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Abstract. Malware is code designed for a malicious purpose, such as obtaining
root privilege on a host. A malware detector identifies malware and thus prevents
it from adversely affecting a host. In order to evade detection, malware writers
use various obfuscation techniques to transform their malware. There is strong
evidence that commercial malware detectors are susceptible to these evasion tac-
tics.
In this paper, we describe the design and implementation of a malware trans-
former that reverses the obfuscations performed by a malware writer. Our ex-
perimental evaluation demonstrates that this malware transformer can drastically
improve the detection rates of commercial malware detectors.
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1 Introduction

Malware is code that has malicious intent. Examples of this kind of code include com-
puter viruses, worms, Trojan horses, and backdoors. Malware can infect a host using a
variety of techniques, such as exploiting software flaws, embedding hidden functional-
ity in regular programs, and social engineering. A classification of malware with respect
to propagation methods and goals was given by McGraw and Morrisett in 2000 [1]. A
malware detector identifies and contains malware before it can reach a system or net-
work.

Current malware detectors are based on scan strings [2] or signatures, i.e., suspi-
cious byte sequences of instructions and data. Malware analysts extract a scan string
from a virus sample in such a way that the scan string is typical of the virus but not
likely to be found in benign programs. Scanners can very efficiently determine if a file
shares a byte sequence with a known malware instance. In this case, the file is either
infected by the malware or in fact a copy of the malware. Thus, scanning for malware
reduces to a search for particular byte sequences in a suspicious file. Scan strings and
slightly more general regular expressions over bytes are widely used in practice today,
because detection is efficient and has a low false positive rate, with individual scan
strings tailored for each known malware instance.

The high specificity of scan-string matching however opens the door for malware
obfuscation where malware writers transform malicious code to make it unrecogniz-
able. For example, polymorphic and metamorphic viruses and, more recently, polymor-
phic shellcodes [3] are specifically designed to bypass detection tools. Both polymor-
phic and metamorphic viruses manipulate their code and data in such a way that the
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Fig. 1. Malware transformation reverses the effects of obfuscations. The malware in-
stance M̂ (an obfuscated variant of M ) is transformed into M ′ before detection.

malicious behavior is preserved but the current scan-string signatures no longer match.
There is strong evidence that commercial malware detectors are susceptible to common
evasion techniques used by malware writers. Malware testing has shown that malware
detectors cannot cope with obfuscated versions of worms [4], and there are numerous
examples of obfuscation techniques designed to avoid detection [5,6,7,8,9,10].

In this paper, we define a malware transformer as a system that takes an obfus-
cated executable and transforms it into an executable free of obfuscations. Therefore,
a malware transformer can be used to enhance the detection capabilities of existing
malware detectors which use scan strings. In the light of over 60000 known viruses,
reusability of virus signatures becomes the sine qua non of advanced methods for mal-
ware detection. Since the problem of transforming the executable into an unobfuscated
state is completely orthogonal to the scan string detection, our method can be used as
a preprocessor or filter that improves the detection rate of all existing virus scanners.
Obfuscation [11,12] increases the complexity [13,14,15] of a program to make reverse
engineering harder. Techniques presented in this paper can be viewed as deobfuscation
techniques designed to reduce the complexity of malware with the goal of improving
the detection rates of scan-strings based malware detectors. We want to emphasize that
our techniques are targeted towards three common obfuscations frequently used by mal-
ware writers. We describe the design and implementation of a malware transformer that
handles three of the most important practical obfuscations, namely packing, code re-
ordering, and junk insertion. Our malware transformer outputs another (deobfuscated)
executable and is thus compatible with all commercial malware detectors. Our experi-
mental results demonstrate that the detection rates of four commercial malware detec-
tors are dramatically improved by our method, in particular, in those cases where the
scan string describes instruction sequences rather than data sequences. This is no sur-
prise, as the obfuscation methods considered—with the single exception of the packing
obfuscation—affect the code, and not the data of the malware. Summarizing, this paper
makes the following contributions:

1. We present the design and implementation of a malware transformer that handles
three important obfuscations used by malware writers. In Section 2, we give an
overview of our malware transformer; details of the algorithms used by the malware
transformer appear in Section 3. The methods are presented in such a way as to
decouple malware transformation and classical program analysis algorithms, which
our malware transformer uses as oracles. We separately describe implementations
for the analysis algorithms in Section 4. Thus, our malware transformer can be
further improved by plugging in stronger program analysis capabilities.
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Fig. 2. Example of ambiguity in the malware transformation process. Original code
(left) is obfuscated using junk insertion (center).

2. We evaluate the detection rates of four commercial virus scanners, Norton An-
tiVirus, McAfee VirusScan, Sophos Anti-Virus, and ClamAV, against variants of
ten known viruses, listed in Section 5.2. Our experiments demonstrate that the mal-
ware transformer improves the detection rate of all four scanners. Most strikingly,
in the case of Sophos Anti-Virus, the detection rate jumps from 7.5% to 100% af-
ter deobfuscating junk insertions. Details of our experimental evaluation appear in
Section 5.

