
Dissertation zur Erlangung des Grades eines Doktors der
Naturwissenschaften (Dr. rer. nat.)

Static Analysis of x86 Executables

Statische Analyse von Programmen in x86 Maschinensprache

Dipl.-Inf. Johannes Kinder
geb. in München

Eingereicht am 24. September 2010

Referent: Prof. Dr. Helmut Veith

Korreferentin: Prof. Dr.-Ing. Mira Mezini

Prüfungstermin: 17. November 2010

Fachbereich Informatik
Technische Universität Darmstadt

Darmstadt – 2010 – D17

Erklärung zur Dissertation

Hiermit versichere ich, die vorliegende Dissertation ohne Hilfe Dritter nur mit
den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen,
die aus Quellen entnommen wurden, sind als solche kenntlich gemacht. Diese
Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorge-
legen.

Darmstadt, den 24. September 2010

Johannes Kinder

Acknowledgments

First and foremost, I would like to thank my advisor, Helmut Veith, for his con-
tinuing support and his valuable guidance in all aspects of academic life. He
gave me considerable freedom in developing my own research agenda and al-
ways trusted in my abilities. His uncomplicated way of leading our group al-
lowed everyone to do their best and made it easy to focus on research and teach-
ing without unnecessary overhead.

Furthermore, I thank my colleagues for fruitful scientific discussions and the
cheerful hours both on and off campus. Even in tough times, there was always an
exceptional spirit of companionship and mutual support. In particular, I would
like to thank Florian Zuleger for his contributions to our work on control flow re-
construction; Andreas Holzer for our frequent discussions about the CPA frame-
work; him, Visar Januzaj, and the untiring Michael Tautschnig for proofreading
on short notice.

Finally, I want to thank my parents Susanne and Helmut Kinder for their sup-
port and their firm belief in me, and Anne-Sophie Dörnbrack for being my emo-
tional stronghold in the never-ending series of highs and lows that is graduate
research.

Darmstadt, November 2010

Johannes Kinder

3

Contents

Abstract 13

Zusammenfassung (German Abstract) 15

1 Introduction 17

1.1 Benefits of Binary Analysis . 18
1.1.1 Alternative to Source Code Analysis 19
1.1.2 Analysis without Access to Source Code 22

1.2 Challenges in Binary Analysis . 24
1.3 Traditional Disassembly and Analysis 30
1.4 Overview on the Proposed Method 34
1.5 Contributions . 39

2 An Intermediate Language for Executable Analysis 41

2.1 Overview . 41
2.2 Syntax . 43

2.2.1 Expressions . 44
2.2.2 Basic Statements . 45
2.2.3 Abstract Statements . 46

2.3 Types . 47
2.4 Semantics . 48
2.5 IL Programs . 51
2.6 Related Work . 53

5

Contents

3 Control Flow Analysis for Low Level Programs 57

3.1 Overview . 57
3.2 A Worked Example . 60
3.3 Control Flow Semantics . 63
3.4 Control Flow Reconstruction by Abstract Interpretation 65

3.4.1 The Resolve Operator . 66
3.4.2 A Constraint System for Control Flow Automata 67

3.5 Algorithms for Control Flow Reconstruction 74
3.5.1 Generic Fixed Point Algorithm 74
3.5.2 Worklist Algorithm . 78

3.6 Related Work . 82

4 Bounded Address Tracking 87

4.1 Precision Requirements . 88
4.2 Partitioned Memory Model . 90
4.3 Abstract Domain of Address Valuations 92
4.4 Abstract Semantics . 95

4.4.1 Bounded Path Sensitivity 96
4.4.2 Abstract Expression Evaluation 98
4.4.3 Abstract Post Operator . 101

4.5 Abstraction of Nondeterminism . 104
4.6 Implementation Issues . 106

4.6.1 Representing Byte-Addressable Abstract Memory 106
4.6.2 Register Aliasing . 108

4.7 Related Work . 110

5 Disassembly and Static Analysis with Jakstab 113

5.1 General Architecture . 113
5.1.1 Single Pass Disassembly and Analysis 114
5.1.2 Secondary Post-Reconstruction Analysis 116
5.1.3 Program Representation . 117
5.1.4 Execution Environment . 120

6

Contents

5.2 Modular Implementation of Different Analyses 123
5.2.1 Configurable Program Analysis 124
5.2.2 Modifications to the Worklist Algorithm 127
5.2.3 Balancing Soundness and Coverage 129
5.2.4 Composite Analysis with Selective Merging 132

5.3 Abstract Domains in Jakstab . 134
5.3.1 Location Analysis . 135
5.3.2 Bounded Address Tracking 136
5.3.3 Constant Propagation . 139
5.3.4 Strided Interval Analysis 141
5.3.5 Call Stack Analysis . 144
5.3.6 Forward Expression Substitution 145
5.3.7 Live Variable Analysis . 148

5.4 Code Transformations . 149
5.5 Related Work . 151

6 Experiments 155

6.1 Analyzing Untrusted Driver Binaries 155
6.1.1 Motivation . 156
6.1.2 Windows Driver Model . 156
6.1.3 OS Abstraction and Driver Harness 157
6.1.4 Experimental Setup . 161
6.1.5 Results . 161
6.1.6 Analysis of COTS Driver Binaries 168

6.2 Disassembly . 170
6.2.1 Procedure Entry Point Heuristic 170
6.2.2 Results . 171

7 Conclusions 175

Bibliography 179

Curriculum Vitae 199

7

List of Figures

1.1 Example of possible procedure layouts in an executable. 25
1.2 Example of overlapping instructions in x86 machine code. 28
1.3 Execution trace of the example for overlapping instructions. . . . 28
1.4 Challenges in binary analysis and the proposed solutions. 35

3.1 Control flow reconstruction example. 61
3.2 Generic Control Flow Reconstruction Algorithm. 75
3.3 Worklist Control Flow Reconstruction Algorithm. 79
3.4 Adding an unknown node (>) with unlabeled edges leads to ad-

ditional possible values for x at the indirect jump. 83

4.1 Diagram of the lattice of abstract addresses and values Â. 93
4.2 Example code fragment and final state space. 98

5.1 Unified disassembly and analysis architecture. 114
5.2 Secondary analysis performed on the reconstructed CFA. 116
5.3 The three levels of program representation in Jakstab. 118
5.4 Dynamic linking in Windows PE files. 120
5.5 CPA+ algorithm for determining the set of reachable states. 125
5.6 The Jakstab algorithm, a control flow resolving version of the CPA+

algorithm. 128

6.1 Simplified code from floppy.c with abstract VSA/ESP states. . . 166

9

List of Figures

6.2 Results of analyzing 322 driver binaries from a standard Windows
XP machine (a) using standard settings and (b) when ignoring
weak updates. 169

6.3 Average resolve rate of IDA Pro and Jakstab (in heuristic mode). . 172

10

List of Tables

2.1 Concrete semantics of the intermediate language. 50

3.1 Example run of the worklist control flow reconstruction algorithm. 62

4.1 Definition of the bound operator. 97
4.2 Definition of the abstract evaluation operator for Bounded Ad-

dress Tracking. 99
4.3 Abstract semantics of bit length casting operations in Bounded

Address Tracking. 101
4.4 Definition of the abstract post operator for Bounded Address Track-

ing. 102

6.1 (Pseudo-) instructions that can be inlined for using abstract IL
statements in the C-language harness. 159

6.2 Comparison of experimental results on Windows DDK drivers
between DDA/x86 and Jakstab. 162

6.3 Details of DDK experiments for Jakstab. 163
6.4 Direct comparison of results for those executables where IDA Pro

and Jakstab disassembled the same number of instructions. 173

11

Abstract

This dissertation is concerned with static analysis of binary executables in a the-
oretically well-founded, sound, yet practical way. The major challenge is the
reconstruction of a correct control flow graph in presence of indirect jumps,
pointer arithmetic, and untyped variables.

While static program analysis for proving safety properties or finding bugs
usually targets source code, in many potential analysis scenarios only a binary is
available. For instance, intellectual property issues can prevent source code from
being accessible to verification specialists, and some analyses, such as malware
detection, are by definition required to work with executables. Moreover, binary
analysis can be useful even in situations where the source code is available, e.g.,
when the compiler is not part of the trusted computing base.

In most of the existing work, a heuristic disassembler makes a best effort at-
tempt to generate a plain text listing of the assembly instructions in the exe-
cutable and feeds it to a separate static analysis component. The heuristics ren-
der this technique inherently unsound, and the control flow graphs retrieved
from such listings are usually fragmented and incomplete. Several approaches
have pointed out the possibility of using results of data flow analysis to augment
disassembly and control flow reconstruction, but described this connection as
suffering from a “chicken and egg” problem, since data flow analysis requires a
control flow graph to work on.

This dissertation argues for the integration of disassembly, control flow re-
construction, and static analysis in a unified process. It introduces a framework
for simultaneous control and data flow analysis on low level binary code, which
overcomes the “chicken and egg” problem and is proven to yield the most pre-

13

Abstract

cise control flow graph with respect to the precision of the data flow domain. A
very precise domain that lends itself well to control flow reconstruction is intro-
duced in Bounded Address Tracking, a combined pointer and value analysis that
supports pointer arithmetic. It tracks variable valuations up to a tunable bound
on the number of values per variable per program location. Its path sensitivity
generally allows strong updates to memory, i.e., heap regions are uniquely iden-
tified, and equips it with context sensitivity without assuming a correct layout
of procedures.

These building blocks are combined into an extensible program analysis archi-
tecture, which is implemented in a novel binary analysis tool. The tool, named
Jakstab, works directly on binaries and disassembles instructions on demand
while exploring the program’s state space, allowing it to handle low level fea-
tures such as overlapping instructions, which cause difficulties for regular disas-
semblers. The architecture is highly configurable to allow a wide range of anal-
yses, from sound abstract interpretation to heuristics-supported disassembly.
Its practical feasibility and improvements over existing approaches are shown
through case studies on device driver binaries and system executables found on
a regular desktop PC.

14

Zusammenfassung

Die vorliegende Arbeit befasst sich mit dem Problem der theoretisch fundierten,
korrekten, aber dennoch praktisch nutzbaren statischen Analyse von ausführba-
ren Programmen im Binärformat. Die größte Herausforderung ist dabei die Re-
konstruktion eines Kontrollflussgraphen angesichts von indirekten Sprüngen,
Zeigerarithmetik und untypisierten Variablen.

Statische Programmanalyse zum Beweis von Sicherheitseigenschaften oder
zum Entdecken von Fehlern zielt normalerweise auf Quelltext ab, in vielen po-
tentiellen Analyseszenarien ist jedoch nur eine Binärdatei verfügbar. So kann
zum Beispiel die Sorge um geistiges Eigentum verhindern, dass ein Programm
Spezialisten zur Verifikation vorgelegt wird, und bei Analysen wie der Erken-
nung von Schadprogrammen ist grundsätzlich nur eine Binärdatei verfügbar.
Darüber hinaus kann eine Analyse von Binärprogrammen aber auch dann Vor-
teile bringen, wenn Quelltext vorliegt, zum Beispiel dadurch, dass die Korrekt-
heit des Übersetzers nicht länger angenommen werden muss.

In bisherigen Arbeiten zur statischen Analyse von Binärprogrammen wird üb-
licherweise auf einen eigenständigen heuristischen ”Disassembler“ zurückge-
griffen. Dieser versucht, möglichst alle Assembler-Instruktionen in der ausführ-
baren Binärdatei im Klartext aufzulisten und gibt diesen Programmtext dann
an eine separate Komponente zur statischen Analyse weiter. Die Verwendung
von Heuristiken verhindert die Korrektheit dieser Technik, und Kontrollfluss-
graphen, die aus solchen Programmtexten erzeugt werden, sind meist fragmen-
tiert und unvollständig. In der Literatur wurde bereits von mehreren Autoren
darauf hingewiesen, dass die Ergebnisse einer Datenflussanalyse bei der Erzeu-
gung des Kontrollflussgraphen helfen können. Allerdings beschrieben sie diese

15

Zusammenfassung

Verbindung als ein ”Henne-Ei-Problem“, da eine klassische Datenflussanalyse
bereits einen Kontrollflussgraphen als Eingabe benötigt.

In der vorliegenden Dissertation wird argumentiert, dass Disassemblierung,
Rekonstruktion des Kontrollflussgraphen und statische Analyse in einem ein-
heitlichen Prozess durchgeführt werden sollten. Es wird ein Rahmen für gleich-
zeitige Kontroll- und Datenflussanalyse auf Maschinensprache vorgestellt, der
das ”Henne-Ei-Problem“auflöst und bewiesenermaßen den bezüglich der Ge-
nauigkeit der Datenflussanalyse bestmöglichen Kontrollflussgraphen rekonstru-
iert. Mit ”Bounded Address Tracking“ wird eine hochpräzise Analyse einge-
führt, die sich besonders gut für diese Aufgabe eignet. Diese Analyse verfolgt
sowohl Zeiger als auch Zahlenwerte und unterstützt dabei Zeigerarithmetik. Sie
erfasst den Zustand von Variablen bis zu einer konfigurierbaren Schranke für die
maximale Anzahl an Werten pro Variable und Programmpunkt. Pfadsensitivität
verleiht der Analyse Kontextsensitivität auch ohne eine korrekte prozedurale
Struktur annehmen zu müssen, und erlaubt ihr, das Ziel jedes Speicherzugriffs
eindeutig zu identifizieren.

Diese Komponenten werden zu einer erweiterbaren Architektur zusammen-
gesetzt, die in dem neu entwickelten Analysewerkzeug Jakstab implementiert
ist. Jakstab arbeitet direkt auf Binärdateien; während es den Zustandsraum des
Zielprogramms durchsucht, disassembliert es bei Bedarf immer nur jeweils eine
einzelne Instruktion. Dies erlaubt Jakstab, auch Konstrukte wie sich überlappen-
de Instruktionen zu unterstützen, die herkömmlichen Disassemblern Probleme
bereiten. Die Architektur ist sehr fein konfigurierbar, um ein weites Spektrum
an Analysen zu ermöglichen, von Abstrakter Interpretation bis hin zu heuris-
tischem Disassemblieren. Der praktische Nutzen und die Verbesserungen ge-
genüber früheren Ansätzen werden in Fallstudien über Gerätetreiber und Pro-
grammdateien eines gewöhnlichen Arbeitsplatzrechners gezeigt.

16

Chapter 1

Introduction

Reasoning about programs is a cornerstone of computer science. We look at
programs to understand whether they are correct or contain bugs, to find out
after what time they terminate, or to see whether they conform to our security
requirements. Static analysis [109], model checking [39, 114], and abstract inter-
pretation [45] are successful concepts for the formal analysis of programs and
have been instantiated in many tools and processes that improve the quality of
today’s software [12, 16, 19, 20, 52, 75, 103, 137]. At the time a piece of software
is written, such tools can be applied to the source code with relative ease. Once
the software is compiled into binary format and shipped, however, users further
down the line have to trust the vendor and the distributors about the quality and
security of the product. This is not only a problem for end-users, but even more
so for modular architectures with plugins or drivers, where external companies
provide binaries to directly interface with existing software.

Static program analysis, the concept of approximating the semantics of a pro-
gram to prove or refute properties, is usually targeted at human readable source
code written in high level languages instead of low level machine code. The ad-
vantages of this common approach are obvious: Source code is easily accessible
through text parsing; high level concepts such as loops, procedures, or classes
provide a natural partitioning of programs into functionally related units. Yet,
there are several compelling reasons to move the analysis behind the compila-

17

Chapter 1 Introduction

tion process, down to the level of the fully compiled and linked binary. Most im-
portantly, if the analysis targets stripped binary executables, i.e., binaries with-
out symbol or debugging information, it gains the ability to analyze software
without access to source code. This ability comes at a price, however, which
is the reason why static binary analysis lags behind the development of static
analysis on source code. Binaries lack several comfortable features of high level
programming languages, such as clearly defined procedures or a distinction be-
tween code and data. Absence of symbol information means that variables are
not easily identified, but are represented by reusable registers and the memory,
which is addressable as a large continuous array. Registers and memory carry no
type information, and pointers of any type are indistinguishable from integers.

This dissertation will show how to design a sound static analysis framework
that overcomes the difficulties of working with binary executables and low level
code. Based on the concept of abstract interpretation, it formalizes the combi-
nation of data flow analysis and control flow reconstruction for low level im-
perative code. It introduces Bounded Address Tracking, which allows to analyze
binaries at the high precision required for recovering accurate control and data
flow information in presence of indirect branches and untyped variables. The
framework is implemented in a novel binary analysis tool called Jakstab (Java
toolkit for static analysis of binaries), which allows to combine different analy-
sis components and to trade off precision against coverage of disassembled in-
structions. An extensive study of experimental results from analyzing real world
code demonstrates the practicability and usefulness of the approach.

1.1 Benefits of Binary Analysis

Static analysis of binaries is difficult. From a theoretical viewpoint, the absence
of types and structure means that much of the original information present in
source code is lost and cannot be used for the analysis. From a practical view-
point, a great amount of technical detail has to be dealt with diligently, such

18

1.1 Benefits of Binary Analysis

as dynamic linking, function pointers, or the large number of specialized in-
structions. Still, the required theoretical and engineering effort is a worthwhile
investment for several reasons and opens up multiple avenues of application,
which will be outlined in this section.

1.1.1 Alternative to Source Code Analysis

Working with binaries has several advantages over source code analysis, which
can motivate an analysis of machine code even when source code is available.

Compiler Independence. Confining the static analysis to source code moves
the compiler into the trusted computing base, i.e., any proof over the source
code of a program only applies to the final compiled program under the as-
sumption that the compiler provides a fully correct translation which does not
modify program semantics. Compilers generally do a good job of preserving
semantics, but they do contain bugs, and aggressive optimizations may change
the behavior of a program in an unexpected way. For instance, operations that
zero out the memory used for storing a password after it is no longer needed can
be removed by a compiler that performs dead code elimination, altering the ex-
pected program behavior [11, 73]. An analysis of the compiled program binary,
on the other hand, directly applies to the code that is executed on the processor
at runtime; therefore, the soundness of the analysis is not affected by optimiza-
tions. Besides modifying or removing code, the compilation process can also
add new code that is not explicitly present in the source code. The usual main

function visible to a programmer is commonly not the actual entry point of the
compiled program. Instead, it is called by a statically linked library method that
first calls static initializers and sets up data structures [113]. A binary analysis
covers all such statically linked library code and all implicitly generated code.

Language Agnosticism. Source based analyses face several challenges of their
own. High level languages usually feature a very rich syntax, and different com-

19

Chapter 1 Introduction

pilers implement slightly different dialects of the same languages [16]. A com-
mon workaround for these problems is to preprocess input files into a simpler
form [107]. Especially in system critical code, such as drivers or other low level
components of the operating system, inline assembly code is prevalent, however.
Inline assembly cannot be transformed by preprocessing and is therefore most
commonly simply ignored by a source based analysis [55].

Libraries that are to be analyzed together with the main program pose a simi-
lar challenge if they are written in a different high level language. Operating on
the binary avoids these issues altogether, since all source languages are trans-
lated into a hardware specific, but single target language. For languages that are
compiled to bytecode, such as Java bytecode or Microsoft’s Common Intermedi-
ate Language (CIL), it is already common practice to analyze bytecode instead of
source, in order to avoid problems from parsing and to support all the different
source languages that are available for the particular platform [67, 91].

Easy Deployment. Working with the binary also removes the need for the
static analysis tool to interface with the build process of the analyzed software.
Especially in large projects, it can be difficult to clearly identify all modules and
source code files that are required for a complete analysis [16]. In a binary, how-
ever, all necessary components have been merged into a single executable, and
the loading mechanism of the operating system can be used or emulated to re-
trieve all referenced dynamic libraries. This is a significant advantage for tech-
nology transfer in large companies, where it can be difficult for verification spe-
cialists in research units to obtain all source code components from product de-
velopment groups.

A related issue in source code analysis is that library functions often have to be
replaced by coarse grained abstractions [62]. When analyzing binaries, however,
there is no fundamental difference between code of the main program and stat-
ically or dynamically linked libraries. In principle, this can even include higher
level parts of the operating system. It is up to the binary analysis tool to choose
the level of abstraction for the analyzed program and libraries.

20

1.1 Benefits of Binary Analysis

Instruction Level Information. Besides the advantage of bypassing the com-
piler and implementation language when analyzing the binary code directly,
there are scenarios where only the compiled binary can provide the necessary
information: For instance, a precise execution time analysis of programs that in-
cludes the effects of caching and instruction pipelining is inevitably hardware-
specific and requires knowledge about the exact instruction sequence that is be-
ing executed [56, 89, 93, 136]. Furthermore, a dynamic analysis monitoring the
real execution of a process will observe a sequence of machine instructions,
which does not easily map back to source code. In a combined analysis that
merges static and dynamic results, it is therefore helpful to statically analyze
the same binaries which are executed and monitored by the dynamic compo-
nent [59, 61, 63, 128, 132]. Addresses of instructions then easily translate from
dynamic to static analysis, and both analyses can exchange information directly.
A mapping from analysis results over instructions back into source code would
again face the problem of dealing with compiler optimizations, which can break
the direct correspondence between blocks of instructions in the binary and syn-
tactic elements of the source code.

Instrumentation and Whole Program Optimization. Tools that modify ma-
chine code in binaries at compile or run time can profit from static analysis as
well. Anticipating future control flow in a binary can help to improve the per-
formance and reliability of binary instrumentation toolkits [3, 92, 108], binary
translators [30, 36, 127], or profilers [66, 129]. The compiler literature knows the
concept of link-time- and post-link-optimizers [50, 124], which exploit the fact that
the whole program including libraries and hand-written assembly routines can
be globally analyzed and optimized during the final steps of the compilation
process. After all libraries and modules are combined by the linker, all code is
present in one file and all source languages have been translated into machine
code. As in higher level compilation steps, a static analysis of the (now binary)
code provides the necessary information to perform the final global optimiza-
tion step for the program.

21

Chapter 1 Introduction

1.1.2 Analysis without Access to Source Code

The most enticing argument for performing static analysis on binaries, however,
is that source code is simply not available in many practical cases and working
with the binary is the only viable option.

Reverse Engineering. First of all, the information gathered by a static analysis
on binaries can assist in the mostly manual process of reverse engineering, i.e., in
recovering information about the functionality, dependencies, and interfaces of
a program. A serious issue in companies with a long history of internal devel-
opment of custom software is legacy software for which the original source code
has been lost or which has been written directly in assembly language in the first
place [54]. New requirements or changes in the environment can become a se-
vere obstacle when the original authors of the code are no longer available. In
this case, reverse engineering of the program binaries can provide the necessary
information for reimplementing or patching the program.

Decompilers go even further and attempt to rebuild a close approximation of
the original source code from a compiled binary [26, 37, 54, 69], commonly by
making heavy use of heuristics to discover compiler idioms. While decompila-
tion works relatively well with typed object languages, such as Microsoft CIL
or Java bytecode, existing decompilers for x86 do not always provide satisfac-
tory results, especially in presence of compiler optimizations or for programs
compiled with non-standard compilers.

Another case of reverse engineering is the investigation of patent or license
infringement. If source code is not available, a similarity analysis of executables
can provide initial forensic data for justifying further investigation. Automated
methods to detect similarities in the control flow graphs of executables [57] de-
pend on reliable disassembly and control flow graph recovery.

Verification of Proprietary Software. The urge to protect their intellectual
property often prevents software vendors to submit their products to an external

22

1.1 Benefits of Binary Analysis

analysis process. This particularly affects third-party supplied modules, such as
plugins or device drivers, which are critical to the operation of a larger system.
Certification programs by the framework providers, such as the Windows Logo
Program [99], often rely on testing only, which cannot provide strong guaran-
tees about the behavior of a driver or plugin. This sets the scene for another
application of binary program analysis without access to source code. A static
analysis on the device driver binaries can verify the conformance to API specifi-
cations, giving guarantees or uncovering bugs that can be difficult to find by test-
ing only [8, 82]. A binary analysis can complement the usual testing of drivers
without requiring active vendor support, and, depending on the surrounding
legal conditions, even without vendor consent. An alternative approach to the
conflict between intellectual property and verification is the use of a trusted veri-
fication protocol [25]; in contrast to binary analysis, this still requires a significant
commitment by the software developer, however.

Security Analysis and Malware Detection. In sensitive environments, security
audits including testing and static analysis can build confidence in the reliabil-
ity of commercial software. Where source code is not available, static analysis
on binaries can allow to check the software for bugs or possible hazards such as
backdoors, time bombs, or other malware. On known malware, binary reverse
engineering can assist in forensic analysis, and help uncover valuable informa-
tion such as recipients of stolen information or control commands for botnets [2].

Earlier work has shown that static analysis opens the door for promising new
approaches in malware detection [33, 79]. While classical malware detection re-
lied on searching executables for binary strings (signatures) of known viruses,
recent advances in the field focus on detecting patterns of malicious behavior by
means of static analysis and model checking [33, 72, 79, 80, 84]. Such proactive
approaches avoid frequent updates to signature databases and are at the same
time robust against common obfuscation techniques used by poly- and meta-
morphic malware [32, 48].

23

Chapter 1 Introduction

1.2 Challenges in Binary Analysis

As briefly pointed out before, there are both scientific and engineering chal-
lenges in designing a reliable binary analysis framework. The focus of the work
in this dissertation mostly lies on 32 bit x86 machine code, but many of the chal-
lenges apply to other architectures as well. Do note that some architectures make
static analysis considerably easier, most notably virtual machines, such as the
Java Virtual Machine (JVM), but these systems are out of the scope of this work.

Code and Data Ambiguity. There are several different ways to store binary
programs on disk, such that they can easily be loaded and executed by the op-
erating system at any time. For x86 desktop systems, the most common formats
today are the Windows Portable Executable (PE) format [112] and the Executable
and Linking Format (ELF), as used in Linux and other Unix variants [134]. Both
formats group the file into sections, which can be designated to hold code, data,
or both, and can be flagged to be readable, writable, and/or executable at run-
time. However, the division between code and data is not strict, and code sec-
tions commonly contain data such as jump tables or string constants. In fact,
nothing prevents the flagging of all sections of the compiled binary as readable,
writable, and executable. Only at runtime the processor interprets some of the
bytes as instructions and others as data which are processed by the instructions.
The only locations inside an executable that are required to contain proper code
are the entry point (i.e., main()) and, for libraries, any exported procedures. The
addresses of these locations are specified in the header of the executable.

No Fixed Procedure Layout. Within the sections, the code does not have to
follow a specific layout. Procedures do not necessarily follow strictly one af-
ter another (Figure 1.1(a)), but can be woven into each other, with procedure
fragments connected through jumps (Figure 1.1(b)). These mangled layouts can
be produced by post-processing tools that rewrite the binary as a final step af-
ter compilation and linking is complete. For instance, Microsoft’s profiling and

24

1.2 Challenges in Binary Analysis

Proc A, Block 1 (Entry)

Proc A, Block 2

Proc A, Block 3

Proc A, Block 4 (Return)

Proc B, Block 1 (Entry)

Proc B, Block 2

Proc B, Block 3 (Return)

(a) Strict layout usually pro-
duced by compilers.

Proc A, Block 1 (Entry)

Proc A, Block 2

Proc A, Block 3

Proc A, Block 4 (Return)

Proc B, Block 1 (Entry)

Proc B, Block 2

Proc B, Block 3 (Return)

(b) Mangled layout produced by post-link optimiz-
ers.

Figure 1.1: Example of possible procedure layouts in an executable.

post-link optimization framework Basic Block Tools (BBT) [96] uses profiling in-
formation to rearrange blocks favorably among memory pages.

Moreover, it is not even given that a procedure contains an explicit return
statement: Procedures that terminate the program (e.g., by calling exit()) never
return, and the tail-call optimization can replace a call followed by a return state-
ment with a direct jump to the called procedure. Binaries that have been built
directly from assembly language and have not been compiled from a high level
language do not need to adhere to any concept of procedures at all.

Missing or Untrusted Symbol Information. Binaries can contain several kinds
of symbols, which are stored in a dedicated section of the file; they are not neces-
sary to execute the program, but provide additional information to a debugger
or post-processing tools. There are two basic types of symbol information, each
used for its own purpose:

25

Chapter 1 Introduction

• Public symbols identify exported procedures and global variables by their
name and address in a binary. They are used by the (dynamic) linker to
resolve calls or accesses to globals in other binaries during (dynamic) link-
ing.

• Debug symbols for procedures and variables provide the name, type, ad-
dress, and size of each static object within the procedure’s address space.
For blocks of machine code, they map addresses to line numbers and file
names in the source code. Debug symbols are used by a debugger to
present the developer with easily understandable information that directly
maps back to source code.

In the release build of a typical software product, all symbols except the pub-
lic symbols of dynamic libraries are stripped. Stripping reduces the file size of
a binary and hides implementation details, providing some protection against
reverse engineering. Therefore, a static analysis designed to work with publicly
available binaries without access to source code must not rely on support from
debug symbols. In the worst case, bad symbols might intentionally mislead an
analysis. In usage scenarios where trusted symbol information is available, how-
ever, it can assist an analysis by identifying variables, procedure boundaries, and
variable types.

Rich Instruction Sets. CISC (short for Complex Instruction Set Computer) archi-
tectures, such as x86, offer a very large number of instructions, with specialized
instructions for many operations. The x86 architecture contains hundreds of
instructions and thousands of possible operand combinations [74], and it con-
tinues to grow. For instance, over 300 SIMD (Single Instruction, Multiple Data)
instructions have been introduced into x86 as the MMX, 3DNow!, SSE, SSE2,
SSE3, SSSE3, and SSE4 extensions [115] to allow fast vector operations on multi-
ple bytes or words at once. All of these instructions should be understood by a
static analysis and at least have to be coarsely overapproximated [59]. If the im-

26

1.2 Challenges in Binary Analysis

plementation of an analysis simply ignores unknown instructions, it becomes
inherently unsound.

Indirect Branches. One of the main problems when analyzing low level code,
such as x86 assembly language, are indirect branch instructions. These corre-
spond to goto statements where the target is calculated at runtime, or the use of
function pointers combined with pointer arithmetic in high level languages. In
executables, any address in the code is a potential target of an indirect branch,
since in general there are no explicit labels. Failure to statically resolve the tar-
get of an indirect branch instruction thus leads to either (i) an incomplete control
flow graph, where the indirect jump instruction becomes a sink, or (ii) a grossly
overapproximated control flow graph, where the indirect jump is connected to
every other possible instruction in the entire program. Often, data flow analysis
can aid in resolving such indirect branches. Data flow analysis already requires
a precise control flow graph to work on, however. This seemingly paradox sit-
uation has been referred to as an inherent “chicken and egg” problem in the
literature [123, 133].

Overlapping Instructions. In Intel x86, instructions can be of variable length,
unlike fixed size architectures, such as Sun SPARC, where each instruction oc-
cupies 4 bytes and is properly aligned. Each x86 machine instruction consists
of an opcode, which defines the type of instruction to execute, and an optional
list of operands. Operands can be registers, immediate values, or memory loca-
tions, and all take a different number of bytes to encode. The variable instruction
length nature of x86 allows overlapping instructions (also referred to as instruction
aliasing in the literature [132]): the same sequence of bytes may be interpreted by
the processor as completely different instructions depending on the exact byte
in which execution starts [123]. In fact, the same bytes may be executed mul-
tiple times but each time being interpreted as belonging to a different instruc-
tion. This allows to construct machine code that, as a static listing in assembly
language, is mostly incomprehensible for humans. For instance, consider the

27

Chapter 1 Introduction

0000: B8 00 03 C1 BB mov eax, 0xBBC10300

0005: B9 00 00 00 05 mov ecx, 0x05000000

000A: 03 C1 add eax, ecx

000C: EB F4 jmp $-10

000E: 03 C3 add eax, ebx

0010: C3 ret

Figure 1.2: Example of overlapping instructions in x86 machine code.

0000: B8 00 03 C1 BB mov eax, 0xBBC10300

0005: B9 00 00 00 05 mov ecx, 0x05000000

000A: 03 C1 add eax, ecx

000C: EB F4 jmp $-10

0002: 03 C1 add eax, ecx

0004: BB B9 00 00 00 mov ebx, 0xB9

0009: 05 03 C1 EB F4 add eax, 0xF4EBC103

000E: 03 C3 add eax, ebx

0010: C3 ret

Figure 1.3: Execution trace of the example for overlapping instructions.

fragment of machine code shown in Figure 1.2. By looking at the code, it is not
apparent what the value of eax will be at the return instruction (or that the re-
turn instruction is ever reached, for that matter). This is due to the jump from
000C to 0002, an address which is not explicitly present in the listing (jmp $-10

denotes a relative jump from the current program counter value, which is 0xC,
and 0xC− 10 = 2). This jump transfers control to the third byte of the five byte
long move instruction at address 0000. Executing the byte sequence starting at
address 0002 unfolds a completely new instruction stream.

Figure 1.3 shows the instruction trace from the beginning, in the order in
which it is interpreted by the CPU. After the jump, the immediate operand of the
former move instruction is interpreted as the opcodes of an addition and another
move instruction. The new alignment causes the former jump to become part of
third addition. The new instruction sequence recombines with the original list-
ing at address 0x00E, and finally the execution reaches the return instruction, at
which eax will have accumulated a value of 0xBAACC4BC.

28

1.2 Challenges in Binary Analysis

Abusing Calls and Returns. Another issue can arise in binaries, when instruc-
tions are used for unintended purposes: The call and ret instructions, intended
for procedure calls and returns, respectively, are not required to be used for cor-
rect procedure handling. In x86, a call instruction simply pushes the current
program counter onto the stack and jumps to the given target. Conversely, the
ret instruction pops an address from the stack and jumps to it. However, a
ret instruction can just as well be used for an indirect jump: The instruction
jmp eax executes the same jump as the sequence push eax; ret. As a conse-
quence, call and return instructions cannot generally be treated equivalently to
procedure invocations and returns in high level languages. The concept of re-
turn oriented programming [22, 125] uses this behavior of return instructions in
vulnerability exploits to create chains of program code that together constitute
a malicious code sequence. This technique is particularly effective if used to-
gether with overlapping instructions [125].

Of course, code that misuses calls and returns or exploits overlapping in-
structions will never be generated by usual compilers. Intentionally obfuscated,
handcrafted assembly code is prevalent in sophisticated malware or other soft-
ware protected against reverse engineering, however, and can use these tech-
niques to thwart automated and/or manual analysis. A robust analysis method
applicable to machine code thus has to be able to correctly handle these cases.

Lack of Types. With debug symbols generally not available in binaries, an
analysis has no type information at its disposal. Global and local variables, ar-
rays, and records all uniformly appear as addresses indexing the large continu-
ous array that is the virtual memory available to a process. The type that a vari-
able or structure had in source code is no longer visible after compilation, and
the compiler commonly reuses the same register or stack location for variables of
different types, which makes a classical flow insensitive type inference analysis
impossible. Different types can occupy a different amount of bytes, therefore a
new value assigned to a register or memory location can overlap with an earlier
value, overwriting some but not all of the bytes.

29

Chapter 1 Introduction

Pointer Aliasing. A consequence of the lack of types and the a priori unknown
control flow is that a cheap points-to analysis is made impossible. Every deref-
erence of an unknown pointer can mean an access to any memory address, be it
the stack, global memory, or the heap. A write access then causes a weak update
to the entire memory: After the write, every memory location may contain the
written value, which dramatically impacts the precision of the analysis. In par-
ticular, weak updates potentially overwrite return addresses stored on the stack
(or function pointers anywhere in memory), which can cause spurious control
flow to locations that are never executed at runtime. The goal of a sound and
precise analysis on binaries is thus to achieve strong updates wherever possible:
If a pointer can only point to one specific address in a state, the targeted memory
location must contain the written value after a write access [28].

Self Modifying Code. Finally, a notorious challenge in analyzing binaries is
self-modifying code: Machine code is generated at runtime, possibly overwriting
earlier code at the same address, and executed afterwards. In that case, the in-
structions eventually executed are not even present in the file. As the afore-
mentioned techniques, self-modifying code is particularly popular with mal-
ware and obfuscated software; however, the same behavior is also present in
just-in-time compilers or emulators, which translate and execute machine code
on the fly.

1.3 Traditional Disassembly and Analysis

The classic setup for binary analysis, which is commonly encountered in the lit-
erature [7, 31, 34, 95], is to use a stand-alone disassembler to preprocess the binary
and make it easily parseable by the static analyzer. A disassembler is a low level
debugging and reverse engineering tool that generates a plain text listing of the
assembly code equivalent to the machine code in the binary. Note that disas-
semblers are very different from decompilers: for the most part, a disassembler

30

1.3 Traditional Disassembly and Analysis

directly translates code bytes into assembly mnemonics, i.e., textual represen-
tations of the machine instructions, whereas a decompiler attempts to generate
high level language source code (such as C or Java) from a binary. An exact
definition of the disassembly problem is somewhat elusive, as the main job of
disassemblers is to aid human engineers in understanding executable code. A
minimal and purely syntactic definition can be given as follows:

Definition 1.1 (Disassembly) The disassembly problem is to generate from an exe-
cutable a listing in assembly language such that a given assembler will encode the listing
to an executable syntactically equivalent to the original one.

This definition is parameterized by an assembler, which defines the syntax of
its supported assembly language and a method of translating assembly language
programs into executables. Note that by this definition, the result of disassem-
bly is by no means unique. In particular, a trivial solution would be a listing
defining all bytes in the binary file as constants using, say, the db construct in
assembly language. Usually, a disassembler will make a best-effort approach to
decode as many bytes into instructions as possible. Note further that the instruc-
tions visible in the output listing are not necessarily ever executed. Overlapping
instructions, as discussed above, or data misinterpreted as code can produce
pseudo-instructions that will never execute at runtime.

