
Efficient State Merging in Symbolic Execution

Volodymyr Kuznetsov Johannes Kinder Stefan Bucur George Candea
School of Computer and Communication Sciences

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
{vova.kuznetsov,johannes.kinder,stefan.bucur,george.candea}@epfl.ch

Abstract
Symbolic execution has proven to be a practical technique for
building automated test case generation and bug finding tools.
Nevertheless, due to state explosion, these tools still struggle to
achieve scalability. Given a program, one way to reduce the number
of states that the tools need to explore is to merge states obtained
on different paths. Alas, doing so increases the size of symbolic
path conditions (thereby stressing the underlying constraint solver)
and interferes with optimizations of the exploration process (also
referred to as search strategies). The net effect is that state merging
may actually lower performance rather than increase it.

We present a way to automatically choose when and how to
merge states such that the performance of symbolic execution is
significantly increased. First, we present query count estimation,
a method for statically estimating the impact that each symbolic
variable has on solver queries that follow a potential merge point;
states are then merged only when doing so promises to be advan-
tageous. Second, we present dynamic state merging, a technique
for merging states that interacts favorably with search strategies in
automated test case generation and bug finding tools.

Experiments on the 96 GNU COREUTILS show that our ap-
proach consistently achieves several orders of magnitude speedup
over previously published results. Our code and experimental data
are publicly available at http://cloud9.epfl.ch.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.2.5 [Software Engineer-
ing]: Testing and Debugging – Symbolic Execution, Testing Tools;
F.3.1 [Logics and Meanings of Programs]: Specifying and Verify-
ing and Reasoning about Programs

Keywords Testing, Symbolic Execution, Verification, Bounded
Software Model Checking, State Merging

1. Introduction
Recent tools [5–7, 18, 19] have applied symbolic execution to
automated test case generation and bug finding with impressive
results—they demonstrate that symbolic execution brings unique
practical advantages. First, such tools perform dynamic analysis, in
that they actually execute a target program and can directly execute
any calls to external libraries or the operating system by concretiz-
ing arguments; this broadens their applicability to many real-world
programs. Second, these tools share with static analysis the ability

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’12, June 11–16, Beijing, China.
Copyright © 2012 ACM 978-1-4503-1205-9/12/04. . . $10.00

to simultaneously reason about multiple program behaviors, which
improves the degree of completeness they achieve. Third, symbolic
execution does not use abstraction but is fully precise with respect
to predicate transformer semantics [11]; it generates “per-path ver-
ification conditions” whose satisfiability implies the reachability of
a particular statement, so it generally does not have false positives.
Fourth, recent advances in SAT and SMT (SAT Modulo Theory)
solving [10, 12, 15] have made tools based on symbolic execution
significantly faster. Overall, symbolic execution promises to help
solve many important, practical program analysis problems.

Nevertheless, today’s symbolic execution engines still struggle
to achieve scalability, because of path explosion: the number of
possible paths in a program is generally exponential in its size.
States in symbolic execution encode the history of branch decisions
(the path condition) and precisely characterize the value of each
variable in terms of input values (the symbolic store), so path
explosion becomes synonymous with state explosion. Alas, the
benefit of not having false positives in bug finding (save for over-
approximate environment assumptions) comes at the cost of having
to analyze an exponential number of states.

One way to reduce the number of states is to merge states
that correspond to different paths. This is standard in classic static
analysis, where the resulting merged state over-approximates the
individual states that were merged. Several techniques, such as
ESP [9] and trace partitioning [27], reduce but do not eliminate
the resulting imprecision (which can be a source of false positives)
by associating separate abstract domain elements to some sets of
execution paths. In symbolic execution, as a matter of principle,
a merged state would have to precisely represent the information
from all execution paths without any over-approximation. Con-
sider, for example, the program if (x<0) {x=0;} else {x=5;} with
input X assigned to x. We denote with (pc,s) a state that is reach-
able for inputs obeying path condition pc and in which the sym-
bolic store s = [v0 = e0, . . . ,vn = en] maps variable vi to expression
ei, respectively. In this case, the two states (X < 0, [x = 0]) and
(X ≥ 0, [x = 5]), which correspond to the two feasible paths, can be
merged into one state (true, [x = ite(X < 0,0,5)]). Here, ite(c, p,q)
denotes the if-then-else operator that evaluates to p if c is true, and
to q otherwise. If states were merged this way for every branch of
a program, symbolic execution would become similar to verifica-
tion condition generation or bounded model checking, where the
entire problem instance is encoded in one monolithic formula that
is passed in full to a solver.

State merging effectively decreases the number of paths that
have to be explored [16, 20], but also increases the size of the sym-
bolic expressions describing variables. Merging introduces disjunc-
tions, which are notoriously difficult for SMT solvers, particularly
for those using eager translation to SAT [15]. Merging also converts
differing concrete values into symbolic expressions, as in the ex-
ample above: the value of x was concrete in the two separate states,
but symbolic (ite(X < 0,0,5)) in the merged state. If x were to ap-

http://cloud9.epfl.ch

pear in branch conditions or array indices later in the execution,
the choice of merging the states may lead to more solver invoca-
tions than without merging. This combination of larger symbolic
expressions and extra solver invocations can drown out the benefit
of having fewer states to analyze, leading to an actual decrease in
the overall performance of symbolic execution [20].

Furthermore, state merging conflicts with important optimiza-
tions in symbolic execution: search-based symbolic execution en-
gines, like the ones used in test case generators and bug finding
tools, employ search strategies to prioritize searching of “interest-
ing” paths over “less interesting” ones, e.g., with respect to max-
imizing line coverage given a fixed time budget. To maximize the
opportunities for state merging, however, the engine would have to
traverse the control flow graph in topological order, which typically
contradicts the strategy’s path prioritization policy.

Contributions. In this paper, we describe a solution to these two
challenges that yields a net benefit in practice. We combine the state
space reduction benefits of merged exploration with the constraint
solving benefits of individual exploration, while mitigating the en-
suing drawbacks. Experiments on the GNU COREUTILS show that
employing our approach in a symbolic execution engine achieves
speedups over the state of the art that are exponential in the size of
symbolic input. Our contributions are:

• We present query count estimation, a way to statically approx-
imate the number of times each variable will appear in future
solver queries after a potential merge point. We then selectively
merge two states only when we expect differing variables to
appear infrequently in later solver queries. Since this selective
merging merely groups paths instead of pruning them, inaccu-
racies in the estimation do not hurt soundness or completeness.

• We present dynamic state merging, a merging algorithm specif-
ically designed to interact favorably with search strategies. The
algorithm explores paths independently of each other and uses
a similarity metric to identify on-the-fly opportunities for merg-
ing, while preserving the search strategy’s privilege of dictating
exploration priorities.

Organization. In §2, we characterize the design space of pre-
cise symbolic analysis using a generic algorithm. With bounded
model checking on one end of the spectrum and symbolic execu-
tion on the other, we analyze middle-ground approaches (such as
function summaries [16]) and argue for an opportunistic, dynamic
approach to navigating this design space based on cost estimates.
In this context, we introduce query count estimation (§3) and dy-
namic state merging (§4). We then describe our implementation in
the KLEE symbolic execution engine and present a systematic eval-
uation of the individual and combined effects of the two proposed
methods (§5). We review related work in §6 and conclude with §7.

2. Trade-offs in Symbolic Program Analysis
Test generation by symbolic execution is just one of a multitude
of precise symbolic program analyses that are facilitated by SAT or
SMT solvers. Tools such as CBMC [8], Saturn [31], and Calysto [2]
have shown that exact, abstraction-free path sensitive local reason-
ing is feasible and can be fully outsourced to an external solver.
With the help of a generic worklist algorithm (§2.1), we illustrate
the relationship among precise symbolic program analyses and ex-
plain the trade-offs in the resulting solver queries (§2.2). We con-
clude that state merging critically affects all types of precise sym-
bolic program analysis. Motivated by this insight, we give a brief
overview of our proposed approach to state merging (§2.3).

2.1 General Symbolic Exploration
Precise symbolic program analyses essentially perform forward ex-
pression substitution starting from a set of input variables. The re-

Input: Choice function pickNext, similarity relation ∼,
branch checker follow, and initial location `0.

Data: Worklist w and set of successor states S.

1 w := {(`0, true,λv.v)};
2 while w 6=∅ do
3 (`,pc,s) := pickNext(w); S :=∅;

// Symbolically execute the next instruction
4 switch instr(`) do
5 case v := e // assignment
6 S := {(succ(`),pc,s[v 7→ eval(s,e)])};
7 case if(e) goto `′ // conditional jump
8 if follow(pc∧ s∧ e) then
9 S := {(`′,pc∧ e,s)};

10 if follow(pc∧ s∧¬e) then
11 S := S∪{(succ(`),pc∧¬e,s)};

12 case assert(e) // assertion
13 if isSatisfiable(pc∧ s∧¬e) then abort;
14 else S := {(succ(`),pc,s)};
15 case halt // program halt
16 print pc;

// Merge new states with matching ones in w
17 forall (`′′,pc′,s′) ∈ S do
18 if ∃(`′′,pc′′,s′′) ∈ w : (`′′,pc′′,s′′)∼ (`′′,pc′,s′) then
19 w := w\{(`′′,pc′′,s′′)};
20 w := w∪{(`′′,pc′∨pc′′,λv.ite(pc′,s′[v],s′′[v]))};
21 else
22 w := w∪{(`′′,pc′,s′)};

23 print "no errors";

Algorithm 1. Generic symbolic exploration.

sulting formulae are then used to falsify assertions and find bugs, or
to generate input assignments and generate test cases. Algorithm 1
is a generic algorithm for symbolic program analysis that can be
used to implement different analysis flavors. For illustration pur-
poses, we consider only a simple input language with assignments,
conditional goto statements, assertions, and halt statements.