We finally note that we see other future applications for our malware transformer,
for example in forensics where the deobfuscation transformations performed by our
tool increase the human readability of the code.

2 Threat Model

We consider a threat model in which a known malware instance is obfuscated to obtain
another, equally malicious instance. This obfuscation step can be manual, performed
by a malware writer, or automatic, executed during the replication phase of a virus.
By obfuscating an existing virus, one can generate an enormous amount of new and
undetected pieces of malware. Obfuscation of a program can be achieved in numerous
ways; in most cases, however, the set of obfuscations that are actually used is rather
limited. In particular, most malware authors rely on the use of external tools that allow
them to obfuscate their programs after compilation. We therefore focus on common
obfuscations to demonstrate the effect of a malware transformer on the detection rate of
commercial malware detectors.

We apply the malware transformations to an obfuscated malware instance and at-
tempt to recover the original, unobfuscated malware instance. Figure 1 illustrates the
threat model and the application of malware transformations. A malware instance M
(i.e., a malicious executable binary program) is obfuscated to obtain a new malware
instance M̂ ; the malware transformer processes the obfuscated malware M̂ to produce
a deobfuscated executable program MD that is then checked by the malware detector.

We observe that it is possible that the original malware instance M and the trans-
formed malware instance MD are distinct. In other words, the obfuscations applied to
the original malware instance M cannot always be perfectly reversed. For example,
consider the example from Figure 2 where a code fragment (left box) is obfuscated



using junk insertion (middle box). The malware transformation could yield one of two
equivalent possibilities. We resolve this ambiguity by having the transformation choose
one of the outcomes in a consistent manner. In our description of the malware trans-
formation algorithms (in Section 3), we outline the way these choices are made. As a
result, the original instance M and all its obfuscated variants M̂ are transformed to the
same malware instance MD.

This approach to handling ambiguity during malware transformation requires a
change in the method for producing scan-strings from malware samples. Since a mal-
ware transformation does not guarantee us the recovery of the original malware in-
stance M , the scan-string signature cannot be based on the M . Rather, the malware
transformation consistently outputs the transformed malware instance MD when given
any obfuscated variant M̂ or the original instance M . It is thus necessary to base the
scan-string signature on a transformed malware instance MD, obtained from a sample
M for which we wish to generate a signature. Other than this procedural change, our
technique places no other requirements on scan-string malware detectors.

Our malware transformer is capable of handling three practically relevant kinds of
obfuscation:

– The code reordering obfuscation changes the location of instructions in a program
while maintaining the original execution order through the insertion of jump in-
structions. This permutation is randomized, resulting in a large possible number of
obfuscated instances of the original program. Sequences of the original binary code
cannot be found in the obfuscated instances, causing scan string-based malware de-
tectors to fail.

– The junk-insertion obfuscation randomly inserts contiguous code sequences that do
not affect program behavior. We call such code sequences semantic nops. Motivated
by real world obfuscation engines we consider sequences that are self-contained,
produce no output, and preserve all program variables.

– The packing obfuscation replaces a binary (code and data) sequence with a data
block containing the binary sequence in packed form (encrypted or compressed)
and a decryption routine that, at runtime, recovers the original binary sequence from
the data block. The result of the packing obfuscation is a program that dynamically
generates code in memory and then executes it. There are a large number of tools
available for this purpose, which are commonly known as executable packers.

For illustration, consider the example in Listing 1.1. This code fragment from a
virus of the Netsky family prepares to install a copy of the virus (under the name ser-
vices.exe) into the Windows system directory obtained through a call to GetWindows-
Directory. After applying the packing, junk insertion, and reordering obfuscations (in
this order), a malware writer could obtain the obfuscated malware in Listing 1.2. Com-
paring the two listings, we note the effect of obfuscation on the malware instance: the
packing transformation has hidden the malicious code inside the data block starting at
X and, as a result, only the code of the unpacking routine is visible. Any attempted
matches against a signature that refers, for example, to the call to GetWindowsDirectory
will fail. Furthermore, the unpacking routine was injected with junk code (instructions
on lines 16, 2, 18, and 12) and was subjected to reordering. The result of these obfus-
cations is that signatures identifying the unpacking loop will no longer match, and thus



1 lea eax, [ebp+Data]
2 push esi
3 push eax
4 call ds:GetWinDir
5 lea eax, [ebp+Data]
6 push eax
7 call _strlen
8 cmp [ebp+eax+v_1], 5Ch
9 pop ecx

10 jz short loc_40
11 lea eax, [ebp+Data]
12 push offset asc_408D80
13 push eax
14 call _strcat
15 pop ecx
16 pop ecx
17 loc_40:
18 lea eax, [ebp+Data]
19 push offset aSvcs_exe
20 push eax
21 call _strcat

26

Listing 1.1. Example of a
malware code fragment.