All disassemblers translate binary machine code into instruction mnemonics
using lookup tables. CISC architectures and variable instruction length make
this a tedious, but still straightforward task. Traditionally, the challenge and
main design choice in implementing a disassembler lies in how to trace the con-
trol flow to decode sequences and branches of code. Linn and Debray [90] iden-
tified two basic strategies for disassemblers:

• Linear sweep sequentially decodes bytes into instructions from the begin-
ning of the first section of an executable until the end of the file. This sim-
ple strategy, used in tools such as GNU objdump, is able to produce correct
disassembly according to Definition 1.1, but it is of very limited practical

31

Chapter 1 Introduction

use for disassembling entire executables. Linear sweep easily loses the cor-
rect alignment of instructions because of data or padding bytes between
code blocks. Due to overlapping instructions, misalignment can lead to an
alternate sequence of instructions that does not reflect the instructions that
are actually executed at runtime. Alternate instruction streams that are a
consequence of misalignment have a tendency to realign with the correct
stream after few instructions [120]; together with the fact that the x86 in-
struction set is so densely coded that most byte sequences constitute valid
code, this can make disassembly errors introduced by misalignment hard
to spot.

• Recursive traversal disassemblers start at the entry point of the file, inter-
pret branch instructions, and decode the program by depth first search,
translating bytes actually reached by control flow. This allows the disas-
sembler to skip over data bytes mixed into code sections. On the downside,
this strategy is not guaranteed to process all bytes in the executable, since
not all code locations are accessed through direct branches from the entry
point. Function pointers, callbacks, and other indirect branches can ob-
scure the control flow in the executable, hiding code from simple syntactic
recursive traversal.

To avoid this problem, state-of-the-art disassemblers usually augment re-
cursive traversal by heuristics to detect potential pieces of code in the exe-
cutable. These heuristics exploit the presence of known compiler idioms,
such as recurring procedure prologues or common patterns in the calcu-
lation of switch-jumps from jump tables [66].

Today’s de facto industry standard for disassembly is IDA Pro, which follows
the recursive traversal strategy. Its heuristic looks for common prologue bytes
generated by compilers to identify procedure entry points. For instance, a com-
mon x86 sequence to set up the frame pointer for the current procedure’s stack
frame is push ebp; mov ebp, esp. Procedures not starting with a standard pro-
cedure prologue can thus be missed if they are invoked only through function

32

1.3 Traditional Disassembly and Analysis

pointers or indirect jumps, i.e., if their address is not an explicit operand of a
control flow instruction. A standard assumption made by recursive traversal
disassemblers, including IDA Pro, is that every call eventually returns to its fall-
through successor. For calls to procedures that never return because of a call to
exit or a similar method, this assumption can cause IDA Pro to decode instruc-
tions directly following the call that are never executed or belong to a different
procedure.

In a toolchain that uses an external disassembler, the disassembler takes care
of decoding bytes into instruction mnemonics and operands. The static analyzer
is constructed as a separate tool and processes the listing produced by the dis-
assembler. From the viewpoint of static source code analysis, this separation of
concerns appears natural at first; parsing the assembly listing then simply re-
places parsing of a high level language source code file. Yet, available commer-
cial disassemblers, such as IDA Pro, are built for aiding humans in the debug-
ging or reverse engineering process. In particular, IDA Pro – short for Interactive
Disassembler – is meant to be used interactively, with the human engineer resolv-
ing misinterpretations of data as code or providing additional entry points. For
an automated analysis of binaries, such an interactive approach to disassembly
is not an option.

A static analysis typically uses the control flow graph (CFG) [1] of a program
to compute abstract states. In source based analyses and executable analyses
that use external disassemblers, the CFG is built by parsing the code listing and
looking up the targets of branches and procedure calls. Unfortunately, the CFGs
built from an assembly file generated by a heuristics-driven recursive traversal
disassembler can have many disconnected components. If indirect jumps have
unknown targets, or if there are callback methods passed to the system that are
only invoked by external library methods, some code blocks in the disassembled
binary will appear not to be referenced from anywhere. Similarly, the indirect
jump or call instructions in the CFG will have no successors. Thus, any static
analysis that uses such graphs as an initial overapproximation is unsound, as
edges are missing from the CFG.

33

Chapter 1 Introduction

Apparently, a toolchain for static analysis on executables does not require a so-
lution to the disassembly problem, but rather a high fidelity control flow graph
for the executable. We therefore now define the concept of control flow recon-
struction, which is more restrictive than the earlier definition of disassembly and
tailored directly to the requirements of static analysis.

Definition 1.2 (Control Flow Reconstruction) Control flow reconstruction is the
problem of determining an overapproximation of all possible sequences of program lo-
cations (addresses) that will be executed by a given program.

Typically, a solution to this problem will be given as a graph or automaton en-
coding possible control flow in the program.

1.4 Overview on the Proposed Method

This dissertation introduces a novel and theoretically well founded approach to
disassembly, control flow reconstruction, and static analysis of x86 binary exe-
cutables. At the core lies an integrated disassembly and analysis loop, which
defines an abstract interpretation of the binary executable. Figure 1.4 lists all
the challenges identified in Section 1.2 and relates them to the components of
the approach. Each of the components is covered in a separate chapter of this
dissertation.

Intermediate Language. The problem of dealing with large instruction sets is
addressed by translating instructions into a low level intermediate language (IL),
which is introduced in Chapter 2. The IL is designed specifically for “upward”
translation from machine code, in contrast to intermediate representations used
by compilers that are designed for “downward” translations from high level lan-
guages. The IL breaks complex assembly instructions into a sequence of state-
ments that capture the semantics of the machine code. Specifications for this
translation can be written using the semantics specification language (SSL) in-
troduced by Cifuentes and Sendall [38]. In the course of the translation, call and

34

1.4 Overview on the Proposed Method

Implementation in Jakstab

Rich Instruction Sets

Abusing Calls and Returns

No Fixed Procedure Layout

Indirect Branches

Code and Data Ambiguity

Overlapping Instructions

Self-modifying Code

Missing Symbol Information

Lack of Types

Pointer Aliasing

Intermediate Language

Control Flow Reconstruction

On-demand Disassembly

Bounded Address Tracking

Figure 1.4: Challenges in binary analysis and the proposed solutions.

35

Chapter 1 Introduction

return instructions are translated into stack accesses and (possibly indirect) goto
statements. This nullifies any obfuscating effects of abusing call and return in-
structions and allows to treat both instruction types equally.

Control Flow Reconstruction. The non-obvious control flow and structure of
binaries and the seeming “chicken and egg” problem of using data flow analysis
to resolve indirect branches are a major challenge for static analysis. Chapter 3
introduces a formal framework based on abstract interpretation that integrates
control and data flow analysis on low level programs (i.e., executables repre-
sented by IL statements). The framework uses a special operator to resolve the
targets of jump statements and transforms them into labeled control flow edges.
It is not fixed in the type of abstract domain for data flow analysis; if the do-
main satisfies certain conditions, the approach is guaranteed to determine the
most precise overapproximation of the program’s control flow with respect to
the abstract domain. It is further proven that this result holds independently of
the precise order in which control and data flow information is calculated. In
contrast to earlier structural [78] or heuristic [85, 105, 120] approaches, this rig-
orous framework for control flow reconstruction is not affected by a fragmented
layout of procedures and distinguishes code from data bytes by determining an
overapproximation of the set of possible program counter values.

Bounded Address Tracking. The lack of reliable symbol information and types
for variables and structures in executables aggravates the aliasing problem for
static program analysis. Supplementing the generic control flow reconstruc-
tion framework, Chapter 4 introduces Bounded Address Tracking, a highly pre-
cise abstract domain that models registers and memory locations as both point-
ers and integer values and maintains path sensitivity. The underlying memory
model, which is inspired by VSA [7], partitions the memory into separate re-
gions. Every value is tagged with a region identifier, which serves as a symbolic
base address. Pointers to the global memory region, the stack, and the heap can
thus be identified and are assumed to not overlap. Integers are tagged with the

36

1.4 Overview on the Proposed Method

global memory region, as it corresponds to a zero base address. Path sensitiv-
ity allows the analysis to perform context sensitive analysis of procedure calls,
without assuming a correct layout or behavior of procedures. It is a prerequi-
site for treating return values just like any other value stored on the stack. With
this approach, however, even modifications of the return address are precisely
modeled.

Termination of the analysis is assured by imposing a bound over the number
of values tracked per variable per location. If a variable exceeds the bound, its
values are widened in two steps. Handling pointers and integers within the
same domain accounts for the low level nature of assembly code and provides a
solution to the lack of types. Pointer aliasing is minimized by the high precision
of the domain, which avoids overapproximation of pointers and hence weak
updates, as long as the number of targets remains below the definable bound.

On-Demand Disassembly. Closely tied to the proposed approach to control
flow reconstruction is the idea of on-demand disassembly, which is an essen-
tial part of the software architecture for binary analysis discussed in Chapter 5.
Instead of attempting to disassemble as many instructions as possible in a sep-
arate preprocessing step, only a single instruction is disassembled at a time. In
essence, the instruction fetch is considered part of the abstract interpretation,
and thus only the instruction relevant for the next execution step is decoded.
This allows to deal with overlapping instructions, as no fixed representation is
required that maps every byte uniquely to a single instruction. Instead, the same
bytes can be interpreted as different instructions depending on execution con-
text. In a similar manner, self-modifying code can be dealt with, by disassem-
bling bytes from the current abstract memory state (although this is not currently
implemented).

Implementation in Jakstab. Chapter 5 further presents the disassembler and
static analysis tool Jakstab, which implements the concepts introduced in this
dissertation. Jakstab is written in about 40 KLOC of Java and is able to process

37

Chapter 1 Introduction

both Windows and Linux executables, with its primary focus lying on the Win-
dows family of operating systems. Architecture-wise, the current implementa-
tion supports only x86 code (although it is designed to be extendable to other
architectures); the underlying methods are not platform specific, however. It re-
constructs the control flow of a binary by exploring the reachable state space,
and is able to check specifications in the form of invariant assertions introduced
in an environment model for the program.

The implementation in Jakstab follows the concept of Configurable Program
Analysis (CPA) by Beyer et al. [17], which defines a practical interface to con-
figure and combine reachability analyses. The original CPA algorithm has been
modified to follow the framework of Chapter 3 by integrating the resolve op-
erator in the form of a call to a transformer factory that provides control flow
edges. Depending on the intended application of the analysis, the strict sound-
ness provisions of the framework can be deliberately weakened by using differ-
ent available transformer factories that make assumptions about the program
behavior.

Besides Bounded Address Tracking, a number of additional, classical abstract
domains have been implemented in Jakstab. Constant propagation, call stack
analysis, forward expression substitution, and live variable analysis, are classical
textbook analyses that have been defined as CPAs and adapted to low level IL
programs. A composite analysis uses a default strategy of merging information
from different analyses. Code transformations allow to simplify the program
after control flow reconstruction, and a second round of analyses can be run on
the reduced program.

Experiments. Chapter 6 presents experimental results for two different appli-
cation scenarios. The first part contains a study of verifying API usage speci-
fications on device driver binaries. The results from analyzing several drivers
from the Windows driver development kit are compared against the state-of-
the-art approach by Balakrishnan and Reps [8]. They show that Jakstab using
Bounded Address Tracking yields less false positives and is considerably faster,

38

1.5 Contributions

all without making unsound assumptions as part of the disassembly process.
Applicability to real world binaries without access to source code or symbols is
demonstrated by running Jakstab on all drivers (over 300) installed on a regular
desktop PC.

A second study demonstrates another application scenario, where Jakstab is
configured to use heuristics and assumptions to cover as many instructions as
possible in a manner similar to the commercial disassembler IDA Pro. For anal-
ysis, only the simple and fast constant propagation is activated, which aids in
resolving call addresses cached in registers. The results show that its capabili-
ties as a disassembler are comparable to IDA Pro, and that constant propagation
can suffice to exceed IDA Pro’s ability in resolving call targets.

1.5 Contributions

Summarizing the above outline, this dissertation makes the following contribu-
tions to the state of the art:

• The design of an abstract interpretation-based, integrated control and data
flow analysis framework for low level binary code, giving a solution to the
open problem of optimal control flow reconstruction from binary executa-
bles (Chapter 3).

• The introduction of Bounded Address Tracking, a very precise abstract
domain for combined pointer and value analysis (including pointer arith-
metic), that generally allows strong updates to be performed up to a tun-
able bound (Chapter 4).

• Embedding on-demand disassembly, control flow reconstruction, and mul-
tiple analyses into an extensible program analysis framework working on
binaries (Chapter 5). The framework is configurable in several aspects
to allow a wide range of analyses, from sound abstract interpretation to
heuristics-supported disassembly.

39

Chapter 1 Introduction

• Showing the feasibility of the approach and improvements over existing
approaches by conducting a case study on the analysis of Windows device
driver binaries. A second study compares disassembly and control flow
reconstruction results with the commercial disassembler IDA Pro (Chap-
ter 6).

Parts of this dissertation have been published as [81] (disassembly augmented
by constant propagation), [83] (joint control and data flow analysis), and [82]
(Bounded Address Tracking and experiments on driver binaries).

40

Chapter 2

An Intermediate Language for

Executable Analysis

This chapter introduces the intermediate language (IL) and related concepts
that will be used for analyzing executables throughout the remainder of the
dissertation. ILs are a concept common in compiler design, where they help
abstracting from a particular source language and act as a connecting layer be-
tween the high level source language and the target machine code. The compiler
performs most of its static code analysis on the IL, allowing the analysis to be
mostly architecture- and language-independent. Similarly, ILs can allow a bi-
nary analysis to abstract from machine code and to formulate the analysis in an
architecture-independent manner.

2.1 Overview

CISC architectures such as x86 offer very rich instruction sets. In these archi-
tectures, a single instruction can affect multiple registers and status flags and
can even represent non-trivial operation sequences including loops (e.g., using
the repnz prefix). The somewhat naive, direct approach is to deal with the hun-
dreds of different instructions directly, by hand-coding abstract transformers/
transfer functions for some or all instructions, as implemented in the original

41

Chapter 2 An Intermediate Language for Executable Analysis

CodeSurfer/X86 tool [7], for example. This process is extremely tedious and er-
ror prone, as it requires reimplementing the hundreds of transformers for each
new analysis if all instructions are to be correctly supported. A significantly less
cumbersome approach, which will be used in this work, is to define translations
from assembly instructions to an IL and to specify transformers only in terms
of the intermediate language. From a specification of the instruction semantics,
assembly instructions are translated into sequences of low level IL statements.
For example, the instruction push eax, which pushes the contents of register
eax to the stack and decrements the stack pointer, translates to the IL code se-
quence m32[esp] := eax; esp := esp− 4. The syntax of the IL was inspired by the
semantics specification language (SSL) by Cifuentes and Sendall [38].

The low level nature of machine code influenced the design of the language
and the choice of IL statements available. For instance, x86 machine code does
not contain explicit, structured conditional statements, but instead uses condi-
tional jumps. Conditional execution of code blocks is realized by first comparing
two operands using a comparison instruction such as cmp or test, which sets the
flags according to the result of the comparison. The flags then decide whether a
later conditional jump instruction is taken or not.

Consider the example below. The high level code on the left assigns the min-
imum of two variables x and y to the memory location pointed to by p. It is
translated by compilers to assembly code such as the one shown on the right, if
x, y, and p are allocated to registers eax, ebx, and edx, respectively.

if (x > y) { cmp eax, ebx

x = y; jle label

} mov eax, ebx

*p = x; label: mov dword ptr [edx], eax

The first instruction, cmp eax, ebx, subtracts ebx from eax, sets the status flags
according to the result of the subtraction, and discards it. The instruction trans-
lates to the IL code

42

2.2 Syntax

CF :=(eax <u ebx)

OF :=(eax < 0∧ ebx ≥ 0∧ eax− ebx > 0)∨
(eax ≥ 0∧ ebx < 0∧ eax− ebx < 0)

SF :=(eax− ebx < 0)

ZF :=(eax = ebx).

Here, <u denotes unsigned comparison, − denotes bit-vector subtraction, CF is
the carry flag, OF the overflow flag, SF the sign flag, and ZF the zero flag. The
second instruction of the conditional idiom is the conditional jump jle label,
meaning “jump if less or equal”. It translates to the guarded jump

if ((SF YOF) ∨ ZF) jmp label,

which evaluates the flags and transfers control to label, if the condition is met
(Y denotes exclusive or). The sign flag signals that the result was negative, i.e.,
the first operand was less than the second operand; the overflow flag signals that
the result was negative but smaller than the smallest representable number and
overflowed into the positive range. Both flags together conversely signal that
the result was too large and overflowed into the negative. The zero flag finally
covers the case that both numbers are equal.

If the condition for the jump is not met, the body of the if-clause is executed,
which translates to the assignment eax := ebx. From the body, execution falls
through to the next statement after the if-clause, which is also the target of the
conditional jump. The pointer dereference and assignment to a double word
(dword in Intel assembly syntax) translates to m32[edx] := eax in the IL syntax.

2.2 Syntax

To reduce the complexity of implementing abstract transformers for the IL, the
syntax is kept as simple as possible, with only a small set of allowed expressions

43

Chapter 2 An Intermediate Language for Executable Analysis

and statements that capture the low level aspects of assembly language. The
statements are grouped into two families. The basic statements represent di-
rect effects of individual instructions such as register assignments. The abstract
statements represent higher level concepts such as memory allocation.

2.2.1 Expressions

The set Exp of expressions of the IL contains common arithmetic, Boolean, and
bit-manipulation operations. All arithmetic operations are operations on bit-
vectors, i.e., depending on the bit-vector length, they can cause over- or under-
flow (see also the definition of IL types in Section 2.3). Exp is given by the fol-
lowing BNF grammar:

<expr> ::=<num>|<var>|pc |<memloc>|<nondet>|<unary op> <expr>|
<expr> <binary op> <expr>|<cond>|<bit extr>|<extend>

<num> ::=(−)?(0−9)+

<var> ::=(a− z|A− Z)+

<memloc> ::=m<num>[<expr>]

<nondet> ::=nondet(<num>)

<unary op> ::=¬| − |
<binary op> ::= < | ≤ | <u | ≤u | = | ∧ | ∨ | Y |+ | · | ÷ |mod | >>> | >> | << |

rol | ror

<cond> ::=<expr> ? <expr> : <expr>

<extend> ::=(sgnex | zeroex) <expr> <expr>

<bit extr> ::=<expr>@[<expr> : <expr>]

Apart from the usual arithmetic operators, the grammar of expressions accepts
the following non-standard operations:

44

2.2 Syntax

• nondet: To model input from the hardware, expressions can contain the
keyword nondet, which nondeterministically evaluates to some bit-vector
value of the supplied bit length in its concrete semantics.

• sgnex: Casts an expression (second parameter) to a greater bit length (first
parameter) maintaining the sign, i.e., adds leading zeros to positive num-
bers and leading ones to negative numbers.

• zeroex: Casts an expression (second parameter) to a greater bit length (first
parameter) by filling the new bits with zeros, ignoring the sign.

• e@[a : b]: Casts an expression e to a smaller bit length by extracting only
the bits a through b.

• <u, ≤u: Unsigned comparison.

• >>> | >> | <<: Bitwise arithmetic right shift maintaining the sign, right
shift, and left shift, respectively.

• ror, rol: Bitwise right and left rotation.

An IL program uses a finite set V of processor registers and temporary vari-
ables, which can be necessary for specifying instruction semantics. For simplic-
ity, registers and temporary variables will be referred to simply as registers in
the future. The program counter pc is a separate syntactic element but can be
used in expressions just like regular registers. The store (memory) is accessed
through expressions mb[expr], where the integer b denotes the number of bits
accessed from the address given by expression expr. The term variables will be
used to refer to both registers and memory locations when a distinction is not
necessary.

2.2.2 Basic Statements

Assembly instructions directly translate to sequences of statements from the fol-
lowing set of four basic IL statements:

45

Chapter 2 An Intermediate Language for Executable Analysis

• Register assignments v := e, with v ∈ V and e ∈ Exp, assign the value
of expression e to register v. This includes assignments to flags, which are
treated as separate single-bit registers in the IL (in x86 processors, the flags
are individual bits of the EFLAGS register).

• Store assignments mb[e1] := e2, with e1, e2 ∈ Exp, assign the value of ex-
pression e2 to the b bit memory location at the address computed by eval-
uating e1.

• Guarded jumps of the form if e1 jmp e2, with e1, e2 ∈ Exp, transfer control
to the target address resulting from evaluating e2, if the guard expression
e1 does not evaluate to 01. Otherwise, they do nothing.

• halt statements terminate execution.

Note that call and return instructions receive no special treatment but are
translated to assignments and jumps in the IL. In x86 assembly these instruc-
tions simply store the current program counter on the stack and jump to a target,
or read a return address from the stack and jump to it, respectively. There is no
fixed concept of procedures in x86 assembly, so relying on binary code to respect
high level structuring into procedures can introduce unsoundness into the anal-
ysis. This makes the IL especially well suited to represent code protected against
disassembly, including malicious code. For example, malicious code commonly
misuses return instructions as generic jumps by pushing the desired target ad-
dress on the stack immediately before executing a return. Anti-disassembly pat-
terns like this thwart traditional recursive traversal disassemblers [90] that as-
sume code to be produced by well-behaved compilers.

2.2.3 Abstract Statements

Besides the basic statements, the IL also offers a set of abstract statements that
do not correspond to regular assembly instructions. Instead they can be used to
abstract certain behavior of the execution environment.

46

2.3 Types

• Allocation statements alloc v, e, with v ∈ V and e ∈ Exp, reserve a new
block of memory on the heap and store its address in a register.

• Deallocation statements free v with v ∈ V release the block of memory
pointed to by the provided register.

• Statements assume e with e ∈ Exp ensure a condition in all executions fol-
lowing the statement.

• Assertions assert e with e ∈ Exp indicate an error if a condition is not met
in executions passing through the statement.

• Statements havoc v <u n, with v ∈ V and a bound n, non-deterministically
assign a value smaller or equal to n to a register. It is similar to an assign-
ment of the nondet expression, but can be used for guiding the abstraction
of nondeterminism (see Section 4.5).

None of these statements can be generated directly from x86 assembly code.
They are, however, useful for verifying specifications and for abstracting func-
tions of runtime libraries or the operating system. The assume statement will
be generated during control flow reconstruction (see Chapter 3). The other ab-
stract statements are obtained from binaries defining the abstract environment
by using specially crafted illegal instruction sequences (details of the encoding
are discussed in Section 6.1.3).

2.3 Types

Even though most machine code, including x86, does not have a type system
even remotely resembling those of high level languages, the operands of instruc-
tions can be of different size, e.g., bytes, words (two bytes), and double words
(four bytes). These low level types are reflected in the IL. All expressions in the
IL are of a bit-vector type of some finite length. Expressions are defined only for

47

Chapter 2 An Intermediate Language for Executable Analysis

operands of equal bit lengths, with the exception of zero extension, sign exten-
sion, and bit extraction.

The set of all bit-vectors of finite length is denoted by I∗, the set of all bit-
vectors of some particular length b is denoted by Ib. The notation for bit-vector
constants used in the following is nb, where n is the integer value of the constant,
and b is the length (number of bits) of the bit-vector, e.g., 918 for the bit-vector
01011011. Where ever the bit length b of a register v is relevant, it will be denoted
by the similar syntax vb. Expressions of bit length 1 take the place of Boolean ex-
pressions, Boolean true and false are represented by the single-bit bit-vectors 11

and 01, respectively. Negative integers are represented as the two’s-complement
of their absolute value (so, 11 represents a value of −1 in a single bit). The sign
is thus determined by the most significant bit of each bit-vector value.

Note that floating point values and expressions are omitted from the IL, since
the analyses presented later in this dissertation (Section 5.3) do not have spe-
cific support for floating point arithmetic. In principle, it is of course possible to
extend the IL to include floating point types and expressions. In fact, the speci-
fications used by Jakstab do include floating point expressions, which are safely
overapproximated to unknown values in the analyses considered.

2.4 Semantics

The concrete semantics of the IL is defined in terms of states S = Loc× Val×
Store×Heap, consisting of the location valuation Loc := {pc} → L, the register
valuation Val := V → I∗, the store valuation Store := I∗ → I∗, and a heap set
Heap := I∗ → I∗, which maps addresses of allocated heap objects to their
corresponding sizes. Heap blocks are allocated between some constant address
h0 and a maximum address hmax in the store. Allocation of heap objects in a
single, continuous store constitutes the flat memory model. Accesses to parts of a
state s ∈ S are denoted by

• s(pc): the value of the program counter in s,

48

2.4 Semantics

• s(v): value of register v,

• s(mb[x]): value of the b bit memory location at address x, and

• s(H): the current heap set.

The syntax s[x 7→ y] denotes the state obtained by updating a part x (i.e., the pc,
a register, a memory location, or the heap set) of state s with a new value y.

The concrete semantics is then given by the concrete post operator mapping
states and statements to states in Table 2.1. It uses the operator eval : Exp→ I∗

to concretely evaluate IL expressions. The concrete semantics of expression eval-
uation is not formally defined here, but is assumed to follow the usual interpre-
tation in high level programming languages. Non-standard expressions have
been described in Section 2.2.1. Note that the concrete semantics introduced
here corresponds to a forward collecting semantics [44, 46, 47], which describes
the reachability of program states. This concrete semantics precisely character-
izes the feasible control flow of a program, which is the program property of
interest for control flow reconstruction. Throughout this dissertation, this con-
crete semantics will therefore serve as the reference point that describes the most
precise static control flow information.

The concrete semantics for the basic statements is straightforward. Assign-
ments to registers update the state with the right-hand side of the assignment
evaluated in the current state. Similarly, memory assignments update the store
at the address resulting from evaluating the address expression of the memory
access. Guarded jumps do nothing but fall through to the next statement if the
guard expression evaluates to 01, otherwise they transfer control to the location
determined by evaluating the target expression. Halt statements terminate exe-
cution and have no successor state, denoted by ⊥.

The concrete semantics for abstract statements is designed to capture specific
aspects of the execution environment of an executable. The allocation statement
simulates the behavior of a simple malloc implementation. The heap is defined
to start above some limit address h0 and extend until hmax, and an invocation

49

Chapter 2 An Intermediate Language for Executable Analysis

AssignReg
postJ[v := e]``′K(s) := s[v 7→ evalJeK(s)][pc 7→ `′]

AssignMem
postJ[mb[e1] := e2]

`
`′K(s) := s[mb[evalJe1K(s)] 7→ evalJe2K(s)][pc 7→ `′]

GuardedJump

postJ[if e1 jmp e2]
`
`′K(s) :=

{
s[pc 7→ `′] if evalJe1K(s) = 0
s[pc 7→ evalJe2K(s)] otherwise

Halt
postJ[halt]``′K(s) := ⊥

Alloc
postJ[alloc v, e]``′K(s) := letz = evalJeK(s), h > h0 minimal such that

∀(h′, z′) ∈ s(H).h ≥ h′ + z′ ∨ h + z ≤ h′{
s[v 7→ h][H 7→ H ∪ (v, z)][pc 7→ `′] if h + z ≤ hmax

⊥(raise error) otherwise

Free
postJ[free v]``′K(s) := s[H 7→ H \ (v, ·)][pc 7→ `′]

Assume

postJ[assume e]``′K(s) :=

{
⊥ if evalJe1K(s) = 0
s[pc 7→ `′] otherwise

Assert

postJ[assert e]``′K(s) :=

{
⊥(raise error) if evalJe1K(s) = 0
s[pc 7→ `′] otherwise

Havoc
postJ[havoc v <u n]``′K(s) := s[v 7→ x][pc 7→ `′], with some x ≤ n

Table 2.1: Concrete semantics of the intermediate language.

50

2.5 IL Programs

of alloc v, e assigns to the designated register v the lowest address h such that
there is sufficient free memory above h to fit the requested size z calculated from
evaluating expression e. The heap set H, which is defined to be part of the con-
crete state, then stores the fact that a block of memory of size z is allocated at
address h. If not sufficient free memory is available, an error is signaled. The
abstract statement free removes allocated addresses from H again, freeing the
corresponding memory block.

Assume statements are used to “filter” executions; they do nothing, if the con-
dition being assumed evaluates to 11 in the current state, but if it evaluates to
01, they terminate the current execution (again denoted by the successor state
⊥). Assertion statements behave similarly, except that they signal an error if the
execution is terminated. Assertion statements are used when not meeting the
asserted condition indicates an error, i.e., assertions express specifications for
the program.

Havoc statements havoc v <u n nondeterministically assign a value x with
0 ≤u x ≤u n to v. In the concrete semantics, the same effect can be achieved by
the sequence of expressions v := nondet; assume v ≤u n. In an abstract seman-
tics, however, the two different methods for introducing nondeterminism into
a program can be abstracted differently, effectively allowing to select different
levels of abstraction by choosing the appropriate statement. This will be fur-
ther discussed in Section 4.5, which motivates this essentially annotation based
abstraction for a specific analysis.

2.5 IL Programs

By translating every machine code instruction from an executable into state-
ments of the IL before feeding it to the analysis, it is possible and practical to
view binary executables as IL programs.

The set of basic and abstract statements is denoted by by Stmt. The set of
program locations L ⊆ I∗ is the set of bit-vectors of some length specified by the

51

Chapter 2 An Intermediate Language for Executable Analysis

architecture (in the case of 32 bit x86 code, it is 32). An IL program is then given
as the tuple 〈V, CodeData, start〉, with the set of registers V, the unique starting
location start, and CodeData := L → (Stmt × L × I∗). The finite mapping
CodeData expresses that program locations can be interpreted as either code
or data. To each program location, it maps

1. the statement obtained from interpreting the location as code,

2. the address of the logically next statement, if the location is interpreted as
code, and

3. the bit-vector value obtained from interpreting the location as data.

The code interpretation of locations in CodeData is denoted by [stmt]``′ for ` 7→
(stmt, `′, ·) ∈ CodeData, which follows the notation from standard program
analysis literature [109]. Where the location of the successor statement is not of
interest, it will be omitted, as in [stmt]`. The data interpretation of locations is
denoted as memory accesses, i.e., mb[`] = nb for ` 7→ (·, ·, nb) ∈ CodeData.

Explicitly stating the address of the next statement in the code interpretation
allows to deal with variable instruction length architectures such as x86, where
the start of the next executed instruction depends on the length of the current
instruction. Since a single assembly instruction can correspond to multiple IL
statements, the bit length of locations may have to be extended to assign a unique
address to each statement. Implementation details of the instruction translations
are discussed in Section 5.1.3.

In an actual binary, CodeData is implicitly present by decoding the instruc-
tion at an address and translating it into the intermediate language. The finite
partial mapping of locations to statements given through valid instruction de-
codings can be extended to a finite total mapping by setting the statements at all
addresses that do not contain valid code to assert 01. Note that this assumes that
hardware exceptions for invalid instructions are not caught; to achieve a more
accurate model of the hardware behavior it is possible to fill the gaps with jumps
to code that checks for an exception handler.

52

2.6 Related Work

Control Flow Automata for IL Programs. Following the definition by Hen-
zinger et al. [68], the control flow automaton (CFA) is a graph representation of a
program, where nodes represent logical states and all statements are placed at
the edges. This concept differs from the well-known control flow graph (CFG),
a classical structure to reason about programs, in which nodes holding program
statements are connected by edges denoting the possible control flow [1].

The CFA is a high level structure, in which code is clearly distinct from data.
All control flow is explicit, since every edge has a definite start and end loca-
tion. The advantage of this definition will become apparent in Chapter 3, which
shows how jmp statements are resolved into multiple CFA edges labeled with
assume statements. The definition of CFAs in [68] can be adapted to IL programs
as follows:

Definition 2.1 (Control Flow Automaton) A control flow automaton (CFA) is a tu-
ple 〈T, V, start, E〉, with a set of program locations T ⊆ L, a set of registers V, an initial
location start ∈ T, and an edge relation E ⊆ T × Stmt× T.

2.6 Related Work

As mentioned above, the IL used in this dissertation is inspired by the seman-
tics specification language (SSL) by Cifuentes and Sendall [38]. In particular, the
instruction specifications implemented in Jakstab are based on SSL definitions
for the Intel Pentium processor, which are part of the Boomerang decompiler
project [21, 54]. The set of basic IL statements is largely analogous to SSL, except
that SSL does not use explicit jumps but treats the program counter register as a
regular register. The original SSL does not define statements and expressions for
analysis (such as alloc and nondet), however, as it is primarily meant for binary
translation between processor architectures [36].

The CodeSurfer/x86 project originally suffered from the problem that every
analysis in principle had to implement an abstract transformer for each x86 as-
sembly instruction, which in practice led to omitting large parts of the instruc-

53

Chapter 2 An Intermediate Language for Executable Analysis

tion set. Lim and Reps [88] address this problem with their own Transformer
Specification Language (TSL). They conceptualize their approach as decompos-
ing instructions into analysis primitives and specifying the abstract transform-
ers in terms of the analysis primitives [87]. In their approach, analysis primitives
basically take the place of IL statements and expressions. The conceptual differ-
ence between TSL and SSL mainly affects analysis implementations: Using SSL
to translate a binary into IL creates an equivalent IL program, which is inter-
preted by an analysis. In TSL, the instruction specifications are C++ code that
directly calls into a set of analysis-provided transformers. TSL thus avoids the
overhead of creating an intermediate representation of assembly instructions,
but its instruction specifications are tied to using C++ as implementation lan-
guage.

A number of instruction specification languages have been described in the
literature in the context of system design and compiler generation. The speci-
fication language λ-RTL by Ramsey and Davidson [116] is geared towards the
development of modular compilers, such that instruction specifications can be
reused for different languages. The language LISAS [43, 65] for describing in-
struction semantics is meant to augment circuit-level hardware description lan-
guages with “high level”, i.e., instruction-level, information. Kästner [77] de-
scribes TDL, a very precise hardware specification language, for use in WCET
analysis and compiler optimizations. The choice to base Jakstab’s descriptions
on SSL and to not use one of the other existing specification languages was de-
cided by the availability of a fairly extensive x86 description.

Instruction specification languages are not limited to physical hardware. Eich-
berg et al.[53] presented a system which includes specifications of bytecode in-
structions and allows to specify generic bytecode analyses independent of a spe-
cific bytecode format such as Java bytecode or Microsoft’s CIL. While the ba-
sic concept of abstractly representing multiple low level architectures is similar,
bytecode contains types and structures and thus has different requirements for
a specification language.

54

2.6 Related Work

Dullien and Porst [51] introduce the intermediate language REIL for the pur-
pose of reverse engineering. For the most part, REIL is a small subset of x86
assembly normalized to three address code. Besides basic arithmetic and bit-
wise operations, they add an undef statement that corresponds to the nondet as-
signment used in this dissertation. The advantage of their approach is that all
statements use only basic operands and no complex expression types. The dis-
advantage, on the other hand, is that the lack of expressions requires more state-
ments (they report on having 17 already without support for SIMD or floating
point instructions). Furthermore, the absence of complex expressions prohibits
code transformations such as forward expression substitution (see Section 5.3.6).

In the analysis of high level languages, problems similar to the richness of as-
sembly language can arise if all flavors of syntactic sugar in different language
implementations are to be supported. Therefore a number of intermediate lan-
guages exist for high level code as well. The C Intermediate Language [107]
translates programs into a simpler subset of the C language and has become a
popular front end for static analysis tools targeting C. Compilers have a long
history of using intermediate languages for their code analysis, and several ILs
exist that are designed to be independent of the high level source language.
The LLVM project offers a common infrastructure for analyzing and compiling
source languages [86], and is widely used in academia and industry. Similar
to Microsoft Research’s Phoenix infrastructure [97] or the GIMPLE language of
GCC [58], it is primarily designed for compilation and relies on the availability
of types and information about the program. Most analysis is carried out on
the high level, typed intermediate language. The translation to machine code
is performed near the end of the compilation process, and only some machine
dependent optimizations are performed thereafter. A thorough analysis of low
level code or a translation back to higher language levels does not lie within the
focus of these frameworks.

55

Chapter 3

Control Flow Analysis for Low Level

Programs

The IL is a direct translation from machine instructions, and both share a com-
mon problem that makes it hard to analyze machine code: The control flow is
not explicit in the syntactic program representation, due to indirect jumps to
computed target addresses. An essential step for analyzing binaries is thus to
reconstruct the control flow automaton, i.e., to statically determine all possible
targets of dynamically computed indirect jumps. This chapter presents a general
framework to construct an overapproximation of the CFA of an IL program by ef-
fectively combining control and data flow analysis, akin to control flow analysis
in functional programming languages [76, 126]. The framework is based on the
general concept of abstract interpretation [45] and not fixed to a particular ab-
stract domain for data flow analysis. It does not require additional information
besides the actual statements and is still able to compute a sound and precise
overapproximation of a program’s control flow.

3.1 Overview

Data flow analysis statically calculates information about the program variables
from a given program representation. For instance, Constant Propagation is a

57

Chapter 3 Control Flow Analysis for Low Level Programs

simple data flow analysis that calculates for each program location and for each
program variable the constant value of the variable at this location, or the spe-
cial value > if the variable cannot be shown to be constant by the analysis. The
analysis determines the program locations to which the effects of an assignment
can flow using the control flow graph of the program. Earlier work [7, 50, 78,
81, 133] has shown that data flow analysis can be used to augment the results of
disassembly. No conclusive answer was given, however, how states with unre-
solved control flow successors should be handled during data flow analysis such
that the resulting control flow graph is optimal. Furthermore, it was unclear
whether updating the control flow graph could render previous data flow infor-
mation invalid, which would require backtracking and could cause the analysis
to diverge.