The algorithm is parameterized by a function pickNext for
choosing the next state in the worklist, a function follow that re-
turns a decision on whether to follow a branch, and a relation ∼
that controls whether states should be merged. We now extend the
notation for states used in §1 to triples (`,pc,s), consisting of a
program location `, the path condition pc, and the symbolic store s
that maps each variable to either a concrete value or an expression
over input variables. In line 1, the worklist w of the algorithm is
initialized with a state whose symbolic store maps each variable
to itself (for simplicity, we exclude named constants). Here, λx.e
denotes the function mapping parameter x to an expression e (we
will use λ (x1, . . .xn).e for multiple parameters). In each iteration,
the algorithm picks a new state from the worklist (line 3).

On encountering an assignment v := e (lines 5-6), the algo-
rithm creates a successor state at the fall-through successor loca-
tion succ(`) of ` by updating the symbolic store s with a mapping
from v to a new symbolic expression obtained by evaluating e in
the context of s, and adds the new state to the set S. At every
branch (lines 7-11), the algorithm first checks whether to follow
either path and, if so, adds the corresponding condition to the suc-
cessor state, which in turn is added to S. Analyses can decide to not
follow a branch if the branch is infeasible or would exceed a limit
on loop unrolling. For assertions (line 12-14), the path condition,
the symbolic store, and the negated assertion are put in conjunction

and checked for satisfiability. Since the algorithm does not over-
approximate, this check has no false positives. Halt statements ter-
minate the analyzed program, so the algorithm just outputs the path
condition, a satisfying assignment of which can be used to generate
a test case for the execution leading to the halt.

In lines 17-22, the new states in S are then merged with any
matching states in the worklist before being added to the worklist
themselves. Two states match if they share the same location and
are similar according to∼. Merging creates a disjunction of the two
path conditions (which can be simplified by factoring out common
prefixes) and builds the merged symbolic store from ite expressions
that assert one or the other original value, depending on the path
taken (line 20). The ite expressions that assert an identical value in
both cases (because it was equal in both symbolic stores) can be
simplified to that value.

2.2 The Design Space of Symbolic Program Analysis
The differences between various implementations of precise sym-
bolic analysis lie in the following aspects:
1. the handling of loops and/or recursion;
2. whether and how the feasibility of individual branches is

checked to avoid encoding infeasible paths;
3. whether and how states from different paths are merged;
4. compositionality, i.e., the use of function summaries.

Loops affect soundness and completeness, while the other as-
pects are trade-offs that critically affect analysis performance. We
now illustrate these different aspects using Algorithm 1.

Loops and Recursion. Bounded model checkers [8] and ex-
tended static checkers [2, 13, 31] unroll loops up to a certain bound,
which can be iteratively increased if an injected unwinding asser-
tion fails. Such unrolling is usually performed by statically rewrit-
ing the CFG, but can be fit into Algorithm 1 by defining follow to re-
turn false for branches that would unroll a loop beyond the bound.
Symbolic execution explores loops as long as it cannot prove the
infeasibility of the loop condition. A search strategy, implemented
in the function pickNext, can bias the analysis against states that
perform many repetitions of the same loop. For example, a search
strategy optimized for line coverage selects states close to unex-
plored code and avoids states in deep loop unrollings [6].

Dynamic test generation as implemented in DART [18] starts
with an arbitrary initial unrolling of the loop and explores different
unrollings in subsequent tests. That is, DART implements pickNext
to follow concrete executions, postponing branch alternatives until
they are covered by a subsequent concrete execution.

All these approaches essentially perform loop unrolling and are
generally incomplete for finite analysis times. Loop invariants are
rarely used (though [17] is an exception) since weak invariants can
introduce false positives, which these precise analyses are specifi-
cally designed to avoid. Weakest precondition-based program veri-
fication engines such as Boogie [26] and Havoc [24], which also in-
terface with external solvers, rely on the user to supply sufficiently
strong invariants for proving all properties of interest.

Feasibility Checking. While performing expression substitu-
tion along individual paths, certain combinations of conditional
branches can turn out to be infeasible. Not propagating states that
represent infeasible paths helps to reduce path explosion by invest-
ing solving time earlier in the execution. Intermediate feasibility
checks are usually performed only by symbolic execution engines
that follow a single path at a time (when reasoning about groups
of paths, branches are less likely to be infeasible), in which case
follow simply invokes the constraint solver.

State Merging. When states meet at the same control location,
there are two general possibilities for combining their information:
either the states are maintained separately, or the states are merged

into a single state. In precise symbolic analysis, merging is not
allowed to introduce abstraction. From a conceptual viewpoint,
state merging therefore only changes the shape of a formula that
characterizes a set of execution paths: if states are kept separate, a
set of paths is described by their disjunction; if states are merged,
there is only one formula with disjunctions in the path condition
and ite expressions in the symbolic store that guard the values of
the variables depending on the path taken.

In general, we distinguish two extremes: (i) complete separation
of paths, as implemented by search-based symbolic execution (e.g.,
[4–6, 18, 19, 23]), and (ii) complete static state merging, as imple-
mented by verification condition generators (e.g., [2, 8, 21, 31]).
Static state merging combines states at join points after completely
encoding all subpaths, i.e., it defines pickNext to explore all sub-
paths leading to a join point before picking any states at the join
point, and it defines∼ to contain all pairs of states. In search-based
symbolic execution engines, pickNext can be chosen freely accord-
ing to the search goal, and∼ is empty. Thus, they can, for example,
choose to explore just the successors of a specific state and delay
exploration of additional loop iterations.

Some approaches adopt intermediate merging strategies. In the
context of bounded model checking (BMC), Ganai and Gupta [14]
investigate splitting the verification condition along subsets of
paths. This moves BMC a step into the direction of symbolic ex-
ecution, and corresponds to partitioning the ∼ relation. Hansen
et al. [20] describe an implementation of static state merging in
which they modify the exploration strategy to effectively traverse
the CFG in topological order and merge all states that share the
same program location. For two of their three tested examples, the
total solving time increases with this strategy thus showing this
approach to be sub-optimal. Another prominent example of state
merging is the use of function summaries in symbolic execution,
which we explain below.

Compositionality. For precise interprocedural symbolic execu-
tion, the simplest and most common approach is function inlining.
This causes functions to be re-analyzed at every call site, which
could be avoided using function summaries. Summaries that do not
introduce abstraction and are thus suitable for symbolic execution
can be implemented by computing an intraprocedural path condi-
tion in terms of function inputs, and then merging all states at the
function exit.

Alas, applying such a function summary is essentially as ex-
pensive as re-analyzing the function, if the translation effort from
the programming logic into the representation logic is negligible.
Using a summary instead of inlining avoids only the feasibility
checks for intraprocedural paths that are infeasible regardless of
the function input. The cost of the other feasibility checks that a
non-compositional symbolic execution would perform is not elim-
inated by function summaries. Instead, the branch conditions are
contained in the ite expressions of the summary and will increase
the complexity of later SMT queries.

For dynamic test generation, Godefroid [16] suggests to collect
summaries as disjunctions of pairs of input and output constraints.
In further work [1], this is extended to record summaries one path
at a time and to apply partial summaries whenever they match the
input preconditions. Dynamic test generation re-executes the full
program (with heavy instrumentation) for each branch of which
the alternate case is to be analyzed. Due to re-execution, analyzing
all branches in functions would come at an especially high cost, so
the savings outweigh the additional solving costs for the merged
summary states.

For simplicity, Algorithm 1 is just intraprocedural, supporting
function calls by inlining. It can generate precise symbolic function
summaries, if invoked per procedure and with a similarity relation
that merges all states when the function terminates.

2.3 Our Approach: Dynamically Navigate the Design Space

Precise symbolic analyses are roughly equivalent in their treatment
of loops, but all other design choices (merging at control points,
feasibility checking, and function summaries) boil down to choos-
ing which paths to analyze separately vs. which ones to combine
into common formulae. In other words, all analyses lie along a
spectrum, with search-based symbolic execution (no state merging)
at one extreme and whole-program verification condition genera-
tion (static state merging) at the other extreme. Instead of making a
static design choice of where to be in this spectrum, our approach
is to enable a symbolic analysis to choose dynamically the most ad-
vantageous point and merge states according to the expected benefit
of such a merge.

On the one hand, merging reduces the number of states, but on
the other hand, the remaining states become more expensive to ex-
plore. In the merged state, each variable that had distinct values in
the original states must be constrained by an input-dependent ite ex-
pression, which increases the time required to solve future queries
involving such variables. If the distinct values were concrete, merg-
ing would cause additional solver invocations where expressions
could have been evaluated concretely in separate states.