1 jmp lab
2 lan: add [esp], 1
3 jmp lay
4 lop: cld
5 jmp lah
6 lac: scasb
7 jmp lam
8 laz: mov al, 99
9 jmp lop

10 lav: loop lop
11 jmp law
12 las: dec edi
13 jmp lav
14 lab: mov edi, offset X
15 jmp laz
16 lam: push edi
17 jmp lan
18 lay: pop edi
19 jmp las
20 lah: xor byte ptr [edi],1
21 jmp lac
22 law: jmp short X
23 ...
24 X: db 8c 84 d9 ...
25 db ...
26 db 01 98

Listing 1.2. Obfuscation of
Listing 1.1.

1 lea eax, [ebp+data1]
2 push esi
3 push eax
4 call ds:GetWinDir
5 lea eax, [ebp+data1]
6 push eax
7 call _strlen
8 cmp [ebp+eax+dat2], 5Ch
9 pop ecx

10 jz short label1
11 lea eax, [ebp+data1]
12 push offset data3
13 push eax
14 call _strcat
15 pop ecx
16 pop ecx
17 label1:
18 lea eax, [ebp+data1]
19 push offset data4
20 push eax
21 call _strcat

26

Listing 1.3. Deobfuscated
version of Listing 1.2.

the malware writer will successfully evade detection. Note that in contrast to typical
malicious code, the unpacking routines cannot be recognized by characteristic system
calls.

Our malware transformation algorithm, when applied to the code in Listing 1.2,
identifies the obfuscations that were applied to the malware instance and reverses them.
In this case, all three obfuscation types are present. The transformer first undoes the
reordering obfuscation by determining that the jump instructions on lines 1, 3, 5, 7, 9,
11, 13, 15, 17, 19, and 21 are unnecessary. Therefore, these instructions are removed
from the program and the transformer reorganizes the code into straight-line sequences
in order to maintain the original behavior. Next, the junk code on lines 16, 2, 18, and
12 (identified using a semantic nop detector) is removed from the program. Finally,
the packed code is extracted with the help of a dynamic analysis engine. The specific
algorithms applied during the malware transformation are detailed in Section 3. The
resulting code, shown in Listing 1.3, is syntactically equivalent (modulo renaming) to
the original malware and can be passed to a malware detector for analysis.

3 Malware Transformation Algorithms

We present algorithms to transform malware that is obfuscated with the techniques most
common in real-life malware-generation libraries [16]. For each of the three obfuscation
techniques (packing, code reordering, and junk insertion), we describe a corresponding
transformation algorithm that reverses the effects of that obfuscation.



Table 1. The program analysis oracles and the corresponding query primitives used as
building blocks for the malware transformation algorithms.

Oracle Description of Return Value

Program Exposure OEX(P ) The binary program P ′, which is derived from P by execution of
a maximum of instructions, such that the relevant behavior of P ′

and P is equivalent.

Control Flow OCF(P, x) The set of successors of the instruction at x during any execution
of program P .

Semantic Nop OSN(P, x, y) True if the program locations x and y delimit a semantic nop for
every execution of the program P .

In order to factor out, and thus understand, the program analysis effort required for
malware transformation, the algorithms are designed relative to several program anal-
ysis primitives. Each primitive operation takes the form of a query to a corresponding
program analysis oracle. The program analysis oracles answer queries about various
program structures (e.g., control flow graphs, data dependence graphs). Note that the
tasks of the oracles are undecidable, as usually in program analysis, and therefore need
good approximative implementations, which are presented in Section 4. The oracles
and their primitives are listed in Table 1. For the remainder of this section, the oracles
are black boxes that provide a query interface.

On top of the oracles, we build three algorithms that transform malware such that
three common obfuscations are reversed. The first algorithm describes a malware trans-
formation for code ordering that ensures that instructions appear in the program file in
a natural order. The second algorithm implements a malware transformation for pro-
gram exposure, such that a formerly packed program appears with all encrypted code
and data exposed. The third algorithm addresses a malware transformation that iden-
tifies and eliminates all instruction sequences that form a semantic nop. As Figure 3
illustrates, each of these algorithms uses one or more of the oracles from Table 1.

We use the following model of binary programs to describe the functionality of the
oracles. A binary program is a pair P = (M, c), where M is a binary string represent-
ing program memory (code and data) and c is a pointer to a position in M (the entry
point). The binary program is executed by reading and interpreting the instruction at
the target location of c. An instruction can read and modify any value in M , including
other instructions. Finally, it sets c to point to the next instruction to be executed. After
execution of one instruction, the program reaches a new state, which itself represents
a new binary program P ′ = (M ′, c′) on the modified memory M ′ with the new entry
point c′. Thus, we view the execution of an instruction as transition from one program
to another. Since the interpretation of the instruction at location c can depend on pro-
gram input (including system state), there may be multiple outgoing transitions from
one program state. All possible transitions define a relation δ7−→⊆ P × P, where P is

the set of all programs. We will use δ∗7−→ and δ+7−→ to denote 0 or more and 1 or more
transitions, respectively.
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Output can be generated during the execution of instructions. By relevant outputs
we will refer to outputs such as user interaction, operations on files, or network com-
munication, but not to side effects such as different cache contents, page tables, etc.
Accordingly, we define the relevant behavior of a program as a mapping from inputs
(including the empty input) to relevant outputs. For two programs P and P ′ with equiv-
alent relevant behavior, we will write P ' P ′.