This chapter will demonstrate how to successfully design a program analy-
sis that reconstructs the control flow of a low level program, and prove that the
notion of a “chicken and egg problem” in combining data flow analysis with
disassembly is overly pessimistic. The approach presented here is based on the
idea of executing data flow analysis and branch resolution simultaneously. A
data flow problem is characterized by a constraint system derived from an over-
approximation of the program semantics. The solution to a data flow problem is
calculated by iteratively applying the constraints until a fixed point is reached.
A constraint system for data flow analysis has the form

D(`) w
⊔

(`′,stmt,`)∈G

p̂ostJstmtK(D(`′)) t ι`,

where p̂ost is the abstract post operator (also called transfer function, state-, or
predicate transformer), D records data flow information for locations ` ∈ L,
and ι` is the initial data flow information for `. The constraint system specifies
that the data flow information for every location ` is the combination of the data
flow information of its predecessors `′, updated according to the semantics of
the statements leading to ` (forward analysis). The predecessor relationship is

58

3.1 Overview

encoded in the control flow automaton G, which is unavailable in binaries, how-
ever. Indeed, determining G is the whole purpose of data flow-assisted control
flow reconstruction.

The intuition of the approach presented here is that the edge relation grows
during the fixed point iteration until a simultaneous least fixed point of both
data and control flow is reached. A resolve operator is responsible for growing
the edge relation and uses data flow information to calculate branch targets of
instructions. The combined analysis ensures that:

• The quality of the fixed point, and thus of the reconstructed CFA, does not
depend on the order in which the constraints are applied.

• The fixed point of control and data flow is an overapproximation of the
concrete program semantics.

The basic idea of the framework is to translate statements into edges (L ×
Stmt× L) of the control flow automaton (CFA edges). The edges overapproxi-
mate the concrete control flow of the program, eliminating any indirect jumps.
In particular, every guarded jump [if e1 jmp e2]

`
`′ is transformed into a set of

edges labeled with assume statements. If the condition e1 is false, the set con-
tains only the fall-through edge to `′, labeled with assume (e1 = 01). Otherwise,
the set will also contain edges to all addresses that are possible values of the
target expression e2 in the current data flow state. Each of these edges will be
labeled with statements assuming both the condition e1 6= 01 and the fact that
e2 evaluates to its target location. The encoding of branch conditions and jump
targets as assume statements is the key feature why this approach produces the
most precise CFA with respect to the precision of the data flow analysis.

A data flow analysis used to instantiate this framework needs to supply only
implementations of the p̂ost (for statements other than jmp) and êval operators
and does not need to deal specifically with indirect jumps. To this end, the frame-
work extends the provided abstract domain with a set of edges that represents
those parts of the final CFA that have been explored so far and an implemen-
tation of p̂ost for jumps. Section 3.3 defines the notion of the concrete CFA for

59

Chapter 3 Control Flow Analysis for Low Level Programs

IL programs based on their concrete semantics. The resolve operator, which is
constructed using conditions imposed on the provided abstract domain, calcu-
lates targets for low level branch instructions. Using this operator, the analysis
is able to safely overapproximate the concrete CFA (Section 3.4).

The classical worklist algorithm met in program analysis is extended such that
it supports control flow reconstruction with the aid of data flow analysis un-
der very general assumptions. The algorithm overcomes the “chicken and egg”
problem of how to bootstrap the analysis process by computing the a priori un-
known edges on the fly with the help of the resolve operator. It is proven that the
algorithm always returns the most precise overapproximation of the program’s
actual control flow automaton with respect to the precision of the provided ab-
stract domain used by the data flow analysis (Section 3.5).

3.2 A Worked Example

Let us first illustrate the proposed approach with a small example. Consider the
IL program shown on the left of Figure 3.1 that performs some address arith-
metic and contains an indirect jump to the computed target address. The ab-
stract domain for the analysis is chosen to model for each program location a set
of up to 5 values for the single program variable x. The top element > repre-
sents sets larger than 5, and the bottom element⊥ denotes that a location has not
been reached by the analysis yet. The entry point of the program is at address
0, and the data flow information for the program, denoted as D, is initialized to
D(0) = > and D(`) = ⊥ for ` 6= 0. The initial control flow automaton G = ∅
contains no edges.

The steps of the worklist algorithm that will be outlined in this chapter are
shown in Table 3.1. Control flow reconstruction begins by calling the resolve
operator to generate the first edges from the only location where the data flow
information is not ⊥, the entry point. The call yields two outgoing edges, since
nothing is known about x (step 1). The jump condition is transformed into as-

60

3.2 A Worked Example

` Statement D(`)

0: if (x = 0) jmp 13 >
5: x := 1 >

10: if 1 jmp 21 {1}
12: halt {12}
13: x := 24 {0}
18: x := x− 5 {18, 24}
21: x := x− 1 {1, 13, 19}
24: if 1 jmp x {0, 12, 18}

0

5 13

10 18

21

24

12

assume x = 0assume x 6= 0

x := 1

assume 1

x := 24

x := x− 5

x := x− 1

assume x = 0

assume x = 12

assume x = 18

Figure 3.1: Control flow reconstruction example: IL program, final data flow in-
formation, and reconstructed control flow automaton.

sumptions on whether the jump condition was true or false. The algorithm now
computes the transfer function of the data flow analysis for these two edges and
updates D(5) and D(13) accordingly (steps 2 and 3). Note that the abstract do-
main cannot precisely express the fact that x 6= 0.

The analysis now follows down both branches and updates D until the com-
mon postdominator (the first common descendant of both branches), i.e., loca-
tion 21 (steps 4-11). In this abstract domain, the data flow information from
both branches is joined in location 21, yielding the set {1, 19} (step 11) and sub-
sequently {0, 18} at the location of the indirect jump (step 12). These two values
cause two new assume edges encoding the fact that the jump target evaluated
to 0 or 18 (step 13). The edge to location 0 does not lead to new data flow in-
formation, since D(0) = > ⊇ {0}. The edge to location 18, however, adds an
additional value to D(18), which in turn leads to new data flow information in

61

Chapter 3 Control Flow Analysis for Low Level Programs

Step Data flow update Control flow update
Init D(0) = > G = ∅

1 (0, assume x 6= 0, 5), (0, assume x = 0, 13)

2 D(5) = >
3 D(13) = {0}
4 (5, x := 1, 10)

5 D(10) = {1}
6 (13, x := 24, 18)

7 D(18) = {24}
8 (10, assume 1, 21)

9 D(21) = {1}
10 (18, x := x− 5, 21)

11 D(21) = {1, 19}
12 D(24) = {0, 18}
13 (24, assume x = 0, 0), (24, assume x = 18, 18)

14 D(18) = {18, 24}
15 D(21) = {1, 13, 19}
16 D(24) = {0, 12, 18}
17 (24, assume x = 12, 12)

18 D(12) = {12}
19 Fixpoint Fixpoint

Table 3.1: Example run of the worklist control flow reconstruction algorithm.

62

3.3 Control Flow Semantics

the successor locations (steps 14-16). Thus, a new possible target value is prop-
agated to the location of the indirect jump, producing a new edge to location
12 (step 17). Finally, D(12) at the location of the halt statement is updated, and
the analysis has reached a fixpoint where neither data flow nor control flow can
be updated anymore. The final data flow information and the final control flow
automaton are shown on the right of Figure 3.1.

3.3 Control Flow Semantics

For reconstructing the control flow of an IL program, it suffices to only view the
basic set of statements introduced in Section 2.2.2. The target control flow au-
tomaton can be built using an even smaller set of statements Stmt#, which con-
sists only of register or memory assignments and assume statements but does
not contain guarded jump statements. The intuition is that the assume state-
ments are generated from resolving a guarded jump statement and that each
successor address `′ represents the resolved target address of the jump. The
condition being assumed encodes (i) whether the statement represents the true
or false branch of the guarded jump and (ii) for true branches, the fact that the
jump’s target expression evaluated to the target location of the edge.

The operator post : Stmt# → 2State → 2State is overloaded to work on state-
ments of the derived language and sets of states S ⊆ State:

postJ[v := e]``′K(S) := {postJ[v := e]``′K(s) | s ∈ S},
postJ[m[e1] := e2]

`
`′K(S) := {postJ[m[e1] := e2]

`
`′K(s) | s ∈ S},

postJ[assume e]``′K(S) := {s[pc 7→ `′] | evalJeK(s) 6= 01, s ∈ S}.

Note that the definition of the post operator over sets makes use of the post
operator for single elements in the case of assignments. Stmt# and the definition
of the transfer function post will be used for stating the conditions required from
the abstract domain for the control flow reconstruction in Section 3.4.

63

Chapter 3 Control Flow Analysis for Low Level Programs

For the sake of continuity, the framework is described here in terms of the IL
introduced in Chapter 2; it is possible, however, to use a slightly more general-
ized low level language that operates on integers instead of bit-vectors, as long
as every program still has a fixed finite representation, i.e., the set of program
locations L is finite [83].

Definition 3.1 (Trace) A trace σ of a program is a finite sequence of states (si)0≤i≤n,
such that s0(pc) = start, stmt ∈ Stmt is not halt for all [stmt]si(pc) with 0 ≤ i < n,
and si+1 = postJstmtK(si) for all [stmt]si(pc) with 0 ≤ i < n.

The register and store valuations for state s0 can be freely defined by the abstract
domain. The set of all traces of a program is denoted by Traces. Further, the
program counter of all states in all traces is assumed to only map into the finite
set of locations L, as every program has a fixed finite representation.

The goal is to reconstruct the control flow of a program, therefore the concrete
control flow automaton has to be defined as the desired property to be approxi-
mated by the analysis. The definition of concrete CFAs of IL programs (Defini-
tion 3.3) is based on the definition of traces and uses labeled edges. The set of
labeled edges Edge is defined as L× Stmt# × L. Initially, the concrete CFA for
a single trace is defined:

Definition 3.2 (Concrete TCFA) Given a trace σ = (si)0≤i≤n, the concrete trace con-
trol flow automaton (TCFA) of σ is

TCFA(σ) = {(si(pc), stmt, si+1(pc)) |
0 ≤ i < n with [stmt]si(pc), where stmt is v := e or m[e1] := e2}

∪ {(si(pc), assume (e1 = 01), si+1(pc)) |
0 ≤ i < n with [if e1 jmp e2]

si(pc) and evalJe1K(si) = 01}
∪ {(si(pc), assume (e1 6= 01 ∧ e2 = si+1(pc)), si+1(pc)) |

0 ≤ i < n with [if e1 jmp e2]
si(pc) and evalJe1K(si) 6= 01}.

64

3.4 Control Flow Reconstruction by Abstract Interpretation

Now the concrete CFA for a full program can be defined as the combination of
all TCFAs:

Definition 3.3 (Concrete CFA) The concrete control flow automaton is the union of
the TCFAs of all traces:

CFA =
⋃

σ∈Traces
TCFA(σ).

Note that by this definition, the CFA of a program is a semantic property rather
than a syntactic one, since it depends on the possible concrete executions. Un-
like control flow graphs built purely from a syntactic program representation,
it does not contain infeasible edges. With respect to the forward collecting se-
mantics of reachable states, the concrete CFA of an IL program (with an initial
state including all static data) is equivalent to the description of the program
by CodeData (see Section 2.5), a mapping from addresses to statements that
includes guarded jumps. All possible executions are represented by the union
of traces, and the assume statements represent the outcome of conditions and
target expressions for guarded jumps.

3.4 Control Flow Reconstruction by Abstract

Interpretation

The framework for control flow reconstruction is parameterized by an abstract
domain that provides information about the data state of the program. The
framework accepts abstract domains (A,⊥,>, u,t,v, p̂ost, êval, γ), where

• (A,⊥,>,u,t,v) is a complete lattice, with the set of lattice elements A,
the bottom element ⊥, the top element >, the meet u, the join t, and the
partial order v,

• the concretization function γ : A → 2State from abstract lattice elements to
sets of concrete states is monotone, i.e.,

65

Chapter 3 Control Flow Analysis for Low Level Programs

a1 v a2 ⇒ γ(a1) ⊆ γ(a2) for all a1, a2 ∈ A,

and maps the least element to the empty set, i.e., γ(⊥) = ∅,

• the abstract post operator p̂ost : Stmt# → A → A overapproximates the
concrete transfer function post, i.e.,

postJstmtK(γ(a)) ⊆ γ(p̂ostJstmtK(a)) for all stmt ∈ Stmt#, a ∈ A, and

• the abstract evaluation function êval : Exp → A → 2Z overapproximates
the concrete evaluation function, i.e.,

⋃
s∈γ(a)

evalJeK(s) ⊆ êvalJeK(a) for all e ∈ Exp, a ∈ A.

Note that by this definition, the abstract evaluation function returns sets of
integers and not an abstract value type.

The next sections define a control flow analysis based on a given abstract
domain (A,⊥,>,u,t,v, p̂ost, êval, γ). The control flow analysis works on a
Cartesian abstract domain D : L → A, which records data flow facts for individ-
ual program locations, and a set of control flow edges G ⊆ Edge, which stores the
edges that have been explored so far.

3.4.1 The Resolve Operator

A control flow analysis must have the ability to detect the (possibly overapproxi-
mated) set of targets of guarded jumps based on the knowledge it acquires. This
is accomplished by the operator resolve : L→ A→ 2Edge, which is defined us-
ing the functions available in the abstract domain. For a given location ` and an
abstract data flow lattice element a, resolve returns a set of edges of the control
flow automaton. If a is the least element ⊥, the location ` has not been reached
by the abstract interpretation yet, therefore no edge needs to be created and the

66

3.4 Control Flow Reconstruction by Abstract Interpretation

empty set is returned. Otherwise, resolve labels fall-through edges with their
respective source statements, or it calculates the targets of guarded jumps based
on the information gained from the data flow lattice element a and labels the
determined edges with their respective conditions. The operator is formally de-
fined as:

resolve`(a) :=

:=



∅ if a = ⊥ or [stmt]``′ is [halt]
`
`′{

(`, stmt, `′)
}

if a 6= ⊥ and ([v := e]``′ or [m[e1] := e2]
`
`′){

(`, assume (e1 6= 01 ∧ e2 = `′′), `′′) | if a 6= ⊥ and [if e1 jmp e2]
`
`′

`′′ ∈ êvalJe2K
(
p̂ostJassume (e1 6= 01)K(a)

)}
∪{(`, assume (e1 = 01), `′)}

The crucial part in this definition is the last case, where the abstract p̂ost and
the abstract êval are used to calculate possible jump targets. The set of jump tar-
gets is determined by abstractly evaluating the target expression in those states
which satisfy the jump condition. Note that evaluating the target expression in
abstract state a instead of the restricted state p̂ostJassume (e1 6= 01)K(a) would
include states that do not pass the jump condition, which would be a legal but
unnecessarily imprecise overapproximation. This definition uses operators de-
fined by the abstract domain, therefore the precision of the control flow analysis
is influenced by the precision of the abstract domain.

3.4.2 A Constraint System for Control Flow Automata

With the definition of the resolve operator, it is possible to state a system of
constraints such that all solutions of these constraints are solutions to the control
flow analysis. The first component is the Cartesian abstract domain D : L→ A,
which maps addresses to elements of the abstract domain. The idea is that D

67

Chapter 3 Control Flow Analysis for Low Level Programs

captures the data flow facts derived from the program. The second component
is the set of edges G ⊆ Edge which stores the edges produced by the resolve
operator. Finally, an initial abstract element ι` ∈ A is defined for every location
` ∈ L. With these components, the joint system of constraints becomes:

G ⊇
⋃
`∈L

resolve`(D(`)) (3.1)

D(`) w
⊔

(`′,stmt,`)∈G

p̂ostJstmtK(D(`′)) t ι` (3.2)

Note that the initial abstract elements ι` are outside the scope of the join over all
predecessors; addresses with no predecessor statements thus keep their initial
abstract element. By this definition, G does not only store the a priori unknown
targets of the guarded jumps, but also the conditions (assume statements) which
have to be satisfied to reach them. These conditions can be used by the abstract
p̂ost to propagate precise information.

For a unified view of the analysis problem, the system of constraints (3.1) and
(3.2) can be combined into a single function

F :
(
(L→ A)× 2Edge

)
→
(
(L→ A)× 2Edge

)
,

which is defined as
F(D, G) 7→ (D′, G′),

where

G′ =
⋃
`∈L

resolve`(D(`)),

D′(`) =
⊔

(`′,stmt,`)∈G

p̂ostJstmtK(D(`′)) t ι`.

The connection between constraints (3.1) and (3.2) and control flow analysis is
stated in the following theorem, where correctness depends on ιstart ∈ L:

68

3.4 Control Flow Reconstruction by Abstract Interpretation

Theorem 3.4 Given an IL program and a trace σ = (si)0≤i≤n, such that s0(pc) =

start and s0 ∈ γ(ιstart), every solution (D, G) of the constraints (3.1) and (3.2) satisfies
sn ∈ γ(D(sn(pc))) and TCFA(σ) ⊆ G.

The proof is a straightforward induction on the length of traces using the prop-
erties required from the abstract domain:

Proof Let (D, G) be a solution to the system of constraints (3.1) and (3.2). By
induction on n, we show that sn ∈ γ(D(sn(pc))) and TCFA(σ) ⊆ G for every
trace σ = (si)0≤i≤n with s0 ∈ γ(ιstart). For the induction basis n = 0, we consider
the trace (ti)0≤i≤0 of length 1 with t0 ∈ γ(ιstart). We have

t0 ∈ γ(ιstart) ⊆ γ

(⊔
(`′,stmt,start)∈G

p̂ostJstmtK(D(`′))
)
t ιstart

 ⊆ γ(D(start)),

where the element relationship holds by assumption. The first inclusion holds
due to the monotonicity of γ. The second inclusion holds because (D, G) is a
solution to the system of constraints (3.1) and (3.2) and because γ is monotone.
Furthermore we have TCFA((t0)) = ∅ ⊆ G.

For the inductive step n 7→ n + 1, we assume that for all traces σ = (si)0≤i≤n

of length (n + 1) with s0 ⊆ γ(ιstart) the inclusions sn ⊆ γ(D(sn(pc))) and
TCFA(σ) ⊆ G hold. We consider the trace (ti)0≤i≤n+1 of length (n+ 2) with t0 ∈
γ(ιstart) and proceed by case distinction on the statement stmt, with [stmt]tn(pc)

being part of the program.

• stmt is halt. The trace (ti)0≤i≤n+1 has a state tn+1, making this case impos-
sible by the definition of a trace. Note that halt instructions are themselves
never part of a trace, but instead cause the trace to end.

• stmt is v := e or m[e1] := e2. By induction assumption we know for the trace
(ti)0≤i≤n that tn ∈ γ(D(tn(pc))). Therefore we have that D(tn(pc)) 6= ⊥,
since γ(⊥) = ∅ (tn is not contained in the empty set). It follows that

69

Chapter 3 Control Flow Analysis for Low Level Programs

(tn(pc), stmt, tn+1(pc)) ∈ resolvetn(pc)(D(tn(pc)))

⊆
⋃
`∈L

resolve`(D(`))

⊆ G (3.3)

where we have the element relationship from the definition of resolve, the
first inclusion holds trivially, and the second because (D, G) is a solution
of constraint system (3.1) and (3.2). As we have TCFA((ti)0≤i≤n) ⊆ G by
induction assumption, we now have TCFA((ti)0≤i≤n+1) ⊆ G.

Furthermore, we deduce

tn+1 = postJstmtK(tn)

∈ postJstmtK (γ(D(tn)))

⊆ γ
(

p̂ostJstmtK(D(tn))
)

⊆ γ

 ⊔
(`′,stmt,tn+1(pc))∈G

p̂ostJstmtK(D(`′))


⊆ γ(D(tn+1)),

where the equality holds by the definition of a trace, the element relation-
ship holds by induction assumption. The first inclusion holds as the ab-
stract p̂ost operator is an overapproximation of the concrete post operator.
The second inclusion holds because we have (tn(pc), stmt, tn+1(pc)) ∈ G
by (3.3) and γ is monotone. The third inclusion holds due to the facts that
(D, G) is a solution of the system of constraints (3.1) and (3.2) and that γ is
a monotone function.

• stmt is if e1 jmp e2. Again, by induction assumption we have for the trace
(ti)0≤i≤n that tn ∈ γ(D(tn(pc))). Therefore we know that D(tn(pc)) 6= ⊥,
since γ(⊥) = ∅. Now we proceed by case distinction on the value of
evalJe1K(tn).

70

3.4 Control Flow Reconstruction by Abstract Interpretation

– evalJe1K(tn) = 01. We infer

(tn(pc), assume (e1 = 01), tn+1(pc)) ∈ resolvetn(pc)(D(tn(pc)))

⊆
⋃
`∈L

resolve`(D(`))

⊆ G, (3.4)

where we have the element relationship by the definition of resolve.
The first inclusion holds trivially. The second inclusion follows from
(D, G) being a solution of the system of constraints (3.1) and (3.2). By
induction assumption we know that TCFA((ti)0≤i≤n) ⊆ G, so we now
have TCFA((ti)0≤i≤n+1) ⊆ G.

We deduce

tn+1 = postJif e1 jmp e2K(tn)

∈ postJassume (e1 = 01)K({tn})
⊆ postJassume (e1 = 01)K(γ(D(tn)))

⊆ γ
(

p̂ostJassume (e1 = 01)K(D(tn))
)

⊆ γ

 ⊔
(`′,stmt,tn+1(pc))∈G

p̂ostJstmtK(D(`′))


⊆ γ(D(tn+1)),

where we have the initial equality from the definition of a trace. We
have the element relationship from the definition of the post opera-
tor and from the case assumption evalJe1K(tn) = 01. We know the
first inclusion from the induction assumption. The second inclusion
holds as the abstract p̂ost operator is an overapproximation of the
concrete post operator. The third inclusion holds because we have
(tn(pc), assume (e1 = 01), tn+1(pc)) ∈ G by (3.4) and because γ is a

71

Chapter 3 Control Flow Analysis for Low Level Programs

monotone function. The fourth inclusion holds as (D, G) is a solution
of the system of constraints (3.1) and (3.2) and because γ is a mono-
tone function.

This completes treatment of the fall-through case for jumps.

– evalJe1K(tn) 6= 01. We infer

tn+1(pc) = evalJe2K(tn)

∈ evalJe2K
(

postJassume (e1 6= 01)K({tn})
)

⊆ evalJe2K
(

postJassume (e1 6= 01)K
(
γ(D(tn))

))
⊆ evalJe2K

(
γ
(

p̂ostJassume (e1 6= 01)K(D(tn))
))

⊆ êvalJe2K
(

p̂ostJassume (e1 6= 0)K(D(tn))
)

, (3.5)

where we have the equality by the definition of post. The element re-
lationship follows from the case assumption evalJe1K(tn) 6= 01, since
postJassume (e1 6= 01)K({tn}) is equal to the unchanged singleton set
{tn} in this case. The first inclusion holds by induction assumption.
The second inclusion holds as, by definition of the abstract domain,
the abstract p̂ost operator is an overapproximation of the concrete
post operator. The third inclusion holds as the abstract êval is an
overapproximation of the concrete eval, again by the conditions im-
posed on the abstract domain.

Furthermore, we have tn+1(pc) ∈ L from the definition of traces. We
therefore deduce

(tn(pc), assume (e1 6= 01), tn+1(pc)) ∈ resolvetn(pc)(D(tn(pc)))

⊆
⋃
`∈L

resolve`(D(`))

⊆ G, (3.6)

72

3.4 Control Flow Reconstruction by Abstract Interpretation

where we have the element relationship from (3.5) and from the fact
that tn+1 ∈ L. The first inclusion holds trivially. The second inclusion
holds because (D, G) is a solution of the system of constraints (3.1)
and (3.2). As we have TCFA((ti)0≤i≤n) ⊆ G by induction assumption,
we now have TCFA((ti)0≤i≤n+1) ⊆ G.

Finally, we deduce

tn+1 = postJif e1 jmp e2K(tn)

∈ postJassume (e1 6= 01)K{(tn)}
⊆ postJassume (e1 6= 01)K(γ(D(tn(pc))))

⊆ γ
(

p̂ostJassume (e1 6= 01)K(D(tn))
)

⊆ γ

 ⊔
(`′,stmt,tn+1(pc))∈G

p̂ostJstmtK(D(`′))


⊆ γ(D(tn+1)),

where we have the equality from the definition of a trace. We have the
element relationship from the definition of post, and from the case
assumption evalJe1K(tn) 6= 01. The first inclusion holds by induction
assumption. The second inclusion holds as the abstract p̂ost is an
overapproximation of the concrete post. The third inclusion holds
because we have (tn(pc), assume (e1 6= 01), tn+1(pc)) ∈ G by (3.6)
and because γ is a monotone function. The fourth inclusion holds
as (D, G) is a solution of constraint system (3.1) and (3.2) and because
γ is a monotone function. �

From Theorem 3.4, we immediately obtain:

Corollary 3.5 Given an IL program and a solution (D, G) of the constraints (3.1) and
(3.2), where {s ∈ State | s(pc) = start} ⊆ γ(ιstart), G is a superset of the control flow
automaton.

73

Chapter 3 Control Flow Analysis for Low Level Programs

The Cartesian abstract domain L→ A, equipped with pointwise ordering, i.e.,
D1 v D2 :⇔ ∀` ∈ L. D1(`) v D2(`), is a complete lattice because A is a complete
lattice. The power set 2Edge ordered by the subset relation⊆ is a complete lattice.
The product lattice (L → A) × 2Edge, equipped with pointwise ordering, i.e.,
(D1, G1) v (D2, G2) :⇔ D1 v D2 ∧ G1 ⊆ G2, is complete as both L → A and
2Edge are complete. Evidently, F is a monotone function on (L→ A)× 2Edge. As
(L→ A)× 2Edge is a complete lattice, the existence of a least fixed point µ of the
function F follows from the Knaster-Tarski fixed point theorem [131]. Therefore,
we immediately obtain:

Proposition 3.6 The combined control and data flow problem, i.e., the system of con-
straints (3.1) and (3.2), always has a unique best solution.

3.5 Algorithms for Control Flow Reconstruction

For the purpose of algorithm design this section focuses on abstract domains A
satisfying the ascending chain condition (ACC) and presents two control flow
reconstruction algorithms. The first algorithm (Figure 3.2) is generic and gives
an answer to the “chicken and egg” problem as it computes a sound overap-
proximation of the CFA by an intertwined control and data flow analysis. Note
that the order in which the control flow reconstruction is done may only affect
efficiency but not precision. The second algorithm (Figure 3.3) is an extension of
the classical worklist algorithm and is geared towards practical implementation.

3.5.1 Generic Fixed Point Algorithm

The generic algorithm shown in Figure 3.2 maintains a Cartesian abstract do-
main D : L → A and a set of edges G ⊆ Edge. D(`) is initialized by ιstart for
` = start (line 4) and by ⊥ for ` 6= start (line 3). As the algorithm does not
know anything about the control flow of the program yet, it starts with G as the
empty set (line 5). The algorithm iterates its main loop as long as it can find an

74

3.5 Algorithms for Control Flow Reconstruction

Input: an IL program, its set of addresses L including start, and the
abstract domain (A,⊥,>,u,t,v, p̂ost, êval, γ) together with an
initial value ιstart

Output: a control flow automaton
1 begin
2 forall the ` ∈ L \ {start} do
3 D(`) := ⊥;

4 D(start) := ιstart;
5 G := ∅;
6 while true do
7 Choices := ∅;
8 if ∃(`′, stmt, `) ∈ G. p̂ostJstmtK(D(`′)) 6v D(`) then
9 Choices := {do p};

10 if ∃` ∈ L. resolve`(D(`)) * G then
11 Choices := Choices∪ {do r};

12 if ∃u ∈ Choices then
13 choose u ∈ Choices /* non-deterministic choice */

14 switch u do
15 case do p
16 choose (`′, stmt, `) ∈ G where p̂ostJstmtK(D(`′)) 6v D(`);
17 D(`) := p̂ostJstmtK(D(`′)) t D(`);

18 case do r
19 choose ` ∈ L where resolve`(D(`)) * G;
20 G := resolve`(D(`)) ∪ G;

21 else
22 return G;

23 end

Figure 3.2: Generic Control Flow Reconstruction Algorithm.

75

Chapter 3 Control Flow Analysis for Low Level Programs

unsatisfied inequality (lines 8 and 10). Thus the algorithm essentially searches
for violations of constraints (3.1) and (3.2). If the generic algorithm finds at least
one not yet satisfied inequality, it non-deterministically picks a single unsatisfied
inequality and updates it (lines 13 to 20).

The correctness of the generic algorithm can now be established for abstract
domains A that satisfy the ascending chain condition:

Theorem 3.7 Given an IL program, where {s ∈ State | s(pc) = start} ⊆ γ(ιstart),
the generic control flow reconstruction algorithm (as defined in Figure 3.2) computes
a sound overapproximation of the CFA and terminates in finite time. Furthermore it
returns the most precise result with respect to the precision of the abstract domain A
regardless of the non-deterministic choices made in line 13.

The algorithm terminates because (L → A) × 2Edge′ satisfies the ascending
chain condition, where Edge′ is the finite subset of Edge that consists of all the
edges that are potentially part of the program. The fact that the algorithm al-
ways computes the most precise result heavily depends on the existence of the
unique least fixed point µ of F. It is easy to show that the generic algorithm com-
putes this least fixed point µ. As the least fixed point is the best possible result
with respect to the precision of the abstract domain, it is always the most precise
regardless of the non-deterministic choices made in line 13.

Proof For a given IL program with an associated set of addresses L the set

EdgeF =

= {(`, stmt, `′) | `, `′ ∈ L with [stmt]``′ , where stmt is v := e or m[e1] := e2}
∪ {(`, assume (e1 = 01), `′), (`, assume (e1 6= 01 ∧ e2 = `′′), `′′) |

`, `′ ∈ L with [if e1 jmp e2]
`
`′ , `
′′ ∈ L}

is a finite subset of Edge. Therefore 2EdgeF satisfies the ACC. The lattice L→ A
satisfies the ACC because A satisfies the ACC and L is finite. It follows that
(L→ A)× 2EdgeF satisfies the ACC.

76

3.5 Algorithms for Control Flow Reconstruction

The function H :
(
(L→ A)× 2EdgeF

)
→
(
(L→ A)× 2EdgeF

)
with

H(D, G) 7→ (D′, G′)

denotes one iteration of the while loop of the generic algorithm, where (D, G)

is updated to (D′, G′) according to the body of the loop. It is apparent that H is
extensive, i.e., ∀(D, G) ∈ (L→ A)× 2EdgeF . (D, G) v H(D, G).

We define ⊥H to be the value of (D, G) after the initialization, i.e., after exe-
cuting lines 2 to 5, and Hn(⊥H) to be the value of (D, G) after the nth iteration of
the while loop. We extend the definition of H such that Hn+1(⊥H) = Hn(⊥H)

if the loop terminated after the nth iteration of the while loop. Clearly, the se-
quence (Hn(⊥H))n∈N0 is an ascending chain. It eventually stabilizes, i.e., there
is an n0 such that ∀n ≥ n0. Hn(⊥H) = Hn0(⊥H), as (L → A)× 2EdgeF satisfies
the ACC. The termination of the generic algorithm immediately follows.

Initial values ιa of F are defined as ιstart for a = start and ⊥ for a 6= start.
For the given program we can assume that the type of the function F is

(
(L →

A)× 2EdgeF
)
→
(
(L→ A)× 2EdgeF

)
. We denote by µιstart the least fixed point

of F for the initial value ιstart. We will now show that the generic algorithm
computes µιstart .

It can easily be seen that

∀(D, G) ∈
(
(L→ A)× 2EdgeF

)
→
(
(L→ A)× 2EdgeF

)
.

H(D, G) v F(D, G) (3.7)

From ⊥H v µιstart and from (3.7) we have ∀n ∈ N0. Hn(⊥H) v µιstart by in-
duction on n. Now it remains to show that Hn0(⊥H) is µιstart . We prove this by
contradiction. We assume that Hn0(⊥H) @ µιstart . It follows that Hn0(⊥H) 6=
F(Hn0(⊥H)). From (3.7) we have

Hn0(⊥H) = Hn0+1(⊥H) = H(Hn0(⊥H)) v F(Hn0(⊥H)).

77

Chapter 3 Control Flow Analysis for Low Level Programs

Therefore Hn0(⊥H) @ F(Hn0(⊥H)). This means that there is an address ` ∈ L,
such that G + resolve`(D(`)), or an edge (`′, stmt, `) ∈ G, such that D(`) 6w
p̂ostJstmtK (D(`′)) t ι`. This is a contradiction to the assumption that the algo-
rithm terminated at least after the n0th iteration of the loop.

�

3.5.2 Worklist Algorithm

The worklist algorithm shown in Figure 3.3 is a specific strategy for executing
the generic algorithm, where the set of edges G ⊆ Edge is not kept as a variable,
but implicit in the abstract values of the program locations. The initialization
of D (lines 3, 4) is the same as in the generic algorithm. The algorithm main-
tains a worklist W, where it stores the edges for which data flow facts should be
propagated later on. Every time the algorithm updates the information D(`) at
a location a (lines 4, 9), it calls the resolve operator (lines 5, 10) to calculate the
edges which should be added to W. In every iteration of the main loop (lines 6 to
10) the algorithm non-deterministically picks an edge from the worklist by call-
ing choose and then shortens the worklist by calling rest (line 7). Subsequently,
it checks for the received edge (`′, stmt, `), if an update is necessary (line 8), and
in the case it is, it proceeds as already described.

From the correctness of the generic algorithm (3.2) we obtain the correctness
of the worklist algorithm:

Corollary 3.8 Given an IL program, where {s ∈ State | s(pc) = start} ⊆ γ(ιstart),
the worklist control flow reconstruction algorithm (as defined in Figure 3.3) computes
a sound overapproximation of the CFA and terminates in finite time. Furthermore it
returns the most precise result with respect to the precision of the abstract domain A
regardless of the non-deterministic choices made in line 7.

The worklist terminates because A satisfies the ascending chain condition. As
the generic algorithm can always simulate the updates made by the worklist
algorithm, the result computed by the worklist algorithm is always less or equal

78

3.5 Algorithms for Control Flow Reconstruction

Input: an IL program, its set of addresses L including start, and the
abstract domain (L,⊥,>,u,t,v, p̂ost, êval, γ) together with an
initial value ιstart

Output: a control flow automaton
1 begin
2 forall the ` ∈ L \ {start} do
3 D(`) := ⊥;

4 D(start) := ιstart;
5 W := resolvestart(D(start));
6 while W 6= ∅ do
7 ((`′, stmt, `), W) := (choose(W), rest(W));
8 if p̂ostJstmtK(D(`′)) 6v D(`) then
9 D(`) := p̂ostJstmtK(D(`′)) t D(`);

10 W := add(W, resolve`(D(`)));

11 G := ∅;
12 forall the ` ∈ L do
13 G := G ∪ resolve`(D(`));

14 return G;
15 end

Figure 3.3: Worklist Control Flow Reconstruction Algorithm.

79

Chapter 3 Control Flow Analysis for Low Level Programs

to the result of the generic algorithm, which is the least fixed point of F. On the
other hand it can be shown that if the algorithm terminates, the result is greater
or equal to the least fixed point of F.

Proof We denote by the function

W : (L→ A)→ (L→ A)

with
W(D) 7→ (D′)

one iteration of the while loop of the worklist algorithm, where D is updated
to D′ according to the body of the loop. It is obvious that W is extensive, i.e.,
∀D ∈ L → A. D v W(D). Analogously to the proof for the generic algorithm,
we define ⊥H to be the value of D after the initialization, i.e., after executing
lines 3 and 4. We define Wn(⊥H) to be the value of D after the nth iteration of
the while loop, and we define Wn+1(⊥H) to be Wn(⊥H), if the loop terminated
after the nth iteration of the while loop. Clearly the sequence (Wn(⊥H))N0 is
an ascending chain. It eventually stabilizes, i.e., there is an n0 such that ∀n ≥
n0. Wn(⊥H) = Wn0(⊥H), as L → A satisfies the ACC (see the proof of Theo-
rem 3.7). The termination of the worklist algorithm immediately follows.

We denote the result of the worklist algorithm Wn0(⊥H) by DF. We have(
DF,

⋃
`∈L

resolve`(DF(`))

)
v µιstart ,

as the lines 9 and 10 of the worklist algorithm can be simulated by the generic al-
gorithm by choosing the respective necessary updates (see proof of Theorem 3.7
for µιstart).

It remains to show that
(

DF,
⋃
`∈L resolve`(DF(`))

)
w µιstart . We will show

that
DF(start) w ιstart (3.8)

80

3.5 Algorithms for Control Flow Reconstruction

and

∀`′ ∈ L.∀(`′, stmt, `) ∈ resolve`′(DF(`′)). DF(`) w p̂ostJstmtK(DF(`′)).
(3.9)

Having established (3.8) and (3.9), we know that
(

DF,
⋃
`∈L resolve`(DF(`))

)
is a solution to the constraint system (3.1) and (3.2) and therefore greater than
the least fixed point µιstart . We have (3.8) by the fact that ⊥H(start) = ιstart,
and by the fact that W is extensive, as Wn0(⊥H) = DF. Now we prove (3.9) by
contradiction. We assume that there are `′, ` ∈ L, such that

(`′, stmt, `) ∈ resolve`′(DF(`′)),

and
DF(`) 6w p̂ostJstmtK(DF(`′)).

We proceed by case distinction on the last time that DF(`′) was updated:

• line 3. There is no edge (`′, stmt, `) ∈ resolvea′(DF(`′)) as DF(`′) = ⊥H

holds throughout the execution of the algorithm, and therefore resolve
never adds an edge. This is a contradiction.

• line 4. `′ is start. DF(`) w p̂ostJstmtK(D(start)) is ensured in a later
step as the edge (start, stmt, `) ∈ resolvestart(DF(start)) is added to the
worklist (line 5), and remains invariant after that, as DF(start) does not
change until termination. This leads to a contradiction.