Furthermore, there is an inherent incompatibility between par-
tial searches using coverage-guided search strategies (as is often
done in test generation) and static state merging at control flow
join points: merging can be maximized by exploring the CFG in
topological order, so that a combined state can be computed from
its syntactic predecessors. A coverage-guided search strategy, how-
ever, will dynamically deprioritize some states (e.g., defer for later
the exploration of additional iterations of a loop), which prevents
using a topological order.

Therefore, to make state merging practical, we must solve two
problems: (1) Automatically identify an advantageous balance be-
tween exploring fewer complex states vs. more simpler states, and
merge states only when this promises to reduce exploration time;
and (2) Efficiently combine state merging with search strategies
that deprioritize “non-interesting” execution paths.

To solve the first problem, we developed query count estima-
tion (QCE), a way to estimate how variables that are different in
two potentially mergeable states will be used in the future. We pre-
process the program using a lightweight static analysis to identify
how often each variable is used in branch conditions past any given
point in the CFG, and use this as a heuristic estimate of how many
subsequent solver queries that variable is likely to be part of. Using
this heuristic, we check whether two states are sufficiently similar
that merging them would yield a net benefit. That is, the additional
cost of solving more and harder SMT queries is outweighed by the
savings from exploring fewer paths. The results of this static analy-
sis affect only the completion time of the symbolic analysis—not
its soundness or completeness.

To solve the second problem, we introduce dynamic state merg-
ing (DSM), a way to dynamically identify opportunities for merging
regardless of the exploration order imposed by the search strategy.
Without any restrictions on the search strategy, only states that meet
at the same location by chance could ever be merged. To increase
the opportunities for merging, we maintain a bounded history of
the predecessors of the states in the worklist. When picking the
next state to process from the worklist, we check whether some
state a1 is similar to a predecessor a′2 of another state a2 in the
worklist. If yes, then state a1, which is in some sense lagging be-
hind a2, is prioritized over the others. This causes it to be tem-
porarily fast-forwarded, until its own successor matches up with
the candidate-for-merging state a2. If the state diverges, i.e., one of
a1’s successors is no longer sufficiently similar to a predecessor of
a2, the merge attempt is abandoned. Thus, while the search strategy
is still in control, DSM identifies merge opportunities dynamically

1 void main(int argc, char **argv) {
2 int r = 1, arg = 1;

3 if (arg < argc)
4 if (strcmp(argv[arg], "-n") == 0) {
5 r = 0; ++arg;
6 }

7 for (; arg < argc; ++arg)
8 for (int i = 0; argv[arg][i] != 0; ++i)
9 putchar(argv[arg][i]);

10 if (r)
11 putchar(’\n’);
12 }

Figure 1. Simplified version of the echo program.

within a fixed distance and only briefly takes over control to attempt
the merge. After the merge attempt, the search strategy continues as
before. Like QCE, DSM does not affect soundness or completeness
of the symbolic analysis.

We combine the solutions to these two problems by using QCE
(explained in detail in §3) to compute the similarity relation used
by DSM (§4). Even though we initially developed these techniques
to improve the performance of search-based symbolic execution
engines for test generation, we believe our analysis and the insights
into building efficiently solvable symbolic formulae from programs
are applicable to other symbolic program analyses as well.

3. Query Count Estimation
We now illustrate the need for estimating the expected benefit of
merging using an example (§3.1), show how to compute the query
count estimates (§3.2), and then justify our decisions (§3.3).

3.1 Motivating Example
Consider the example program in Figure 1, a simplified version of
the UNIX echo utility that prints all its arguments to standard out-
put, except for argument 0, which holds the program name. If the
first regular argument is "-n", no newline character is appended.
We analyze this program using Algorithm 1, assuming bounded in-
put. Specifically, we assume that argc= N +1 for some constant
N ≥ 1, and that each of the N command-line arguments, pointed to
by the corresponding element of argv, is a zero-terminated string
of up to L characters. For simplicity, we assume that strcmp and
putchar do not split paths. Under these preconditions, the total
number of feasible program paths is LN + LN−1, and the branch
condition at line 3 is always true.

The execution paths first split at line 4 on the condition C
that argv[1] points to the string “-n”. Line 6 is then reached by
the two states (6,C, [r = 0,arg = 2]) and (6,¬C, [r = 1,arg =
1]). These two can be merged into the single (but fully precise)
state (6, true, [r = ite(C,0,1),arg = ite(C,2,1)]). Consider now
the loop condition arg < argc in line 7. If the states were kept
separate, this condition could be evaluated concretely in both states,
as 1 < N + 1 and 2 < N + 1, respectively. In the merged state,
however, the condition would become the disjunctive expression
ite(C,2,1)<N+1, which now requires a solver invocation where it
was not previously necessary. The consequences of having merged
at line 6 become even worse later in the execution, for the condition
at line 8. The array index is no longer concrete, so the SMT solver is
required to reason about symbolic memory accesses in the theory
of arrays on every iteration of the nested loop. In this example,
merging reduces the total number of states, but the merged state is
more expensive to reason about. Our experiments confirm that the
total time required to fully explore all feasible paths in this program
is significantly shorter if the paths are not merged on line 6.

Now consider the branching point in the inner loop header at
line 8. Since this loop may be executed up to L times, each state

that enters the loop creates L successor states, one for each loop exit
possibility. For example, a state exiting after the second iteration
is (8, . . .∧argv[1][0] 6= 0∧argv[1][1] = 0, [. . . ,i = 1]). On the
next iteration of the outer loop (line 7), each of these L states again
spawns L successors. At the end of the N outer loop iterations, there
is a total of LN states. However, all of the states created in the loop
at line 8 during the same iteration of the outer loop differ only in
the value of the temporary variable i, which is never used again
in the program. Therefore, merging these states does not increase
the cost of subsequent feasibility checks, yet it cuts the number of
states after the outer loop down to the number of states before the
loop (2 in our example). Note that, while the path condition of the
merged state is created as a disjunction, here it can be simplified to
the common prefix of all path conditions.

There is another, less obvious, opportunity for merging states.
Looking back at the first feasible branch at line 4, consider the state
(7,C, [r= 0,arg= 2]), which corresponds to the path through the
“then” branch, and the state (7,¬C, [r = 1,arg = 2]), which cor-
responds to the path through the “else” branch and one first itera-
tion over the outer loop. Merging these two states yields the state
(7, true, [r= ite(C,0,1),arg= 2]), which introduces a disjunction
for the symbolic expression representing the value of the variable
r. Unlike the arg variable we discussed above, r is used only once
on line 10, just before the program terminates. Therefore, the time
saved by exploring the loops at lines 7-9 with fewer states can out-
weigh the cost of testing the more complex branch condition on
line 10 in the merged state.

This example demonstrates that the net benefit of merging two
states depends heavily on how often variables whose values differ
between two states affect later branch conditions. This is the key
insight behind QCE, which we explain next.

3.2 Computing the Heuristic
To make an exact merging decision, one would have to compute the
cumulative solving times for both the merged and unmerged cases.
But this is impractical, so the query count estimation heuristic
(QCE) makes several simplifications that allow it to be largely pre-
computed before symbolic execution begins. QCE can be calibrated
using a number of parameters, which we denote using the Greek
letters α , β , and κ .

At each program location `, QCE pre-computes a set H(`) of
“hot variables” that are likely to cause many queries to the solver
if they were to contain symbolic values. The heuristic is to avoid
introducing new symbolic values for these “hot variables”. Specif-
ically, states should be merged only if every hot variable either has
the same concrete value in both states or is already symbolic in at
least one of the states. Formally, QCE is implemented by defining
the similarity relation ∼ of Algorithm 1 as

(`, pc1,s1)∼qce (`, pc2,s2) ⇐⇒
∀v ∈ H(`) : s1[v] = s2[v]∨ I Js1[v]∨ I Js2[v], (1)

where I J s[v] denotes that variable v has a symbolic value in the
symbolic store s (i.e., it depends on the set of symbolic inputs I).

In order to check whether a variable v is hot at location `, QCE
estimates the number of additional queries Qadd(`,v) that would be
executed after reaching ` if variable v were to be made symbolic.
Variable v is determined to be hot if this number is larger than a
fixed fraction α of the total number of queries Qt(`) that will be
executed after reaching `:

H(`) = {v ∈V | Qadd(`,v)> α ·Qt(`)} (2)

To estimate these numbers of queries efficiently, we assume that
every executed conditional branch leads to a solver query with a
fixed probability (which could be taken into account by suitably
adjusting the value of α), and that each branch is feasible with a

fixed probability β . Consider function q that descends recursively
into the control flow graph counting the number of queries that are
selected by a function c:

q(`′,c) = (3)
β ·q(succ(`′),c)+β ·q(`′′,c)+ c(`′,e) instr(`′) = if(e)goto `′′

0 instr(`′) = halt

q(succ(`′),c) otherwise

Then Qadd(`,v) and Qt(`) can be computed recursively as follows:

Qadd(`,v) = q
(
`,λ (`′,e). ite

(
(`,v)C (`′,e),1,0

))
Qt(`) = q

(
`,λ (`′,e).1

)
, (4)

where (`,v)C (`′,e) denotes the fact that expression e at location `′

may depend on the value of variable v at location `. For the sake
of simplicity, we assume all program loops to be unrolled and all
function calls to be inlined. For loops (and recursive function calls)
whose number of iterations cannot be determined statically, QCE
assumes a fixed maximum number of iterations κ .