3.1 Malware Transformation for Code Ordering

A common technique for obfuscation is code reordering, where the basic blocks of a
program are split by the insertion of additional jump instructions, and subsequently
reordered. Consider the code in Listing 1.2, where the first four non-control flow in-
structions executed are:

mov edi, offset der mov al, 99 cld xor byte ptr [edi], 1

Their order in the program file is completely different, as illustrated by their correspond-
ing line numbers 14–8–4–20. Obfuscation by code reordering can be achieved using
unconditional control flow instructions (jumps) or conditional control flow instructions
(branches) with opaque predicates [12]. Opaque predicates are calculations which have
a deterministic result, but are statically hard to analyze. A conditional jump depending
on the result of an opaque predicate is therefore in fact unconditional. The algorithm we
are about to describe uses the control flow oracle OCF that is able to identify all jump
targets actually reachable during execution of the program:

Definition 1. [CONTROL FLOW ORACLE OCF]
The oracle OCF(P, x) determines the set of program locations that are successors of
the instruction at location x in a binary program P during any possible execution of P :

OCF(P, x) =
{
y : ∃M,M ′. P

δ∗7−→ (M,x) ∧ (M,x) δ7−→ (M ′, y)
}

By querying the oracle, we know for any control flow instruction xwhere |OCF(P, x)| =
1, that it has only one possible target, and is thus semantically equivalent to an uncondi-
tional jump. In particular, by using the oracle, the algorithm is able to treat conditional
jumps whose control condition is an opaque construct as unconditional. For the re-
mainder of this section, we use the term “jump” to refer to unconditional control flow
instructions as identified by the oracle OCF.



Input: A CFG G = (V, E) of a program P , with V a set of vertices and E a set of edges.
Output: A CFG G′ = (V ′, E′), the reordered version of G respecting the CFG invariant.

begin
V ′ ←− V ; E′ ←− E ;

repeat
N ←− ∅
// Collect in N the instructions violating the invariant
foreach node v ∈ V do

if ∃u ∈ Predecessors(v) . |OCF(P, u)| = 1 and v has no fall-through
predecessors then N ←− N ∪ {v}

// Replace unconditional jumps with their targets
foreach violating node n ∈ N do

j ←− select jump node from Predecessors(n)
V ′ ←− V ′ \ {j}
E′ ←− E′ \ {e : e ∈ E′ ∧ (e = (j, k) ∨ e = (i, j))}
E′ ←− E′ ∪ (Predecessors(j)× {n})

until N = ∅
return G′ = (V ′, E′)

end
Algorithm 1: Code ordering transformation of malware.

Any code sequence generated by the code reordering obfuscation necessarily con-
tains jump instructions that are not needed. Intuitively, if all the predecessors of an
instruction are jumps, then one of the jump instructions is not needed and can be re-
placed with the target instruction itself. In the context of a control flow graph (CFG),
we can formalize the concept of unneeded unconditional jumps as a CFG invariant: in
an ordered CFG, each CFG node with at least one unconditional-jump immediate pre-
decessor also has exactly one incoming fall-through edge. A fall-through edge is a CFG
edge linking a non-control flow instruction with its unique immediate CFG successor
or a CFG edge representing the false-path of a conditional control flow instruction.

We analyze the CFG for each procedure in the program. For each instruction violat-
ing the CFG invariant above, we mark its unconditional-jump predecessor as superflu-
ous. Once all the superfluous control flow instructions are identified, the code ordering
transformation removes them and reorganizes the program code such that the behavior
is preserved. We edit the program code directly by removing each superfluous uncondi-
tional jump instruction and replacing it with the target basic block. The code ordering
transformation is described in Algorithm 1 and illustrated in Figure 4. As CFG nodes
N2, N4, N6, and N8 violate the CFG invariant, we find that nodes N1, N3, N5, and N7

are candidates for removal.
In case a violating instruction has more than one unconditional-jump predecessor,

we can freely choose which predecessors to mark as superfluous; this choice is a poten-
tial source of ambiguity as described in Section 2. Although we have not encountered
it in our evaluation, we handle this case with a simple strategy for consistently select-
ing instructions to remove. Intuitively, we will order the set of unconditional jumps
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Fig. 4. CFG graph fragment containing the first four non-control flow instructions in
execution order from Listing 1.2.

by comparing them using their sequences of predecessors. We will then select the
first unconditional jump (in the ordered set) and mark it as superfluous. Formally, let
J = {j1, . . . , jN} be a set of unconditional jumps that are all predecessors of the same
instruction. Define Preds(i) to be the set of predecessors of an instruction i and extend
it to sets of instructions, Preds({i1, . . . , iK}) =

⋃
1≤k≤K Preds(ik). Then compute

A = {PredSeq(j1), . . . ,PredsSeq(jN )}, where PredSeq is the sequence of predeces-
sor instructions, PredSeq(i) =

〈
Preds(i),Preds2(i), . . . ,

〉
. We can order the set A

using any complete ordering relation over sequences of sets of instructions (e.g., lexi-
cographic order over the set of opcodes). The ordered set A induces a natural order on
the set J of unconditional jumps. The unconditional-jump instruction that is first in the
ordered set J is marked as superfluous and removed.