• line 9. DF(`) w p̂ostJstmtK(D(`′)) is ensured in a later step as the con-
trol flow edge (`′, stmt, `) ∈ resolve`′(DF(`′)) is added to the worklist
(line 10), and remains invariant after that as DF(`′) does not change until
termination. This leads to a contradiction. �

Note that if the abstract domain A does not satisfy the ascending chain con-
dition, it is possible to enhance the algorithms by using a widening operator to

81

Chapter 3 Control Flow Analysis for Low Level Programs

guarantee termination of the analysis. Such an algorithm would achieve a valid
overapproximation of the CFA but lose the best approximation result stated in
the above theorems, due to the imprecision induced by widening.

3.6 Related Work

The literature contains a number of practical approaches to disassembly and
control flow reconstruction, which do not try to formulate a generalizable strat-
egy. Schwarz et al. [123] describe a technique that uses an improved linear sweep
disassembly algorithm, using relocation information to avoid misinterpreting
data in a code segment. Subsequently, they run a recursive traversal algorithm
on each function and compare results, but no attempt is made to recover from
mismatching disassembly results. Harris and Miller [66] rely on identifying
compiler idioms to detect procedures in the binary and to resolve indirect jumps
introduced by jump tables. Cifuentes and van Emmerik [35] present a method to
analyze jump tables by backward slicing through register assignments and com-
puting compound target expressions for the indirect jumps. These compound
expressions are then matched against three compiler-specific patterns of imple-
menting switch statements. In the framework proposed in this chapter, jump
tables do not need special treatment. Indirect branches through jump tables can
be resolved using an interval analysis as data flow domain, for example (see
Section 5.3.4).

There have also been several proposals for more general frameworks for recon-
structing the control flow from binaries [50, 78, 133]. For integrating data flow
analysis with disassembly, De Sutter et al. [50] suggested to initially connect all
indirect jumps to a virtual unknown node for indirect jumps, which effectively
overapproximates the control flow graph. In an iterative process, they use con-
stant propagation on the overapproximated graph to show infeasibility of most
overapproximated edges, which can then be removed. This approach is inspired
by the solution of Chang et al. [27] to the similar problem of treating unknown

82

3.6 Related Work

1: x := 5
2: if jmp x
3: x := x− 2
4: if jmp 2
5: halt

1

2

3

4

5

>

1

2

3

4

5

Figure 3.4: Adding an unknown node (>) with unlabeled edges leads to addi-
tional possible values for x at the indirect jump.

external library functions in the analysis of C programs. Figure 3.4 exempli-
fies De Sutter et al.’s method by applying it to a snippet of pseudo-assembly
code. The middle of the figure depicts the corresponding initial control flow
graph, where the indirect jump at line 2 is connected to the unknown node (>).
There are outgoing edges from the unknown node to all statements, since every
address is a potential jump target in the general case of stripped code without
relocation information. Calculating the possible values of x, it can be seen that
x can in fact take the concrete values 5, 3, 1,−1, . . . at the entry of line 2 in the
overapproximated program. Thus a program analysis operating on this initial
overapproximation can only conclude that addresses 2 and 4 are no targets of
the jump, but cannot remove the overapproximated edges to addresses 1 and 3.
The final CFG reconstructed by this method, shown on the right of Figure 3.4,
consequently contains the infeasible edges (2,1) and (2,3) (drawn in bold).

In other related work, Theiling [133] proposes a bottom-up disassembly strat-
egy, which assumes architectures where all jump targets can be computed di-
rectly form the instruction, effectively disallowing indirect jumps. For extend-
ing his method to indirect jumps, he suggests the use of an overapproximating
unknown node in the manner of Chang et al. [27] and De Sutter et al.[50].

83

Chapter 3 Control Flow Analysis for Low Level Programs

Kästner and Wilhelm [78] describe a top-down strategy for structuring exe-
cutables into procedures and basic blocks. For this to work, they require that
code areas of procedures must not overlap, that there must be no data between
or inside procedures, and that explicit labels for all possible targets of indirect
jumps are present. Compilers, however, commonly generate procedures with
overlapping entry and exit points, even if the control flow graphs of the proce-
dures are completely separate, so their top-down structuring approach cannot
be used in general without specific assumptions about the compiler or target
architecture.

Vigna and Kruegel et al. [85, 135] attack the problem of disassembling obfus-
cated executables, as a direct response to the anti-disassembly techniques pro-
posed by Linn and Debray [90]. Their approach is a refinement of the recursive
traversal approach as used in disassemblers such as IDA Pro: After using heuris-
tics to detect function entry points, they start recursive traversal on all addresses
in a function to obtain a first, fragmented control flow graph containing a large
amount of invalid instructions. After this phase, they consolidate the CFG by re-
moving overlapping instructions and favoring instructions connected by branch
instructions. Statistical techniques for identifying likely code are then used to fill
up “gaps” of unreached instructions. The approach is not targeted at extracting
a connected control flow graph for a sound static analysis, as the heuristic meth-
ods are likely to generate a disconnected control flow graph. Limitations are that
procedures cannot be intertwined and that in the final CFG, instructions cannot
overlap; both issues are challenges identified in Section 1.2 and are handled by
the framework proposed in this dissertation.

The most well known and successful approach to static analysis of executables
to date is the CodeSurfer/x86 project [6, 7, 117]. For disassembly, they rely on the
capabilities of the commercial disassembler IDA Pro. Generally, they assume a
standard compilation model for binaries, which guarantees correct disassembly
by IDA Pro. They acknowledge that IDA Pro’s output can be incomplete and do
connect missing edges from indirect calls, yet they lack a complete loop to disas-
semble previously unprocessed branch targets. Furthermore, IDA Pro is prone

84

3.6 Related Work

not only to omitting control flow edges but also to producing false positives of
code that is never executed. Thus the soundness of CodeSurfer/x86 is severely
impacted by errors introduced by the heuristics based disassembly strategy of
IDA Pro.

Although operating at higher language levels, the decompilation approach of
Chang et al. [26] is similar in spirit to the framework presented in this chapter.
They connect abstract interpreters operating at different language levels, exe-
cuting them simultaneously. One can interpret the combined data flow analysis
and control flow reconstruction as separate decompilation stages of their frame-
work. The framework presented in this chapter does not restrict the execution
order, however, but allows nondeterministic fixed point iteration over both anal-
yses while still maintaining that the resulting CFA is optimal.

Finally, Nanda et al. [105] follow a different route and use a mixture of static
analysis and dynamic binary instrumentation to disassemble Windows executa-
bles. They use a recursive traversal algorithm to statically disassemble as much
code as possible, and instrument each indirect branch, including the call sites for
user callbacks in system libraries. The instrumentation code then dynamically
calculates the branch target and invokes the disassembly algorithm on the target
if it has not yet been disassembled. They do not support overlapping instruc-
tions and always include both branches of conditional jumps in the disassem-
bly regardless of whether or not the branches are feasible at runtime, although
these limitations appear to be merely design decisions for maintaining a low
runtime overhead. The approach is targeted at supplying dynamic instrumen-
tation frameworks with additional information. Since only a single execution is
monitored, it does not necessarily disassemble the entire program. The authors
report a coverage of disassembled instructions of about 69% to 96%.

85

Chapter 4

Bounded Address Tracking

This chapter introduces Bounded Address Tracking, an abstract domain specifi-
cally targeted at unstructured low level code lacking types. It is designed to
serve as data flow domain in the control flow reconstruction framework pre-
sented in Chapter 3, and it is the principal abstract domain used for control flow
reconstruction and verification in the device driver experiments of Section 6.1.
It’s high precision yields both high quality control flow automata and little false
positives for static assertion verification on moderately sized programs.

Bounded Address Tracking makes no distinction between pointers and inte-
gers, as both are indistinguishable in low level code. It uses a memory model
based on separate memory regions, and represents values of registers and mem-
ory locations as consisting of a region identifier and an offset. This allows to
support address arithmetic, which is pervasive in binaries. As low level code
does not have a reliable concept of procedures, Bounded Address Tracking per-
forms a path sensitive analysis to achieve context sensitivity in procedures, if
they exist. The precise modeling of memory locations even allows to handle the
modification of return addresses on the stack. Path sensitivity further avoids the
creation of summary regions in the heap and subsequent weak updates, which
leads to a very precise analysis of heap structures. To limit path explosion and
ensure practical feasibility, Bounded Address Tracking uses an adjustable bound
on the number of values that are tracked per variable per location.

87

Chapter 4 Bounded Address Tracking

4.1 Precision Requirements

The translation of guarded jumps to labeled edges requires a precise evaluation
of the target expression. Otherwise, the resolve operator (see Section 3.4.1) will
introduce a spurious control flow edge for every address that is not a concrete
jump target but still contained in the overapproximation of the evaluated target
expression. Spurious control flow edges are likely to point into code or data
sections never meant to be executed, which initiates a cascading loss of precision.
If resolve has no information at all about the target values of a guarded jump,
a sound overapproximation of the control flow has to include edges from the
jump to all program locations in the entire memory, even those outside the set
of valid program locations. In the implicitly extended program mapping that
introduced assert 01 statements in illegal code locations (see Section 2.5), each of
the edges would lead to a spurious assertion failure.

To avoid overapproximation and spurious control flow, jump target expres-
sions need to be precisely evaluated and the result has to be represented with
its concrete value. Only a concrete value can uniquely identify an address in
the program. Even interval representations can be too coarse; for instance, if
an indirect branch can jump to the addresses 1000 and 1007 at runtime, a static
interval analysis can only approximate the target address to be in the interval
[1000; 1007]. Using this approximation to build the control flow graph would
introduce six spurious edges that add additional imprecision to the analysis.
The use of strided intervals as in VSA [7] does not provide a general solution
to this problem. In the example, both addresses can be precisely represented as
the interval [1000; 1007] with a stride of 8. In presence of a third value that is not
aligned with the stride, such as 1011 in the example, the strided interval widens
to [1000; 1011] with stride 4. This includes the overapproximated address 1003
that can again contain invalid code. Since x86 code is not aligned, it is very un-
likely that a strided interval is able to precisely represent a set of branch targets
without including additional values.

88

4.1 Precision Requirements

Apart from the precision requirements for control flow reconstruction, pointer
reasoning in machine code also requires an exact representation of address val-
ues. Address arithmetic is pervasive, so offsets within the stack or the heap have
to be precisely tracked. Furthermore, the lack of types prohibits a limited over-
approximation of points-to sets for unknown values. In regular source based
static analysis, an unknown pointer may only point to all variables of a match-
ing type. In untyped assembly code, every value can be dereferenced and an
unknown pointer may point to any location in the entire memory, including
code. A write access to an unknown pointer could thus write to any address
in the entire memory. Overapproximating the effects of such an update again
causes a cascading loss of precision. Since return values and function pointers
are stored in memory, this information loss in memory also affects control flow
information. Therefore, it is apparent that an analysis has to precisely represent
address values if it is to reason about the semantics of machine code.

A third issue in executables is that procedures are not necessarily a reliable
concept (see Section 1.2). Therefore, the classical call strings approach is un-
sound on executables. In procedures that are called from different call sites, it
is important to keep calling contexts separate, however. Since return instruc-
tions are just translated to indirect jumps, the return address is just another ad-
dress value stored on the stack. If contexts are not kept separate, these addresses
would be merged and the information that procedures (usually) return to the
location from which they were called, would be lost. Path sensitivity subsumes
context sensitivity, but does not require assumptions about procedure layout.

Bounded Address Tracking was designed with these challenges in mind. It rep-
resents the values in registers and memory locations with a symbolic base ad-
dress and a concrete offset, thus supporting the kind of pointer arithmetic found
in binaries. Path sensitivity allows it to separate calling contexts of procedures
and to uniquely identify allocated heap memory. Scalability is ensured using
bounds on the number of variable values. Context sensitivity in the analysis of
procedures is therefore maintained as long as the number of call sites lies below
the configurable value bound.

89

Chapter 4 Bounded Address Tracking

4.2 Partitioned Memory Model

The virtual memory available to a process is organized as one large, continuous
array. The stack, the heap, and global variables all share this address space,
which is reflected in the rules AssignMem and Alloc of the concrete IL semantics
(Table 2.1). On the other hand, there is usually an implicit partitioning of the
memory into logical regions.

Memory Regions. When a process is loaded, the runtime environment (the OS
and standard libraries) sets up the stack and the heap in the virtual memory. The
initial absolute positions of the stack and heap base are not guaranteed to be of a
particular value, but the system sets them up in such a way that they do not inter-
fere, and it installs buffer pages between them to detect overflows. Furthermore,
correct implementations of malloc and similar API functions guarantee that al-
located memory blocks in the heap do not overlap, but again give no guarantees
about the absolute address of allocated blocks. A static analysis reasoning about
stack and heap faces the problem that it cannot fix the base addresses to a certain
absolute value but has to represent all possible base addresses symbolically.

It is reasonable to assume that stack and allocated heap regions are usually
disjoint, however, due to the OS and standard library implementations. This
assumption is the basis of the partitioned memory model, which abstracts the
flat model of a single address space part of the concrete semantics in Chapter 2.
The partitioned memory model is based on a set R of separate memory regions:

• The global region, containing code, global variables, and static data,

• a single stack, holding local variables, parameters, and return addresses at
runtime,

• and an infinite number of heap regions, which correspond to memory
blocks allocated using malloc.

Thus, every memory address is abstracted to a pair from R × I∗, consisting
of a memory region identifier, which serves as a symbolic base address, and a

90

4.2 Partitioned Memory Model

bit-vector offset. Pointers into the global region are denoted by (global, offset);
the stack pointer is assumed to be initialized to a value of (stack, 0). Subsequent
modifications to the stack pointer then change the offset, but let it stay within
the stack region. In x86, the stack grows downward, so the stack pointer will
always have negative offsets within valid code. The number of heap regions is
unbounded, and a fresh heap region is created by any call tomalloc. A fresh iden-
tifier tags the individual heap region, creating pointers such as (allocid, offset).

Soundness. This memory model presents an abstraction of the flat memory
model, since it treats the initial base addresses of the stack and allocated heap
regions symbolically. The relative positions of regions to each other are ignored.
If for whatever reason the partitioned memory model is too imprecise for the
kind of code being analyzed, it can emulate the flat memory model by initializ-
ing the stack pointer and any newly allocated memory to addresses in the global
memory region.

For a fully sound abstraction of the flat memory model, semantics that use
the partitioned memory model have to check bounds on each memory access,
i.e., compare the offset with the size of the allocated heap region, the maximum
stack size, or the address range available to global variables and static data. If the
bound is exceeded, all other memory regions may be written to, since the relative
position of regions is unknown. Note that the abstract semantics of Bounded
Address Tracking, which will be defined in Section 4.4, does not perform this
bounds check – therefore it is sound only under the assumption that no pointers
escape their allocated memory bounds.

Integer Values. In machine code, there is no difference between integers and
pointers, all variables that are of the architecture-defined address bit length can
be interpreted as both. This ambiguity can be represented within the parti-
tioned memory model by interpreting the global address space as integer values.
Global addresses start at virtual address 0 and are not computed relative to some
allocated base address, thus they are indistinguishable from integer values. This

91

Chapter 4 Bounded Address Tracking

interpretation follows the same idea as the memory model of VSA [7]. A par-
ticular difference between the memory models is that the partitioned memory
model, unlike VSA, does not make the assumption of isolated procedure stack
frames, but uses a single region for the entire stack instead.

Note that for ease of explanation the following assumes an architecture with
an address width of 32 bits; by substituting this value, the domain of Bounded
Address Tracking can be adapted to different architectures, such as 16 or 64 bit.

4.3 Abstract Domain of Address Valuations

Bounded Address Tracking maintains states as partial variable valuations, i.e.,
abstract states store abstract addresses for a subset of the registers and memory
locations used by the program.

Abstract Addresses. The domain of abstract values abstracts from the parti-
tioned model of memory addresses of the form (region, offset). It provides a
mechanism for abstracting multiple addresses with a single, less precise abstract
value for representing coarse information or the complete lack of it. Integers of
bit lengths other than the address width can be added to the same domain as
well, to provide a unified view of the values dealt with in the analysis. To this
end, the set of addresses in the partitioned memory model is abstracted to a
complete lattice of abstract addresses and integer values. The lattice includes
a top address element (>R,>32) representing a memory address with the un-
known region >R and unknown offset >32. Furthermore, the abstract memory
model provides an intermediate level of pointers with known region but un-
known offset of the form (region,>32), which represents the join of different
addresses within the same region (e.g., (r, 432) t (r, 832) = (r,>32)). Integers of
a bit length other than the address bit length use the global region only, as they
cannot point to valid memory locations. There is still an abstract value with an
unknown region such as (>R,>8) for every other bit length, however, which is

92

4.3 Abstract Domain of Address Valuations

>

(>R,>8) · · · (>R,>32) · · ·

(global,>8) (global,>32) (stack,>32) (alloc1,>32) (alloc2,>32) · · ·
...

...

(global, 28) · · · (global, 432) · · ·(stack,−832)(stack,−732) · · · (alloc2, 032) · · ·

⊥

Figure 4.1: Diagram of the lattice of abstract addresses and values Â.

used for representing fragments or extensions of address width pointers. This is
necessary for sound overapproximation of splitting and recombination of point-
ers, which would otherwise incorrectly yield an unknown pointer into the global
region (see Section 4.6.1).

For a maximum supported bit length of m, the set of abstract memory ad-
dresses Â is thus defined as

Â = {>} ∪ ({>R, global} ×>1,...,m) ∪ ({global} × I1,...,m) ∪ (R× (I32 ∪>32)),

where R denotes the set of memory regions and>1,...,m the set of top elements for
all supported bit lengths. The resulting infinite lattice for Â is sketched in Fig-
ure 4.1. Note that the global region contains infinitely many abstract addresses,
due to infinitely many possible bit lengths; moreover, there are infinitely many
addresses with the architecture dependent address bit length, as there is an un-
bounded number of heap regions.

Abstract States. The analysis overapproximates the set of reachable concrete
states of the program by calculating a fixpoint over the abstract states. For each

93

Chapter 4 Bounded Address Tracking

reachable program location, it computes multiple abstract states that approxi-
mate the different path contexts for this location. Using Â as value domain for
registers and memory locations, the abstract states are the Cartesian product of
the individual valuations. The set of abstract states is defined as

Ŝ = Loc× V̂al× Ŝtore,

consisting of the current program counter value, an abstract register valuation
V̂al := V → Â and an abstract store Ŝtore := Â→ Â.

Initial State. The initial state at the entry point of the executable is initial-
ized to (pc → start, {esp → (stack, 032)}, {(stack, 032) → end, (global, `0) →
d0), . . . , (global, `n)→ dn)}), `0, . . . , `n ∈ L, d0, . . . , dn ∈ I8 :

• The program counter is initialized to the IL program’s starting location
start.

• The register valuation is initialized to hold a valid initial abstract value for
the stack pointer esp. The stack grows downward in x86, thus subsequent
stack accesses will operate on negative indices in the stack region.

• The stack in the abstract store is initialized to hold the single value end,
which points to a halt statement for catching control flow after the pro-
gram’s main procedure returns. Initially esp points to this value, thus the
IL statements corresponding to the top-level return instruction read this
address from the stack and jumps to it. Usually programs return control
to the operating system when terminating, so this artificial halt statement
provides a way to actually end the execution path.

• The global memory region is initialized to hold the static data present in
the executable, e.g., initial values for global variables, integer or string con-
stants. In the description of the initial state, `0, . . . , `n denote static data
locations in the executable and d0, . . . , dn their respective values.

94

4.4 Abstract Semantics

• All registers and memory locations not shown in the initial state are im-
plicitly set to (>R,>32). This includes all offsets in all newly allocated heap
regions.

The initial state provides a minimal execution environment for any program by
setting up a valid stack, and installing a halt statement for catching returning
control flow from the main function. A practical implementation of an analysis
environment that sets up the initial state through a prologue of IL statements,
instead of explicitly fixing it, is discussed in Section 5.1.4.

An efficient implementation of abstract states cannot explicitly store all static
data of the executable in the abstract state. Instead, the static data is initialized
lazily. On a write access to a static data location (necessarily an address in the
global memory region), the abstract state is updated with the new value for that
memory location. On a read access that is determined to point into the part of
the global region that is occupied by static data, it is first checked whether a
value for that location is explicitly present in the abstract state. If so, this value
is returned, otherwise the initial static value is read from the executable directly.

4.4 Abstract Semantics

The abstract semantics of Bounded Address Tracking is given using the bound-
ing operator bound :: Ŝ → (V ∪ Â) → Ŝ (defined in Table 4.1), the abstract
evaluation operator êval :: Exp → Ŝ → Â (defined in Tables 4.2 and 4.3), and
the abstract transfer function p̂ost :: Stmt → Ŝ → 2Ŝ from statements and ab-
stract states to sets of abstract states (defined in Table 4.4). A worklist algorithm
extended to apply and adapt precision information [18] (here, bounds over the
number of abstract values) enforces the bound for all registers and memory lo-
cations before calculating the abstract transfer function. The formalization of
the analysis within the Jakstab framework, which uses the worklist algorithm
from [18], is discussed in Section 5.3.2.

95

Chapter 4 Bounded Address Tracking

For notational convenience, this chapter uses a slightly different notation, but
Bounded Address Tracking can instantiate the control flow reconstruction frame-
work given in Chapter 3 as the abstract data flow domain (Ŝ,⊥Ŝ,>Ŝ,uŜ,tŜ,
vŜ, p̃ost, ẽval, γ). For this purpose, the lattice and its operations are defined as
the product of the lattices for all variable mappings. The concretization function
γ maps abstract states to sets of concrete states by enumerating all combinations
of possible base addresses for abstract memory regions and all possible concrete
values for unknown offsets or regions. The abstract post operator p̃ost is a com-
position of p̂ost and bound applied to all variables. The abstract evaluation
operator ẽval follows the definition of Chapter 3 and evaluates expressions to
sets of integers by concretizing the result of êval. It is defined as

ẽvalJeK(a) := γÂ(êvalJeK(a)),

where γÂ :: Â→ Z concretizes a single abstract address:

γÂ
(
(r, o)

)
:=

o if r = global

Z otherwise

4.4.1 Bounded Path Sensitivity

Bounded Address Tracking is path sensitive, i.e., it does not join abstract states
when control flow combines from different paths, e.g., after a conditional block,
a loop, or at the beginning of a procedure. This way, calling contexts are kept
separate, the relations between variable values are maintained, and the abstract
states remain very precise. The very fine grained separation of contexts by paths
even allows to precisely model and handle modifications of return addresses on
the stack. Such behavior is not captured by classical call string approaches.

Due to the path explosion problem, path sensitivity in general is prohibitively
expensive, and it is necessary to take some precautions to make the analysis
feasible. To ensure termination and speed up the computation of a fixpoint, the

96

4.4 Abstract Semantics

Bound
bound(s, xb) := let(r, o) = s(x)

s if ‖{s(x) | s ∈ {s′|s′(pc) = `}}‖ ≤ k

s[x 7→ (>R,>b)] if ‖{r′ | ∃s′ ∈ {s′′|s′′(pc) = `}.(r′, o′) = s′(x)}‖ > k

s[x 7→ (r,>b)] otherwise

Table 4.1: Definition of the bound operator.

analysis uses bounds on the number of values tracked per variable (hence the
name Bounded Address Tracking).

In particular, the analysis bounds the number of abstract values per variable
per location that it explicitly tracks, and, if the bound is exceeded, it performs
widening in two steps. Before calculating abstract successors for a state s at lo-
cation `, the analysis checks for each register or memory location x whether the
total number of unique abstract values for x in all reached states at ` exceeds the
configured bound k. The number of values for x is thus collected over all paths
that pass through `. If the number is below the bound, the variable remains
unchanged (see the first case of of the Bound rule in Table 4.1). If the bound is
exceeded, the value of x in state s is widened to (r,>b), where b is the bit length
of x and r is the memory region of x’s value in s (third case). This generalized
value represents all values within the memory region r. If this generalization
does not include all possible values for x at `, more values will keep accumulat-
ing which have a memory region other than r. If at some point also the number
of unique memory regions exceeds the bound k, then x is widened to (>R,>32)

in s (second case of Bound). This value overapproximates all possible values for
x, thus no additional values for x can accumulate, and the analysis eventually
terminates.

97

Chapter 4 Bounded Address Tracking

0

1

2

3

4

5

x := alloc(10032)

b := x

m32[x] := 032

x := x + 1

assume x ≥ b+10032

as
su

m
e

x
<

b+
10

0 3
2

` # x # b x
0 1 1 (>R,>32)

1 1 1 (alloc1, 032)

2 6 1 (alloc1, 032)

3 6 1 (alloc1,>32), . . . , (alloc0,>32)

4 6 1 (alloc1,>32), . . . , (alloc0,>32)

5 1 1 (alloc1,>32)

x, # b: Number of unique values for x and b.
x: Abstract addresses for x in states at `.

Figure 4.2: Example code fragment and final state space.

Consider the example code on the left of Figure 4.2, represented as a con-
trol flow automaton, which uses the variables x and b and allocates and writes
to a heap region. The single initial abstract state is (0, {x → (>R,>32), b →
(>R,>32)}, ∅), so there is one unique value per variable. Assume the bound k
is set to 5. After creating a new abstract heap region and copying the pointer
into b, the analysis enumerates states in the loop at locations 2, 3, 4 while the
edge (4, assume x ≥ b + 10032, 5) remains infeasible. When the state (2, {x →
(global, 532), b → (global, 032)}, {(alloc1, 032) → (global, 032), . . .}) is reached, the
analysis counts 6 unique values for x in location 2, and widens x to (alloc1,>32).
This causes a weak update to alloc1 once x is dereferenced. At the end of the
loop, both assume edges are now feasible, and the analysis reaches a fixpoint.

4.4.2 Abstract Expression Evaluation

In Bounded Address Tracking, the abstract values (global, n) for global addresses
are basically absolute integers and equal to their concrete values. Thus regular

98

4.4 Abstract Semantics

Unary Operator
êvalJ�eK(s) := let(r, o) := êvalJeK(s){

(global, evalJ�oK(∅)) if r = global

(>R,>32) otherwise

Binary Operator
êvalJe1 � e2K(s) := let(r1, o1) := êvalJe1K(s), (r2, o2) := êvalJe2K(s)

(global, evalJo1 � o2K(∅)) if � not + and r1 = r2 = global

(r1, o1 + o2) if � is + and r2 = global

(r2, o1 + o2) if � is + and r1 = global

(>R,>32) otherwise

Nondet
êvalJnondet(b)K(s) := (>R,>b)

Conditional
êvalJe1? e2 : e3K(s) := let(r, o) := êvalJe1K(s)

êvalJe2K(s) if (r, o) = (global, 11)

êvalJe3K(s) if (r, o) = (global, 01)

êvalJe2K(s) t êvalJe3K(s) otherwise

Memory
êvalJmb[e]K(s) := let(r, o) := êvalJeK(s){

s(m̂b[r, o]) if r 6=>R ∧ o 6=>32

(>R,>b) otherwise

Table 4.2: Definition of the abstract evaluation operator for Bounded Address
Tracking.

99

Chapter 4 Bounded Address Tracking

arithmetic and bit shifting expressions over them can simply be evaluated con-
cretely over the offset parts of the values, as shown in the first cases of Unary
Operator and Binary Operator in Table 4.2. Invocation of the concrete eval on
an empty state denotes that no variables are assigned for evaluation. Addresses
for other, non-global regions (r, n) have no statically known absolute value but
correspond to the address r + n, where r is symbolic and n is a concrete value.
Therefore, additions of positive or negative integers (i.e., global memory ad-
dresses) to the offset of such abstract values can be precisely modeled (second
and third case of Binary Operator). If pointers to different regions are added or
pointers are involved in other types of expressions (including comparisons), the
resulting abstract value is safely overapproximated to (>R,>32) (second case of
Unary Operator and fourth case of Binary Operator).

Explicit nondeterminism in expressions evaluates to the top element of the
requested bit length, e.g.., (>R,>32) for nondet(32) (rule Nondet). Conditional
expressions are evaluated checking whether the conditional guard evaluates to
true (11) or false (01), and return the corresponding subexpression in one of these
cases (case 1 and 2 of rule Conditional). If the conditional guard does not evalu-
ate to a definite value, i.e., (>R,>1) or (global,>1), the values of both expressions
are joined with respect to the lattice of abstract addresses (case 3).

Memory reads are interpreted by overapproximating those values from the
abstract store that the abstract pointer may point to. In particular, this means
that if the region and offset are known (region not >R and offset not >32), a
single memory location is read (first case of rule Memory). If either is not pre-
cisely known, all possible values that are pointed to have to be overapproxi-
mated. Since there is no type information available to limit the points-to set, all
values in the same region (or all regions, respectively) have to be overapprox-
imated. This is safely done by using the top element for the bit length of the
memory read (second case).

The semantics for the bit-level operations that change the bit length of a value
are shown in Table 4.3. Their interpretation follows the implementation of the
unary and binary operators, i.e., the results are determined concretely if the ab-

100

4.4 Abstract Semantics

Sign Extension

êvalJsgnex(w, e)K(s) := let(r, ob) := êvalJeK(s)

{
(r, ow) if r = global

(>R,>w) otherwise

Zero Extension
êvalJzeroex(w, e)K(s) := let(r, ob) := êvalJeK(s)

(r, ow) if r = global∧ ob ≥ 0b

(r, (2b + o)w) if r = global∧ ob < 0b

(>R,>w) otherwise

Bit Extraction
êvalJe@[v : w]K(s) := let(r, o) := êvalJeK(s){

(r, evalJo@[v : w]K(∅)) if r = global

(>R,>w−v+1) otherwise

Table 4.3: Abstract semantics of bit length casting operations in Bounded Ad-
dress Tracking.

stract values are absolute integers. If they are not, a top element with the correct
bit length is returned. Sign extension does not perform any operation other than
change the bit length of the variable, as IL variables are interpreted as signed by
default. Zero extension, on the other hand, adds only leading zeros even to neg-
ative values, which is reflected in the second case of rule Zero Extension. Bit
extraction returns a bit-level substring of the offset value, if the memory region
of the abstract value is global.

4.4.3 Abstract Post Operator

The semantics of abstract statements are given by the abstract post operator de-
fined in Table 4.4. A register assignment (rule AssignReg) is interpreted con-

101

Chapter 4 Bounded Address Tracking

AssignReg

p̂ostJ[v := e]``′K(s) :=
{

s[v 7→ êvalJeK(s)][pc 7→ `′]
}

AssignMem

p̂ostJ[m[e1] := e2]
`
`′K(s) := let(r, o) := êvalJe1K(s), a := êvalJe2K(s),

s′ := s[pc 7→ `′]
{s′[m̂[r, o] 7→ a]} if r 6=>R ∧ o 6=>32

{s′[m̂[r, i] 7→ s(m̂[r, i]) t a][. . .] for all i ∈ I32} if r 6=>R ∧ o=>32

{s′[m̂[r, i] 7→ s(m̂[j, i]) t a][. . .] for all j ∈ R, i ∈ I32} if r=>R ∧ o=>32

Alloc
p̂ostJ[alloc v, e]``′K(s) :=

{
s[v 7→ (rs, 0)][pc 7→ `′],

where rs is a fresh
region identifier

}
Free

p̂ostJ[free v]``′K(s) := let(r, o) := s(v), s′ := s[pc 7→ a]{
∅ (raise error) if r ∈ {>R, global} ∨ o 6= 032

{s′[m̂[r, i] 7→ (>R,>32)][. . .] for all i ∈ I∗} otherwise

Assume

p̂ostJ[assume e]``′K(s) :=

{
∅ if êvalJeK(s) = (global, 01)

{s[pc 7→ `′]} otherwise

Assert

p̂ostJ[assert e]``′K(s) :=

{
∅ (raise error) if êvalJeK(s) = (global, 01)

{s[pc 7→ `′]} otherwise

Havoc

p̂ostJ[havoc vb<u n]``′K(s) :=
{

s[v 7→ (global, i)][pc 7→ `′] | i <u n, i ∈ Ib
}

Table 4.4: Definition of the abstract post operator for Bounded Address Tracking.

102

4.4 Abstract Semantics

cretely and replaces an existing mapping in the new abstract state. Rule Assign-
Mem defines the abstract semantics for an assignment to a memory location, i.e.,
an assignment to a dereferenced pointer. There are three cases to consider de-
pending on the abstract value of the pointer ((r, o) in the rule).

Strong update: If both region and offset of the pointer are known, a strong up-
date can be performed (first case in rule AssignMem). A strong update
allows to replace the old value of the memory location in the abstract store
of the new state.

Weak update to a single region: If only the region of the pointer is known and
the offset has the abstract value >32, a weak update to the known region
only can be performed (second case of AssignMem). Since the precise offset
is not known, all memory locations in the region of the abstract store may
hold the new value after the update, so the existing values have to be joined
with the new value (with respect to the lattice of abstract addresses shown
in Figure 4.1).

Weak update to all regions: If neither the region nor the offset of the pointer is
known, all memory locations in all regions have to be joined with the new
value (case 3 of AssignMem). This can be caused by the dereference of an
uninitialized pointer or the allocation of memory in a loop whose bound
exceeds the value bound.

In practice, the state becomes too imprecise to continue analysis after a weak up-
date to all regions. In particular, all return addresses stored on the stack will be
affected by the weak update as well. Therefore, Jakstab signals an error for writ-
ing to an unknown (possibly null) pointer in this case, but can also be configured
to either continue the analysis or ignore the weak update.

Besides the fact that region and offset have to be known, there is another pre-
requisite for performing strong updates: The region of the pointer must not be
a summary region, i.e., on all execution paths, the abstract region corresponds
only to one concrete memory region [28]. The analysis never creates summary

103

Chapter 4 Bounded Address Tracking

regions, which can be seen from the Alloc rule in Table 4.4. New regions are
unique to the abstract state in which they were created. The only way the ab-
stract region value of a pointer can represent multiple regions is if the number
of regions for the pointer exceeds the value bound k and is joined to >R. In this
case, a weak update to all regions will be performed when the pointer is deref-
erenced, which is a sound abstraction for an assignment to a summary region.

The abstract post operator for free sets all memory locations in the freed re-
gion to (>R,>32). It signals an error if (i) the pointer being dereferenced points
to the global region or the unknown region >R or (ii) if the pointer does not
point to the base (offset 0) of a valid memory region (first case of rule Free). The
abstract semantics for assume and assert are similar to the concrete case and only
adapted to the lattice of abstract addresses. The abstract post for havoc is the
only implementation that returns a non-singleton set: It splits abstract states by
enumerating absolute integer values of the bit length suitable for the given reg-
ister v up to the supplied value n. The use of havoc allows to precisely represent
the outcome of nondeterministic choice; this will be discussed in detail in the
following section.

4.5 Abstraction of Nondeterminism

Abstraction by approximating multiple concrete program states with abstract
states is the key to achieving scalability of an analysis. In static analysis, abstrac-
tion is introduced by choosing a suitable abstract domain for the program to be
analyzed. In software model checking, an iterative refinement finds a suitable
abstraction by adding new predicates over program variables. Control flow re-
construction from binaries requires concrete values for jump targets, however,
and the lack of types requires precise values for pointer offsets. Therefore, ex-
isting mechanisms for abstraction are not well-suited for a precise analysis of
binaries. Still, abstraction has to be introduced to make the analysis feasible.

104

4.5 Abstraction of Nondeterminism

Even though Bounded Address Tracking resembles software model checking
in the way that states from different paths are not merged, it allows registers and
memory locations to be unknown, i.e., set to (>R,>b). This is especially useful
when representing nondeterminism in the execution environment (e.g., input,
unspecified behavior, etc.). Setting parts of the state to unknown avoids the ex-
ponential enumeration of possible value combinations. When designing the en-
vironment model for a program, the analyst often has a good idea of what parts
need to be precisely modeled and where multiple states can be safely combined.

For instance, the standard calling convention in Windows that is used for most
API functions specifies that upon return the contents of registers eax, ecx, and
edx is undefined. Enumerating all possible values for the registers in a full ex-
plicit state exploration would require creating 296 states. By abstracting the non-
deterministic choice of values to the value (>R,>32) for all three registers, only
a single abstract state is required. It is extremely unlikely to produce a spurious
counterexample from this abstraction, since code should not depend on unde-
fined side effects.

On the other hand, there are occasions when abstracting to (>R,>32) increases
the requirements for the abstract domain. Consider the following code, which
is a C language stub for the Windows API function IoCreateSymbolicLink:

int choice = nondet32; mov eax, nondet32

if (choice == 0) neg eax

return STATUS_SUCCESS; sbb eax, eax

else and eax, 0xC0000001

return STATUS_UNSUCCESSFUL; ret

Here, the compiler replaced the conditional statement with a bitwise opera-
tion. Bounded Address Tracking can only deduce that eax is (>R,>32) at the
return statement, even though it actually can be only either 0 or 0xC0000001.
This is where the usefulness of the havoc statement becomes apparent; it causes
the analysis to generate multiple successor states with different integer values
for a register (Havoc in Table 4.4). Using havoc, the first line of the stub can be

105

Chapter 4 Bounded Address Tracking

rewritten as int choice; havoc(choice, 1). This causes the analysis to create
two states; one with eax set to 0, and one with eax set to 1. From these states it
can easily compute the two possible states at the return statement: In the first
case eax becomes 0, in the second case 0xC0000001.

4.6 Implementation Issues

When implementing an analysis such as Bounded Address Tracking for the x86
architecture, there are two problems that require particular attention: First, the
fact that memory accesses do not have to be aligned and can partially overwrite
previously stored information, and second, the aliasing of registers of different
bit lengths (e.g., eax, ax, ah, al). This section elaborates on the choices that
were made in Jakstab for implementing the analysis for the x86.