Note that the implementation of QCE is limited to estimating the
number of additional queries without taking into account the fact
that queries may become more expensive due to ite expressions.
Our evaluation shows that this suffices in most cases, but we also
found a few cases in which lifting this limitation would improve our
results. The justification of QCE in §3.3 describes how to integrate
the cost of ite expressions in the computation.

Interprocedural QCE. In our implementation, we avoid the as-
sumption of inlined functions by computing Qadd(`,v) and Qt(`)
for all function entry points ` as function summaries. We do this
compositionally, by computing per-function local query counts in
a bottom-up fashion. The local query counts for a function F in-
clude all queries issued inside F and all functions called by F. To
compute these, we extend Equation (3) to handle function calls. At
every call site, the local query counts are incremented by the local
query counts at the entry point of the callee. Since the local query
counts do not include queries issued after the function returns to the
caller (this would require context-sensitive local query counts), we
perform the last step of the computation dynamically during sym-
bolic execution. We obtain the global query counts by adding the
local query counts at the location of the current state to the sum of
the local query counts of all return locations in the call stack.

Parameters. In our implementation, QCE is parametrized by α ,
β , and the loop bound κ . Optimal values for these parameters are
difficult to compute analytically. For a given program, one can
empirically find good parameter values using a simple hill-climbing
method. In our experiments, we determined the parameter values
this way using four programs and then used these values for the
other programs, with good results (see §5.1).

Illustrating Example. Consider again the program in Figure 1
with the same input constraints we described in §3.1. We now
illustrate how QCE can be used to decide whether to merge states
at lines 6 and 7. We use the heuristic parameters α = 0.5, β = 0.6
and, to keep the example brief, we set κ = 1. First, we pre-compute
Qt(7) and Qadd(7,v) for v ∈ {r,arg} using Equation (4). For
brevity, we omit the computation of Qadd for argc, argv, and
array contents referenced by argv. For Qadd(7,arg), we get

Qadd(7,arg) = q(7,c)
= βq(8,c)+βq(10,c)+ c(7,arg< argc) = βq(8,c)+1
= β (βq(9,c)+βq(10,c)+ c(8,argv[arg][i] 6= 0))+1
= β (βq(9,c)+1)+1 = β (βq(10,c)+1)+1 = β +1 = 1.6,

where c = λ (`′,e). ite((7,arg)C (`′,e),1,0). Similarly, we com-
pute that Qadd(7,r) = β +2β 2 = 1.32 and Qt(7) = 1+2β +2β 2 =
2.92 and, according to Equation (2), H(7) = {arg}. As there are
no branches between lines 6 and 7, we have H(6)=H(7)= {arg}.
Hence, in this example, the QCE similarity relation (1) allows the
states at line 6 or 7 to be merged if the values of arg in the two
states are either equal or symbolic. This is consistent with the re-
sults of our manual analysis in §3.1.

3.3 Justification

We now link our design of QCE to a cost model through the suc-
cessive application of five key simplifying assumptions. Since QCE
is merely a heuristic and not a precise computation, the following
only provides a justification for the reasoning behind it, but not a
formal derivation. Here we explain a full variant of QCE that in-
cludes an estimate of the cost for introducing ite expressions, even
though it is not currently implemented in our prototype.

As mentioned above, an optimal heuristic for the similarity
relation would compute whether the cumulative solving time Tm for
all descendants of the merged state is guaranteed to be less than the
combined respective times T1 and T2 for the two individual states,
i.e., whether Tm < T1+T2. In the ideal case of merging two identical
states, we would have Tm = T1 = T2. Thus, merging just two states
could theoretically cut the remaining exploration time in half. This
is why, in principle, repeated merging can reduce the cumulative
solving time by an exponential factor.

Precisely predicting the time required for solving a formula
without actually solving it is generally impossible, therefore we
apply a first simplification:

Simplifying Assumption 1. A query takes one time unit to solve.
Introducing new ite expressions into the query increases the cost to
ζ > 1 time units, where ζ is a parameter of the heuristic.

Thus, we assume the estimated solving time to be linear in the
number of queries of each type. In a further simplification, we treat
the number of queries that each one of two merge candidates would
individually cause in the future as equal:

Simplifying Assumption 2. Two states at the same program loca-
tion that are candidates for merging will cause the same number
Qt of queries if they are explored separately.

This simplification is a prerequisite for statically computing
query counts for a location in a way that is independent of the
actual states during symbolic execution. The merged state then will
also invoke these Qt queries, but some queries will take longer to
solve due to introduced ite expressions, and some additional queries
become necessary. We denote the number of queries into which
merging introduces ite expressions by Qite (with Qite ≤ Qt). The
total cumulative cost of solving these queries is ζ ·Qite, as per our
first simplification. Additionally, the merged state can require extra
solver invocations for queries corresponding to branch conditions
that depend on constant but different values in the individual states
(as in the loop conditions on lines 9 and 10 of Figure 1). This
number of additional queries is Qadd.

Note that we ignore the possible cost of introducing disjunc-
tions into the path condition. In many common cases, the differ-
ent conjuncts of the two path conditions are just negations of each
other, and thus the disjunctive path condition can be simplified to
the common prefix of the two individual path conditions.

With these simplifications, the total cost of solver queries in
the merged state is 1 · (Qt−Qite) for the remaining regular queries
plus ζ ·Qite for queries involving new ite expressions, plus 1 ·Qadd
for the additional queries. We can thus formulate the criterion for
performing a single merge as Qt−Qite + ζ ·Qite +Qadd < 2 ·Qt,

which simplifies to

(ζ −1)Qite +Qadd < Qt. (5)

The values for Qt, Qite, and Qadd must be computed over the set
of all feasible executions of the merged state. To statically estimate
the feasibility of future paths, we add the following simplification:

Simplifying Assumption 3. Each branch of a conditional state-
ment is feasible with probability 0.5 < β < 1, independently of the
other branch.

We can now estimate the query counts recursively. In the follow-
ing definition, which is restated from (3), function c(`′,e) can be
instantiated for Qt, Qite, and Qadd individually to return 1 if check-
ing the feasibility of a branch condition e at location `′ causes a
query of the specific type (regular, involving ite expressions, or ad-
ditional), or 0 otherwise:1

q(`′,c) = (6)
β ·q(succ(`′),c)+β ·q(`′′,c)+ c(`′,e) instr(`′) = if(e)goto `′′

0 instr(`′) = halt

q(succ(`′),c) otherwise

For this definition, loop unrolling ensures that conditional state-
ments in loops are counted as many times as the loop can execute.
Loops and recursive calls with bounds that are not statically known
are unrolled up to a fixed depth, given by the heuristic parameter κ .

The symbolic execution engine issues a query whenever a state
(`, pc,s) encounters a branch with a conditional expression e that
depends on program input, i.e., e evaluates to an expression s[e]
containing variables from the set of inputs I. We denote this by
I J s[e]. To ease notation, we add the following shorthands: we use
s1[v] 6=s s2[v]

def⇔ (I J s1[v]∨ I J s2[v])∧ s1[v] 6= s2[v] for the con-
dition causing ite expressions, i.e., symbolic but non-equal vari-
ables in two states, and we use s1[v] 6=c s2[v]

def⇔¬(I J s1[v]∨ I J

s2[v])∧ s1[v] 6= s2[v] for the condition causing additional queries,
i.e., concrete and non-equal variables in two states.

To define a function c(`′,e) for the different types of query
counts, we need a method to check whether the branch condition
e depends on inputs when reached from one of the individual
states. We approximate this statically using a path-insensitive data
dependence analysis, and write (`,v) C (`′,e) if expression e at
location `′ may depend on the value of variable v at location `.
Thus, we can define the query counts as follows:

Qt((`, pc1,s1),(`, pc2,s2)) = q
(
`,λ (`′,e).

ite(∃v :(I Js1[v]∨ I Js2[v])∧(`,v)C(`′,e)),1,0
)

Qite((`, pc1,s1),(`, pc2,s2)) = q
(
`,λ (`′,e).

ite(∃v : s1[v] 6=s s2[v]∧ (`,v)C (`′,e)),1,0
)

Qadd((`, pc1,s1),(`, pc2,s2)) = q
(
`,λ (`′,e).

ite(∃v : s1[v] 6=c s2[v]∧ (`,v)C (`′,e),1,0
)

Computing this recursive relation is expensive, and it cannot
be pre-computed before symbolic execution because it requires
determining which variables depend on program inputs in the states
considered for merging. We therefore assume a fixed probability of
input dependence:

Simplifying Assumption 4. The number of branches whose con-
ditions are dependent on inputs is a fixed fraction ϕ of the total
number of conditional branches.

1 Note that, for simplicity of exposition, we only refer to branch conditions
here. In practice, other instructions, such as assertion checks or memory
accesses with input-dependent offsets, will also trigger solver queries. Our
implementation extends the definition of c to account for these queries.