3.2 Malware Transformation for Program Exposure

Packing describes the process of encrypting a program and adding a runtime decryption
routine to it, such that the behavior of the original program is preserved. By randomly
choosing encryption keys, it is possible to create a multitude of instances from one orig-
inal program. The encryption completely changes the binary footprint of a program, and
malware authors commonly use packing to evade scan string-based malware detectors.
The malicious code resides in the executable file in an encrypted form, and is not ex-
posed until the moment the executable is run. Thus, a scan string algorithm will fail
to detect the malware by reading the file, unless it is updated with a new scan string
tailored towards this specific packed instance of the malware.

By analyzing programs obfuscated by packing, we found that they consist of (1) a
decryption routine (an instruction sequence that generates code and data), (2) a trigger
instruction that transfers control to the generated code, (3) an unpacked area (the mem-
ory area where the generated code resides), and (4) a packed area (the memory area



Input: A program file P .
Output: An unpacked program file P ′.

begin
D ←− ∅
P ′ ←− OEX(P )
W ←− {ProgramCounter(P )} ; c←− ProgramCounter(P ′)
if W = {c} then return P
while W 6= ∅ do

Let x ∈W
W ←−W \ {x} ; D ←− D ∪ {x}
foreach y ∈ OCF(P, x) do

if (y 6= c) ∧ (y not already processed) then W ←−W ∪ {y}
end

foreach d ∈ D do
Delete location d from P ′

return P ′
end

Algorithm 2: Malware transformation for program exposure.

from where the packed original binary is read). The program transformation technique
we present here works independently of the positioning of these four elements in the
program. The only restriction we place is for execution flow to reach the decryption
routine before it reaches the trigger instruction. Packing does not change the relevant
behavior of a program. Hence, transformation of a packed program (called unpacking)
consists of recovering the original program that has the same relevant behavior as the
packed program.

According to our threat model described above, in a packed program the decryption
routine precedes the execution of the original program. To ensure that the original pro-
gram is correctly restored at runtime, the decryption routine generates the same results
every time the program is run, regardless of any input to the program. Furthermore, the
operations of the decryption routine affect only program memory. As a consequence,
it is possible to create an equivalent program not containing the decryption routine by
setting all the values in the unpacked area to the expected results of its computation
beforehand.

We now define the Oracle OEX:

Definition 2. [PROGRAM EXPOSURE ORACLE OEX]
Given a binary program P , the oracle OEX determines a binary program P ′, which
exhibits the same relevant behavior as P , such that P ′ is reachable from P through
transitions on δ, and every binary program P ′′ reachable from P ′ exhibits different
relevant behavior. Formally, OEX(P ) = P ′ such that:

P
δ∗7−→ P ′ ∧ P ' P ′ ∧

(
∀P ′′ . P ′ δ+7−→ P ′′ ⇒ P 6' P ′′

)
Intuitively, OEX returns the binary program P in the latest possible state where the rel-
evant behavior is equivalent to the original program. Given a packed file P , OEX(P ) =



P ′ is the binary program which will be executed after the trigger instruction. For a
program P that has not been packed, P ′ = P , assuming that P does not start with
instructions not affecting the relevant behavior.

Using the oracle OEX, we can now transform out the initial decryption in the pro-
gram and produce a program file that visibly contains the unpacked code, as illustrated
in Algorithm 2. To remove the unwanted decryption routine, we traverse the program
control flow graph according to the control flow oracle OCF. Starting with the instruc-
tion at the entry point of P , we delete all instructions preceding the trigger instruction
in the control flow graph, as well as the trigger instruction itself.

3.3 Malware Transformation for Semantic Nops

A code sequence in a program is a semantic nop if its execution preserves all variable
values in the program and it does not generate any relevant output. In the control flow
graph of the program, semantic nops created by the junk insertion obfuscation form
hammocks3 [17]. Hammocks are subgraphs of the control flow graph with single entry
and exit nodes. The transformation algorithm for semantic nop removal uses the oracle
OSN to determine whether a hammock is a semantic nop:

Definition 3. [SEMANTIC NOP ORACLE OSN]
The oracle OSN determines whether a hammock given by its entry and exit nodes x and
y is a semantic nop; specifically, it returns true iff (i) in all executions of P , memory
contents at the time the hammock is entered are identical to memory contents at the
time the hammock is left, and (ii) execution of the hammock does not change relevant
behavior. Expressed in terms of transitions on binary programs, we have:

OSN(P, x, y) =∀M,M ′.
(
P

δ∗7−→ (M,x) δ∗7−→ (M ′, y)⇒M = M ′
)
∧

∀M.
(
P

δ∗7−→ (M,x)⇒ (M,x) ' (M,y)
)

The transformation algorithm shown in Algorithm 3 analyzes each function in the
program, enumerating all hammocks as candidates for semantic nop checking. The
hammocks are derived from control flow dominators and post-dominators. A ham-
mock’s entry node dominates a hammock’s exit node, and the exit node post-dominates
the entry node. To compute dominators in a control flow graph we use standard algo-
rithms from compiler literature [18], which depend on the control flow oracle OCF.