4.6.1 Representing Byte-Addressable Abstract Memory

For the ease of exposition, the semantics of store accesses in Table 4.2 and Ta-
ble 4.4 is simplified by assuming that values of arbitrary bit length can be stored
at a single store address and no memory locations overlap. In the x86 architec-
ture, however, memory accesses can manipulate several bytes at once (up to 16
bytes on a Pentium III using SIMD extensions). Therefore, stored values at more
than one location can be affected by a single write access, and values from multi-
ple addresses can be requested by a single read access. A straightforward idea to
implement the byte-addressable memory of the x86 architecture is to store only
a single byte at each address, i.e., to break down memory reads and writes into
single byte accesses that are split and combined using bit masking expressions.
This approach works well with integer values, which can be easily manipulated
on the bit-level, but is impractical when reading or writing pointers (i.e., values
with a region other than global). Pointers have no single concrete value, so the
outcome of bit masking operations would have to be stored symbolically.

106

4.6 Implementation Issues

The implementation in Jakstab uses a different approach. If an abstract value
v with a length of b bytes is assigned to a memory location a, the entire value
v is mapped to location a. Additionally, references to a are stored at locations
a + 1, . . . , a + b − 1 that record the fact that these locations are occupied. For
example, assume that the four-byte value v = (stack,−432), a pointer to a mem-
ory location on the stack, is assigned to the offset 2 within the allocated heap
region alloc0. The mapping 2 7→ (stack,−432) is stored in the hash map for re-
gion alloc0, and references to offset 2 are stored in the map for offsets 3, 4, and 5.
In a sequential representation, the map then becomes:

v 2 2 2 v = (stack,−432)

alloc0 0 1 2 3 4 5 6 7 8

Now, if the four-byte integer value w = (global, 0x20C0FFEE) is assigned to offset
4 in the same heap region, the reference to 2 stored at 4 will show that the byte
is already occupied by another value. The existing mapping of 2 7→ v and its
references thus become invalidated and every byte is set to the unknown value
(>R,>8) (empty cells in the diagram):

w 4 4 4 w = (global, 0x20C0FFEE32)

alloc0 0 1 2 3 4 5 6 7 8

The stored value is an integer, so it is possible to calculate the results of par-
tial read accesses to it by using bit masking. For instance, if a two-byte memory
read from offset 6 is interpreted, the implementation reads the reference to offset
4 from the hash map. The read is two bytes off and x86 is a little-endian archi-
tecture, so the implementation then extracts the two most significant bytes from
w and returns (global, 0x20C016).

Representing the abstract store explicitly in hash maps is very memory inten-
sive if every abstract state is to have its own exclusive copy of the maps. There-
fore the implementation uses a lazy copying scheme with reference counting,
such that an abstract state shares most to all hash maps with its predecessor.
When a memory location is updated, the reference count tells whether the state

107

Chapter 4 Bounded Address Tracking

already has a unique copy of the map. If not, the map for that particular mem-
ory region is copied, the reference in the abstract state is redirected to the new
map, and the reference counter of the old map is decreased.

4.6.2 Register Aliasing

A similar problem arises for the 32 bit registers in the x86 architecture (e.g., eax,
ebx). For each of these, there is a 16 bit register (e.g., ax, bx) that occupies the two
least significant bytes and can be used as an operand for 16 bit instructions. For
the general purpose registers, the 16 bit part is again split into two 8 bit registers,
which allow to individually address the two least significant bytes as, e.g., ah (ax
high byte) and al (ax low byte). A simple straightforward approach is again to
translate accesses to the aliasing registers by bit masking the corresponding 32
bit registers. This suffers from the same imprecisions as in the memory repre-
sentation, however. Consider the following code:

mov eax, dword ptr [ebx]

mov ah, 0xEE

movzx ecx, ah

The code moves an unknown value from memory into eax, overwrites the 8 bit
register ah by a constant, and then stores the contents ah in the 32 bit register
ecx by zero extension. It is easy to see that at the end of this code, ecx contains
the value 0xEE. A translation to the IL using bit manipulation operations yields
the following code:

eax := m32[ebx]

eax@[8 : 15] := 0xEE

ecx := zeroex(32, eax@[8 : 15])

Now, if this code is analyzed by Bounded Address Tracking, it can only establish
that the abstract value for eax after the update in the second line stays at to

108

4.6 Implementation Issues

(>R,>32), since bits 0 to 7 and 16 to 31 of eax are unknown. Therefore, nothing
is known for ecx in the end.

The implementation in Jakstab uses a defensive strategy for resolving register
aliasing that attempts to keep values for subregisters intact. On an update to the
subregister s of a larger register r with the new value v, the current value of r
and the value v are checked:

1. If both are integer values (global, ·), then the update is performed as in
the naive bit extraction strategy described above. Since both values are
absolute integers, the result can be easily determined.

2. If the value of r is not an integer (i.e., a pointer or >32), then r is removed
from the state (i.e., set to (>R,>32)), and a new mapping s 7→ v is added
to Val.

3. If only the value of r is an integer, then this value is split up between the
other subregisters besides s using bit masking. Then a new mapping for
each of these subregisters and the mapping s 7→ v are added to Val.

Whenever a register is written to (e.g., eax), all subregisters (e.g., ax, ah, al) are
removed from the state again. Read accesses to a subregister first look for a value
of the subregister itself in Val. If none is stored, the parent registers are checked
for an integer value from which the relevant bits can be extracted. Finally, if also
no parent register is stored, the smaller registers (if any) are checked for integer
values that can be combined to a larger value.

Using this strategy, the code from the above example is analyzed as follows,
with register valuations shown on the right:

eax := m32[ebx] ∅

ah := 0xEE (ah 7→ 0xEE)

ecx := zeroex(32, ah) (ah 7→ 0xEE, ecx 7→ 0x000000EE)

109

Chapter 4 Bounded Address Tracking

Since the mapping for ah is stored even though the value of eax is unknown, the
analysis can now deduce the correct value for ecx at the end.

4.7 Related Work

Bounded Address Tracking is inspired by the explicit analysis of Beyer et al. [18],
which tracks concrete values of integer variables of C programs up to a certain
bound. In their work, explicit analysis is used for cheap enumeration of values
for a variable before it is modeled by the computationally more expensive pred-
icate abstraction. Bounded model checking for software, as implemented in the
C Bounded Model Checker (CBMC) [41], bears some resemblance to the approach
presented here. CBMC models variables with bit precision and supports pointer
arithmetic. In bounded model checking, loops are unrolled up to a certain depth,
so absence of assertion failures is only proven up to a given search depth. In
Bounded Address Tracking, loops are unrolled until a fixpoint is reached, while
termination (with a sound result) is ensured by the bound on the number of
values.

Traditionally, heap-aware program analysis tries to prove invariants over the
shape of heap structures [121, 122]. Usually, heap objects are assumed to be
records that are explicitly accessed, and pointer arithmetic is ignored or overap-
proximated. A number of source analyses do handle pointer arithmetic, how-
ever. The static assertion checker for low level C code Havoc [29] uses a memory
model related to Bounded Address Tracking. In their model, every pointer value
consists of two components, an object reference and an offset. Except for the un-
availability of types in executable analysis, identifiers for memory regions are
similar as object references. Separation [23, 119] is another formalism able to
deal with pointer arithmetic. It’s model of the heap deals with numeric pointers
and offsets, and assumes that different heap objects never overlap (similar to the
partitioned memory model in Section 4.2).

110

4.7 Related Work

As pointed out already, the CodeSurfer/x86 project is most closely related
to this work and faces similar challenges. The major differences in approach are
that CodeSurfer/x86 is implemented on top of the heuristics based IDA Pro, and
that its analyses (in particular Value Set Analysis (VSA) [7]) are based on more
“classic” static analyses such as interval analysis. VSA is path insensitive and
thus requires the use of call strings for reasonable results. Call strings, however,
are tied to the concept of procedures (which is unreliable in x86 assembly) and
assume the existence of a separate call stack. This issue lead to the design of the
path sensitive analysis presented in this dissertation.

Balakrishnan and Reps generally rely on summary nodes for representing
heap objects. They reduce the number of weak updates by introducing a recency
abstraction [9] of heap nodes. Their approach extends the common paradigm of
using one summary node per allocation site (i.e., address of the call to malloc),
by splitting this summary node into (i) the region most recently allocated in the
current execution path and (ii) a summary node for the remaining regions. In
contrast, Bounded Address Tracking instead explicitly discriminates allocated
regions up to the value bound.

Implementation-wise, CodeSurfer/x86 uses a similar strategy as Jakstab to
reduce the memory usage of abstract states. Instead of lazy copy-on-write hash
maps, they use applicative dictionaries, i.e., AVL trees that copy only the mod-
ified subtree on an update [104]. Applicative trees have even lower memory re-
quirements; they incur a higher runtime cost of O(n log n) for read and write
accesses compared to O(n) for hash maps, however.

111

Chapter 5

Disassembly and Static Analysis

with Jakstab

This chapter presents the architecture and ideas behind Jakstab, a modular and
extensible disassembly and static analysis platform for binaries. Jakstab has been
developed in Java (about 40 KLOC at the time of writing) and implements the
general framework for control flow reconstruction from binaries introduced in
Chapter 3. Statements are retrieved from an executable by disassembling in-
structions on demand and translating them into the IL. By exploring the reach-
able states of the program, Jakstab can verify assertions while reconstructing
the control flow graph on the fly. Similar to the theoretical framework, it is not
fixed in its choice of abstract domains; it includes an implementation of Bounded
Address Tracking, but also allows to combine various other analyses from the
literature and provides a clean API to add new ones.

5.1 General Architecture

Jakstab uses a disassembly dictionary and an instruction specification to map
machine code bytes to IL statements, which in turn are used to compute the
abstract transfer relation between abstract states. This section details the archi-
tectural concepts of Jakstab and its analysis machinery.

113

Chapter 5 Disassembly and Static Analysis with Jakstab

read decode

abstr. interpr.check

concretize

to offset translate

resolve

Executable

Environment

Binary Code Instruction

IL

CFA EdgesStates

PC Value

Specification

Figure 5.1: Unified disassembly and analysis architecture.

5.1.1 Single Pass Disassembly and Analysis

Existing approaches to static analysis of binary executables rely on a preprocess-
ing step performed by a dedicated, heuristics based disassembler such as IDA
Pro [70] to produce a plain text assembly listing [7, 31, 34, 95]. This decouples
the analysis infrastructure from disassembly itself and makes it difficult to use
results from static analysis towards improving the control flow graph. If the
analysis builds on an external disassembler, soundness can only be guaranteed
with respect to the (error prone) output produced by the disassembler.

To overcome this problem, Chapter 3 introduced a framework for control flow
reconstruction, which in the following will be cast into an architecture for sin-
gle pass disassembly and analysis of binaries. It does not discriminate between
disassembly and analysis stages but integrates both into the same analysis loop
(Figure 5.1). The integrative design of the analysis architecture is based on the
following key insight: Tracing the control flow of a binary in order to decode
the executed instructions is already an analysis of reachable locations. This is
non-trivial in presence of indirect control-flow and should not be left to heuris-
tic algorithms.

114

5.1 General Architecture

Using the entry point of the executable as the initial program counter (pc)
value, Jakstab reads and decodes one instruction at a time from the file offset that
corresponds to pc. A disassembly logic determines how many bytes to process
until the instruction including all operands is completely read. The instruction
is then translated into one or more IL statements according to an architecture-
dependent instruction definition file. In the next step, the IL statements are re-
solved into a set of CFA edges by invoking the resolve operator (see Section 3.4.1)
with data flow information provided by the abstract domain. Most statements
yield only a single edge to their fall-through successor; guarded jumps can trans-
late to multiple edges depending on the abstract values for the branch condition
and target expression. For each of these CFA edges, Jakstab calculates the set
of successor states by interpreting the abstract semantics of the edge’s IL state-
ment. The abstract semantics are given either by a single abstract domain or by
composing multiple domains.

If one of the new abstract states is an error state with respect to the properties
being checked (if any), Jakstab outputs an abstract error trace leading to the state.
Due to abstraction, error traces are not necessarily feasible. If no property is vi-
olated, the analysis continues: Jakstab concretizes program counter values from
the new abstract states, and reads the next instructions to be interpreted from
the file offsets corresponding to the new pc values. The process continues until
all reachable states have been explored or a property violation was found. To
guarantee termination in presence of loops, the abstract domain may have to in-
clude a widening operator, such as the enforcement of value bounds in Bounded
Address Tracking (see Section 4.4).

Overall, this amounts to abstract interpretation of a system comprised of the
processor registers and virtual memory, the actual binary program, and the
CPU’s instruction fetch. For performance reasons, instructions are read directly
from the file instead of preloading the file to memory. This is no conceptual
limitation, however, and by preloading the binary to memory and decoding in-
structions from the abstract memory representation, the same approach can be
used for analyzing self-modifying code.

115

Chapter 5 Disassembly and Static Analysis with Jakstab

choose

abstr. interpr.

check
CFA EdgesStatesSpecification

Figure 5.2: Secondary analysis performed on the reconstructed CFA.

5.1.2 Secondary Post-Reconstruction Analysis

The architecture described above includes property checking as part of the con-
trol flow reconstruction. Indeed, since the abstract domain for control flow re-
construction has to be very precise and the analysis performs an exhaustive state
space exploration for the given abstract domain, property checking can often be
performed as a “byproduct” of control flow reconstruction. Property checking
then simply amounts to finding error states within the program’s abstract state
space. Still, it is possible to run another, unrelated analysis on the reconstructed
control flow automaton, completely separate from control flow reconstruction
(see Figure 5.2). In case the second analysis cannot contribute to control flow
reconstruction (i.e., it does not assist in calculating precise addresses) this sep-
aration of concerns can improve performance. Furthermore, the control flow
graph can be transformed between both analysis phases, as will be discussed in
Section 5.4.

Besides property checking, such a second analysis phase can be used for other,
classic program analysis scenarios such as detecting dead code, or identifying
dependencies between program parts. A practical use of this second phase im-
plemented in Jakstab was its use as a platform for teaching a program analysis
lab course during two terms at Technische Universität Darmstadt [71]. The sec-
ond analysis phase invoked program analyses developed by students without
interfering with control flow reconstruction. Intermediate CFA simplification
and expression substitution can remove many of the difficulties associated with
analyzing binaries and allow students to work with binaries similarly as they
would with higher level programs.

116

5.1 General Architecture

5.1.3 Program Representation

Jakstab uses three different concepts to represent and reason about programs:
Instructions, IL statements, and CFA edges. Each belongs to a particular stage
of the disassembly and analysis process shown in Figure 5.1. On the lowest
level, there is a mapping from addresses to machine-dependent assembly in-
structions. These are translated into the lower intermediate representation, a
mapping from labels to IL statements. By determining the control flow targets
of these statements, the analysis constructs the control flow automaton of the
program, which forms the highest level of program representation. All three
concepts are present while the analysis runs. Figure 5.3 shows a piece of assem-
bly code (from the example in Section 3.2) in all three representations. Assembly
instructions are obtained by disassembly from the binary, IL statements are gen-
erated from translating the assembly instructions, and CFA edges are resolved
by analyzing IL statements.

Instructions. The disassembly logic decodes one or more bytes at the location
pointed to by the program counter into one assembly instruction. Every instruc-
tion is stored in the instruction map from virtual addresses to instruction objects.
Jakstab represents instructions as compound objects of several types for a par-
ticular architecture (e.g., move instructions, jump instructions) consisting of an
opcode and a list of operands that again are of some architecture dependent type
(e.g., register, memory operand).

The class hierarchy of instructions in Jakstab is based on OpenJDK’s [111] dis-
assembler architecture, which resides in the sun.jvm.hotspot.asm package. It
is capable of supporting multiple architectures by offering abstract classes for
common instruction types which are extended by implementation for particu-
lar architectures. Currently, only the x86 architecture is supported in Jakstab,
but other architectures can be integrated by adding the corresponding imple-
mentation classes and a translation table from opcodes to instruction objects.

117

Chapter 5 Disassembly and Static Analysis with Jakstab

0x1000 cmp eax, 0

0x1003 jz 0x100D

0x1005 mov eax, 0x1001

0x100A jmp 0x1015

0x100C retn

0x100D mov eax, 0x1018

0x1012 sub eax, 5

0x1015 sub eax, 1

0x1018 jmp eax

(i)

1000:0: CF := (eax <u 0)
1000:1: OF := 0
1000:2: SF := (eax < 0)
1000:3: ZF := (eax = 0)
1003:0: if ZF jmp 0x100D
1005:0: eax := 0x1001
100A:0: if 1 jmp 0x1015
100C:0: halt

100D:0: eax := 0x1018
1012:0: eax := eax− 5
1015:0: eax := eax− 1
1018:0: if 1 jmp eax

(ii)

1000:0

1000:1

1000:2

1000:3

1003:0

1005:0 100D:0

100A:0 1012:0

1015:0

1018:0

100C:0

CF := (eax <u 0)

OF := 0

SF := (eax < 0)

ZF := (eax = 0)

assume ZFassume ¬ZF

eax := 0x1001

assume 1

eax := 0x1018

eax := eax− 5

eax := eax− 1

as
su

m
e

ea
x
=

0x
10

00

assume eax = 0x100C

assume eax = 0x1012

(iii)

Figure 5.3: The three levels of program representation in Jakstab: (i) map from
virtual addresses to assembly instructions, (ii) map from labels to IL
statements, (iii) control flow automaton. Flag updates after both sub

instructions have been left out for simplicity.

118

5.1 General Architecture

Statements. Using an SSL definition file (see Section 2.6), every assembly in-
struction is decoded into a sequence of basic IL statements (register and mem-
ory assignments, guarded jumps, halt). The SSL file contains parameterized
templates of IL statements for the available opcodes. For each disassembled
instruction, Jakstab looks up the corresponding template for the instruction’s
opcode and instantiates the template with the instruction operands. If the pro-
gram counter is referenced in the template, it is instantiated with the address
immediately following the current instruction, which is the runtime value of
the program counter on x86 architectures.

A single instruction at a single virtual address can translate to multiple IL
statements, thus a single virtual address is split into multiple labels: A label con-
sists of a virtual address combined with an index that uniquely identifies a state-
ment in the program. All statements that have been translated from instructions
are stored in a global statement map from labels to IL statements. The statement
map does not store the resolved assume statements but only the original guarded
jumps.

Control Flow Edges. The advantage of a CFA over the classical control flow
graph (CFG) is that vertices naturally correspond to states at a particular pro-
gram location, with edges representing state transformers. Furthermore, a CFG
only allows one statement (or basic block) per location, while the CFA can have
different state transformers originating from the same location. Thus the CFA
lends itself particularly well towards control flow reconstruction, where a jump
is transformed into multiple assume statements.

CFA edges are produced by resolving IL statements (see Section 3.4.1) and
are stored as a set during control flow reconstruction. After the initial control
flow reconstruction finishes, the set forms the CFA and can be used for a sec-
ondary analysis as described in Section 5.1.2. The resolved CFA contains no
jump statements but fully encodes the semantics of the IL code derived from the
executable.

119

Chapter 5 Disassembly and Static Analysis with Jakstab

“kernel32.dll”

IMAGE_IMPORT_DESCRIPTOR

OriginalFirstThunk

TimeDateStamp

ForwarderChain

Name

FirstThunk
IAT

call dword ptr [0x10CEC]

IMAGE_IMPORT_BY_NAME

42

“ReadFileEx”

IMAGE_IMPORT_DESCRIPTOR

OriginalFirstThunk

TimeDateStamp

IMAGE_IMPORT_BY_NAME

48

“ExitProcess”

⋮

Figure 5.4: Dynamic linking in Windows PE files. The loader overwrites the
Import Address Table (IAT) with the correct function entry points
(adapted from [112]).

5.1.4 Execution Environment

An executable relies on the operating system for several critical initialization
functions, which have to be simulated by a static analysis tool in order to cor-
rectly predict the actual runtime behavior.

Dynamic Linking. The theoretical framework treats procedure calls (call in-
structions) in the same way as unstructured gotos (jmp instructions). Regular
Windows programs contain calls to routines imported from dynamic link li-
braries (DLLs), however, and the analysis framework is required to handle them.
In Windows PE files, these calls are encoded as indirect calls to a specific entry
in the file’s import address table (IAT). When the executable is run, the loader of
the operating system parses a list of import descriptors (one for each library)
referenced from the executable header [112]. Each entry references the name of
a library and contains a pointer into the IAT (Figure 5.4). The loader then finds
the library by its name and maps it into the address space of the new process,

120

5.1 General Architecture

before processing the section of the IAT the import descriptor points to. The IAT
serves two purposes: Initially, it contains relative file pointers to structures of the
type IMAGE IMPORT BY NAME, which hold the name of the function to import
and a hint for the loader on where to start a binary search in the referenced li-
brary. The loader reads each structure and replaces the IAT pointer to it with
a pointer to the runtime address of the imported function in the library. After
loading completes, each pointer in the IAT points to the runtime address of the
function it imports and the IAT takes up its second duty of redirecting function
calls. Calls to imported library functions indirectly reference the entries in the
IAT and therefore transfer control to the correct function entry point.

For the static analysis to correctly handle imports, the interaction of the exe-
cutable with the execution environment provided by the operating system has to
be modeled, i.e., the functionality of the loader has to be integrated into the anal-
ysis. Before the first instructions are disassembled, Jakstab thus finds the import
table, reads the names of referenced routines and libraries, and enters valid ad-
dresses for the imported routines. There are four different ways the imports can
be resolved:

1. If the imported DLL is explicitly specified by the user to be analyzed in
conjunction with the main executable, the imported routines are resolved
to the corresponding exported function entry points in the DLL. This is the
most precise way of handling imports, but including all DLLs belonging to
the Windows API leads to an unacceptable increase in size of the analyzed
code.

2. It is possible to replace the referenced DLL by an abstracted, simplified
version. To this end, the user creates a new library exporting the func-
tions to be abstracted, and loads it alongside the main executable. Jakstab
then enters the addresses of the replacement routines into the import table.
This method is used for abstracting many library functions of the Windows
driver interface in the case study conducted in Section 6.1.

121

Chapter 5 Disassembly and Static Analysis with Jakstab

3. If neither the actual implementation nor a user provided stub are avail-
able, Jakstab can parse a module definition file for the referenced library to
extract at least the calling conventions of the imported routines and auto-
matically create a stub implementation of IL statements in the statement
map. The stub attempts to overapproximate the routine’s behavior by as-
signing nondet to the registers eax, ecx, and edx, which all of Windows’
calling conventions allow to be overwritten by procedures [100]. If the call-
ing convention specifies that the parameters are cleared off the stack by the
callee, the stub increases the stack pointer accordingly and then returns.

Jakstab uses an additional annotation in module definition files that spec-
ifies whether the procedure ever returns. For instance, the Windows API
function ExitProcess never returns to the calling process but terminates it,
so a call to it can be followed by illegal code. An analysis has to be aware
that execution does not continue after non-returning functions, so that it
does not create spurious control flow. Jakstab adds an explicit halt state-
ment to non-returning stubs for non-returning functions.

4. Finally, if no matching module definition is available or the procedure is
missing from it, Jakstab generates a default stub that assumes the stan-
dard C calling convention cdecl in which the caller clears parameters off
the stack [100], since the number of parameters is unknown. If the as-
sumption is wrong and the actual calling convention demands the callee
to clean the stack, a subsequent return of the calling procedure will likely
use the wrong return address from the stack as the stack pointer is now
misaligned. Therefore, Jakstab issues a warning whenever it has to create
a default stub for imported routines.

Prologue and Epilogue. Another implicit interaction between an executable
and the execution environment consists of how the executable’s main method
is actually invoked. Section 4.3 already briefly mentioned how the initial state
for the analysis has to be set up: If a main function does not explicitly exit using

122

5.2 Modular Implementation of Different Analyses

ExitProcess, it simply returns to the operating system. To create a closed program
that terminates with an explicit halt statement, a short prologue sequence of IL
statements is used as starting point for the analysis:

DF := 01

esp := esp− 432

m32[esp] := EPILOGUE ADDRESS

if 11 jmp ENTRY POINT

The first line sets up the value of 0 for the direction flag DF, which is guaranteed
by the operating system and specifies the direction of string operations. The
second and third lines then push the address of a short epilogue consisting of
only a halt statement onto the stack, and the fourth line jumps to the entry point
of the executable being analyzed. Prologue and epilogue are inserted into the
statement map before analysis starts.

5.2 Modular Implementation of Different Analyses

Implementing a static analysis such that it is correct and fulfills the needs of the
specific problem at hand is a time consuming process, so an analysis framework
should maximize the reusability of individual abstract domains and analyses.
The design of the Jakstab framework was thus driven by the idea of allowing to
specify abstract domains individually and leaving the composition of individual
domains largely to the framework.

Abstract interpretation already defines ways to build combinations of existing
abstract domains [47], but the Configurable Program Analysis (CPA) framework
defined by Beyer et al. [17] offers a particularly clean separation of concerns and
easy modification of existing analyses. This section gives a brief introduction to
the CPA framework and explains how it was adapted for use with Jakstab.

123

Chapter 5 Disassembly and Static Analysis with Jakstab

5.2.1 Configurable Program Analysis

In [17, 18], the authors introduce Configurable Program Analysis (CPA), a frame-
work for systematically configuring and combining analyses from the areas of
software model checking and static program analysis. Using a standardized in-
terface, it allows easy combination of different analyses into a composite abstract
domain and analysis. The CPA interface factors crucial aspects, which define the
nature of an analysis, into a number of operators that can be easily redefined to
create analyses of different precision.

CPA uses a standard, generic worklist algorithm that invokes the operators
to compute the set of reachable states, which is shown in Figure 5.5. Abstract
states are associated with precision elements that contain dynamic configuration
information for the domain, e.g., which parts of the abstract state are modeled
at which granularity. The algorithm maintains a set reached of abstract states
with precision that have been explored so far and a worklist of abstract states
with precision to explore in the next iterations. An individual analysis D =

(L, γ, Π, ,merge, stop, prec) is defined by the following components (slightly
adapted from [18]):

• A join semilattice L = 〈D,>,⊥,v,t〉 of abstract states, with the set of
elements D, an upper bound (top element)> ∈ D, a lower bound (bottom
element) ⊥ ∈ D, the partial order v ⊆ D × D, and the join operation
t :: D× D → D.

• A concretization function γ :: D → 2S from abstract states to sets S of
concrete states, which characterizes the connection between the abstract
and concrete semantics. For correct CPA formalizations Beyer et al. [18]
require that

1. γ(>) = S and γ(⊥) = ∅

2. ∀a, a′ ∈ D. a v a′ =⇒ γ(a) ⊆ γ(a′).

Note that this definition assumes that the concrete semantics corresponds
to the forward (reachability) collecting semantics. CPA is not limited to

124

5.2 Modular Implementation of Different Analyses

Input: A configurable program analysis with dynamic precision
adjustment D = (D, Π, ,merge, stop, prec), an initial abstract state
a0 ∈ A with precision π0 ∈ Π, where A denotes the set of elements
of the semilattice of D, and a control flow automaton given as the set
of edges G.

Output: A set of reachable abstract states.
Data: A set reached of elements of A×Π, a set worklist of elements of A×Π.

1 worklist := {(a0, π0)};
2 reached := {(a0, π0)};
3 while worklist 6= ∅ do
4 pop (a, π) from worklist;
5 // Adjust the precision.
6 (â, π̂) = prec(a, π, reached);

7 foreach a′ with ∃g ∈ G. â
g
 (a′, π̂) do

8 // Combine with existing abstract states.
9 foreach (a′′, π′′) ∈ reached do

10 anew := merge(a′, a′′, π̂);
11 if anew 6= a′′ then
12 worklist := (worklist∪ {(anew, π̂)}) \ {(a′′, π′′)};
13 reached := (reached∪ {(anew, π̂)}) \ {(a′′, π′′)};

14 // Add new abstract state?
15 if ¬stop(a′, {a | (a, ·) ∈ reached}, π̂) then
16 worklist := worklist∪ {(a′, π̂)};
17 reached := reached∪ {(a′, π̂)};

18 return {a|(a, ·) ∈ reached};

Figure 5.5: The CPA+ algorithm for determining the set of reachable states,
adapted from [18].

125

Chapter 5 Disassembly and Static Analysis with Jakstab

describing analyses that calculate reachability properties, however. In fact,
forward expression substitution and live variable analysis will be formal-
ized as CPAs in Section 5.3. In a slight deviation from the CPA framework,
γ will be described as mapping to the collecting semantics for the property
of interest instead of the collecting semantics of reachable states in these
cases.

• A set of precisions Π, which store information about the granularity with
which states are tracked and by which analysis. Not all analyses make use
of precision refinement; where it is not used, the set of precisions can be
chosen to be a singleton set containing only a null element, i.e., Π = {null}.

• The abstract transfer relation ⊆ (D× G× D×Π) encodes the abstract
semantics for the domain. It relates each state to a set of successor states
with precision that are reachable via a given edge of the CFA. The CFA is
represented as the set of edges G.

• The precision adjustment function prec :: (D × Π × 2D×Π) 7→ (D × Π)

manages which parts of the state are modeled and by which subanalysis.
For an abstract state, a precision, and a set of reached states and precisions,
it calculates an adjusted abstract state and precision.

• The merge operator is invoked after calculating the successors of a state in
the transfer relation. It attempts to merge the new state with states that
have been reached before, and can be used to implement joining analyses
in the spirit of classical data flow algorithms.

• The operator stop decides whether the new state adds information in com-
parison to the previously reached states and should be added to the work-
list to be explored further.

When combining different analyses, the operators for the composite analysis can
be created from the implementations of the individual analyses. For a simple di-
rect product of domains, the composite operators can call the individual imple-

126

5.2 Modular Implementation of Different Analyses

mentation independent of each other [17]. The direct product domain can be too
imprecise [42, 47]; improved combinations of domains such as the reduced prod-
uct [47] or the logical product [64] offer higher precision by exchanging informa-
tion between domains. To facilitate such improved combinations, the composite
transfer relation can be modified to invoke a strengthening function for each com-
ponent of the successor state that incorporates information from other compo-
nents. Thus each analysis can incorporate information from other abstract states
to achieve improved precision. Besides using the interface for strengthening, the
composite operators can be overridden for full flexibility.

5.2.2 Modifications to the Worklist Algorithm

Jakstab’s analysis architecture is designed in terms of the CPA framework and
allows to define analyses providing only the CPA operators. Its analysis algo-
rithm (see Figure 5.6) modifies the CPA worklist algorithm to accommodate the
needs of control flow reconstruction.

Resolve Operator. The original CPA algorithm takes an abstract state from the
worklist and enumerates all its successor states directly reachable via all feasible
CFA edges. Therefore, the algorithm implicitly assumes the CFA to be available,
which is not true for binaries before control flow reconstruction. The modified
Jakstab algorithm, on the other hand, is able to reconstruct the CFA at runtime
using transformer factories.

The modified algorithm no longer takes the CFA as input, but instead uses the
(implicit) statement map from program locations (addresses) to IL statements.
The map is implemented by disassembling yet unexplored instructions on the
fly, translating them to IL statements, and storing them in the map as described
in Section 5.1. In Line 7, the Jakstab algorithm calls the transformer factory func-
tion getTransformers, which produces edges from the current abstract state and
the statement map. For each of these new edges, the algorithm computes the
set of successor states with respect to the transfer relation. Any new edges are

127

Chapter 5 Disassembly and Static Analysis with Jakstab

Input: A CPA D = (D, Π, ,merge, stop, prec), an initial abstract state
a0 ∈ A with precision π0 ∈ Π, where A denotes the set of elements
of the semilattice of D, and a map P from locations to statements.

Output: A control flow automaton for P and the set of reachable states.
Data: A map reached from program locations to elements of A×Π, a set

worklist of elements of A×Π.
1 worklist := {(a0, π0)};
2 reached(a0(pc)) := {(a0, π0)};
3 while worklist 6= ∅ do
4 pop (a, π) from worklist;
5 // Adjust the precision.
6 (â, π̂) = prec(a, π, reached);
7 foreach g ∈ getTransformers(â, P) do
8 foreach a′ with â

g
 (a′, π̂) do

9 G := G ∪ g;
10 // Combine with existing abstract states.
11 foreach (a′′, π′′) ∈ reached do
12 anew := merge(a′, a′′, π̂);
13 if anew 6= a′′ then
14 worklist := (worklist∪ {(anew, π̂)}) \ {(a′′, π′′)};
15 reached := (reached∪ {(anew, π̂)}) \ {(a′′, π′′)};

16 // Add new abstract state?
17 if ¬stop(a′, {a | (a, ·) ∈ reached}, π̂) then
18 worklist := worklist∪ {(a′, π̂)};
19 reached := reached∪ {(a′, π̂)};

20 return G, {a|(a, ·) ∈ reached};

Figure 5.6: The Jakstab algorithm, a control flow resolving version of the
CPA+ algorithm.

128

5.2 Modular Implementation of Different Analyses

stored in the set G, thus growing the control flow graph in the same manner as
the generic worklist algorithm (see Figure 3.3). After the algorithm finishes, the
CFA is returned as part of the algorithm’s output.

The algorithm can be configured by modifying the transformer factory, i.e.,
the getTransformers method. For control flow reconstruction, the method has
to implement the resolve operator (see Section 3.4.1) to translate IL statements
to edges. To this end, Jakstab’s interface for abstract states requires an evalu-
ation method (the abstract êval operator in the framework), which concretizes
the results of abstractly evaluating jump expressions. The implementations of a
resolving getTransformers method can call this evaluation method for retrieving
sets of possible concrete target addresses. Heuristics based approaches, as will
be discussed in Section 5.2.3, can be implemented through using transformer
factories that make optimistic assumptions about control flow if the data flow
information is imprecise. For running secondary analyses on the reconstructed
CFA (see Section 5.1.2), the method can be replaced by a version that simply
looks up outgoing CFA edges from the current program location. The algorithm
then becomes the non-resolving standard version of CPA.

5.2.3 Balancing Soundness and Coverage

So far, the work in this dissertation has focused on achieving a high precision
analysis that avoids spurious control flow and is robust against unconventional
control flow introduced by compiler optimizations or deliberate obfuscation. In
many scenarios, however, it can be acceptable to introduce unsoundness into the
analysis if a precise analysis is infeasible.

One particular problem are calls to unknown external functions that are sup-
posed to clean parameters off the stack (see Section 5.1.4). In this case, the correct
stack height (the value of the stack pointer relative to its initial value upon en-
tering the current function) is lost, causing erroneous updates to local variables
and a failing return at the end of the current function.

129

Chapter 5 Disassembly and Static Analysis with Jakstab

Resolving Pessimistic. The default transformer factory in Jakstab implements
the resolve operator by generating edges from the available data flow informa-
tion. It is pessimistic in that it makes no assumptions about well-behavedness of
procedures and treats calls and returns exactly like jumps. The advantage is that
the analysis becomes resistant against obfuscation techniques that modify the
call stack to abuse return instructions for arbitrary control flow. Furthermore, it
avoids the common problem of illegal code following a call to a procedures that
never returns, e.g., because it calls ExitProcess.

The implementation of the resolving pessimistic transformer factory differs
from a fully strict implementation of resolve in that it does not generate edges
to all addresses in the executable if no information about the target address is
available. Instead, it signals an error and outputs an error trace. Jakstab can be
configured to ignore this problem, treat the failing branch instruction as a halt,
and to continue with the analysis on other states in the worklist. This renders
the result of the analysis unsound, but allows to explore some more states and
gives a chance to find property violations elsewhere.

Resolving Semi-Optimistic. A more optimistic approach is to assume that calls
whose target cannot be determined statically are well-behaved and return to the
instruction following the call. The unresolved procedure call is replaced by a
generic stub, similar to those for imported functions discussed in Section 5.1.4
. If the procedures possibly called in all concrete executions are indeed well-
behaved and the stub defines a sound overapproximation of all the procedure’s
side effects, an analysis can still produce a sound result.

Typically, this transformer factory is going to be used if soundness is less im-
portant, though, and stubs can use rough approximations that nondeterministi-
cally update registers according to the default calling conventions. The problem
still remains whether parameters are cleared off the stack by the caller or the
callee, so this method will lead to bad stack pointer information for calls to pro-
cedures not following the cdecl calling convention.

130

5.2 Modular Implementation of Different Analyses

Resolving Optimistic. When sound analysis is unnecessary and only coarse
abstract domains such as constant propagation are used, the optimistic trans-
former factory can add two edges for each function call:

• A fall-through edge to the return location of the call that approximates side
effects of the procedure in the same way as the generic stubs for unknown
calls in the semi-optimistic transformer factory.

• An edge to the target of the call, if it is known.

This causes control flow to branch out on every call. The transformer factory
generates halt statements from return instructions, so every procedure eventu-
ally ends in a leaf.

With this configuration, Jakstab essentially becomes a classic recursive traver-
sal disassembler similar to IDA Pro, which follows a best effort approach to dis-
assemble as many instructions as possible without being concerned with sound-
ness. To increase coverage of the disassembly further, this configuration can be
coupled with heuristics for identifying procedure entry points.

Non-resolving Forward. A secondary analysis, which is run after the CFA has
been fully reconstructed, can be implemented by choosing a non-resolving trans-
former factory. It is initialized with the complete CFA and looks up outgo-
ing edges from the CFA location corresponding to the current program counter
value. It does not create new transformers but only returns already existing
edges from the CFA. With a non-resolving forward transformer factory, the Jak-
stab algorithm becomes equivalent to the original CPA worklist algorithm.

Non-resolving Backward. Backward analyses such as live variable analysis (see
Section 5.3.7) can be implemented with a non-resolving backward transformer
factory: Dually to the forward transformer factory, it looks up incoming CFA
edges for the location the current abstract state is associated with. If the CFA
has multiple exit nodes (nodes without outgoing edges), a virtual location that

131

Chapter 5 Disassembly and Static Analysis with Jakstab

is connected to all exit nodes (by a dummy statement such as assume 11) can
serve as initial location for the backward analysis.