This enables us to eliminate all variable dependencies from Qt
and simplify it to Qt(`) = ϕ ·q(`,λ (`′,e).1). Now, Qt depends only
on the program location and can thus be statically pre-computed.

Qite and Qadd count queries for which specific variable pairs are
not equal in the two merge candidates. Therefore, we would need
to statically pre-compute Qite and Qadd for each subset of variables
that could be symbolic in either state during symbolic execution.
To eliminate this dependency on the combination of specific vari-
ables, we compute query counts for individual variables. The per-
variable query counts Qite(`,v) and Qadd(`,v) are defined as the
value of Qite(`) and Qadd(`), respectively, computed as if v was the
only variable that differs between the merge candidates. The per-
variable query counts can be computed as Qite(`,v) = Qadd(`,v) =
q(`,λ (`′,e). ite((`,v)C (`′,e),1,0)).

Summing the per-variable query counts for all variables that
differ between the merge candidates will grossly over-estimate the
actual values of Qite and Qadd, since conditional expressions often
depend on more than just one variable, and many queries would
thus be counted multiple times. Similarly, using just the maximum
per-variable query count would cause an under-estimation. In fact,

max
{v∈V |s1[v]6=cs2[v]}

Qadd(`,v) ≤ Qadd(`) ≤ ∑
{v∈V |s1[v]6=cs2[v]}

Qadd(`,v)

and analogously for Qite. We therefore make a final simplification:

Simplifying Assumption 5. Total query counts are equal to the
maximum per-variable query counts for an individual variable
times some factor σ , i.e.,

Qite(`)≈ σ · max
{v∈V |s1[v]6=ss2[v]}

Qite(`,v)

Qadd(`)≈ σ · max
{v∈V |s1[v]6=cs2[v]}

Qadd(`,v).

The intuition behind this assumption is that the number of
independent variables correlates with the input size and not with the
total number of variables. Applying this substitution to Equation (5)
we can now define the similarity relation ∼qce as

(`, pc1,s1)∼qce (`, pc2,s2)
def⇐⇒ (7)

(ζ−1) max
{v∈V |s1[v]6=ss2[v]}

Qite(`,v)+ max
{v∈V |s1[v]6=cs2[v]}

Qadd(`,v) <
Qt

σ

with

Qite(`,v) = Qadd(`,v) = q
(
`,λ (`′,e). ite

(
(`,v)C (`′,e),1,0

))
,

Qt(`) = ϕ ·q
(
`,λ (`′,e).1

)
,

and the recursively descending q as defined in Equation (6). For
convenience, we rename ϕ

σ
to the unified parameter α . Thus, α , β ,

ζ and the unrolling bound κ remain as the only parameters to QCE.
The variant of QCE implemented in our prototype is derived from
Equation (7) by removing Qite from the criterion, to arrive at

max
{v∈V |s1[v]6=cs2[v]}

Qadd(`,v)< αQt,

which is equivalent to

∀v ∈V : s1[v] 6=c s2[v]→ Qadd(`,v)< αQt.

To facilitate an efficient implementation in combination with dy-
namic state merging, as discussed in the next section, we col-
lect a set of variables that exceed the threshold Hadd(`) = {v ∈
V | Qadd(v)> αQt} and can state the similarity relation as (1).

This motivates the use of QCE for estimating the similarity of
states. We show that QCE is effective in practice in §5.

4. Dynamic State Merging
We now explain the challenges for applying state merging in
fully automated, precise, but incomplete symbolic program analy-

1 if (logPacketHash) {
2 hash = computeHash(pkt);
3 log("Packet: %s, hash: %s", pkt->name, hash);
4 } else {
5 log("Packet: %s", pkt->name);
6 }
7 handlePacket(pkt);

Figure 2. Example code illustrating how static state merging can
interfere with search heuristics.

sis (§4.1). To overcome these problems, we motivate (§4.2) and
introduce (§4.3) the dynamic state merging algorithm.

4.1 Static Merging and Incomplete Exploration
A symbolic program analysis using static state merging traverses
the CFG in topological order and attempts to merge states at ev-
ery joint point. This allows to perform exhaustive exploration with
state merging in the fewest possible steps. To ensure termination,
the analysis has to stop loop unrolling at a certain depth, unless
loops can be summarized by loop invariants. This method is opti-
mal for verification condition generators that encode full programs
with bounded or summarized loops. Search-based symbolic exe-
cution engines, however, which typically perform incomplete ex-
plorations, do not bound loops but are guided by search strategies
that prioritize exploring new code over unrolling additional loop it-
erations. An exploration in strict topological order would override
such strategies and stall the engine by requiring it to fully unroll the
possibly infinitely many iterations of a loop before proceeding.

This is a problem even for loops that symbolic execution could,
in principle, explore exhaustively. Coverage-oriented search strate-
gies are designed to quickly maximize metrics such as statement
coverage. The restriction to topological order interferes with such
strategies, reducing their performance or even completely stopping
them from achieving any progress towards their goal. We support
this argument with experimental evidence in §5.5.

Consider the example code in Figure 2. Depending on the flag
logPacketHash, the program writes to a log either just the
name of a packet or both the name and a hash value. The code
then processes the packet. In this example, exploring the “else”
branch of the conditional statement on line 1 is fast, while ex-
ploring the “then” branch is expensive due to the computeHash
function processing the entire input packet. A coverage-oriented
search strategy will likely choose to explore the “else” branch
first to quickly reach handlePacket, or switch to the “else”
branch after not making progress towards its coverage goal being
stuck unrolling loops inside the computeHash function. With
static state merging, the symbolic execution engine has to merge
all states at line 7, which requires all execution paths to be ex-
plored exhaustively up to that location. Therefore, no code in the
handlePacket function can be reached before exploring every
path in the computeHash function, thus being in conflict with the
coverage-oriented search heuristic. This conflict could be solved by
allowing the merge of only those states that, according to the cho-
sen search strategy, would reach the same point in a program at
about the same time. In our example, the state that takes the “else”
branch should not be merged with any state that takes the “then”
branch, allowing the search strategy to prioritize it independently.

4.2 Rationale Behind Dynamic State Merging
To solve the problems of static state merging, we propose dynamic
state merging (DSM). DSM does not require states to share the
same program location in order to be considered for merging. The
rationale behind dynamic state merging is the following: consider
two abstract states a1 = (`1,pc1,s1) and a2 = (`2,pc2,s2), with
`1 6= `2, that are both in the worklist. Assume that a′1, one of the
transitive successors of a1 (which have not been computed yet)

Input: Worklist w, choice functions pickNextD and
pickNextF , similarity relation ∼, trace function pred,
threshold δ

Data: Forwarding set F .
Result: The next state to execute.
// Determine the forwarding set

1 F := {a ∈ w | ∃a′ ∈ w : ∃a′′ ∈ pred(a′,δ) : a∼ a′′};
2 if F 6=∅ then // Choose a state from the forwarding set
3 return pickNextF (F)
4 else // Choose a state using the driving heuristic
5 return pickNextD(w)

Algorithm 2. The pickNext method for dynamic state merging.

will reach location `2. Provided that the number of steps required
to reach `2 from a1 is small, and the expected similarity of a′1
and a2 is high, enough that merging them will be beneficial, it is
worth overriding a coverage-oriented search strategy to compute
a′1 next and to then merge it with a2. We refer to this override
as fast-forwarding, because a1 is forwarded to a2’s location with
temporary priority before resuming the regular search strategy.

To check whether a1 can be expected to be similar to a2 in
the near future, we check whether a1 could have been merged
with a predecessor a′2 of a2, i.e., whether a1 ∼ a′2. The underlying
expectation, which our experiments confirm, is that if two states
are similar, then their two respective successors after a few steps of
execution are also likely (but not guaranteed) to be similar.

Note that fast-forwarding deals with special cases automati-
cally: if a state forks while being fast-forwarded, all children that
are still similar to a recent predecessor of a state in the worklist are
fast-forwarded. If a state leaves the path taken by the state it is sim-
ilar to, i.e., fast-forwarding diverges, the state is no longer similar
to any predecessor and is thus no longer prioritized.

4.3 The Dynamic State Merging Algorithm

The DSM algorithm is an instance of Algorithm 1 with a pickNext
function as defined in Algorithm 2. DSM relies on an external “driv-
ing” heuristic (given as a function pickNextD), such as a traditional
coverage-oriented heuristic, to select the next state. However, when
the algorithm detects that some states, computed as a set F , are
likely to be mergeable after at most δ steps of execution, DSM over-
rides the driving heuristic and picks the next state to execute from
F according to another external search heuristic pickNextF .

The algorithm uses a function pred(a,δ) to compute the set
of predecessors of a within a distance of δ . The function can
be defined as pred(a,δ) = {a′ | ∃n ≤ δ : a ∈ postn(a′)}, where
post(a′) denotes the set of immediate successor states computed
by Algorithm 1 for a state a′. Keeping a precise history of reached
states can incur prohibitive space costs, but we reduce the space
requirements as follows: states from the history are only used for
comparisons with respect to ∼, hence it is only required to store
the parts of the state that are relevant to the relation. Moreover, if
the ∼ relation is only sensitive to equality, the implementation can
store and compare hash values of the relevant information from
past states. In this case, checking whether the state belongs to F is
implemented as a simple hash table lookup. Hash collisions do not
pose a problem, because a full check of the similarity relation is still
performed when fast-forwarding finishes and the states are about to
be merged. Moreover, the set F is rebuilt after each execution step,
so, if a state was added to F due to a collision, it is unlikely to
be added again to F in the next step, as a second collision for two
different hash values has low probability.

