization-obfuscated software: a
semantics-based approach. In Proc. ACM Conf.
Computer and Communications Security (CCS
2011), pages 275–284. ACM, 2011.

[2] P. Cousot and R. Cousot. Abstract interpretation:
A unified lattice model for static analysis of
programs by construction or approximation of
fixpoints. In Conf. Rec. 4th ACM Symp. Prin-
ciples of Programming Languages (POPL 1977),
pages 238–252, Jan. 1977.

[3] M. Das, S. Lerner, and M. Seigle. ESP:
Path-sensitive program verification in polynomial
time. In Proc. 2002 ACM SIGPLAN Conf. Pro-
gramming Language Design and Implementation
(PLDI 2002), pages 57–68. ACM, 2002.

[4] J. Kinder and H. Veith. Jakstab: A static analysis
platform for binaries. In Proc. 20th Int. Conf.
Computer Aided Verification (CAV 2008), volume
5123 of LNCS, pages 423–427. Springer, 2008.

[5] J. Kinder and H. Veith. Precise static analysis
of untrusted driver binaries. In Proc. 10th Int.
Conf. Formal Methods in Computer-Aided Design
(FMCAD 2010), pages 43–50, 2010.

[6] J. Kinder, H. Veith, and F. Zuleger. An abstract
interpretation-based framework for control flow
reconstruction from binaries. In Proc. 10th Int.
Conf. Verification, Model Checking, and Abstract
Interpretation (VMCAI 2009), volume 5403 of
LNCS, pages 214–228. Springer, 2009.

[7] J. Kinder, S. Katzenbeisser, C. Schallhart, and
H. Veith. Proactive detection of computer worms
using model checking. IEEE Trans. Dependable
Sec. Comput., 7(4):424–438, Oct. 2010.

[8] L. Mauborgne and X. Rival. Trace partitioning
in abstract interpretation based static analyzers.
In 14th European Symp. Programming (ESOP
2005), volume 3444 of LNCS, 2005.

[9] R. Rolles. Unpacking virtualization obfuscators.
In Proc. Workshop On Offensive Technologies
(WOOT 2009). USENIX, 2009.

[10] M. I. Sharif, A. Lanzi, J. T. Giffin, and W. Lee.
Automatic reverse engineering of malware em-
ulators. In 30th IEEE Symposium on Security
and Privacy (S&P 2009), pages 94–109. IEEE
Computer Society, 2009.

[11] S. K. Udupa, S. K. Debray, and M. Madou.
Deobfuscation: Reverse engineering obfuscated
code. In 12th Working Conf. Reverse Engineering
(WCRE 2005), pages 45–54. IEEE Computer
Society, 2005.

10

	Introduction
	Background
	Virtualization Obfuscation
	Static Analysis

	Static Analysis of Interpreted Code
	Worked Example
	Domain Flattening

	VPC-Sensitive Static Analysis
	Lifting Abstract Domains
	Extending the Transfer Function
	Widening and Termination

	Lifting Bounded Address Tracking
	BAT as Static Analysis
	VPC-Sensitive BAT

	Experiments
	Implementation
	Obfuscation and Analysis Targets
	Results

	Related Work
	Conclusion