We resolve any ambiguity arising from overlapping semantic-nop hammocks (such
as those in Figure 2 of Section 2) by selecting the largest hammock(s) and then choosing
the hammock with a non-overlapping entry node. This does not guarantee the recovery
of the code in the original malware instance, but fixes one malware instance as a normal
form for all obfuscated variants of the original malware instance.

3 A hammock is a subgraph of a CFG G induced by a set of nodes H ⊆ Nodes(G) such that
there is a unique entry node e ∈ H where (m ∈ Nodes(G) \ H) ∧ (n ∈ H) ∧ ((m, n) ∈
Edges(G)) ⇒ (n = e) and such that there is a unique exit node t ∈ H where (m ∈
H) ∧ (n ∈ Nodes(G) \ H) ∧ ((m, n) ∈ Edges(G)) ⇒ (m = t). Structured if, while, and
repeat statements are examples of hammocks.



Input: A program file P .
Output: A program file P ′ with no semantic nops.

begin
P ′ ←− P
foreach H ∈ Hammocks(P ′) do

if OSN(P ′, H) = true then
Remove H from P ′

Recompute Hammocks(P ′)
end

end
return P ′

end
Algorithm 3: Semantic nop transformation of malware.

4 Implementation

Our implementation of the malware transformation algorithms builds on top of publicly
available tools for analysis and manipulation of executable code. The program expo-
sure transformation operates on the binary code representation, whereas the semantic
nop and code ordering transformations rewrite x86 assembly code. The suspicious pro-
gram is disassembled using IDAPro [19] and the resulting assembly language program
is transformed according to the answers provided by the program analysis oracles. The
assembly language program is rewritten and then reassembled into an executable pro-
gram. Currently, the reassembly step of this process requires manual intervention, as
IDAPro sometimes produces imprecise disassembly results. We plan to automate this
process as much as possible and we are exploring possible alternatives to IDAPro.

In the remainder of this section we present our implementations approximating the
three program analysis oracles. Each oracle implementation can make use of a static
analysis engine built on top of IDAPro as well as a dynamic analysis engine based on
the open-source processor emulator qemu [20] to which we added tracing and dynamic
analysis functionality.

4.1 An Implementation of the Program Exposure Oracle OEX

For the implementation of the program exposure oracle, we introduce a technique based
on dynamic analysis. Dynamic analysis is limited to information gained in the observed
executions. However, since a packer has to ensure the integrity of the generated binary
in every execution of the packed program, the result of the unpacking routine needs
to be invariant and deterministic. Thus, dynamic analysis of the unpacking routine is
guaranteed to yield results representative for every execution of the packed program.

Oracle 1 describes, in pseudocode, the process of identifying all the instructions of
a self-generating program. We emulate the program in a controlled environment until
the program counter reaches the generated-code area. During emulation, we capture all
data the program writes to memory. Finally, we modify the original program using the
captured data to reflect its last emulated state.



Input: A program file P and a program location x.
Output: The program P in the state after decryption has finished.

begin
T ←− ∅ ; // history of program writes
r ←− EntryPoint(P ) ; // current program counter

/* Termination condition: control flow reaches a previously written location */
while ¬(∃v.〈r, v〉 ∈ T ) do

Ic ←− P [r] ; // Instruction at location r in P .
Emulate(P, Ic)

if HasTerminated(P ) then break
if IsMemoryWrite(Ic) then

Let v be the value written by Ic

Let a be the target memory location
if ∃v′.〈a, v′〉 ∈ T then T ←− T \ {〈a, v′〉} // Remove earlier writes
T ←− T ∪ 〈a, v〉

r ←− ProgramCounter(P )

/* Construct the unpacked program */
P ′ ←− P
foreach location a in P do if ∃v.〈a, v〉 ∈ T then P ′[a]←− v
ProgramCounter(P ′)←− r

return P ′
end

Oracle 1: Program exposure oracle OEX.

In our current prototype we execute the program in a modified version of the qemu
system emulator [20], collect all the memory writes (retaining for each address only
the most recently written value), and monitor execution flow. If the program attempts
to execute code from a memory area that was previously written, we capture the target
address of the control flow transfer (i.e., the trigger instruction) and terminate execution.

Our current implementation does not have an automated way to check whether a
program is self-generating. We are exploring various techniques that can identify the
presence of self-generating code. One promising approach is the use of static analysis
to locate the control flow instruction that directs execution into dynamically generated
code. Another possible approach is based on the byte value entropy of the executable
file, as previous work has shown that compressed files have statistically different byte
distributions compared to uncompressed files [21,22,23].