The relation ∼qce, defined in Equation (1) in §3.3, can be mod-
ified to check for equality only, as required for using hashing in
the implementation. We express the condition for variables to be

either symbolic or equal in Equation (1) by h(s1[v]) = h(s2[v]),
where h(v) = ite(I J v,?,v) filters out symbolic variables by map-
ping them to a unique special value. The implementation can thus
store just the hash value of

⋃
v∈H(`) h(v) for a state. Then ∼qce can

be checked by comparing the hash values of the two states (modulo
hash collisions).

The function pickNextF determines the execution order among
the states selected for fast-forwarding. In our implementation, we
pick the first state from F according to the topological order of the
CFG. Thus, states that lie behind with respect to the topological
order first catch up and are merged with later states.

5. Experimental Evaluation
We now show that, in practice, our approach attains exponen-
tial speedup compared to base symbolic execution (Figure 5). We
first introduce our prototype implementation (§5.1) and present
our evaluation metrics (§5.2). We then evaluate how DSM com-
bined with QCE improves the thoroughness of program exploration
in a time-bounded scenario (§5.3). We then show that QCE lies
at a sweet spot between single-path exploration and static merg-
ing (§5.4). Finally, we demonstrate that DSM is essential for com-
bining state merging with coverage-oriented search strategies in in-
complete exploration (§5.5).

5.1 Prototype

We built our prototype on top of the KLEE symbolic execution en-
gine [6]. It takes as input a program in LLVM bitcode [25] and a
specification of which program inputs should be marked as sym-
bolic for the analysis: command-line arguments or file contents.
KLEE implements precise non-compositional symbolic execution
with feasibility checks performed at every conditional branch. It
uses search strategies to guide exploration; the stock strategies in-
clude random search and a strategy biased toward covering previ-
ously unexplored program statements.

To support QCE, we extended KLEE to perform a static analy-
sis of the LLVM bitcode to compute local query count estimates as
explained in §3.2. The analysis is executed before the path explo-
ration and annotates each program location with the corresponding
query count estimates Qt(`) and Qadd(`,v) as defined in §3.2. The
pass is implemented as an LLVM per-function bottom-up call graph
traversal (with bounded recursion) and performs the analysis com-
positionally. When analyzing each function, the pass attempts to
statically determine trip counts (number of iterations) for loops. If
it cannot, it approximates them with the loop bound parameter κ .
The QCE analysis tracks the query count for local variables, func-
tion arguments, and in-memory variables indexed by a constant
offset and pointed to by either a local variable, a function argu-
ment, or a global variable. We check data dependencies between
variables by traversing the program in SSA form. As LLVM’s SSA
form handles only local variables, we do not track dependencies
between in-memory variables except when loading them to locals.
We modified KLEE to compute interprocedural query counts and
sets of hot variables H(`) dynamically during symbolic execution,
following §3.2.

We implemented DSM as defined by Algorithm 2 in the form
of a search strategy layer in KLEE’s stacked strategy system plus
an execution tracking system that incrementally computes state
hashes (see §4.3). Each strategy uses its own logic to select a
state from the worklist, but can rely on an underlying strategy
whenever it has to make a choice among a set of equally important
states. In our case, the DSM strategy returns a state from the fast-
forwarding set of states (pickNextF), or, if this set is empty, it
resorts to the underlying driving heuristic to select a state from the
general worklist (pickNextD). Depending on the purpose of each
experiment, we employ different driving heuristics: for complete

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 100 10000 1e+06 1e+08 1e+10 1e+12

E
x
a

c
t

P
a

th
 C

o
u

n
t

State Multiplicity

seq
join

tsort

Figure 3. The exact number of paths as a function of state multi-
plicity for 3 COREUTILS tools. Both axes are logarithmic.

explorations, we used random search, while for partial explorations
aimed at obtaining statement coverage, we employed the coverage-
oriented search heuristics in [6].

Evaluation Targets. We performed all our experiments on the
COREUTILS suite of widely used UNIX command-line utilities,
ranging from file manipulation (cp, mv, etc.) to text processing
(cut, sort, etc.) and shell control flow (e.g., test). The total
size of the COREUTILS code is 72.1 KLOC, as measured by SLOC-
COUNT [30]. We tested these tools using symbolic command line
arguments and stdin as input. In some cases, the symbolic input
size is small enough for KLEE to complete the exploration in less
than 5 minutes. We discarded these data points from our evaluation,
since such a short period of time is dominated by the constant over-
head of our static analysis, whereas we are interested in evaluating
the prototype’s asymptotic behavior.

5.2 Evaluation Metrics

We evaluate our prototype by comparing it to non-merging search-
based symbolic execution as implemented in KLEE. We perform the
comparison according to (1) the amount of exploration performed
given a fixed time budget, and (2) the time necessary to complete
a fixed exploration task, i.e., the exhaustive search of a set of paths
determined by a given symbolic input.

Estimating Number of Paths in Merged States. A direct com-
parison of the amount of exploration between merge-based and reg-
ular symbolic execution is difficult, because counting the feasible
paths that have been explored with state merging requires checking
the feasibility of each path individually. This is as hard as repeating
the exploration without merging, so it is impractical in the cases
where symbolic execution without merging times out.

We therefore estimate the path count in a merged state with
the help of state multiplicity: the multiplicity of a single-path state
is 1; when two states merge, the multiplicity of the resulting state is
the sum of their multiplicities. State multiplicity over-estimates the
path count because, when the state is split at later branches, state
multiplicity carries over to both child states, effectively doubling
the counted number of paths at each branch (assuming that, as long
as a branch is feasible for the merged state, it is also feasible for all
the paths represented by it).

For our estimation, we made the assumption that “path explo-
sion” can be modeled as an exponential function a · 2b·n, where a
and b are program-specific constants, and the growth parameter n
indicates the progress of unrolling the program CFG along the paths
of interest. Both the path count p and state multiplicity m are then
based on this formula, each with different values for the constants
a and b. Since n depends on the behavior of the search strategy,
it cannot be easily determined. However, we can avoid computing
n because, at any point in time, both the exact path count and the

 0.0001

 0.01

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 0 10 20 30 40 50 60 70 80

P
a

th
 R

a
ti
o

 (
P

D
S

M
 /

 P
K

le
e
)

Tool Index

Figure 4. Relative increase in explored paths for DSM + QCE vs.
regular KLEE (1h time budget). Each bar represents a COREUTIL.

state multiplicity have the same growth parameter n correspond-
ing to the current exploration progress. Hence, we can take the two
model equations m = am ·2bm·n and p = ap ·2bp·n and obtain n from
the first equation and substitute it in the second. This yields a rela-
tion between p and m of the form log p ≈ c1 + c2 logm, where c1
and c2 are program-dependent coefficients.

To empirically validate this relation, we extended our prototype
to accurately track the number of feasible paths by maintaining
all the original single-path states along with the merged states.
We counted the exact number of paths and the state multiplicity
for 1 hour and confirmed a linear relation between the logarithms
of the two values. Figure 3 illustrates the dependency between m
and p with representative measurements of c2 for 3 COREUTILS.

In the experiments reported in the rest of this section, we ap-
proximated the number of paths for state merging as follows. First,
we ran the experiments for 1 hour, while accurately tracking the
number of feasible paths as explained above (if exploration with
merging was 1000× faster, this 1 hour would correspond to ∼4
seconds of exploration). From this data, we computed the values
of c1 and c2. Second, we ran the full experiments, while tracking
only the state multiplicity for merged states, which does not incur a
significant overhead. Using c1 and c2, we then converted the state
multiplicity values into the estimation of the feasible path count.

5.3 Faster Path Exploration with DSM and QCE

We were first concerned with how much DSM and QCE, when
combined, speed up symbolic execution. We let both our prototype
and KLEE run for 1 hour on each of the COREUTILS, and we
measured the number of paths explored by each tool. The size of
the symbolic inputs passed to each utility was large enough to keep
each tool busy for the duration of each run.

Figure 4 shows, for each of the tested COREUTILS, a bar rep-
resenting the ratio between the number of program paths explored
by our prototype and KLEE, respectively. The results indicate that
our technique explores up to 11 orders of magnitude more paths
than plain symbolic execution in the same amount of time. On 14
utilities, our prototype explored fewer paths, which we believe to
be due to ignoring ite expressions (see §3.3) and limitations of our
prototype (see §5.1). Our prototype crashed on 5 utilities, which we
do not include in our results. We show a single representative for
every tool aliased by multiple names (e.g., ls, dir, and vdir).