5.2.4 Composite Analysis with Selective Merging

In general, composite CPAs can be custom defined to create a suitable composi-
tion of individual analyses. By default, however, Jakstab composes analyses in
a generic manner that does not require individual customizing. The transfer re-
lations for the component analyses are calculated separately, and the composite
transfer relation is constructed as the Cartesian product of successors along the
same CFA edge. If available, the implementation calls strengthening operators
that can exchange information between analysis components.

The merge and stop operators are executed componentwise except that they
keep composite states separate if specifically selected state components (e.g.,
location or calling context) are incomparable. Selectively merging and stop-
ping only states with equal location components leads to flow sensitive analysis,
and selectively merging and stopping only states with equal calling context (call
stack) components leads to a context sensitive analysis. The composite CPA is
thus parameterized by n individual CPAs Ai and an index 0 ≤ h ≤ n that iden-
tifies those analyses A0≤h which have been selected to prevent joining of com-
ponents. If h = 0, no state splitting is enforced. The composite CPA is defined
as D = (LD, γD, ΠD, D,mergeD, stopD, precD), where

1. LD = 〈DD,>D,⊥D,vD,tD〉 is the product lattice of the n individual join
semilattices LAi = 〈DAi ,>Ai ,⊥Ai ,vAi ,tAi〉 with

• the product set of lattice elements DD = DA1 × . . .× DAn ,

• >D = (>A1 , . . . ,>An),

• ⊥D = (⊥A1 , . . . ,⊥An),

• the Cartesian ordering

(a1, . . . , an) vD (a′1, . . . , a′n) :⇐⇒ ai vAi a′i, 1 ≤ i ≤ n,

132

5.2 Modular Implementation of Different Analyses

• the join operator defined by

(a1, . . . , an) tD (a′1, . . . , a′n) = (a1 tA1 a′1, . . . , (an tAn a′n).

2. γD(a1, . . . , an) =
⋂

1≤i≤n γAi(ai) is the composite concretization function.

3. the product set ΠD of composite precisions is defined as ΠA1 × . . .×ΠAn .

4. the transfer relation calculates successors separately, but allows states to
exchange information using strengthening operators of the type ↓i:: DA1 ×
. . . × DAn ×ΠAi → DAi . Strengthening is currently not used by the ab-
stract domains implemented in Jakstab and the default strengthening op-
erator simply returns an unmodified state, but this mechanism allows to
define improved interaction between CPAs if required. Formally, the trans-
fer relation is defined as

(a1, . . . , an)
g
 D (a′′1 , . . . , a′′n), (π1, . . . , πn) :⇐⇒∧

1≤i≤n

ai
g
 Ai (a′i, πi)∧ ↓i a′0, . . . , a′n, πi = a′′i .

By this definition, there is a composite successor state via edge g only if
every analysis component has a successor via g for its component state,
i.e., an edge is only feasible in the composite analysis if it is feasible in all
component analyses.

5. the selective componentwise merge is defined as

mergeD((a1, . . . , an), (a′1, . . . , a′n), (π1, . . . , πn)) =(mergeA1
(a1, a′1, π1), . . . ,mergeAn(an, a′n, πn)) if

∧
1≤j≤h aj = a′j

(a′1, . . . , a′n) otherwise

6. the stop operator returns true only if all analysis components agree:

133

Chapter 5 Disassembly and Static Analysis with Jakstab

stopD((a1, . . . , an), reached, (π1, . . . , πn)) =
∧

1≤i≤n

stopD(ai, sreachedi, πi)

where sreachedi is the set of the ith components of those reached states
where the h state splitting components are equal to those in (a1, . . . , an):

sreachedi = {ri | h < i ≤ n ∧ (a0, . . . , ah, rh+1, . . . , ri, . . . rn) ∈ reached}

7. the componentwise precision adjustment operator is

precD((a1, . . . , an), (π1, . . . , πn), reached) = (a′1, . . . , a′n), (π
′
1, . . . , π′n)

with precAi
(ai, πi, sreachedi) = (a′i, π′i) for all 1 ≤ i ≤ n using the set

sreachedi defined above.

This generic composite analysis lays a solid foundation for easily combining
multiple analyses. It was successfully used in all experiments and provided suf-
ficient precision for the executables and properties considered. For more fine
tuning of the interplay between analyses, however, the individual operators, in
particular the composite precision adjustment operator, can be fully customized
in a derived composite domain (implementing the custom composition as a sub-
class, for example).

5.3 Abstract Domains in Jakstab

Several abstract domains have been formalized as CPAs and implemented for
use with Jakstab. The CPA framework allows to combine analyses freely, and in
principle, the algorithm for control flow reconstruction will run with any com-
bination of abstract domains. However, as discussed in Section 4.1, there are
some requirements on the combined abstract domain for achieving a reason-
able overapproximation of the control flow graph in presence of indirect control
flow. Even in programs that do not contain any indirect jumps or calls, return

134

5.3 Abstract Domains in Jakstab

addresses need to be represented. Consequently, any program containing pro-
cedures will need to be processed using either an explicit value domain or a call
stack analysis, in which each call site is stored by its concrete address.

5.3.1 Location Analysis

Formulating a forward location analysis allows to factor out the notion of pro-
gram locations from other analyses. A location analysis simply records the cur-
rent program counter location as its abstract state. If a composite analysis is
constructed as the direct product of location analysis with some other CPA, the
composite abstract state contains location information that can (and usually will)
be used by the composite merge operator to only merge states at the same loca-
tion. The location CPA is, for the most part, directly taken from [17]. It is defined
as (LL, γL, ΠL, L,mergeL, stopL, precL), where

1. LL = 〈L ∪ {>L,⊥L},>L,⊥L,vL,tL〉 is the flat lattice of incomparable
locations (i.e., ∀`, `′ ∈ L. ` vL `′ =⇒ ` = `′) extended with a top element
>L representing all locations and a bottom element ⊥L representing no
location, such that ∀` ∈ L.⊥L vL ` vL >L.

2. the concretization function maps location elements to the states where the
program counter holds the respective address value:

γL(`) =


{s | s ∈ S, s(pc) = `} if ` 6= >L and ` 6= ⊥L

S if ` = >L

∅ if ⊥L

3. the set of precisions ΠL = {null} is the singleton set of null, as location
analysis does not use precision adjustment.

4. L is the transfer relation relating locations that are connected by edges
with ∀`, `′ ∈ L. `

g
 L `′ ⇔ g = (`, ·, `′) ∨ ` = `′ = >.

135

Chapter 5 Disassembly and Static Analysis with Jakstab

A corresponding backward location analysis can be constructed by revers-
ing the transfer relation such that ∀`, `′ ∈ L. `′

g
 L `⇔ g = (`, ·, `′) ∨ ` =

`′ = >. Note that a backward location analysis requires the use of a back-
ward transformer factory and cannot be used for resolving control flow.

5. mergeL(`, `′, π) = `′ keeps location elements separate.

6. stopL(`, reached, π) = ` ∈ reached checks whether a location has already
been reached.

7. the precision is unused, i.e., precL(`, π, reached) = (`, π).

5.3.2 Bounded Address Tracking

Bounded Address Tracking is used as the default abstract domain in Jakstab,
offering a very precise path sensitive analysis for small sized, untrusted binaries.
The concept is discussed in depth in Chapter 4, now we will define the operators
to fit Bounded Address Tracking within the CPA framework. This definition
also allows to set individual bounds for specific registers and memory regions
and closely matches the actual implementation within Jakstab. The mapping to
CPA requires some adaptation of the abstract p̂ost operator and the Bound rule,
whose functionality is divided among the transfer relation and the precision
adjustment operator. The CPA for Bounded Address Tracking is defined as B =

(LB, γB, ΠB, B,mergeB, stopB, precB), where

1. LB = 〈(V ∪ Â)× Â,>B,⊥B,vB,tB〉 is the semilattice of abstract address
valuations, i.e., a product lattice of the individual mappings from registers
and memory locations to abstract addresses in Â.

2. γB is the concretization function that maps abstract states to sets of con-
crete states by enumerating all combinations of possible base addresses
for abstract memory regions and all possible concrete values for unknown
offsets or regions.

136

5.3 Abstract Domains in Jakstab

3. the set of precisions ΠB = (V ∪ Â) → (N0 ×N0) that associate to each
register and memory location a pair of thresholds for the number of mem-
ory regions and the number of values to track. For instance, the precision
{eax 7→ (5, 0), (stack,−4) 7→ (5, 10)} specifies that the analysis should
precisely track up to 5 different regions but no offsets for the eax register,
and that for the memory location at offset −4 on the stack it should track
up to 5 regions and 10 different offsets.

4. the transfer relation B is derived from the abstract post operator defined
in Section 4.4. The use of the Bound rule is encoded into B using the
precision π:

a
(`,stmt,`′)
 B (a′′, π) :⇐⇒ ∃a′ ∈ Â. a′ = p̂ostJstmt``′K(a) ∧ a′′(pc) = a′(pc)

∧ ∀vb ∈ V. let(r, ob) = a′(vb),

a′′(vb) =


(>R,>b) if π(vb) = (0, 0)

(r,>b) if π(vb) = (kr, 0), kr ∈N0, kr > 0

(r, ob) otherwise

∧ ∀(r′, o′) ∈ Â. let(r, ob) = a′(m̂b(r′, o′)),

a′′(r′, o′) =


(>R,>b) if π(r′, o′) = (0, 0)

(r,>b) if π(r′, o′) = (kr, 0), kr ∈N0, kr > 0

(r, o) otherwise

If the precision specifies a value bound of 0 for both region and offset of
abstract values of a specific register v ∈ V or memory location (r, o) ∈ Â
of bit length b, this register or memory location is set to (>R,>b) in the
abstract successor state a′′ (first case in both case distinctions). If only the
offset is set to a bound of 0, the region is kept and only the offset set to
>b (second case in both case distinction). If the bound is still set to some
non-zero positive value, both region and offset are tracked at full precision.

137

Chapter 5 Disassembly and Static Analysis with Jakstab

Note that, in contrast to the semantics definition in Section 4.4, the trans-
fer relation does not invoke an explicit bound operator for counting and
widening values. Instead, the transfer relation uses the information stored
in the precision element π. In the CPA model, the precision is updated
only by the precision operator prec. The transfer relation then respects the
precision information when calculating successor states.

5. the merge operator

mergeB(a, a′, π) =

 a if a′ vÂ a

a′ otherwise

keeps states separate unless the new state is greater or equal. It is different
from the default separating mergesep operator introduced in [17] in that it
joins an existing state a′ with the new state a if a overapproximates a′ (note
that a wÂ a′ ⇒ at a′ = a). This check allows to remove states from the set
of reached states if they are subsumed by a new state. The subsumption
check helps to save memory, which can become critical when a high value
bound is used.

6. the stop operator, defined as stopB(a, reached, π) = ∃a′ ∈ reached.a w a′,
checks whether the new state is already subsumed by a single existing state
in the set of reached states.

7. the precision adjustment operator prec(a, π, reached) counts the number of
distinct values and regions per register and memory location and checks
whether that number exceeds the previous value or region bound stored
in π. If it does, the new precision will contain a zero bound for the number
of offsets or regions to track, respectively.

Note that, to be equivalent to the formulation of Chapter 4, the analysis has
to be combined with a location analysis such that the set reached passed to
prec is limited to the states at a particular location.

138

5.3 Abstract Domains in Jakstab

The precision adjustment operator is formally defined as

prec(a, π, reached) :={(x, kr, ko) | ∃x ∈ (V ∪ Â), k′r, k′o ∈N0. (x, k′r, k′o) ∈ π,

kr =

k′r if ‖{r | s(x) = (r, o).s ∈ reached}‖ ≤ k′r
0 otherwise

,

ko =

k′o if ‖{s(x) | s ∈ reached}‖ ≤ k′o
0 otherwise

}

5.3.3 Constant Propagation

To implement fast and simple disassembly with high coverage in the style of
IDA Pro, Jakstab supports a coarse constant propagation (including constant
folding) to resolve indirect function calls where the compiler stores constant
addresses in intermediate registers for speed [81]. It is formulated as the CPA
C = (LC, γC, ΠC, C,mergeC, stopC, precC) where

1. LC = 〈(V → LI∗) ∪ {>C,⊥C},>C,⊥C,vC,tC〉 is the lattice of mappings
of registers into the flat lattice LI∗ = (I∗ ∪ {>I∗ ,⊥I∗},>I∗ ,⊥I∗ ,vI∗ ,tI∗)

of incomparable bit-vectors (i.e., ∀z, z′ ∈ I∗. z vI∗ z′ =⇒ z = z′ and ∀z ∈
I∗.⊥I∗ vI∗ z vI∗ >I∗). The bottom element ⊥C denotes that a state has
not been reached by the analysis and corresponds to the empty mapping,
the top element>C, which is also the initial element for the analysis, maps
all registers to the unknown value >I∗ . The partial order vC is defined as
the pointwise ordering of the individual mappings of V → LI∗ , and tC

is accordingly defined such that different register mappings are joined to
>I∗ .

2. the concretization function γC maps constant values to their value, and
unknown values to all possible combinations of values:

139

Chapter 5 Disassembly and Static Analysis with Jakstab

γC(a) =

{s | s ∈ S ∧ ∀v ∈ V. a(v) 6= >I∗ =⇒ s(v) = a(v)} if a 6= ⊥C

∅ if a = ⊥C

3. the set of precisions ΠC = {null} contains only the single null element.

4. the transfer relation is defined by

a
g
 C a′ :⇐⇒

a′ =


a[v 7→ êvalJeK(a)] if g = (·, v := e, ·), v ∈ V, e ∈ Exp

a[v 7→ >I∗] if g = (·, stmt, ·), stmt ∈ {alloc v, ·, havoc v <u ·}

a otherwise

where êval is an abstract evaluation operator similar to the one defined for
Bounded Address Tracking defined in Section 4.4. In fact, the same defini-
tion can be used if all constant values are paired with the global memory
region.

5. the operator mergeC(a, a′, π) = a tC a′ joins states. When combined with
a standard location analysis that splits states by location, this yields the
classic constant propagation that identifies for each location those registers
that are guaranteed to have some constant value in all possible executions.
Without a location analysis, this will find those registers which are globally
constant.

6. stopC(a, reached, π) = ∃a′ ∈ reached. a vC a′ checks whether the current
constant valuation is subsumed by a state that has already been reached,
i.e., a state where strictly less registers are constant.

7. the precision is never adjusted, i.e., precC(a, π, reached) = (a, π).

Constant propagation on its own is not expressive enough for control flow
reconstruction as it does not maintain a model of the stack. Therefore it has to

140

5.3 Abstract Domains in Jakstab

be combined with a call stack analysis to allow control flow reconstruction from
programs with more than a single procedure. It is most effectively used in a fast
and unsound disassembly run together with the optimistic transformer factory
which does not require a call stack.

5.3.4 Strided Interval Analysis

Strided interval analysis is a path insensitive data flow analysis using intervals
with congruence information, i.e., only every nth element is included in an in-
terval of stride n. It is especially useful for dealing with switch statements for
which the value being switched on is unknown, e.g., because it depends on input
that can take a wide range of values.

Switch Statements. For example, a C switch statement with the switch ex-
pression x, case values 1 and 2, and a default case, is of the form:

switch(x) { // switch expression x
case 1: // case value 1

break;

case 3: // case value 3

break;

default: // default case

}

Depending on the distribution of case values, an optimizing compiler translates
high level switch statements into indirect jumps that read the jump target from
a table of address values, a jump table, which is stored in the static data region of
the executable. The compiler inserts computations before the jump to convert the
value of switch expressions to indices in the jump table. This arithmetic code can
show some variation and can even include a second, larger table of byte values,
which define indices in the primary jump table. In general, however, switch
statements are compiled according to the following pattern:

141

Chapter 5 Disassembly and Static Analysis with Jakstab

if x >u max jmp default

x := x−min

if 11 jmp m32[table base+ x]

Here, x is the switch expression, min the smallest and max the largest unsigned
case value. The jump table is located at address table base and extends until
table base+ max−min. If x is determined by some input which is not explicitly
abstracted by havoc in the execution environment, or if the number of potential
values is larger than the value bound, Bounded Address Tracking cannot track
concrete values for x and thus fail to resolve the targets of the indirect jump. An
interval analysis, however, can deduce information from the first guarded jump,
which will be resolved to assume x >u max, and establish that x <u max. After
the subtraction, it will determine that 0 <u x <u (max−min). Thus the target
expression of the indirect jump is correctly determined to be within the range of
the jump table and the strided interval analysis can provide information about
the entries to the control flow reconstruction.

Recall that resolve invokes the abstract expression evaluation êval to retrieve
the set of concrete addresses that the target expression can represent in the cur-
rent abstract state (see Section 3.4.1). In the implementation of êval, it is impor-
tant that the data of all table entries in the interval is returned as a set of concrete
addresses, without an intermediate abstraction step to the interval domain. Oth-
erwise, information is lost and spurious jump targets can be introduced.

Strided Interval CPA. The implementation of interval analysis in Jakstab is
geared towards assisting in dealing with jump tables and is not meant to be exe-
cuted as a standalone analysis. It is formalized as the CPA T = (LT, γT, ΠT, T,
mergeT, stopT, precT), where

1. LT = 〈(V ∪ Â) → I,>T,⊥T,vT,tT〉 is the product lattice of the indi-
vidual mappings of registers and memory locations to the set I of reduced
strided intervals. Strided intervals are written q[x; y] and represent all num-

142

5.3 Abstract Domains in Jakstab

bers x + q · i with 0 < i < y−x
q . Since the intervals are reduced, y − x is

always a multiple of q.

2. the concretization function γT is defined as the product of the concretiza-
tion functions for intervals, which maps an interval to the set of all its con-
tained elements.

3. the unused set of precisions ΠT = {null}.

4. the transfer relation implements arithmetic over strided intervals accord-
ing to [5]. To illustrate the example above, the transfer relation for assume
edges of the form g = (·, assume x ≤u n, · is a

g
 a[x 7→ 1[0; n], i.e., the state

is updated with the information that variable x lies in the interval between
0 and the constant n, with a stride of 1.

5. the merge operator implements the simple strategy of widening whenever
control flow joins. It is defined as the product of the widening operator
∇ :: I × I → I applied on the individual strided intervals in the variable
valuation:

mergeT(a, a′, π) = a′′ :⇐⇒∀v ∈ V. a′′(v) = a′(v)∇a(v)∧
∀(r, o) ∈ Â. a′′(r, o) = a′(r, o)∇a(r, o)

For a definition of ∇ for reduced strided intervals, refer to [5]. A more so-
phisticated widening strategy would require reasoning about the structure
of the control flow graph, but is not necessary for the purpose of resolving
switch jumps.

6. stopT(a, reached, π) = a vT

⊔
reached checks whether the current state

is subsumed by the join of all reached states, i.e., whether greater or equal
intervals are known for all variables. Note that reached contains at most one
state in the default configuration, where states are immediately merged.

7. precT(a, π, reached) = (a, π) does not adjust the precision.

143

Chapter 5 Disassembly and Static Analysis with Jakstab

5.3.5 Call Stack Analysis

Call stack analysis, or call strings, are a common method for achieving context
sensitive interprocedural analysis in source languages. In Jakstab, call stack
analysis further serves as a method for tracing interprocedural control flow.
Since the general CPA algorithm essentially inlines procedures, maintaining a
call stack (or a model of the full, actual stack) is necessary to determine the tar-
gets of return instructions.

For binaries, a call stack approach is generally not sound, as the concept of
procedures is not enforced and procedure calls and returns can be freely used
for arbitrary jumps. Nevertheless, for binary analysis use cases where the com-
piler and executable are trusted, well-behavedness of procedure calls and re-
turns can be assumed and a call stack analysis offers a less expensive alternative
to the explicit and path sensitive modeling of stack memory. Implementing the
analysis requires an extension to the IL definition in Chapter 2: to differenti-
ate calls and returns, CFA edges are annotated with the additional information
whether the edge is derived from a call or a return instruction. Jakstab supports
a call stack analysis that differentiates call sites by their return address and trun-
cates recursive function calls from the same location, i.e., merges recursive in-
vocations in the same state. It is formalized as the CPA S = (LS, γS, ΠS, S,
mergeS, stopS, precS), where

1. LS = 〈U,>S,⊥S,vS,tS〉 is the flat lattice of incomparable sequences of
unique locations. The call stack analysis truncates recursion, i.e., return
locations appear at most once in each call stack. Since the set of addresses
is finite, the set U of unique location sequences is finite and every element
a ∈ U is finite.

2. the concretization function γS maps each abstract call stack a = c0c1 . . . cn

to those concrete states from S whose sequence of return values stored on
the stack is r0r1 . . . rn with ri = cid0d1 . . . dmi ci; i.e., each return address

144

5.3 Abstract Domains in Jakstab

in the abstract call stack can represent a collapsed recursive invocation se-
quence via intermediate procedure calls d0 . . . dmi .

A transformer factory can use the call stack information when concretizing
the value of a return address expression.

3. the unused set of precisions ΠS = {null}.

4. the transfer relation is defined as

c0c1 . . . cn
call
 S c0c1 . . . cnr for call edges, with r 6= ci, 0 ≤ i ≤ n

c0c1 . . . cn
call
 S c0c1 . . . cj for call edges, with r = cj ∧ r 6= ci, 0 ≤ i < j

c0c1 . . . cn
ret
 S c0c1 . . . cn−1 for return edges

c0c1 . . . cn
g
 S c0c1 . . . cn for other edges

where r denotes the address of the fall through statement of a call.

5. the operator mergeS(a, a′, π) = a′ keeps calling contexts separate.

6. stopS(a, reached, π) = a ∈ reached checks whether the current calling con-
text has already been reached.

7. precS(a, π, reached) = (a, π) does not adjust the precision.

5.3.6 Forward Expression Substitution

The x86 assembly idioms for conditional statements, i.e., a comparison instruc-
tion and a subsequent conditional jump, decouples the condition from the loca-
tion of the branch. The result of the comparison is stored in the EFLAGS register
as a combination of arithmetic flags. This makes it harder for analyses to relate
arithmetic conditions to conditional branches, essentially requiring a relational
approach. The usefulness of strided interval domain, for example, depends on

145

Chapter 5 Disassembly and Static Analysis with Jakstab

the kind of conditions that are assumed. While it cannot deduce much from as-
suming a Boolean combination of flags to be true, it can directly deduce value
ranges from statements such as assume eax < 10.

An elegant way of dealing with this challenge is to use a forward expres-
sion substitution that rebuilds a high-level branch condition from the combi-
nation of status flags. The substituted expressions can then be used by other,
non-relational analyses, allowing them to relate registers directly to branch con-
ditions. For instance, consider the sequence of instructions cmp eax, ebx; jl

label that executes a conditional branch if eax is less than ebx, and translates to
this sequence of IL statements:

CF := (eax <u ebx)

OF := (eax < 0∧ ebx ≥ 0∧ eax− ebx > 0)∨
(eax ≥ 0∧ ebx < 0∧ eax− ebx < 0)

SF := (eax− ebx < 0)

ZF := (eax = ebx)

if (SF YOF) jmp label

A forward expression substitution will determine the expression values of flags
in the final guarded jump, and substitute the jump condition (SFYOF) with the
expression

(eax− ebx < 0)Y

((eax < 0∧ ebx ≥ 0∧ eax− ebx > 0) ∨ (eax ≥ 0∧ ebx < 0∧ eax− ebx < 0)).

This can be simplified to

(eax < 0∧ ebx ≥ 0) ∨ (eax < 0∧ eax− ebx < 0) ∨ (ebx ≥ 0∧ eax− ebx < 0),

which in bit-vector arithmetic is equivalent to (eax < ebx). Note that all sub-
traction refers to bit-vectors, i.e., uses modulo arithmetic. Since there are only

146

5.3 Abstract Domains in Jakstab

a limited number of different patterns that arise from combinations of flags, a
template based approach can quickly simplify these kinds of expressions.

The CPA for forward expression substitution, which implements this analysis,
is defined as E = (LE, γE, ΠE, E,mergeE, stopE, precE), where

1. LE = 〈V → LExp,>E,⊥E,vE,tE〉 is the lattice of mappings of registers
into the flat lattice LExp = (Exp ∪ {>Exp,⊥Exp},>Exp,⊥Exp,vExp,tExp)

of incomparable symbolic expressions (i.e., ∀e, e′ ∈ Exp. e vExp e′ =⇒
e = e′ and ∀e ∈ Exp.⊥Exp vExp e vExp >Exp). The bottom element ⊥E

corresponds to the empty mapping, and the top element>E maps all regis-
ters to the unknown expression>Exp. The partial ordervE is then defined
as the pointwise ordering of the individual mappings of V → LExp, and
tE is defined accordingly.

2. γE is the concretization function, which does not follow the CPA standard
as determining symbolic expressions for registers is not covered by the
forward reachability collecting semantics. The collecting semantics for for-
ward expression substitution records for each register all symbolic expres-
sions that are equivalent to the registers contents, and each concrete ele-
ment is a valuation V → 2LExp . Thus, γE(a) :: (V → LExp)→ (V → 2LExp)

maps the abstract symbolic expression valuation a to all those concrete el-
ements where the abstract expression substitutions are included in the set
of equivalent expressions.

3. the set of precisions is unused and ΠE = {null}.

4. the transfer relation stores after an assignment the fact that the left-hand
side is equal to the right-hand side, and invalidates all previously stored
facts which involve the left-hand side or an expression possibly aliasing it.

5. the operator mergeE(a, a′, π) = a tE a′ joins states to allow the analysis to
compute those expressions which are equivalent to a register on all paths
to the current location (if the analysis is combined with a location analysis).

147

Chapter 5 Disassembly and Static Analysis with Jakstab

6. stopE(a, reached, π) = ∃a′ ∈ reached. a vE a′ checks whether the current
abstract state is subsumed by a state that has already been reached.

7. the precision remains constant, i.e., precE(a, π, reached) = (a, π).

Other analyses that want to use the substituted expressions can in principle
implement a strengthening operator ↓ to improve their calculated abstract states.
This is inefficient and inconvenient in practice, however; a more succinct solu-
tion is to slightly modify the composite transfer relation such that it creates new
CFA edges with substituted expressions and passes these to the other analysis
components. This way, other analyses require no modification to use the results
of forward expression substitution.

5.3.7 Live Variable Analysis

One of the classical, simple program analyses is Live Variable Analysis, which
determines for each program point which variables are live, i.e., whose contents
may be used at a later time in the execution. It is a backward analysis, since it
propagates information against the direction of control flow. Therefore it can
only operate on a fully reconstructed CFA and has to be executed as a secondary
analysis using the reverse transformer factory. It is defined as the CPA V =

(LV, γV, ΠV, V,mergeV, stopV, precV), where

1. LV = 〈2V , V, ∅,⊆,∪〉 is the power set lattice for V ordered by subset in-
clusion, where each element denotes the set of registers live in the current
state.

2. the concretization function γV :: 2V → 22V does not follow the CPA stan-
dard but maps into sets of registers live on backward execution traces.
The concrete collecting semantics for live variables is a backward seman-
tics that records the set of registers that are live, i.e., actually used in the
future. The abstract semantics of live variable analysis overapproximates
the concrete set of live registers with a possibly larger set. Therefore the

148

5.4 Code Transformations

concretization function is defined as γV(a) = 2a, which expresses that all
subsets of the abstract set of live registers are possible concrete states.

3. the set of precisions ΠV = {null} is not used.

4. the transfer relation V is defined as a
g
 V (a ∩ kill(g)) ∪ gen(g), where

kill(g) and gen(g) denote the sets of registers overwritten and read by the
statement of g, respectively.

5. the operator mergeV(a, a′, π) = a ∪ a′ joins the live sets of multiple succes-
sor statements.

6. stopV(a, reached, π) = a ⊆ ⋃
reached checks whether the newly deter-

mined set of live registers was already known to be live. Note that reached
never contains more than one state, as new states are always merged.

7. precV(a, π, reached) = (a, π) does not adjust the precision.

If the live variable CPA is not composed with a location analysis for selective
merging, it will only maintain a single global state and calculate the set of all
registers which are live at some location in the entire program. Combined with
a backward location analysis into a composite CPA that performs selective merg-
ing on equal locations, the CPA behaves like a classical live variable analysis.

5.4 Code Transformations

Mapping every assembly instruction to its semantic specification creates a pro-
gram representation with obvious pieces of dead code. In particular, most of the
status flags are not used but simply overwritten by later instructions. If a sec-
ondary is performed after the initial control flow reconstruction phase, the CFA
can be simplified significantly in between by performing live variable analysis
and dead code elimination. Forward substitution of expressions further reduces
the amount of temporary variables used, allows to eliminate flag assignments,
and leads to more natural conditional expressions.

149

Chapter 5 Disassembly and Static Analysis with Jakstab

Forward Expression Substitution. Besides using the results of the forward ex-
pression substitution CPA E online during analysis, it is also possible to rewrite
the CFA to a semantically equivalent CFA. The forward expression substitution
transformation determines the set of reachable states of E on the reconstructed
CFA. Afterwards, it iterates over all reached program states (one per reachable
location) and substitutes each register or memory location used by the statement
in the outgoing CFA edge of the states’ location that has an expression value not
equal to >E. As the substituted registers were determined to be equal to the
expression on all paths by the analysis, the resulting program is equivalent.

Consider the instructions sequence cmp eax, ebx; jl labeldiscussed in the
description of the forward expression substitution analysis (Section 5.3.6), where
the jump expression simplified to (eax < ebx). A substitution of the entire state-
ment using the results of the analysis thus yields if (eax < ebx) jmp label for
the guarded jump, which encodes the branching condition directly between the
original registers and can help an analysis to maintain their correlation. If the
values of the status flags are not used by any other statements, they are no longer
live and the corresponding assignments can be removed in a dead code elimi-
nation step.

Dead Code Elimination. Live variable analysis can determine the set of regis-
ters that will be used after being assigned. Most flag updates from the seman-
tics specification of arithmetic instructions are never used for conditional tests,
so they can be removed. As noted above, expression substitution can eliminate
register uses and thus the liveness of many remaining flags and temporary vari-
ables. A dead code elimination can then remove those CFA edges containing
updates to dead (non live) registers. Interleaving multiple rounds of live vari-
able analysis and dead code elimination until no more edges can be removed
can substantially reduce the CFA size (about 30% in early experiments [81]). In
the above example, all flag updates would be removed (given that the flags are
not used after the jump), and only the guarded jump would remain. Besides
speed improvements for subsequent secondary analysis, dead code elimination

150

5.5 Related Work

also greatly improves the readability of control flow automata for reverse engi-
neering or debugging.

5.5 Related Work

This chapter touched several different fields in its description of the analysis
architecture. The following paragraphs discuss the relevant literature in these
fields and, where appropriate, compare the related work to the implementation
choices made in Jakstab.

Static Analysis of Binaries. In [10] and [118], Balakrishnan and Reps briefly
describe the facilities of CodeSurfer/x86 for model checking a weighted push-
down system constructed from the call graph of the binary. They build on the
existing infrastructure for C of the regular CodeSurfer platform and are able to
answer reachability queries while precisely modeling interprocedural control
flow including recursion. As the other CodeSurfer/x86 work, their approach
relies on the assumption that procedure calls are well-behaved and that the dis-
assembly was correctly performed.

A detailed report on the verification of API usage specifications is given in [8].
There, the authors present DDA/x86, an extension to CodeSurfer/x86 for verify-
ing device driver binaries. Since the regular context sensitive, but path insensi-
tive data flow analysis proved to be unsuitable for verifying relevant properties,
they extended their tool to incorporate the ESP approach [49], which adds lim-
ited path sensitivity to a data flow analysis. A detailed experimental comparison
of DDA/x86 with Jakstab and a discussion of the DDA/x86’s expressiveness in
practice is given in Section 6.1.

In their recent combined static and dynamic analysis framework McVeto [132],
Thakur et al. present an adaption of the DASH algorithm [15] to the analysis of
binaries. They disassemble instructions along the trace of the observed program
execution, which allows them to deal with overlapping instructions as long as

151

Chapter 5 Disassembly and Static Analysis with Jakstab

they were executed in the trace. The analysis is property-driven and attempts
to reach a certain program location by manipulating program inputs. A major
problem for generalizing this approach to non-academic examples is that pro-
gram inputs are not always clearly defined. Particularly in executables, inputs
can come from a plethora of sources such as files, network, the system clock, etc.,
and in practice the set of controlled inputs has to be constrained [60, 102]. These
practical constraints prevent an application of this approach to full disassembly
of realistic programs, which would require generating a set of test inputs that
explores all instructions (full statement coverage).

Summarization of Library Calls. Gopan and Reps [62] exemplify a technique
for summarizing library calls in executable analysis. Using a numeric analy-
sis, they synthesize summary transformers for safety properties for the library
functions memset and lseek. These kind of summaries could serve as a more pre-
cise alternative to using default transformers for imported but unknown library
functions in Jakstab’s analysis. A method for generating precise function sum-
maries from source code is described in [138]. It has to be investigated how this
summarization method can be applied to untyped machine code.

Checking Plain Text Assembly. Maus et al. [94] describe an approach to the
analysis of assembly code in plain text, which is linked together with high level
modules. They syntactically translate assembly instructions to C, such that the
instructions invoke predefined macros and operate on variables in the C pro-
gram. The resulting C program is then verified with existing infrastructure
based on Boogie [14]. While such an approach offers a very precise solution for
dealing with inline assembly, if the assembly semantics are fully encoded in C,
it does not deal with the problems that arise in executable analysis – e.g., jumps
are assumed to only go to predefined labels. Chaki and Ivers [24] basically fol-
low the same approach of translating assembly source code into C, but they use
a predicate abstraction based model checker to check specifications on the re-
sulting C program.

152

5.5 Related Work

Generating Provably Safe Machine Code. A completely different approach
for ensuring the safety of machine code is to add annotations to assembly and
executables that are easy to verify for an analyzer before executing the program.
Most notably, in proof carrying code [106] the compiler equips an executable
with a formal proof of given safety rules. The proof can then be validated by
an operating system at load time before it decides to execute the executable.
Another approach to safe machine code is typed assembly language [101]. Here,
not complete proofs are shipped together with compiled executable code, but in-
stead the instructions are annotated with types and invariants. The annotations
take less space than full proofs, but allow the operating system to regenerate the
safety proof on its own.

153

Chapter 6

Experiments

This chapter presents experimental results for analyzing binaries with Jakstab
and compares them to existing state-of-the-art tools. The experiments are di-
vided into two parts: Precise analysis of relatively small driver binaries and
heuristic disassembly and control flow reconstructions of general, large executa-
bles. Both sets of experiments analyze Windows binaries.

6.1 Analyzing Untrusted Driver Binaries

It remains to show that the proposed approach of integrating control flow recon-
struction and precise static analysis in the form of Bounded Address tracking is
usable in practice and advances the state of the art. In the experiments in this
section, Jakstab is used to verify API specifications on several Windows device
drivers. To allow a comparison with the existing approach by Balakrishnan and
Reps [8], the same set of drivers from the Windows Windows Driver Develop-
ment Kit is analyzed. The experiments show several advantages of Jakstab over
their IDA Pro and CodeSurfer/x86 based driver analyzer DDA/x86. In particu-
lar, Jakstab

• analyzes the driver binaries without relying on a heuristics based external
disassembler,

• avoids a false positive in one of the drivers,

155

Chapter 6 Experiments

• detects a potential memory safety violation,

• is directly applicable to compiled binaries without access to source code,
so the experiments were extended to over 300 closed source drivers.

6.1.1 Motivation

Device drivers supplied by hardware manufacturers are a main source of bugs in
modern operating systems. In Windows XP, device drivers have been reported to
cause 85% of all crashes [130]. In parts, this can be attributed to the fact that most
closed source drivers installed on consumer desktop systems today have never
been exposed to formal analysis. Source code analysis tools like Microsoft’s
Static Driver Verifier (SDV) [12] are available for developers to statically check
their software for conformance to specifications of the Windows driver API. The
vendors, however, are not forced to use these analysis tools in development, and
they are unwilling to submit their source code and intellectual property to an
external analysis process. Certification programs such as the Windows Logo
Program [99] thus have to rely on testing only, which cannot provide guarantees
about all possible executions of a driver. Without vendor support, the only way
to make these often hastily written, yet critical programs accessible to static anal-
ysis is to directly work at the binary level. If the analysis does not require source
code or debug symbols, an analysis infrastructure can be created independently
of active vendor support.

6.1.2 Windows Driver Model

The Windows Driver Model was introduced by Microsoft with Windows 98 and
Windows 2000 as the new Windows device driver API [98, 110]. Compiled WDM
device drivers use the file extension .sys instead of the usual .exe, but are oth-
erwise standard PE executable files. They export only their entry point, which
has to be the standardized DriverEntry routine. To load a driver, the system calls
the driver’s DriverEntry routine and passes it an allocated DriverObject structure

156

6.1 Analyzing Untrusted Driver Binaries

to hold information about the driver itself, and a Unicode String RegistryPath

that the driver can use to store persistent information in the Windows system
registry. The DriverEntry routine is responsible for filling the DriverObject with
pointers to the dispatch and device handling routines of the driver, which pro-
vide the actual functionality [98].

A modern device driver supporting Plug’n’Play (PnP), i.e., adding and re-
moving devices without restarting the system, typically supports the AddDevice,
RemoveDevice, and DriverUnload routines that are called by the system whenever
a device is attached, a device is removed, or the driver should unload, respec-
tively. Furthermore, the driver provides several dispatch methods for handling
I/O requests. For every supported dispatch method, the driver stores its address
in an array within the DriverObject, which is indexed by the driver API defined
major function code of the requested I/O operation. Common dispatch routines
handle reading from and writing to the device, or handling PnP requests. Pa-
rameters to the dispatch routines, which further specify the request are packed
within an I/O request packet (IRP) structure.