4.2 An Implementation of the Control Flow Oracle OCF

The goal of the control flow oracle OCF(P, x) is to determine the program locations
succeeding the instruction at program location x in actual executions of the program
P . The set of an instruction’s successors is fixed and can be determined statically if
the instruction is a non-control flow instruction, a direct jump, or a call. In our current
implementation, we use the IDAPro disassembler [19] to identify these control flow
edges.



Indirect jumps and indirect calls significantly raise the complexity of the oracle.
Both indirect jumps and indirect calls use a computed value (in register or a memory
location) to determine the target of the control flow transfer. The computation of the
target location can be arbitrarily complex (e.g., using branch functions [24]). The cur-
rent implementation of the control flow oracle handles a limited class of indirect jumps.
Based on heuristics of the IDAPro toolkit, the control flow oracle can determine the
target locations for control flow transfers that use a jump table.

Finally, branches (i.e., conditional jumps) pose problems as well when used in con-
junction with opaque predicates. Opaque predicates always evaluate to the same truth
value, with the additional property that determining this truth value is statically hard to
do. Opaque predicates have been discussed in research literature [12,25], but have yet
to make their way into real-world obfuscation tools. We plan to explore the handling
of branches based on opaque predicates in the future, for example through the use of
dynamic analysis to identify opaque predicate candidates.

4.3 An Implementation of the Semantic Nop Oracle OSN

The semantic nop oracle has to determine whether a code hammock preserves the state
of the program. This condition can be expressed, equivalently, in terms of program
variables before and after the code sequence, i.e., a semantic nop preserves all program
variable values (memory, registers). Our implementation is inspired by the use of deci-
sion procedures for semantics-aware malware detection [26]. We use a stack of decision
procedures with varying degrees of power and cost. First, a simple pattern matcher iden-
tifies sequences of instructions known to be semantic nops. Second, a random execution
engine can prove that the hammock is not a semantic nop. If after one random execution
the state is not identical to the initial state, then the hammock is not a semantic nop.

The third decision procedure is a theorem prover, Simplify [27], which determines
whether the hammock, expressed as a state transformer using variables in SSA form,
implies that the values of all the state variables are preserved. If the negation of the
formula is not satisfiable, then the hammock is a semantic nop. The decision procedure
using the theorem prover does not handle hammocks that contain loops.

Our fourth decision procedure is based on a bounded model checker, UCLID [28].
The hammock is converted into a sequence of state-transition rules. We use UCLID to
unwind the code up to a certain, heuristically determined depth, and then query whether
the resulting state is identical to the initial state. If the model checker provides a coun-
terexample, then the hammock is no semantic nop.

4.4 Discussion of Limitations

We now consider the limitations of our oracle implementations compared to the ideal
oracles outlined in Section 3. The control-flow oracleOCF has the largest impact on the
accuracy of our malware transformation system since all three component transformers
depend on it. If the program is obfuscated such that the code cannot be disassembled
or the control flow cannot be recovered accurately, then the transformation process can
fail to deobfuscate the malware instance. The second limitation that could be exploited
by a malware writer is the incompleteness of the semantic-nop oracle OSN. Because
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Fig. 5. Detection rates for packed malware variants. The Transformed bars indicate de-
tection rates after the input programs were preprocessed by the malware transformer.
The Transformed + entry-point recovery bars indicate the detection rates if, in addition,
the entry-point of the unpacked program was manually recovered.

checking whether a code fragment is a semantic nop is undecidable, our implementation
errs on the side of soundness. As a result, complex semantic nops that involve loop
constructs might not be identified or removed.

5 Evaluation

The key metric in our evaluation of malware transformations is the improvement in the
detection rate (percentage of variants detected) observed in commercial anti-virus tools.
For each obfuscation technique, we obfuscated a known malware instance to create a
set of new variants. We then measured the detection rate of four commercial anti-virus
tools on this set of variants—this established the baseline for comparison. The four
anti-virus tools are Norton AntiVirus version 10.0.2, McAfee VirusScan 4.40, Sophos
Anti-Virus 3.96, and ClamAV 0.87, each with up-to-date signatures. Each variant in
the obfuscation set passed through the malware transformation process to produce a set
of transformed variants. The detection rate of the same commercial anti-virus tools was
then measured on this set. By comparing the two detection rates, we determined to what
extent our malware transformations improved the detection ability.

We observe that the detection rate significantly improves when malware transforma-
tions are applied. This result supports our intuition that malware transformations benefit
the detection process.

5.1 Evaluation of the Transformation for Program Exposure

To evaluate the efficacy of malware transformations in the context of self-generating
programs, we made use of a set of seven existing tools for code compression. These
tools, commonly known as packers, obfuscate a program such that the program body
(the code and/or the data) is compressed, and a new program is created to include the



Table 2. Detection rates for malware variants obfuscated by code reordering. The Std.
column indicates the detection rate of standalone virus scanners. The Xfrm. column in-
dicates the detection rate of virus scanners after the input program was first transformed.