5.4 Achieving Exponential Speedup with QCE

We now answer the question of how much faster can our technique
exhaustively explore a program for a fixed input size. In exhaustive
exploration, a coverage-oriented search strategy is not necessary,
therefore we focused on the effects of QCE alone. We used it in
implementing a selective form of static state merging instead of
DSM. Static state merging (SSM) chooses states from the worklist

 0.1

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25 30 35 40 45

S
p

e
e

d
u

p
 (

T
K

le
e
 /

 T
S

S
M

)

Input Size (# of symbolic bytes)

Largest speedup (link)
Medium speedup (nice)

Lowest speedup (basename)

Figure 5. Speedup of QCE versus input size for exhaustive explo-
ration of three representative COREUTILS.

in topological order and attempts to merge them at control flow
join points. Selective SSM uses query count estimation to keep
some states separate. Intuitively (and confirmed experimentally
in §5.5), SSM performs better than DSM in exhaustive exploration,
since it avoids unnecessary computation. However, for incomplete
exploration, SSM performs worse than DSM.

We evaluate QCE from two perspectives. First, we look at how
much QCE speeds up state merging for complete path exploration
tasks. Second, we look at how the QCE heuristic parameters in-
fluence performance. We collected our measurements by running
each of the COREUTILS for 2 hours, using plain KLEE, and QCE
with SSM. For each configuration, we ran experiments with multi-
ple values of symbolic input size, and we measured the correspond-
ing completion time.

Exhaustive Exploration. Figure 5 shows the evolution of the
completion time ratio (speedup) between SSM using QCE and plain
KLEE for three representative COREUTILS programs, as we in-
crease the symbolic input size. One of them achieved the highest
speedup, another shows an average speedup, while the last does
not show any improvement. This graph illustrates that our pro-
totype completed the exploration goal exponentially faster as the
symbolic input size increased. Figure 5 also shows that applying
QCE does not always lead to speedup. However, Figure 6 shows
this is actually an infrequent case. The scatter plot illustrates how
the execution time of SSM using QCE compares to KLEE when ag-
gregating over the entire set of experiments. The black dots corre-
spond to experiment instances where both our prototype and KLEE
finished on time, while the triangles on the right side correspond to
situations where KLEE timed out after 2 hours (and thus indicate a
lower bound on the actual speedup). The gray disks indicate the rel-
ative size of the symbolic inputs used in each experiment instance.
Since, in the majority of cases, KLEE times out without complet-
ing the exploration, we only show on this graph the timeout points
of the smallest input size for each tool, which give a loose lower
bound on the speedup. We notice that most of the points in Figure 6
are located in the lower-right part of the graph, which correspond
to higher speedup values. Moreover, in the cases where both KLEE
and our prototype finish on time, large speedups (the lower-right
part of the graph) tend to correspond to larger sizes of the sym-
bolic input (larger gray circles). This re-confirms the fact that our
speedup is proportional to the size of program input, i.e., the very
source of the exponential growth of paths that bottlenecks KLEE.

To get a better understanding of the behavior of QCE, we took
a deeper look at the execution of several COREUTILS tools: some
that exhibit high speedup, and some for which the performance of
our prototype is worse than KLEE’s. We extended our prototype to
explore states in both merged and unmerged forms. For every solver
query in a merged state, we matched all the queries during the same
execution step in all the corresponding unmerged states. We then

 10

 100

 1000

7200
(Timeout)

 10 100 1000 7200
(Timeout)

S
S

M
 C

o
m

p
le

ti
o

n
 T

im
e

 (
T

S
S

M
)

in
 s

e
c
o

n
d

s

KLEE Completion Time (TKlee) in seconds

Symbolic input size
No Speedup (TKlee = TSSM)

Figure 6. QCE + SSM vs. plain KLEE with varying input sizes
(shown as gray disk size). Triangles denote that KLEE timed out
after 2h and are thus lower bounds on the actual speedup.

compared query times in the merged and unmerged versions and
identified those that became slower due to state merging.

We discovered that, even for tools that exhibited high overall
speedup, some queries are more expensive in the merged state than
the corresponding queries for the unmerged states combined. In
these cases, however, the slowdown was amortized by the reduction
in the total number of states to explore, and hence the total number
of queries to solve. A typical example is the sleep utility, which
reads a list of integers from the command line and sums their value
in the variable seconds. It then validates the resulting value and
performs the actual sleep operation. Here, QCE does not identify
seconds as a hot variable, and all states forked during parsing
are merged into a single state, avoiding the exponential increase
in paths for each additional integer parsed. Since the value of
seconds depends on the parsing result, it becomes a complex
symbolic expression in the merged state, leading to several complex
solver queries in the validation code. Nevertheless, these queries
are amortized by the substantial reduction in the number of states
to analyze. This example shows that QCE does allow merging of
states that differ in live variables, so it is strictly more general than
methods based on live variable analysis [3].

In cases where our prototype performed worse than plain KLEE,
we observed a large number of queries that were more expensive
in the merged state. These queries commonly contained ite expres-
sions and disjunctive path conditions introduced by state merging.
The former case shows that our QCE prototype can be improved
by including the estimation of ite expressions introduced by state
merging, as described in §3.3. The latter suggests using a constraint
solver that can handle disjunctions more efficiently.

Influence of Heuristic Parameters. The values of the QCE pa-
rameters α , β , and κ affect the exploration time of each program.
We determined optimal values for α and β experimentally, using
hill-climbing over four COREUTILS chosen at random, and ob-
tained α = 10−12 and β = 0.8. We then reused the same values for
all other experiments in our evaluation and found that these values
perform well in practice. Regarding the loop bound κ , we noticed
that many of the loops with an input-dependent number of itera-
tions actually iterate over program inputs. Hence, we chose κ = 10
corresponding to the average input size in our experiments.

We observed that, among these parameters, the value of α has
the highest impact on the running time. In essence, α controls how
aggressively the engine tries to merge. When α is ∞, no variables

3600
(Timeout)

 10

 100

 1000

(no merge) 0 10
-20

10
-15

10
-10

10
-5 1 (+∞)

C
o

m
p

le
ti
o

n
 T

im
e

 (
T

S
S

M
)

in
 s

e
c
o

n
d

s

QCE Threshold Parameter α

link
nice

paste
pr

Figure 7. Impact on performance of the threshold parameter α .

-60

-50

-40

-30

-20

-10

 0

 10

 20

 0 10 20 30 40 50

S
ta

te
m

e
n

t
C

o
v
e

ra
g

e
 I

n
c
re

a
s
e

 [
%

]

Tool Index

SSM
DSM

Figure 8. Change in statement coverage of DSM and SSM vs.
regular KLEE for a coverage-oriented, incomplete exploration.

are determined to be hot, and QCE allows all states to be merged.
When α is 0, states that contain variables with different concrete
values are never merged. Due to this property, we call α the QCE
threshold parameter. To illustrate this dependency, we randomly
chose four COREUTILS (link, nice, paste, pr) and ran them
using SSM for up to 1 hour with different values of α . Figure 7
shows, for each target program, the dependency of the completion
time on the threshold parameter. The special point “(no merge)” on
the x-axis corresponds to executions with state merging disabled.
Note that here we did not cut execution times below 5 minutes.

5.5 Reaching an Exploration Goal with DSM

We now verify whether DSM allows the underlying driving heuris-
tic to reach the goal while still merging states according to QCE. To
isolate the effects of DSM, we compare DSM to our SSM implemen-
tation, with both using QCE in making merge decisions.

First, we use the coverage-oriented search heuristic from [6]
with DSM, and look at how much statement coverage it can achieve
in an incomplete setting (1 hour timeout and large search space).
The value of the fast-forwarding distance δ was chosen experi-
mentally to equal 8 basic blocks. Figure 8 compares the increase
in statement coverage obtained by DSM and SSM over base KLEE
on those COREUTILS for which the exploration remained incom-
plete after 1 hour. SSM consistently obtains worse coverage values,
confirming its inability to adapt to the exploration goal. However,
DSM roughly matches the coverage values of the underlying driving
heuristic. Thus, the experiment confirms that DSM’s merging avoids
interfering with the logic of the driving heuristic, while traversing
orders of magnitude more paths (§5.3). Even though these addi-
tional paths do not necessarily increase statement coverage, they
can increase other coverage metrics and ultimately offer higher
confidence in the resulting tests. We measured that, on average,
69% of the states selected for fast-forwarding were successfully
merged with another state. Hence, the DSM approach to predict
state similarity (§4.3) works well in practice.

 10

 100

 1000

7200
(Timeout)

 10 100 1000 7200
(Timeout)

S
ta

ti
c
 S

ta
te

 M
e

rg
in

g
 (

T
S

S
M

)
in

 s
e

c
o

n
d

s

Dynamic State Merging (TDSM) in seconds

Symbolic input size
No Speedup (TSSM = TDSM)

Figure 9. Comparison between the time needed to achieve exhaus-
tive exploration for SSM and DSM.

Second, we evaluated the penalty of DSM compared to SSM in
exhaustive exploration (see §5.4). For this experiment, we ran both
techniques with varying input sizes. Figure 9 aggregates the results
in a scatter plot. Most data points are grouped around the diagonal,
indicating that the performance of both techniques is comparable,
even though DSM is slower than SSM by 15% on average.

We conclude that DSM, while being slightly less efficient than
SSM in exhaustive exploration, meets its purpose of allowing the
driving heuristic to follow the exploration goal.

Overall, the combination of DSM and QCE offers exponential
speedups over KLEE, which suggests that these are two important
steps towards improving the performance of symbolic execution.