The Windows Driver Model documentation [98] specifies, both implicitly and
explicitly, a rich set of rules for its correct usage. For instance, if a driver calls the
API method IoAcquireCancelSpinLock, it is required to call IoReleaseCancelSpinLock
before calling IoAcquireCancelSpinLock again. SDV is shipped with a set of 66
rules for basic driver functionality, which the development team extracted from
the WDM documentation and formalized as finite state machines [13].

6.1.3 OS Abstraction and Driver Harness

Executables in general and drivers in particular frequently interact with the op-
erating system using calls to the system and driver API. As in source based
analyses, these calls can be abstracted using stubs, which model the relevant
side effects such as memory allocation or the invocation of callback routines.
Following the approach of the source code software model checker SDV [12],
Jakstab loads the driver along with a separate harness module, which includes

157

Chapter 6 Experiments

system call abstractions relevant to drivers and contains amain function that non-
deterministically exercises the driver’s initialization and dispatch routines. The
harness is written in C and compiled into an dynamic library (DLL) for loading;
it is based on SDV’s osmodel.c and follows SDV’s invocation scheme for PnP
drivers defined therein (using macros for invoking driver functions):

DriverEntry ;

sdv RunAddDevice;

sdv RunStartDevice;

(DoNothing ||
sdv RunStartIo ||
sdv RunDPC ||
sdv RunISR ||
sdv RunCancelRoutine ||
sdv RunDispatchFunction);

sdv RunRemoveDevice;

sdv RunUnload;

That is, it first runs the DriverEntry routine (the main function of the driver exe-
cutable) that initializes internal data structures and registers the other functions
provided by the driver. From these the harness calls the functions for adding
and starting a new physical device to allow the driver to set up all data for a
new device. After these steps are complete, the harness nondeterministically
executes either one of the registered dispatch functions for the various types of
IRPs, or it invokes deferred procedure calls (DPCs), cancel routines, or interrupt
service requests (ISR) set up by the driver. Finally, the harness signals to the
driver that the device is removed and calls the driver’s unload function.

For the experiments, the specifications were manually encoded into the har-
ness by inserting state variables and assertions at the locations where SDV places
hooks into its specification files. The IL statements alloc, free, havoc, and assert are
exclusively generated by the harness, since they do not correspond to any real
x86 instructions. These statements are encoded into the compiled harness object

158

6.1 Analyzing Untrusted Driver Binaries

IL Statement ASM code Notes
alloc v, e lock rep inc eax Implemented as function with allo-

cated pointer as return value (eax).

free p lock rep not p not can take registers or memory
operands.

assert x >u y mov edx, x

lock rep add edx, y

The second instruction is translated
to the actual assertion.

assert x ≥u y mov edx, x

lock rep adc edx, y

assert x = y mov edx, x

lock rep cmp edx, y

Currently only assertion expressions
>u, ≥u, and = are implemented.

havoc v <u x lock rep sub eax, x

mov v, eax

The first instruction is translated to
the actual havoc statement, the sec-
ond stores the result in the desig-
nated variable.

Table 6.1: (Pseudo-) instructions that can be inlined for using abstract IL state-
ments in the C-language harness.

file using combinations of instructions and prefixes that are illegal according to
official Intel documentation [74], but which are supported by the inline assem-
bler nonetheless. During on-demand disassembly, Jakstab detects these instruc-
tions and directly maps them to the corresponding IL statements. The available
instruction patterns to encode IL statements are listed in Table 6.1. Only the 32
bit variants of the instructions are shown; for each statement there are also 16
and 8 bit variants that use the 16 and 8 bit subregisters, respectively (e.g., ax and
al for eax).

Several parts of the SDV harness and rules had to be modified to make it suit-
able for binary analysis. For example, the preprocessor macro IoMarkIrpPending,
which sets a bit in the control word of IRPs, is intercepted by SDV to change the
state for the PendedCompletedRequest rule. Since macro invocations are no longer

159

Chapter 6 Experiments

explicit in the binary, the rule’s assertion had to be modified to check the bit
directly instead of a separate state variable. Furthermore, SDV’s statement for
non-determinism had to be replaced by either havoc or nondet, depending on the
context.

Another issue arises from the fact that the SDV harness was not constructed
with memory safety in mind. Many function stubs coarsely abstract return val-
ues where they actually should allocate memory, which leads to potential deref-
erences of uninitialized pointers. In several places it was therefore necessary to
refine SDV’s harness with explicit memory allocation. For the same reason it
was also required to add rudimentary support for threads, which are used for
initialization or packet handling by some drivers. The original SDV harness sim-
ply ignores calls to thread creating Windows API functions such as PsCreateSys-
temThread, and thus many data structures stay uninitialized. Jakstab does not
model concurrency, but the harness can emulate the behavior of initialization
threads that only run for a short amount of time by simply calling the thread’s
entry routine. In case of a long running thread (e.g., for IRP processing), this
causes problems, however, when the thread loops forever until a shared flag is
set from the main thread. In such cases the analysis will reach a fixpoint over the
infinite loop and never exit the loop, leaving large parts of the real driver code
unexplored. Without real support for reasoning about concurrency, the exper-
iments used two different harness configurations depending on the nature of
threads used in the drivers: Either calls to functions for thread creation are sim-
ply translated to calls of the thread’s entry function, or they are skipped, which
is the default behavior of the SDV harness. Which harness configuration was
chosen for the experiments is shown in the column labeled MT of Table 6.3.

There are occasions where the execution model of the harness causes memory
safety violations in the driver which are impossible at runtime. SDV’s execution
model for PnP drivers processes a deferred procedure call (DPC) if it has been
registered by the driver. In actual executions, however, synchronization opera-
tions force the DPC to finish at some specific point in time. After that, the context
of the procedure call (e.g., the IRP currently being processed) can become in-

160

6.1 Analyzing Untrusted Driver Binaries

valid. In this case, the harness invokes the DPC on an invalid context, which can
cause false alarms on using uninitialized pointers. To alleviate this problem, a
second configuration option for the Jakstab harness defines whether the objects
representing IRPs are reinitialized between the non-deterministic method invo-
cations. If IRPs are not reset but kept, the context stays valid for DPCs. A full
solution to this issue would have to take synchronization and timer events into
account, which are yet another concurrency mechanism besides threads.

6.1.4 Experimental Setup

For a direct comparison with the IDA Pro and CodeSurfer/x86 based binary
driver analyzer DDA/x86 described in [8], Jakstab processed the same set of
drivers from the Windows Driver Development Kit (DDK) release 3790.1830 and
checked the same specification PendedCompletedRequest. The rule specifies that
a driver must not call IoCompleteRequest and return STATUS PENDING unless
it invokes the IoMarkIrpPending macro on the IRP being processed. The DDK
drivers were compiled without debug information and default settings. Note
that in contrast to [8], the driver source code was not directly linked against the
harness; this novel approach does not require special preparation and is directly
applicable to drivers without access to source code.

Jakstab was configured to use Bounded Address Tracking as its only analy-
sis. Through computing the set of reachable states over the harness and driver,
Jakstab can check whether states are reachable that violate the assertions in the
harness that encode the specifications to check. To eliminate unsoundness from
the control flow analysis, the most precise pessimistic transformer factory was
used for the experiments (see Section 5.2.3).

6.1.5 Results

The experimental results are listed alongside those reported in [8] in Table 6.2.
The number of instructions include instructions from the harness in both cases.

161

Chapter 6 Experiments

DDA/x86 Jakstab
Driver Instr Time Result Instr Time Result
krnldrvr.sys 2824 14s X 413 2s X

ioctl/sys/sioctl.sys 3504 13s X 630 7s X

tracedrv.sys 3719 16s X 439 2s X

startio/cancel.sys 3861 12s X 759 2s X

sys/cancel.sys 4045 10s X 780 2s X

moufiltr.sys 4175 3m 3s × 722 9s ×
event/sys/event.sys 4215 20s X 690 2s X

kbfiltr.sys 4228 2m 53s × 726 8s ×
toastmon.sys 6261 4m 1s X 977 9s X

diskperf.sys 6584 3m 17s X 1409 46s X

fakemodem.sys 8747 11m 6s X 1887 24s ×m

flpydisk.sys 12752 1h 6m FP 1782 39m34s X

mouclass.sys 13380 40m 26s FP 1763 8s FPc

mouser/sermouse.sys 13989 1h 4m FP 1293 4s FP
SerEnum.sys 14123 19m 41s X 1503 8s X

1394DIAG.sys 23430 1h33m FP 2426 4s FPm

1394VDEV.sys 23456 1h38m FP 2872 5s FPm

Table 6.2: Comparison of experimental results on Windows DDK drivers be-
tween DDA/x86 (on a 3 GHz Xeon) and Jakstab (on a 3 GHz Opteron).
Explanation of result types: X: specification verified, FP: infeasible
counterexample, ×: feasible counterexample, ×m: feasible trace to
memory safety violation, FPm: infeasible trace to memory safety vi-
olation, FPc: infeasible trace to invalid control flow.

162

6.1 Analyzing Untrusted Driver Binaries

Driver k kh IRPs MT Stmts BBs Visited Final
krnldrvr.sys 28 5 keep - 860 94 378 378
sioctl.sys 28 5 keep - 1398 191 3947 587
tracedrv.sys 28 5 keep - 956 105 486 371
startio/cancel.sys 28 5 keep - 1787 187 633 614
sys/cancel.sys 28 5 keep skip 1910 192 600 577
moufiltr.sys 28 5 reset - 1544 178 3830 3740
event.sys 28 5 keep - 1510 169 663 649
kbfiltr.sys 28 5 reset - 1548 180 3834 3744
toastmon.sys 28 25 reset - 1995 220 4853 4823
diskperf.sys 28 5 reset - 3273 377 19772 18137
fakemodem.sys 28 5 keep - 4236 613 13994 14044
flpydisk.sys 100 35 reset call 4235 584 186543 130767
mouclass.sys 28 28 reset - 4064 434 3055 3395
sermouse.sys 28 28 reset - 3032 348 1888 2005
SerEnum.sys 28 25 reset skip 3453 444 5213 4908
1394DIAG.sys 28 28 reset - 5464 620 2181 2381
1394VDEV.sys 28 28 reset - 6427 747 2837 2974

Table 6.3: Details of DDK experiments for Jakstab. k: value bound, kh: value
bound for heap memory, IRPs: state reset for I/O request packets be-
tween calls, MT: handling of thread creation, if used, Stmts: Num-
ber of statements, BBs: Number of basic blocks, Visited: Number of
visited states, Final: Size of the final state space after the algorithm
finishes.

163

Chapter 6 Experiments

Note that the tools report very different numbers of instructions for the same
binaries; this is due to the fact that Jakstab disassembles instructions only on de-
mand, i.e., if they are reachable by the analysis. In contrast, CodeSurfer/x86 uses
IDA Pro as front end, which heuristically disassembles all likely instructions in
the executable. Since for DDA/x86 the entire harness was compiled and linked
with the driver, IDA Pro disassembled all code from the harness, including har-
ness code that is unreachable with the driver under analysis. Furthermore, it is
possible that parts of the driver code are unreachable from the harness. The ex-
periments used two value bounds which were determined empirically and are
listed in Table 6.3: k shows the value bound for registers and stack locations, kh

the value bound for memory locations in allocated heap regions.

Performance. The comparison of execution times should be taken with a grain
of salt, since both prototypes were run on different machines. DDA/x86 was
run on a 64 bit Xeon 3 GHz processor with 4GB of memory per process, while
the experiments with Jakstab were conducted on a 64 bit AMD Opteron 3 GHz
processor with 4 GB of Java heap space (the average over 10 runs per driver
is reported). Still, it is possible to see that execution times for Jakstab appear
favorable overall.

Comparing Precision of Jakstab and DDA/x86. For flpydisk.sys, Jakstab
was able to verify the specification, while DDA/x86 found a false positive (FP).
DDA/x86 follows the ESP approach [49] for differentiating paths based on states
of the property automaton. ESP can extend a classical data flow analysis that
merges abstract states at join points in the control flow graph by simulating tran-
sitions of a property automaton during analysis. ESP keeps those states of the
data flow analysis separate where the property automaton is in different states,
and merges all those states which share the same state of the property automa-
ton.

While ESP is an effective method to reduce the state space, it is difficult to
find a property automaton that contains the right amount of abstraction. Since

164

6.1 Analyzing Untrusted Driver Binaries

the property automaton derived from the PendedCompletedRequest rule caused
too many false positives, the authors of DDA/x86 used an additional, hand-
written automaton. It exploits the fact that most dispatch routines in drivers
from the Windows DDK use a single variable for maintaining the error status
before returning it to the caller. On every assignment to the local status vari-
able, it changes state to st pending, st not pending, or st unknown, depending
on whether the value assigned is STATUS PENDING, a different value, or an un-
known value. In flpydisk.sys, however, property relevant code is spread over
multiple procedures defining their own status variables. DDA/x86 does imple-
ment an heuristic to identify status assignments in called procedures that affect
the status variable [4], but this method can fail and lead to false positives. Fig-
ure 6.1 shows the relevant source code portions in floppy.c (for ease of expla-
nation, source is preferred over assembly here) and illustrates the states reached
by the combined VSA and ESP analysis in DDA/x86. The states are given in
comments as triples of the value set for the status variable, the state of the sta-
tus property automaton, and the state of the specification automaton as defined
in [8].

Using VSA and ESP as in DDA/x86 on this code to check the PendedComplet-
edRequest rule yields the following false positive: The dispatch method Flop-

pyReadWrite passes an incoming IRP to the auxiliary FlQueueIrpToThread method
(line 21). At this time, the property automata are both still in the initial states
st unknown (variable ntStatus is uninitialized) and start (no rule-relevant ac-
tions have been observed so far). Inside the auxiliary function, the property
automaton for the status variable does not transition, since the method uses its
own local status variable; the rule automaton transitions to the state st pending

in line 10. The VSA+ESP approach merges abstract states if the property au-
tomata are in the same state, so the analysis maintains two states at the return
node of the method (for the current calling context): One representing the state
at the upper two exits, and one for the exit following IoMarkIrpPending. The
state for the upper two exits merges the strided intervals for the return value to
1[0;0xC00002D3]. This is a very coarse approximation of the actually possible

165

Chapter 6 Experiments

1 NTSTATUS FlQueueIrpToThread(PIRP Irp, . . .) {
2 NTSTATUS status;
3 if (. . .) return STATUS POWER STATE INVALID; // = 0xC00002D3
4 if (. . .) {
5 status = ObReferenceObjectByHandle(. . .);
6 // SDV stub either returns STATUS SUCCESS or STATUS UNSUCCESSFUL
7 // Joins to strided interval 0xC0000001[0;0xC0000001]
8 if (!NT SUCCESS(status)) return status;
9 }

10 IoMarkIrpPending(Irp); // Property automaton transition to st pending
11 return STATUS PENDING; // = 0x00000103
12 }
13

14 NTSTATUS FloppyReadWrite(PDEVICE OBJECT DeviceObject, PIRP Irp) {
15 NTSTATUS ntStatus;
16 if (. . .) {
17 ntStatus = STATUS INVALID PARAMETER;
18 // (0xC000000D, st not pending, start)
19 } else {
20 if (. . .) {
21 ntStatus = FlQueueIrpToThread(Irp, . . .);
22 // (0x00000103, st pending , pending)
23 // (1[0;0xC00002D3], st unknown, start),
24 } else {
25 ntStatus = STATUS SUCCESS;
26 // (0x0, st not pending , start)
27 }
28 } // (0xC000000D[0,0xC000000D], st not pending, start),
29 // (1[0;0xC00002D3], st unknown, start),
30 // (0x00000103, st pending , pending)
31 if (ntStatus != STATUS PENDING) {
32 // (0xC000000D[0,0xC000000D], st not pending, start),
33 // (1[0;0xC00002D3], st unknown, start)
34 // Interval cannot exclude STATUS PENDING
35 IoCompleteRequest(Irp, IO NO INCREMENT);
36 // (0xC000000D[0,0xC000000D], st not pending, completed),
37 // (1[0;0xC00002D3], st unknown, completed)
38 }
39 // (0xC000000D[0,0xC000000D], st not pending, completed),
40 // (0x00000103, st pending , pending),
41 // (1[0;0xC00002D3], st unknown, completed)
42 return ntStatus ;
43 }

Figure 6.1: Simplified code from floppy.c with abstract VSA/ESP states.

166

6.1 Analyzing Untrusted Driver Binaries

values 0x0 (STATUS SUCCESS in the SDV stub for ObReferenceObjectByHandle),
0xC0000001 (STATUS UNSUCCESSFUL in the same stub), and 0xC00002D3 (STA-
TUS POWER STATE INVALID in line 3), but it is the most precise overapproxima-
tion possible with VSA, since the greatest common divisor of 0xC0000001 and
0xC00002D3 is 1.

The abstract state holding this coarse information propagates into the dispatch
function and passes the condition in line 31. The new information that the status
variable is not STATUS PENDING cannot improve the interval for ntStatus, which
is another contributor to the false positive. On the call to IoCompleteRequest, the
rule automaton transitions to completed. In the final return statement, this ab-
stract state causes a transfer to the error state since the rule automaton is in the
state completed and a value of STATUS PENDING is contained in the strided in-
terval for the return value.

Detecting Uninitialized Pointers. In fakemodem.sys, Jakstab encountered a
potentially unsafe memory access (marked as ×m). If the dispatch routine for
writing (major function IRP MJ WRITE) is executed before the dispatch routine
for opening a new connection (major function IRP MJ CREATE), the driver uses
an uninitialized value, i.e., (>R,>32), as the index in an array write access in
the driver’s DeviceExtension data structure. Manual analysis of the abstract error
trace confirmed the feasibility of the error trace in the execution context provided
by the PnP harness. The harness only initializes devices through AddDevice and
StartDevice, calls to the dispatchers for creating, reading, and writing occur non-
deterministically. DDA/x86 does not check for memory safety due to the large
number of false positives [8], so it did not detect this bug. As mentioned in
Section 4.4, Jakstab signals an error on weak updates to all regions. This amounts
to implicitly checking for write accesses to uninitialized pointers, which allowed
to detect the error.

False Positives. Jakstab as well suffers from false positives from this implicit
check for uninitialized pointers. This is a direct consequence of building on the

167

Chapter 6 Experiments

SDV harness, which is not designed for checking memory safety and often omits
proper pointer allocation in the provided API stubs. False positives from write
accesses to potentially uninitialized pointers are shown FPm in Table 6.2.

In mouclass.sys, a switch jump could not be resolved because the switch vari-
able was overapproximated leading to a false positive of invalid control flow
(FPc). In the current implementation, the user has to manually investigate ab-
stract error traces and extend the harness if necessary to eliminate false positives.
A partial or full automation of this process is an area of future work.

6.1.6 Analysis of COTS Driver Binaries

The described approach does not require to recompile and link drivers with the
harness, so the experiments can be extended beyond the Windows DDK. The
prototype processed all 322 drivers from the Windows\system32\drivers direc-
tory of a regular 32 bit Windows XP desktop system, using k = 28 and kh = 5.
Besides the PendedCompletedRequest rule, it also checked the CancelSpinLock rule,
which enforces that a global lock is acquired and released in strict alternation.
Note that this set of drivers also includes classes of drivers which are not even
supported by the SDV harness in source code analysis, such as graphics drivers.

Nonetheless, the analysis successfully finished with verifying the specification
or finding an assertion violation on 27.6% of these drivers (Figure 6.2. For 40.7%,
the analysis failed because of weak global updates, mostly due to missing infor-
mation about pointer allocation in the harness. In 23.0% of the cases, the anal-
ysis failed due to unknown control flow, i.e., a jump target value of (>R,>32);
for 8.1%, erroneous control flow led into regions which could not be success-
fully disassembled. Both are caused by either side effects of API functions miss-
ing from the harness or by coarse abstraction of variables used in switch jumps.
Two drivers timed out after 1 hour; in three drivers the analysis found potential
assertion violations, which were not further investigated in detail.

The high number of runs failing due to weak global updates led to trying
a second, unsound configuration, which still has potential to uncover bugs in

168

6.1 Analyzing Untrusted Driver Binaries

Unknown Control Flow
40.7%

Unknown Update
3.1%

Unknown Update
40.7%

Disassembly Failed
13.4%

Timeout
4.7%Specification Violation

3.4%

OK
34.8%

Unknown Control Flow
23.0%

Disassembly Failed
8.1%

Timeout
0.6%

Specification Violation
0.9%

OK
26.7%

(a) (b)

Figure 6.2: Results of analyzing 322 driver binaries from a standard Windows
XP machine (a) using standard settings and (b) when ignoring weak
updates.

drivers. A configuration option was added to Jakstab to simply ignore all weak
updates, regardless of the region. This affects arrays, which are accessed by in-
dexing expressions, and heap data structures, when API stubs incorrectly do
not set or return pointers to them. As the properties checked are largely control
oriented, though, the introduction of errors in heap data structures and arrays is
less dramatic and can still find real bugs. The results for performing the exper-
iments with this setting are shown on the right side of Figure 6.2. The outcome
changed significantly with this setting; now 38.2% of the runs terminated suc-
cessfully, and 4.7% timed out after an hour. Ignoring weak updates does not
solve the problem of unknown or erroneous control flow, however, so now even
more runs failed due to this reason (54,1%). In 3.1% of the cases, there was
still a memory safety violation reported because the program appeared to free
a pointer to the stack or global memory, which is most probably again due to
missing information about API function behavior in the harness.

169

Chapter 6 Experiments

These encouraging results confirm that, using the precise approach to control
flow reconstruction and static analysis described in this dissertation, it is feasi-
ble to statically analyze real world binary driver executables without access to
source code. More work is needed to build better abstractions of API functions,
and to streamline the process of investigating abstract error traces and eliminat-
ing false positives.

6.2 Disassembly

In manual reverse engineering or analysis scenarios where soundness is not cru-
cial, a heuristic approach to disassembly can provide high coverage of disassem-
bled instruction and scales even to large executables. This section presents ex-
perimental results in which Jakstab was configured to use path- and context-
insensitive constant propagation (see Section 5.3.3) paired with an optimistic
state transformer factory (see Section 5.2.3) and heuristics to detect additional
entry points.

6.2.1 Procedure Entry Point Heuristic

The environment model, which abstracts function behavior in stubs, is only par-
tial, due to the extremely large number of functions provided by Windows’ sev-
eral APIs. Therefore many callback functions that a program passes to API func-
tions are never invoked; these functions and all functions called only by them are
consequently never disassembled. If the goal of the analysis is to disassemble a
maximum of instructions in large binaries, a pattern-based heuristic can help to
identify additional procedure entry points in compiled code.

The following experiments employ a modified prologue in Jakstab’s environ-
ment model, which was introduced in Section 5.1.4. The modified prologue not
only calls the entry point of the binary, but sequentially calls all procedure en-
try points that were heuristically determined, in between resetting registers and
memory values. As such, the prologue provides a simple harness that exercises

170

6.2 Disassembly

the executable’s code by calling each procedure from an initial state. The heuris-
tic for finding procedures performs simple matching of byte strings: The code
sequences

mov edi, edi

push ebp

mov ebp, esp

and

push ebp

mov ebp, esp

are typically used by compilers to initialize the stack frame of a new procedure.
This heuristic only detects procedures using a frame pointer, but has the advan-
tage of producing little false positives in regular compiler generated code: The
shorter pattern is still three bytes long; in uniformly distributed byte strings it is
expected to be encountered only after about 224 bytes, or once in an executable
of 16 MB.

6.2.2 Results

The set of input files to evaluate heuristic disassembly consisted of all 32 bit PE
executables from the Windows\system32 directory of a regular desktop system,
336 executables in total. The file sizes ranged from 1 KB to 2 MB, with the one
outlier MRT.exe, which was 35 MB. Jakstab took 20 seconds on average to process
the files, with a median of only 2 seconds. Due to its large size, MRT.exe exceeded
the timeout of 20 minutes as the only file.

IDA Pro uses several heuristics to detect patterns of likely code in a binary
and comes with a large collection of signatures to detect static code of common
runtime libraries. This generally (for 95.5% of the executables) allows IDA Pro to
disassemble more bytes than Jakstab, which was only extended with the entry
point heuristic described above. On average per file, Jakstab disassembled 84%

171

Chapter 6 Experiments

IDA Pro: 79%

IDA Pro: 70%

Jakstab: 83%

Jakstab: 72%

0% 20% 40% 60% 80% 100%

Equal indirect branch count

All files

Figure 6.3: Average resolve rate of IDA Pro and Jakstab (in heuristic mode) over
all executables and over only those executables where both tools re-
ported the same total number of indirect branches.

of the instructions that IDA Pro disassembled, its set of processed instructions
not necessarily being a subset of IDA Pro’s, however. An absolute baseline of
total instructions in an executable cannot be established without symbol infor-
mation, and IDA Pro’s heuristic can miss some instructions or misinterpret data
as code. Adding improved heuristics for identifying function entry points (such
as the machine learning based method in [120]) to Jakstab would likely increase
the instruction coverage further, but possibly at the cost of false positives (data
interpreted as code). The largest number of instructions processed by Jakstab
was 184’819 for MRT.exe before timing out. Interestingly, IDA Pro disassembled
only 64’347 instructions for MRT.exe. The largest number of instructions disas-
sembled by IDA Pro was 521’871 instructions for ntkrnlpa.exe, a file on which
Jakstab terminated with a runtime exception after disassembling the first 1’753
instructions.

A central point of the experiments was to evaluate Jakstab’s ability to resolve
indirect branch targets using solely the constant propagation domain and no de-
tailed environment model. This inexpensive analysis mainly targets the indirect
branches originating from the compiler optimization of storing the address of
an imported function in a register if it is called multiple times. A similar analy-
sis is performed by IDA Pro, which, for every such indirect branch successfully

172

6.2 Disassembly

IDA Pro Jakstab
Filename Instructions Indirect Resolved Time Resolved Time
at.exe 4308 49 90% 1s 100% 2s
rcp.exe 2192 12 42% 1s 100% 1s
regedt32.exe 60 0 n/a <1s n/a <1s
sprestrt.exe 1566 21 100% 1s 100% 1s
winver.exe 310 4 100% <1s 100% <1s

Table 6.4: Direct comparison of results for those executables where IDA Pro and
Jakstab disassembled the same number of instructions.

resolved, adds a comment to the plain text disassembly stating the actual target.
The generated assembly files were processed by a short script to count occur-
rences of indirect jumps and the number of resolved ones. The average over the
resolve rates of all files is compared between IDA Pro and Jakstab is shown in
the upper chart of Figure 6.3, and it can be seen that Jakstab slightly exceeds
the capabilities of IDA Pro. This comparison is somewhat distorted, though, as
the tools report different numbers of indirect jumps for many executables, due
to the different number of instructions disassembled, as discussed above. For a
cleaner comparison, the lower chart compares the rates only for those drivers,
where the tools agreed on the same number of indirect branches (142, or 42%
out of the total 336). For this set of executables, Jakstab’s advantage is more
pronounced.

For five executables, Jakstab and IDA Pro both disassembled exactly the same
amount of instructions. Therefore, it is worth taking a closer look at these exe-
cutables and to compare the results of both tools over each file individually (Ta-
ble 6.4). The executables are relatively small, from less than a hundred to about
4000 instructions, and both tools disassembled each file in less than 2 seconds.
One of the files did not contain any indirect branches; for the other files, Jakstab
was able to successfully resolve all branches, while IDA Pro missed several on
two files.

173

Chapter 7

Conclusions

This dissertation presents a theoretical framework for disassembly, control flow
reconstruction, and static analysis on binary executables. The framework has
been implemented in the novel analysis platform Jakstab, which allows the prac-
tical analysis of x86 executables using a variety of abstract domains. The use-
fulness of Jakstab is demonstrated through several experiments on real world
binary code.

For a long time, disassembly and executable analysis were an area dominated
by ad-hoc approaches, and the use of data flow analysis to augment disassembly
was not cleanly formulated. Now, the knowledge that data flow guided disas-
sembly does not suffer from a “chicken and egg” problem can help in the de-
sign of new binary analysis tools, and the provided framework can guide the
development of such tools. The framework, which is defined in terms of data
flow equations and constraints over an edge relation, naturally leads the way to
viewing disassembly as an abstract interpretation of the binary. Control flow
reconstruction then amounts to performing a reachability analysis of program
counter values. The inclusion of the instruction fetch in the analysis addresses
weaknesses in earlier disassembly approaches; for instance, overlapping instruc-
tions no longer cause problems since an instruction can be decoded from every
memory location without alignment requirements.

175

Chapter 7 Conclusions

A design decision that proves to be of great practical value is the use of an
intermediate language. The initial cost of designing a language, implementing
the translation, and populating the semantics specification is quickly amortized
by the savings in maintainability, the simplicity of specifying transformers, and
the portability to other architectures.

If the number of assumptions about the code is to be minimized, it is necessary
to use an abstract domain for the analysis that is able to precisely represent tar-
get addresses. Overapproximating control flow targets is not a realistic option in
executable code. This dissertation therefore introduces Bounded Address Track-
ing, which satisfies this requirement. Additionally, Bounded Address Tracking
provides path sensitivity to effectively allow a context sensitive analysis without
relying on the structure of procedures. Even though the analysis is expensive, a
series of experiments on driver binaries shows that it is feasible on small, but real
world code. In fact, it yields less false positives and better speed than the leading
state-of-the-art approach, and it removes many of the sources of unsoundness
by eliminating the separate, error-prone disassembly step.

In other analysis scenarios, where more assumptions are acceptable, the pre-
sented architecture allows to relax the control flow analysis to increase speed and
to reduce the number of false positives. Using assumptions on well-behavedness
of procedure calls and a simple constant propagation domain, Jakstab can per-
form fast disassembly in the style of regular disassemblers, and can use heuris-
tics to increase instruction coverage even further. Experiments show that it is
able to compete with the leading commercial disassembler IDA Pro using this
configuration.

Future Work. Due to the high precision of Bounded Address Tracking, further
improvements in scalability are a focus of ongoing and future work. An idea for
an immediate next step is to investigate how the precision can be reduced where
it is not required. To this end, registers and memory locations can be divided
into two partitions: (i) those tracked by path sensitive Bounded Address Track-
ing and (ii) those overapproximated by the path insensitive strided interval anal-

176

ysis. For instance, high precision is required for variables that contain function
pointers or return addresses. To determine the partitioning, the analysis starts
by using low precision tracking for most variables. When imprecision arises in
control flow, a CEGAR-like refinement loop [40] determines a new partitioning
to remove spurious control flow.

Another promising direction for improving scalability is the use of summaries
for sections of the control flow automaton that resemble procedures. Classical
construction of function summaries exploits the structure of high level code, in
which the use of procedures provides a natural partitioning. In binaries, pro-
cedures are neither explicit nor necessarily well-formed, therefore summaries
have to be independent of the concept of procedures. Summaries will need to
be created dynamically, whenever code is found to form a procedure-like struc-
ture. An advantage of this more general approach is that other control structures
than procedures can benefit from summaries as well, e.g., switch statements that
implement a parser automaton.

Self-modifying code is usually ignored in static analysis on executables, yet
it is commonly encountered in practice: Every just-in-time compiler produces
code at runtime, and malware uses self-modifying code to hide from virus scan-
ners. By decoding instructions from the abstract store instead of directly from
the binary, the analysis architecture can be extended to support self-modifying
code. This requires a very precise analysis, since overapproximation of code
bytes can produce wrong instructions and cause a cascading loss of precision.
Bounded Address Tracking lends itself ideally to this purpose. Purely static
analysis of self-modifying code has traditionally been deemed impossible, but
by leveraging the framework devised in this dissertation, the road to achieving
this goal is clearly laid out.

177

Bibliography

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques, and Tools. Boston, MA, USA: Addison Wesley, 1986.

[2] James M. Aquilina, Eoghan Casey, and Cameron H. Malin. Malware
Forensics. Ed. by Curtis W. Rose. Syngress Publishing, 2008.

[3] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. “Dynamo: a
transparent dynamic optimization system.” In: Proc. 2000 ACM SIGPLAN
Conf. Programming Language Design and Implementation (PLDI 2000). 2000,
pp. 1–12.

[4] Gogul Balakrishnan. Private communication. 2010.

[5] Gogul Balakrishnan. “WYSINWYX: What You See Is Not What You eXe-
cute.” PhD thesis. Madison, WI, USA: University of Wisconsin, 2007.

[6] Gogul Balakrishnan, Radu Gruian, Thomas W. Reps, and Tim Teitel-
baum. “CodeSurfer/x86 – A Platform for Analyzing x86 Executables.”
In: Proc. 14th Int. Conf. Compiler Construction (CC 2005). Ed. by Rastislav
Bodı́k. Vol. 3443. LNCS. Springer, 2005, pp. 250–254.

[7] Gogul Balakrishnan and Thomas W. Reps. “Analyzing Memory Accesses
in x86 Executables.” In: Proc. 13th Int. Conf. Compiler Construction (CC
2004). Ed. by Evelyn Duesterwald. Vol. 2985. LNCS. Springer, 2004, pp. 5–
23.

179

Bibliography

[8] Gogul Balakrishnan and Thomas W. Reps. “Analyzing Stripped Device-
Driver Executables.” In: 14th Int. Conf. Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS 2008). Ed. by C. R. Ramakrishnan
and Jakob Rehof. Vol. 4963. LNCS. Springer, 2008, pp. 124–140.

[9] Gogul Balakrishnan and Thomas W. Reps. “Recency-Abstraction for
Heap-Allocated Storage.” In: Proc. 13th Int. Symp. Static Analysis (SAS
2006). Ed. by Kwangkeun Yi. Vol. 4134. LNCS. Springer, 2006, pp. 221–
239.

[10] Gogul Balakrishnan, Thomas W. Reps, Nicholas Kidd, Akash Lal,
Junghee Lim, David Melski, Radu Gruian, Suan Hsi Yong, Chi-Hua
Chen, and Tim Teitelbaum. “Model Checking x86 Executables with
CodeSurfer/x86 and WPDS++.” In: Proc. 17th Int. Conf. Computer Aided
Verification (CAV 2005). Ed. by Kousha Etessami and Sriram K. Rajamani.
Vol. 3576. LNCS. Springer, 2005, pp. 158–163.

[11] Gogul Balakrishnan, Thomas W. Reps, David Melski, and Tim Teitel-
baum. “WYSINWYX: What You See Is Not What You eXecute.” In:
1st IFIP TC 2/WG 2.3 Conf. Verified Software: Theories, Tools, Experiments
(VSTTE 2005). Ed. by Bertrand Meyer and Jim Woodcock. Vol. 4171.
LNCS. Springer, 2005, pp. 202–213.

[12] Thomas Ball, Ella Bounimova, Byron Cook, Vladimir Levin, Jakob Licht-
enberg, Con McGarvey, Bohus Ondrusek, Sriram K. Rajamani, and Ab-
dullah Ustuner. “Thorough static analysis of device drivers.” In: Proc.
2006 EuroSys Conf. Ed. by Yolande Berbers and Willy Zwaenepoel. ACM,
2006, pp. 73–85.

[13] Thomas Ball, Byron Cook, Vladimir Levin, and Sriram K. Rajamani.
“SLAM and Static Driver Verifier: Technology Transfer of Formal Meth-
ods inside Microsoft.” In: Proc. 4th Int. Conf. Integrated Formal Methods
(IFM 2004). Ed. by Eerke A. Boiten, John Derrick, and Graeme Smith.
Vol. 2999. LNCS. Springer, 2004, pp. 1–20.

180

Bibliography

[14] Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and
K. Rustan M. Leino. “Boogie: A Modular Reusable Verifier for Object-
Oriented Programs.” In: Revised Lectures 4th Int. Symp. Formal Methods for
Components and Objects (FMCO 2005). Ed. by Frank S. de Boer, Marcello
M. Bonsangue, Susanne Graf, and Willem P. de Roever. Vol. 4111. LNCS.
Springer, Nov. 2006, pp. 364–387.

[15] Nels E. Beckman, Aditya V. Nori, Sriram K. Rajamani, and Robert J. Sim-
mons. “Proofs from tests.” In: Proc. ACM/SIGSOFT Int. Symp. on Software
Testing and Analysis (ISSTA 2008). Ed. by Barbara G. Ryder and Andreas
Zeller. ACM, 2008, pp. 3–14.

[16] Al Bessey, Ken Block, Benjamin Chelf, Andy Chou, Bryan Fulton, Seth
Hallem, Charles Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson
R. Engler. “A few billion lines of code later: using static analysis to find
bugs in the real world.” In: Commun. ACM 53.2 (2010), pp. 66–75.

[17] Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. “Config-
urable Software Verification: Concretizing the Convergence of Model
Checking and Program Analysis.” In: Proc. 19th Int. Conf. Computer Aided
Verification (CAV 2007). Ed. by Werner Damm and Holger Hermanns.
Vol. 4590. LNCS. Springer, 2007, pp. 504–518.

[18] Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. “Program
Analysis with Dynamic Precision Adjustment.” In: 23rd IEEE/ACM Int.
Conf. Automated Software Engineering (ASE 2008). IEEE, 2008, pp. 29–38.

[19] David Binkley. “Source Code Analysis: A Road Map.” In: Workshop Future
of Software Engineering (FOSE 2007). Ed. by Lionel C. Briand and Alexan-
der L. Wolf. 2007, pp. 104–119.

[20] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. “A static
analyzer for large safety-critical software.” In: Proc. ACM SIGPLAN

181

Bibliography

2003 Conf. Programming Language Design and Implementation (POPL 2003).
ACM, Jan. 2003, pp. 196–207.

[21] The Boomerang Decompiler Project. Boomerang: A general, open source, re-
targetable decompiler of machine code programs. url: http://boomerang.
sourceforge.net/ (visited on 09/27/2010).

[22] Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage.
“When good instructions go bad: generalizing return-oriented program-
ming to RISC.” In: Proc. 2008 ACM Conf. Computer and Communications
Security (CCS 2008). Ed. by Peng Ning, Paul F. Syverson, and Somesh Jha.
ACM, 2008, pp. 27–38.