6. Related Work
We discussed the most closely related work in §2, where we fo-
cused on what we called precise symbolic program analysis. In this
section, we look a bit further into alternative approaches that are
similar in that they build symbolic expressions and rely on SAT or
SMT solving, but use other techniques for improving scalability.

A first class of techniques focuses on pruning redundant states
in symbolic execution. Boonstoppel et al. [3] dynamically deter-
mine variable liveness during symbolic execution. Their analysis
considers the already explored paths through the current statement
and determines the variables that are dead on all paths. It then uses
the rest of the variables to check whether a state is equivalent to a
previously explored one and can be safely pruned. In a sense, this
is a special case of QCE, where no merging is performed unless the
differing variables never used again. In our approach, we do not
actually prune paths but still represent them in the merged state. If
the differing variables are never used, this is equivalent to pruning
one of the paths. This allows us to use imprecise static analysis and
to merge in cases where variables are not dead but just rarely used.

McMillan [28] introduces lazy annotation in symbolic execu-
tion to build summaries on the fly and generalize them by Craig in-
terpolation. This generalization goes beyond regular symbolic sum-
maries, but is also computationally more expensive; we would like
to measure the net effectiveness of this technique in future work.

A proven effective way to scale up symbolic program analysis
is to forgo precision and introduce abstraction. Saturn [31] uses a
symbolic exploration algorithm to build verification conditions for
specific properties. It is specifically designed to find bugs in large
system software and therefore sacrifices precision at several points.
Loops are unrolled just once, and functions are aggressively sum-

marized. Similarly, Calysto [2] relies on structural abstraction to
initially represent function effects as fresh variables. False positives
are iteratively eliminated by replacing these variables with precise
function summaries.

The bounded model checker in the Varvel/F-Soft verification
platform uses lightweight static analysis to infer over-approximate
function summaries that are only applied below a configurable
depth in the call graph [21, 22]. Therefore, it introduces abstrac-
tion only at deeper levels, in an effort to reduce false positives.
Sery et al. [29] describe the use of over-approximate summaries in
bounded model checking. Whenever assertion violations are found,
their method falls back to inlining, to avoid false positives. There-
fore, speedups are only attainable for successful verification runs.

Abstraction-based analyses could scale significantly better than
symbolic execution. However, they are prone to false positives and,
perhaps more importantly, are harder to deploy. Symbolic execu-
tion engines do not require hand-written stubs for external func-
tions or system calls, but can instead simply execute the call by
concretizing its parameters. This sacrifices the theoretical guaran-
tee of eventually achieving complete path coverage, but is a signif-
icant advantage for test case generation and bug finding.

7. Conclusions
In symbolic execution, state merging reduces the number of states
that have to be explored, but increases the burden on the constraint
solver. We introduced two techniques for reaping practical bene-
fits from state merging: query count estimation and dynamic state
merging. With this combination of techniques, state merging be-
comes completely dynamic and benefit-driven, unlike static strate-
gies such as static merging or precise function summaries. We ex-
perimentally confirmed that our approach can significantly improve
exploration time and coverage. This suggests that we have indeed
come close to a sweet spot in balancing the simplicity of exploring
single paths vs. the reduction of redundancy in exploring multiple
paths in a merged state.

Other types of precise symbolic program analysis face simi-
lar design choices for grouping paths, but approach the sweet spot
from a different angle. Therefore, we believe that our results gener-
alize beyond just symbolic execution and that, for example, query
count estimation can serve as a partitioning strategy for verification
conditions in bounded model checking.

Acknowledgments
We would like to thank Péter Bokor, Aarti Gupta, Rupak Majum-
dar, Raimondas Sasnauskas, Jonas Wagner, and Cristian Zamfir for
their valuable feedback on earlier drafts of this paper. We are grate-
ful to Google and Microsoft for generously supporting our work.

References
[1] S. Anand, P. Godefroid, and N. Tillmann. Demand-driven composi-

tional symbolic execution. In Intl. Conf. on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), 2008.

[2] D. Babic and A. J. Hu. Calysto: scalable and precise extended static
checking. In Intl. Conf. on Software Engineering (ICSE), 2008.

[3] P. Boonstoppel, C. Cadar, and D. R. Engler. RWset: Attacking path
explosion in constraint-based test generation. In Intl. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS),
2008.

[4] R. S. Boyer, B. Elspas, and K. N. Levitt. SELECT – a formal system
for testing and debugging programs by symbolic execution. In Intl.
Conf. on Reliable Software (ICRS), 1975.

[5] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler.
EXE: Automatically generating inputs of death. In Conf. on Computer
and Communications Security (CCS), 2006.

[6] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and au-
tomatic generation of high-coverage tests for complex systems pro-

grams. In Symp. on Operating Systems Design and Implementation
(SOSP), 2008.

[7] V. Chipounov, V. Kuznetsov, and G. Candea. S2E: A platform for
in-vivo multi-path analysis of software systems. In Intl. Conf. on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2011.

[8] E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C
programs. In Intl. Conf. on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), 2004.

[9] M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive program veri-
fication in polynomial time. In Intl. Conf. on Programming Language
Design and Implem. (PLDI), 2002.

[10] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Intl.
Conf. on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), 2008.

[11] E. W. Dijkstra. Guarded commands, nondeterminacy and formal
derivation of programs. Commun. ACM, 18(8):453–457, 1975.

[12] N. Eén and N. Sörensson. An extensible SAT-solver. In Intl. Conf. on
Theory and Applications of Satisfiability Testing (SAT), 2003.

[13] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe,
and R. Stata. Extended static checking for Java. In Intl. Conf. on
Programming Language Design and Implem. (PLDI), 2002.

[14] M. K. Ganai and A. Gupta. Tunneling and slicing: towards scalable
BMC. In Design Automation Conf. (DAC), 2008.

[15] V. Ganesh and D. L. Dill. A decision procedure for bit-vectors and
arrays. In Intl. Conf. on Computer Aided Verification (CAV), 2007.

[16] P. Godefroid. Compositional dynamic test generation. In Symp. on
Principles of Programming Languages (POPL), 2007.

[17] P. Godefroid and D. Luchaup. Automatic partial loop summarization
in dynamic test generation. In Intl. Symp. on Software Testing and
Analysis (ISSTA), 2011.

[18] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated
random testing. In Intl. Conf. on Programming Language Design and
Implem. (PLDI), 2005.

[19] P. Godefroid, M. Y. Levin, and D. Molnar. Automated whitebox fuzz
testing. In Network and Distributed System Security Symp. (NDSS),
2008.

[20] T. Hansen, P. Schachte, and H. Sondergaard. State joining and splitting
for the symbolic execution of binaries. In Intl. Conf. on Runtime
Verification (RV), 2009.

[21] F. Ivancic, Z. Yang, M. K. Ganai, A. Gupta, I. Shlyakhter, and P. Ashar.
F-soft: Software verification platform. In Intl. Conf. on Computer
Aided Verification (CAV), 2005.

[22] F. Ivancic, G. Balakrishnan, A. Gupta, S. Sankaranarayanan,
N. Maeda, H. Tokuoka, T. Imoto, and Y. Miyazaki. DC2: A frame-
work for scalable, scope-bounded software verification. In Intl. Conf.
on Automated Software Engineering (ASE), 2011.

[23] J. C. King. A new approach to program testing. In Intl. Conf. on
Reliable Software (ICRS), 1975.

[24] S. K. Lahiri and S. Qadeer. Back to the future: revisiting precise
program verification using SMT solvers. In Symp. on Principles of
Programming Languages (POPL), 2008.

[25] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong
program analysis and transformation. In Intl. Symp. on Code Genera-
tion and Optimization (CGO), 2004.

[26] K. R. M. Leino and P. Rümmer. A polymorphic intermediate verifi-
cation language: Design and logical encoding. In Intl. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS),
2010.

[27] L. Mauborgne and X. Rival. Trace partitioning in abstract interpre-
tation based static analyzers. In European Symp. on Programming
(ESOP), 2005.

[28] K. L. McMillan. Lazy annotation for program testing and verification.
In Intl. Conf. on Computer Aided Verification (CAV), 2010.

[29] O. Sery, G. Fedyukovich, and N. Sharygina. Interpolation-based
function summaries in bounded model checking. In Haifa Verification
Conf. (HVC), 2011.

[30] D. Wheeler. SLOCCount. http://www.dwheeler.com/sloccount/, 2010.
[31] Y. Xie and A. Aiken. Scalable error detection using boolean satisfi-

ability. In Symp. on Principles of Programming Languages (POPL),
2005.

	Introduction
	Trade-offs in Symbolic Program Analysis
	General Symbolic Exploration
	The Design Space of Symbolic Program Analysis
	Our Approach: Dynamically Navigate the Design Space

	Query Count Estimation
	Motivating Example
	Computing the Heuristic
	Justification

	Dynamic State Merging
	Static Merging and Incomplete Exploration
	Rationale Behind Dynamic State Merging
	The Dynamic State Merging Algorithm

	Experimental Evaluation
	Prototype
	Evaluation Metrics
	Faster Path Exploration with LSM and QCE
	Achieving Exponential Speedup with QCE
	Reaching an Exploration Goal with LSM

	Related Work
	Conclusions