[23] Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok
Yang. “Beyond Reachability: Shape Abstraction in the Presence of Pointer
Arithmetic.” In: Proc. 13th Int. Symp. Static Analysis (SAS 2006). Ed. by
Kwangkeun Yi. Vol. 4134. LNCS. Springer, 2006, pp. 182–203.

[24] Sagar Chaki and James Ivers. “Software Model Checking without Source
Code.” In: Proc. 1st NASA Formal Methods Symp. (NFM 2009). Ed. by
Ewen Denney, Dimitra Giannakopoulou, and Corina S. Păsăreanu. 2009,
pp. 36–45. url: http : / / ti . arc . nasa . gov / m / events / nfm09 /

proceedings.pdf (visited on 09/15/2010).

[25] Sagar Chaki, Christian Schallhart, and Helmut Veith. “Verification Across
Intellectual Property Boundaries.” In: 19th Int. Conf. Computer Aided
Verification (CAV 2007). Ed. by Werner Damm and Holger Hermanns.
Vol. 4590. LNCS. Springer, 2007, pp. 82–94.

[26] Bor-Yuh Chang, Matthew Harren, and George Necula. “Analysis of Low-
Level Code Using Cooperating Decompilers.” In: 13th Int. Static Analysis
Symp. (SAS 2006). Ed. by Kwangkeun Yi. Vol. 4134. LNCS. Springer, 2006,
pp. 318–335.

182

http://boomerang.sourceforge.net/
http://boomerang.sourceforge.net/
http://ti.arc.nasa.gov/m/events/nfm09/proceedings.pdf
http://ti.arc.nasa.gov/m/events/nfm09/proceedings.pdf

Bibliography

[27] Pohua P. Chang, Scott A. Mahlke, William Y. Chen, and Wen-mei W.
Hwu. “Profile-guided Automatic Inline Expansion for C Programs.” In:
Softw., Pract. Exper. 22.5 (1992), pp. 349–369.

[28] David R. Chase, Mark N. Wegman, and F. Kenneth Zadeck. “Analysis of
Pointers and Structures.” In: Proc. ACM SIGPLAN’90 Conf. Programming
Language Design and Implementation (PLDI 1990). 1990, pp. 296–310.

[29] Shaunak Chatterjee, Shuvendu K. Lahiri, Shaz Qadeer, and Zvonimir
Rakamaric. “A Reachability Predicate for Analyzing Low-Level Soft-
ware.” In: Proc. 13th Int. Conf. Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2007). Ed. by Orna Grumberg and Michael
Huth. Vol. 4424. LNCS. Springer, 2007, pp. 19–33.

[30] Anton Chernoff, Mark Herdeg, Ray Hookway, Chris Reeve, Norman Ru-
bin, Tony Tye, S. Bharadwaj Yadavalli, and John Yates. “FX!32: A Profile-
Directed Binary Translator.” In: IEEE Micro 18 (1998), pp. 56–64.

[31] M. Christodorescu and S. Jha. “Static Analysis of Executables to Detect
Malicious Patterns.” In: USENIX Security Symposium. Washington, DC,
USA: USENIX Association, Aug. 2003, pp. 169–186.

[32] Mihai Christodorescu, Somesh Jha, Johannes Kinder, Stefan Katzen-
beisser, and Helmut Veith. “Software transformations to improve mal-
ware detection.” In: J. Comput. Virol. 3.4 (Nov. 2007), pp. 253–265.

[33] Mihai Christodorescu, Somesh Jha, Sanjit A. Seshia, Dawn Xiadong Song,
and Randal E. Bryant. “Semantics-Aware Malware Detection.” In: IEEE
Symp. Security and Privacy (S&P 2005). IEEE Computer Society, 2005,
pp. 32–46.

[34] Mihai Christodorescu, Nicholas Kidd, and Wen-Han Goh. “String analy-
sis for x86 binaries.” In: Proc. 2005 ACM SIGPLAN-SIGSOFT Workshop
Program Analysis For Software Tools and Engineering (PASTE’05). Ed. by
Michael D. Ernst and Thomas P. Jensen. ACM, 2005, pp. 88–95.

183

Bibliography

[35] Cristina Cifuentes and Mike van Emmerik. “Recovery of jump table case
statements from binary code.” In: Sci. Comput. Program. 40.2-3 (2001),
pp. 171–188.

[36] Cristina Cifuentes and Mike van Emmerik. “UQBT: Adaptive Binary
Translation at Low Cost.” In: IEEE Comput. 33.3 (2000), pp. 60–66.

[37] Cristina Cifuentes and K. John Gough. “Decompilation of Binary Pro-
grams.” In: Softw., Pract. Exper. 25.7 (1995), pp. 811–829.

[38] Cristina Cifuentes and Shane Sendall. “Specifying the Semantics of Ma-
chine Instructions.” In: Int. Workshop Program Comprehension (IWPC’98).
IEEE Computer Society, 1998, pp. 126–133.

[39] Edmund M. Clarke and E. Allen Emerson. “Design and Synthesis of Syn-
chronization Skeletons Using Branching-Time Temporal Logic.” In: Work-
shop Logics of Programs. Ed. by Dexter Kozen. Vol. 131. LNCS. Springer,
1981, pp. 52–71.

[40] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. “Counterexample-Guided Abstraction Refinement.” In: Proc. 12th
Int. Conf. Computer Aided Verification (CAV 2000). Ed. by E. Allen Emerson
and A. Prasad Sistla. Vol. 1855. LNCS. Springer, 2000, pp. 154–169.

[41] Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. “A Tool for
Checking ANSI-C Programs.” In: Proc. 10th Int. Conf. Tools and Algorithms
for the Construction and Analysis of Systems (TACAS 2004). Ed. by Kurt
Jensen and Andreas Podelski. Vol. 2988. LNCS. Springer, 2004, pp. 168–
176.

[42] Michael Codish, Anne Mulkers, Maurice Bruynooghe, Maria J. Garcı́a de
la Banda, and Manuel V. Hermenegildo. “Improving Abstract Interpre-
tations by Combining Domains.” In: ACM Trans. Program. Lang. Syst. 17.1
(1995), pp. 28–44.

184

Bibliography

[43] Todd A. Cook, Paul D. Franzon, Edwin A. Harcourt, and Thomas K.
Miller III. “System-Level Specification of Instruction Sets.” In: Proc. 1993
Int. Conf. Computer Design: VLSI in Computers & Processors (ICCD 1993).
IEEE Computer Society, Oct. 1993, pp. 552–557.

[44] Patrick Cousot. “Abstract Interpretation Based Formal Methods and Fu-
ture Challenges.” In: Informatics – 10 Years Back. 10 Years Ahead. Ed. by
Reinhard Wilhelm. Vol. 2000. LNCS. Springer, 2001, pp. 138–156.

[45] Patrick Cousot and Radhia Cousot. “Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by Construction or Ap-
proximation of Fixpoints.” In: Conf. Rec. 4th ACM Symp. Principles of Pro-
gramming Languages (POPL 1977). Jan. 1977, pp. 238–252.

[46] Patrick Cousot and Radhia Cousot. “Abstract Interpretation Frame-
works.” In: J. Log. Comput. 2.4 (1992), pp. 511–547.

[47] Patrick Cousot and Radhia Cousot. “Systematic Design of Program Anal-
ysis Frameworks.” In: Conf. Rec. 6th Annu. ACM Symp. Principles of Pro-
gramming Languages (POPL 1979). ACM, Jan. 1979, pp. 269–282.

[48] Mila Dalla Preda, Mihai Christodorescu, Somesh Jha, and Saumya K. De-
bray. “A semantics-based approach to malware detection.” In: 34th ACM
SIGPLAN-SIGACT Symp. Principles of Programming Languages (POPL
2007). Ed. by Martin Hofmann and Matthias Felleisen. ACM, Jan. 2007,
pp. 377–388.

[49] Manuvir Das, Sorin Lerner, and Mark Seigle. “ESP: Path-Sensitive Pro-
gram Verification in Polynomial Time.” In: Proc. 2002 ACM SIGPLAN
Conf. Programming Language Design and Implementation (PLDI 2002). ACM,
2002, pp. 57–68.

[50] Bjorn De Sutter, Bruno De Bus, and Koen De Bosschere. “Link-time bi-
nary rewriting techniques for program compaction.” In: ACM Trans. Pro-
gram. Lang. Syst. 27.5 (2005), pp. 882–945.

185

Bibliography

[51] Thomas Dullien and Sebastian Porst. “REIL: A platform-independent in-
termediate representation of disassembled code for static code analy-
sis.” In: CanSecWest. 2009. url: http://www.zynamics.com/downloads/
csw09.pdf (visited on 09/03/2010).

[52] Matthew B. Dwyer, John Hatcliff, Robby, Corina S. Păsăreanu, and
Willem Visser. “Formal Software Analysis Emerging Trends in Soft-
ware Model Checking.” In: Workshop Future of Software Engineering (FOSE
2007). Ed. by Lionel C. Briand and Alexander L. Wolf. 2007, pp. 120–136.

[53] Michael Eichberg, Martin Monperrus, Sven Kloppenburg, and Mira
Mezini. “Model-Driven Engineering of Machine Executable Code.” In:
Proc. 6th European Conf. Modelling Foundations and Applications (ECMFA
2010). Ed. by Thomas Kühne, Bran Selic, Marie-Pierre Gervais, and
François Terrier. Vol. 6138. LNCS. Springer, 2010, pp. 104–115.

[54] Mike van Emmerik and Trent Waddington. “Using a Decompiler for
Real-World Source Recovery.” In: 11th Work. Conf. Reverse Engineering
(WCRE 2004). IEEE Computer Society, 2004, pp. 27–36.

[55] Ansgar Fehnker, Ralf Huuck, Felix Rauch, and Sean Seefried. “Some As-
sembly Required - Program Analysis of Embedded System Code.” In:
8th IEEE Int. Working Conf. Source Code Analysis and Manipulation (SCAM
2008). IEEE, 2008, pp. 15–24.

[56] Christian Ferdinand, Reinhold Heckmann, Marc Langenbach, Florian
Martin, Michael Schmidt, Henrik Theiling, Stephan Thesing, and Rein-
hard Wilhelm. “Reliable and Precise WCET Determination for a Real-
Life Processor.” In: 1st Int. Workshop Embedded Software (EMSOFT 2001).
Ed. by Thomas A. Henzinger and Christoph M. Kirsch. Vol. 2211. LNCS.
Springer, 2001, pp. 469–485.

[57] Halvar Flake. “Structural Comparison of Executable Objects.” In: Proc.
GI SIG SIDAR Workshop Detection of Intrusions and Malware & Vulnerabil-

186

http://www.zynamics.com/downloads/csw09.pdf
http://www.zynamics.com/downloads/csw09.pdf

Bibliography

ity Assessment (DIMVA 2004). Ed. by Ulrich Flegel and Michael Meier.
Vol. 46. Lecture Notes in Informatics. GI, 2004, pp. 161–173.

[58] The GCC Team. GCC, The GNU Compiler Collection. url: http://gcc.
gnu.org/ (visited on 08/29/2010).

[59] Patrice Godefroid and Johannes Kinder. “Proving memory safety of
floating-point computations by combining static and dynamic program
analysis.” In: Proc. 19th Int. Symp. Software Testing and Analysis (ISSTA
2010). Ed. by Paolo Tonella and Alessandro Orso. ACM, 2010, pp. 1–12.

[60] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. “Automated
Whitebox Fuzz Testing.” In: Proc. Network and Distributed System Security
Symp. (NDSS 2008). The Internet Society, 2008.

[61] Patrice Godefroid, Aditya V. Nori, Sriram K. Rajamani, and SaiDeep
Tetali. “Compositional may-must program analysis: unleashing the
power of alternation.” In: Proc. 37th ACM SIGPLAN-SIGACT Symp.
Principles of Programming Languages (POPL 2010). Ed. by Manuel V.
Hermenegildo and Jens Palsberg. ACM, Jan. 2010, pp. 43–56.

[62] Denis Gopan and Thomas W. Reps. “Low-Level Library Analysis and
Summarization.” In: 19th Int. Conf. Computer Aided Verification (CAV 2007).
Ed. by Werner Damm and Holger Hermanns. Vol. 4590. LNCS. Springer,
2007, pp. 68–81.

[63] Bhargav S. Gulavani, Thomas A. Henzinger, Yamini Kannan, Aditya V.
Nori, and Sriram K. Rajamani. “SYNERGY: a new algorithm for prop-
erty checking.” In: Proc. 14th ACM SIGSOFT Int. Symp. Foundations of Soft-
ware Engineering (FSE 2006). Ed. by Michal Young and Premkumar T. De-
vanbu. ACM, 2006, pp. 117–127.

[64] Sumit Gulwani and Ashish Tiwari. “Combining abstract interpreters.” In:
Proc. ACM SIGPLAN 2006 Conf. Programming Language Design and Imple-
mentation (PLDI 2006). Ed. by Thomas Ball and Michael I. Schwartzbach.
2006, pp. 376–386.

187

http://gcc.gnu.org/
http://gcc.gnu.org/

Bibliography

[65] Edwin A. Harcourt, Jon Mauney, and Todd A. Cook. “Functional Spec-
ification and Simulation of Instruction Set Architectures.” In: Proc. Int.
Conf. Simulation and Hardware Description Languages. SCS Press, 1994.

[66] Laune C. Harris and Barton P. Miller. “Practical analysis of stripped bi-
nary code.” In: SIGARCH Comput. Archit. News 33.5 (2005), pp. 63–68.

[67] Klaus Havelund and Thomas Pressburger. “Model Checking JAVA Pro-
grams using JAVA PathFinder.” In: Int. J. Softw. Tools Technol. Transfer
(STTT) 2.4 (2000), pp. 366–381.

[68] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire
Sutre. “Lazy abstraction.” In: Proc. ACM SIGPLAN 2003 Conf. Program-
ming Language Design and Implementation (POPL 2003). Jan. 2002, pp. 58–
70.

[69] Hex-Rays SA. Hex-Rays Decompiler. url: http://www.hex-rays.com/
decompiler.shtml (visited on 05/12/2010).

[70] Hex-Rays SA. IDA Pro. url: http://www.hex-rays.com/idapro/ (visited
on 05/12/2010).

[71] Andreas Holzer and Johannes Kinder. Praktikum Programm- und Model-
lanalyse. 2009. url: http://www.forsyte.de/courses/detail/index.
php?id=courses.detail&arg=267 (visited on 09/25/2010).

[72] Andreas Holzer, Johannes Kinder, and Helmut Veith. “Using Verification
Technology to Specify and Detect Malware.” In: Proc. 11th Int. Conf. Com-
puter Aided Systems Theory (EUROCAST 2007). Ed. by Roberto Moreno-
Dı́az, Franz Pichler, and Alexis Quesada-Arencibia. Vol. 4739. LNCS.
Springer, 2007, pp. 497–504.

[73] Michael Howard. Some Bad News and Some Good News. Oct. 2002. url:
http://msdn.microsoft.com/en-us/library/ms972826.aspx (visited
on 08/31/2010).

188

http://www.hex-rays.com/decompiler.shtml
http://www.hex-rays.com/decompiler.shtml
http://www.hex-rays.com/idapro/
http://www.forsyte.de/courses/detail/index.php?id=courses.detail&arg=267
http://www.forsyte.de/courses/detail/index.php?id=courses.detail&arg=267
http://msdn.microsoft.com/en-us/library/ms972826.aspx

Bibliography

[74] Intel 64 and IA-32 Architectures Software Developer’s Manual. Intel Corpo-
ration. 2009.

[75] Franjo Ivancic, Zijiang Yang, Malay K. Ganai, Aarti Gupta, Ilya
Shlyakhter, and Pranav Ashar. “F-Soft: Software Verification Platform.”
In: 17th Int. Conf. Computer Aided Verification (CAV 2005). Ed. by Kousha
Etessami and Sriram K. Rajamani. Vol. 3576. LNCS. Springer, 2005,
pp. 301–306.

[76] Neil D. Jones. “Flow Analysis of Lambda Expressions (Preliminary Ver-
sion).” In: Proc. 8th Colloq. Automata, Languages and Programming (ICALP
1981). Ed. by Shimon Even and Oded Kariv. Vol. 115. LNCS. Springer,
1981, pp. 114–128.

[77] Daniel Kästner. “TDL: A Hardware Description Language for Retar-
getable Postpass Optimizations and Analyses.” In: Proc. 2nd Int. Conf.
Generative Programming and Component Engineering (GPCE 2003). Ed. by
Frank Pfenning and Yannis Smaragdakis. Vol. 2830. LNCS. Springer,
2003, pp. 18–36.

[78] Daniel Kästner and Stephan Wilhelm. “Generic control flow reconstruc-
tion from assembly code.” In: 2002 Jt. Conf. Languages, Compilers, and
Tools for Embedded Systems & Software and Compilers for Embedded Systems
(LCTES’02-SCOPES’02). ACM, 2002, pp. 46–55.

[79] Johannes Kinder, Stefan Katzenbeisser, Christian Schallhart, and Hel-
mut Veith. “Detecting Malicious Code by Model Checking.” In: Second
Int. Conf. Detection of Intrusions and Malware & Vulnerability Assessment
(DIMVA 2005). Ed. by Klaus Julisch and Christopher Krügel. Vol. 3548.
LNCS. Springer, 2005, pp. 174–187.

[80] Johannes Kinder, Stefan Katzenbeisser, Christian Schallhart, and Helmut
Veith. “Proactive Detection of Computer Worms Using Model Check-
ing.” In: IEEE Trans. Dependable Sec. Comput. 7.4 (Oct. 2010), pp. 424–438.

189

Bibliography

[81] Johannes Kinder and Helmut Veith. “Jakstab: A Static Analysis Platform
for Binaries.” In: Proc. 20th Int. Conf. Computer Aided Verification (CAV
2008). Ed. by Aarti Gupta and Sharad Malik. Vol. 5123. LNCS. Springer,
2008, pp. 423–427.

[82] Johannes Kinder and Helmut Veith. “Precise Static Analysis of Untrusted
Driver Binaries.” In: Proc. 10th Int. Conf. Formal Methods in Computer-Aided
Design (FMCAD 2010). Ed. by Roderick Bloem and Natasha Sharygina.
FMCAD, Inc., Oct. 2010, pp. 43–50.

[83] Johannes Kinder, Helmut Veith, and Florian Zuleger. “An Abstract
Interpretation-Based Framework for Control Flow Reconstruction from
Binaries.” In: Proc. 10th Int. Conf. Verification, Model Checking, and Abstract
Interpretation (VMCAI 2009). Ed. by Neil D. Jones and Markus Müller-
Olm. Vol. 5403. LNCS. Springer, 2009, pp. 214–228.

[84] Clemens Kolbitsch, Paolo Milani Comparetti, Christopher Kruegel, En-
gin Kirda, Xiaoyong Zhou, and XiaoFeng Wang. “Effective and efficient
malware detection at the end host.” In: USENIX Security Symposium.
USENIX Association, 2009.

[85] Christopher Krügel, William K. Robertson, Fredrik Valeur, and Giovanni
Vigna. “Static Disassembly of Obfuscated Binaries.” In: USENIX Security
Symposium. USENIX Association, 2004, pp. 255–270.

[86] Chris Lattner and Vikram S. Adve. “LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation.” In: 2nd IEEE / ACM
Int. Symp. Code Generation and Optimization (CGO 2004). IEEE Computer
Society, 2004, pp. 75–88.

[87] Junghee Lim, Akash Lal, and Thomas W. Reps. “Symbolic Analysis
via Semantic Reinterpretation.” In: Proc. 16th Int. Workshop Model Check-
ing Software (SPIN 2009). Ed. by Corina S. Păsăreanu. Vol. 5578. LNCS.
Springer, 2009, pp. 148–168.

190

Bibliography

[88] Junghee Lim and Thomas W. Reps. “A System for Generating Static An-
alyzers for Machine Instructions.” In: Proc. 17th Int. Conf. Compiler Con-
struction (CC 2008). Ed. by Laurie J. Hendren. Vol. 4959. LNCS. Springer,
2008, pp. 36–52.

[89] Sung-Soo Lim, Young Hyun Bae, Gyu Tae Jang, Byung-Do Rhee, Sang
Lyul Min, Chang Yun Park, Heonshik Shin, Kunsoo Park, Soo-Mook
Moon, and Chong-Sang Kim. “An Accurate Worst Case Timing Analysis
for RISC Processors.” In: IEEE Trans. Software Eng. 21.7 (1995), pp. 593–
604.

[90] Cullen Linn and Saumya K. Debray. “Obfuscation of executable code to
improve resistance to static disassembly.” In: Proc. 10th ACM Conf. Com-
puter and Communications Security (CCS 2003). Ed. by Sushil Jajodia, Vi-
jayalakshmi Atluri, and Trent Jaeger. ACM, 2003, pp. 290–299.

[91] Francesco Logozzo and Manuel Fähndrich. “On the Relative Complete-
ness of Bytecode Analysis Versus Source Code Analysis.” In: Proc. 17th
Int. Conf. Compiler Construction (CC 2008). Ed. by Laurie J. Hendren.
Vol. 4959. LNCS. Springer, 2008, pp. 197–212.

[92] Chi-Keung Luk, Robert S. Cohn, Robert Muth, Harish Patil, Artur
Klauser, P. Geoffrey Lowney, Steven Wallace, Vijay Janapa Reddi, and
Kim M. Hazelwood. “Pin: building customized program analysis tools
with dynamic instrumentation.” In: Proc. ACM SIGPLAN 2005 Conf. Pro-
gramming Language Design and Implementation (PLDI 2005). Ed. by Vivek
Sarkar and Mary W. Hall. ACM, 2005, pp. 190–200.

[93] Thomas Lundqvist and Per Stenström. “Integrating Path and Timing
Analysis Using Instruction-Level Simulation Techniques.” In: Proc. ACM
SIGPLAN Workshop Languages, Compilers, and Tools for Embedded Systems
(LCTES’98). Ed. by Frank Mueller and Azer Bestavros. Vol. 1474. LNCS.
Springer, 1998, pp. 1–15.

191

Bibliography

[94] Stefan Maus, Michal Moskal, and Wolfram Schulte. “Vx86: x86 Assem-
bler Simulated in C Powered by Automated Theorem Proving.” In: Proc.
12th Int. Conf. Algebraic Methodology and Software Technology (AMAST
2008). Ed. by José Meseguer and Grigore Rosu. Vol. 5140. LNCS. Springer,
2008, pp. 284–298.

[95] Christoph Michael. A Feasibility Study for Static Analysis of Binary Executa-
bles. Tech. rep. MAC-T IVV-07-203. Cigital, Inc, Dec. 2007.

[96] Microsoft Center for Software Excellence. Binary Technologies Projects. url:
http://www.microsoft.com/windows/cse/bit_projects.mspx (visited
on 09/25/2010).

[97] Microsoft Corporation. Phoenix Compiler and Shared Source Common Lan-
guage Infrastructure. url: http://research.microsoft.com/phoenix
(visited on 08/29/2010).

[98] Microsoft Corporation. Windows Driver Kit documentation. url: http://
msdn.microsoft.com/en-us/library/ff557573(VS.85).aspx (visited
on 05/12/2010).

[99] Microsoft Corporation. Windows Logo Program for Hardware: Overview.
url: http://www.microsoft.com/whdc/winlogo/default.mspx (visited
on 08/31/2010).

[100] Microsoft Corporation. x86 Architecture. url: http://msdn.microsoft.
com / en - us / library / ff561502 % 28VS . 85 % 29 . aspx (visited on
08/01/2010).

[101] J. Gregory Morrisett, David Walker, Karl Crary, and Neal Glew. “From
System F to Typed Assembly Language.” In: Proc. 25th ACM SIGPLAN-
SIGACT Symp. Principles of Programming Languages (POPL 1998). ACM,
Jan. 1998, pp. 85–97.

[102] Andreas Moser, Christopher Kruegel, and Engin Kirda. “Exploring Mul-
tiple Execution Paths for Malware Analysis.” In: IEEE Symp. Security and
Privacy (S&P 2007). IEEE Computer Society, 2007, pp. 231–245.

192

http://www.microsoft.com/windows/cse/bit_projects.mspx
http://research.microsoft.com/phoenix
http://msdn.microsoft.com/en-us/library/ff557573(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ff557573(VS.85).aspx
http://www.microsoft.com/whdc/winlogo/default.mspx
http://msdn.microsoft.com/en-us/library/ff561502%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ff561502%28VS.85%29.aspx

Bibliography

[103] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gérard Basler, Pira-
manayagam Arumuga Nainar, and Iulian Neamtiu. “Finding and Repro-
ducing Heisenbugs in Concurrent Programs.” In: Proc. 8th USENIX Symp.
Operating Systems Design and Implementation (OSDI 2008). Ed. by Richard
Draves and Robbert van Renesse. USENIX Association, 2008, pp. 267–
280.

[104] Eugene W. Myers. “Efficient Applicative Data Types.” In: Conf. Rec. 11th
Annu. ACM Symp. Principles of Programming Languages (POPL 1984).
ACM, Jan. 1984, pp. 66–75.

[105] Susanta Nanda, Wei Li, Lap-Chung Lam, and Tzi cker Chiueh. “BIRD: Bi-
nary Interpretation using Runtime Disassembly.” In: 4th IEEE/ACM Int.
Symp. Code Generation and Optimization (CGO 2006). IEEE Computer So-
ciety, 2006, pp. 358–370.

[106] George C. Necula. “Proof-Carrying Code.” In: 24th ACM SIGPLAN-
SIGACT Symp. Principles of Programming Languages (POPL 1997). ACM,
Jan. 1997, pp. 106–119.

[107] George C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley
Weimer. “CIL: Intermediate Language and Tools for Analysis and Trans-
formation of C Programs.” In: Proc. 11th Int. Conf. Compiler Construction
(CC’2002). Ed. by R. Nigel Horspool. Vol. 2304. LNCS. Springer, 2002,
pp. 213–228.

[108] Nicholas Nethercote and Julian Seward. “Valgrind: a framework for
heavyweight dynamic binary instrumentation.” In: Proc. ACM SIGPLAN
2007 Conf. Programming Language Design and Implementation (PLDI 2007).
Ed. by Jeanne Ferrante and Kathryn S. McKinley. ACM, 2007, pp. 89–100.

[109] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of
Program Analysis. Springer, 1999.

[110] Walter Oney. Programming the Microsoft Windows driver model. 2nd. Red-
mond, WA: Microsoft Press, 2003.

193

Bibliography

[111] Oracle Corporation. OpenJDK. 2010.

[112] Matt Pietrek. “Inside Windows: An In-Depth Look into the Win32
Portable Executable File Format (Part I).” In: MSDN Magazine 17.2 (Feb.
2002).

[113] Matt Pietrek. “Under The Hood.” In: Microsoft Systems Journal 11.10 (Oct.
1996).

[114] Jean-Pierre Queille and Joseph Sifakis. “Specification and verification of
concurrent systems in CESAR.” In: Symp. Programming. Ed. by Marian-
giola Dezani-Ciancaglini and Ugo Montanari. Vol. 137. LNCS. Springer,
1982, pp. 337–351.

[115] Srinivas K. Raman, Vladimir M. Pentkovski, and Jagannath Keshava.
“Implementing Streaming SIMD Extensions on the Pentium III Proces-
sor.” In: IEEE Micro 20.4 (2000), pp. 47–57.

[116] Norman Ramsey and Jack W. Davidson. “Machine Descriptions to Build
Tools for Embedded Systems.” In: Proc. ACM SIGPLAN Workshop Lan-
guages, Compilers, and Tools for Embedded Systems (LCTES’98). Ed. by Frank
Mueller and Azer Bestavros. Vol. 1474. LNCS. Springer, 1998, pp. 176–
192.

[117] Thomas W. Reps and Gogul Balakrishnan. “Improved Memory-Access
Analysis for x86 Executables.” In: Proc. 17th Int. Conf. Compiler Construc-
tion (CC 2008). Vol. 4959. LNCS. Springer, 2008, pp. 16–35.

[118] Thomas W. Reps, Gogul Balakrishnan, Junghee Lim, and Tim Teitel-
baum. “A Next-Generation Platform for Analyzing Executables.” In: 3rd
Asian Symp. Programming Languages and Systems (APLAS 2005). Ed. by
Kwangkeun Yi. Vol. 3780. LNCS. Springer, 2005, pp. 212–229.

[119] John C. Reynolds. “Separation Logic: A Logic for Shared Mutable Data
Structures.” In: Proc. 17th IEEE Symp. Logic in Computer Science (LICS
2002). IEEE Computer Society, 2002, pp. 55–74.

194

Bibliography

[120] Nathan E. Rosenblum, Xiaojin Zhu, Barton P. Miller, and Karen Hunt.
“Learning to Analyze Binary Computer Code.” In: Proc. 23rd AAAI Conf.
Artificial Intelligence (AAAI 2008). Ed. by Dieter Fox and Carla P. Gomes.
AAAI Press, 2008, pp. 798–804.

[121] Shmuel Sagiv, Thomas W. Reps, and Reinhard Wilhelm. “Parametric
Shape Analysis via 3-Valued Logic.” In: Proc. 26th ACM SIGPLAN-
SIGACT Symp. Principles of Programming Languages (POPL 1999). ACM,
Jan. 1999, pp. 105–118.

[122] Shmuel Sagiv, Thomas W. Reps, and Reinhard Wilhelm. “Solving Shape-
Analysis Problems in Languages with Destructive Updating.” In: Conf.
Rec. 23rd ACM SIGPLAN-SIGACT Symp. Principles of Programming Lan-
guages (POPL 1996). Jan. 1996, pp. 16–31.

[123] Benjamin Schwarz, Saumya K. Debray, and Gregory R. Andrews. “Dis-
assembly of Executable Code Revisited.” In: 9th Work. Conf. Reverse Engi-
neering (WCRE 2002). Ed. by Arie van Deursen and Elizabeth Burd. IEEE
Computer Society, 2002, pp. 45–54.

[124] Benjamin Schwarz, Saumya K. Debray, and Gregory R. Andrews. “PLTO:
A link-time optimizer for the Intel IA-32 architecture.” In: Proc. Workshop
Binary Translation (WBT 2001). 2001.

[125] Hovav Shacham. “The geometry of innocent flesh on the bone: return-
into-libc without function calls (on the x86).” In: Proc. 2007 ACM Conf.
Computer and Communications Security (CCS 2007). Ed. by Peng Ning, Sab-
rina De Capitani di Vimercati, and Paul F. Syverson. ACM, 2007, pp. 552–
561.

[126] Olin Shivers. “Control-Flow Analysis in Scheme.” In: Conf. Rec. 15th
Annu. ACM Symp. Principles of Programming Languages (POPL 1988). Jan.
1988, pp. 164–174.

195

Bibliography

[127] Richard L. Sites, Anton Chernoff, Matthew B. Kirk, Maurice P. Marks, and
Scott G. Robinson. “Binary Translation.” In: Commun. ACM 36.2 (1993),
pp. 69–81.

[128] Dawn Xiaodong Song, David Brumley, Heng Yin, Juan Caballero, Ivan
Jager, Min Gyung Kang, Zhenkai Liang, James Newsome, Pongsin
Poosankam, and Prateek Saxena. “BitBlaze: A New Approach to Com-
puter Security via Binary Analysis.” In: Proc. 4th Int. Conf. Information Sys-
tems Security (ICISS 2008). Ed. by R. Sekar and Arun K. Pujari. Vol. 5352.
LNCS. Springer, 2008, pp. 1–25.

[129] Amitabh Srivastava and Alan Eustace. “ATOM – A System for Building
Customized Program Analysis Tools.” In: Proc. ACM SIGPLAN’94 Conf.
Programming Language Design and Implementation (PLDI 1994). ACM, 1994,
pp. 196–205.

[130] Michael M. Swift, Brian N. Bershad, and Henry M. Levy. “Improving the
reliability of commodity operating systems.” In: ACM Trans. Comput. Syst.
23.1 (2005), pp. 77–110.

[131] Alfred Tarski. “A Lattice-Theoretical Fixpoint Theorem and its Applica-
tions.” In: Pacific J. Math. 5.2 (1955), pp. 285–309.

[132] Aditya V. Thakur, Junghee Lim, Akash Lal, Amanda Burton, Evan
Driscoll, Matt Elder, Tycho Andersen, and Thomas W. Reps. “Directed
Proof Generation for Machine Code.” In: Proc. 22nd Int. Conf. Computer
Aided Verification (CAV 2010). Ed. by Tayssir Touili, Byron Cook, and Paul
Jackson. Vol. 6174. LNCS. Springer, 2010, pp. 288–305.

[133] Henrik Theiling. “Extracting safe and precise control flow from binaries.”
In: 7th Int. Workshop Real-Time Computing and Applications Symp. (RTCSA
2000). IEEE Computer Society, 2000, pp. 23–30.

[134] TIS Committee. Tool Interface Standard (TIS) Executable and Linking For-
mat (ELF) Specification. Version 1.2. May 1995. url: http://refspecs.
freestandards.org/elf/elf.pdf (visited on 09/03/2010).

196

http://refspecs.freestandards.org/elf/elf.pdf
http://refspecs.freestandards.org/elf/elf.pdf

Bibliography

[135] Giovanni Vigna. “Static Disassembly and Code Analysis.” In: Malware
Detection. Ed. by Mihai Christodorescu, Somesh Jha, Douglas Maughan,
Dawn Xiadong Song, and Cliff Wang. Vol. 27. Advances in Information
Security. Springer, 2007. Chap. 2, pp. 19–41.

[136] Reinhard Wilhelm, Sebastian Altmeyer, Claire Burguière, Daniel Grund,
Jörg Herter, Jan Reineke, Björn Wachter, and Stephan Wilhelm. “Static
Timing Analysis for Hard Real-Time Systems.” In: Proc. 11th Int. Conf. Ver-
ification, Model Checking, and Abstract Interpretation (VMCAI 2010). Ed. by
Gilles Barthe and Manuel V. Hermenegildo. Vol. 5944. LNCS. Springer,
2010, pp. 3–22.

[137] Yichen Xie, Andy Chou, and Dawson R. Engler. “ARCHER: using sym-
bolic, path-sensitive analysis to detect memory access errors.” In: Proc.
11th ACM SIGSOFT Symp. Foundations of Software Engineering 2003 / 9th
European Software Engineering Conference (ESEC/FSE 2003). ACM, 2003,
pp. 327–336.

[138] Greta Yorsh, Eran Yahav, and Satish Chandra. “Generating precise and
concise procedure summaries.” In: Proc. 35th ACM SIGPLAN-SIGACT
Symp. Principles of Programming Languages (POPL 2008). Ed. by George
C. Necula and Philip Wadler. ACM, Jan. 2008, pp. 221–234.

197

Curriculum Vitae

Technische Universität Darmstadt, Germany 3/2008 – 11/2010

Doctoral student and research assistant in the group of Prof. Helmut Veith.

Microsoft Research, Redmond, WA, USA 6/2009 – 9/2009

Internship with Patrice Godefroid in the Research in Software Engineering
(RiSE) group.

Technische Universität München, Germany 12/2005 – 2/2008

Doctoral student in the group of Prof. Helmut Veith. Scholarship by the state of
Bavaria and part time research assistant.

University of Wisconsin, Madison, WI, USA 7/2005 – 9/2005

Visiting researcher in the group of Prof. Somesh Jha.

Technische Universität München, Germany 10/1999 – 5/2005

Master’s degree in Computer Science (Diplom-Informatiker).

Center for Digital Technology and Management (CDTM), 4/2002 – 6/2004
Munich, Germany

Certificate in Technology Management in an interdisciplinary entrepreneurship
program of Ludwig-Maximilians-Universität München and Technische Univer-
sität München.

199

	Abstract
	Zusammenfassung (German Abstract)
	Introduction
	Benefits of Binary Analysis
	Alternative to Source Code Analysis
	Analysis without Access to Source Code

	Challenges in Binary Analysis
	Traditional Disassembly and Analysis
	Overview on the Proposed Method
	Contributions

	An Intermediate Language for Executable Analysis
	Overview
	Syntax
	Expressions
	Basic Statements
	Abstract Statements

	Types
	Semantics
	IL Programs
	Related Work

	Control Flow Analysis for Low Level Programs
	Overview
	A Worked Example
	Control Flow Semantics
	Control Flow Reconstruction by Abstract Interpretation
	The Resolve Operator
	A Constraint System for Control Flow Automata

	Algorithms for Control Flow Reconstruction
	Generic Fixed Point Algorithm
	Worklist Algorithm

	Related Work

	Bounded Address Tracking
	Precision Requirements
	Partitioned Memory Model
	Abstract Domain of Address Valuations
	Abstract Semantics
	Bounded Path Sensitivity
	Abstract Expression Evaluation
	Abstract Post Operator

	Abstraction of Nondeterminism
	Implementation Issues
	Representing Byte-Addressable Abstract Memory
	Register Aliasing

	Related Work

	Disassembly and Static Analysis with Jakstab
	General Architecture
	Single Pass Disassembly and Analysis
	Secondary Post-Reconstruction Analysis
	Program Representation
	Execution Environment

	Modular Implementation of Different Analyses
	Configurable Program Analysis
	Modifications to the Worklist Algorithm
	Balancing Soundness and Coverage
	Composite Analysis with Selective Merging

	Abstract Domains in Jakstab
	Location Analysis
	Bounded Address Tracking
	Constant Propagation
	Strided Interval Analysis
	Call Stack Analysis
	Forward Expression Substitution
	Live Variable Analysis

	Code Transformations
	Related Work

	Experiments
	Analyzing Untrusted Driver Binaries
	Motivation
	Windows Driver Model
	OS Abstraction and Driver Harness
	Experimental Setup
	Results
	Analysis of COTS Driver Binaries

	Disassembly
	Procedure Entry Point Heuristic
	Results

	Conclusions
	Bibliography
	Curriculum Vitae