Obfuscation
Ratio

McAfee VirusScan Sophos Anti-Virus Norton AntiVirus ClamAV

Std. Xfrm. Std. Xfrm. Std. Xfrm. Std. Xfrm.

10% 32.8% 100% 40% 100% 75% 100% 80% 100%

50% 40.2% 100% 33% 100% 68.5% 100% 82% 100%

90% 40.7% 100% 10% 100% 67% 100% 75.5% 100%

decompressor as well as the compressed data. At execution time, the decompressor
extracts and transfers control to the original program body. For evaluation, we used
the packers Petite, UPX, ASPack, Packman, UPack, PE Pack, and FSG. Each packer
was run on several versions of the Netsky and Beagle viruses, to obtain a total of 90
different new variants. The self-generating variants were then transformed to obtain the
set of unpacked variants. Both sets were scanned using the four anti-virus tools. The
results are summarized in Figure 5.

The numbers show that the program exposure transformation improved detection
rates significantly, but did not achieve 100% detection. We discovered that some mal-
ware detectors use signatures depending on the entry point value, which in some cases
differed between the initial and the unpacked malware instance. If we manually set the
entry point for the unpacked executable to the correct value in the respective cases, the
malware detector was able to identify the viruses reliably. The change in the entry point
value is due to the fact that some packers not only dynamically generate the original
program but also add additional fixup code. These code portions are executed before
the original program, changing the entry point of the reconstructed program.

Furthermore, if a malware detector uses only signatures tailored towards a specific
obfuscated malware instance, it will fail to detect the transformed instance. The major-
ity of malware detectors already come with signatures for unpacked malware to sup-
port specialized unpacking engines for common executable packers. ClamAV, however,
sometimes failed to detect the unpacked instances due to a lack of signatures for the
unpacked malware variants.

5.2 Evaluation of the Code Ordering Transformation

We generated a large number of variants from 10 viruses (Beagle.Y, Triplix-C, Triplix-
D, Firstborn, Integrator, Fiasko, Halen, Terronia, Dammit, Idele). We created approxi-
mately 70 variants for each original virus, for a total of 712 variants. Then, we measured
the detection rate over the new variants with and without code ordering.

Each variant was generated by applying code reordering to a randomly chosen set of
program fragments. In Table 2 we list the detection rate when the obfuscation is applied
to 10%, 50%, and 90% of the program. A ratio of 10% means that a tenth of the original
virus code (measured in number of instructions) was randomly selected and obfuscated.



Table 3. Detection rates for malware variants obfuscated by junk insertion. The Std.
column indicates the detection rate of standalone virus scanners. The Xfrm. column
indicates the detection rate after the input program was first transformed.

Obfuscation
Ratio

McAfee VirusScan Sophos Anti-Virus Norton AntiVirus ClamAV

Std. Xfrm. Std. Xfrm. Std. Xfrm. Std. Xfrm.

10% 62.5% 100% 35% 100% 80% 100% 90% 100%

50% 45% 100% 22% 100% 78.5% 100% 78% 100%

90% 25% 100% 7.5% 100% 69% 100% 76.5% 100%

While the detection rate for these obfuscated variants dropped significantly in many
cases, it went back up to 100% after we applied the code ordering transformation.

Note that, in Table 2, Norton AntiVirus and ClamAV are outliers. For some of the
viruses, both succeed in detecting all variants generated using the reordering obfusca-
tion for a simple reason: their signatures match data areas, which are unchanged by
obfuscations that work on code. Because of this, polymorphic viruses commonly em-
ploy code obfuscation in combination with packing.

5.3 Evaluation of the Semantic Nop Transformation

Similar to the evaluation of the code ordering malware transformation, we generated
a large number of variants of the 10 viruses and measured the detection rate before
and after applying the semantic nop transformation. Each variant was generated by
inserting junk code into a randomly chosen set of program locations, for a total of 570
variants. We list in Table 3 the detection rate when the obfuscation is applied to 10%,
50%, and 90% of the program. In addition to varying the location of the junk code
insertion, we also varied the types of junk code generated, from simple nop instructions
to semantic nops that use stack and arithmetic operations. The detection rate for these
obfuscated variants again dropped significantly in many cases; using the semantic nop
transformation the detection rate went back up to 100%. Since junk-insertion is a code-
only obfuscation, the detection rates of Norton AntiVirus and ClamAV stand out again
for the same reason as before.

5.4 Malware Transformation Times

Figure 6 shows the average execution time for the various transformation steps. Since
this is an unoptimized research prototype, we expect that significant speed gains can
be achieved through an optimized implementation. Both the code ordering transformer
and the program exposure transformer finish in about 10-20 seconds. The semantic nop
transformer is significantly slower as it must query a decision procedure for all possible
hammocks in the program. We believe that better strategies for semantic nop detection
are possible; one of our goals for future work is to improve performance.
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Fig. 6. Average running times of the malware transformers for different obfuscations.
Times are broken down into phases for disassembly, analysis (static analysis resp. em-
ulation), and rewriting of the executable.

6 Related Work

Obfuscations have been used for a long time to evade detection of malware. Polymor-
phic malware, which encrypts the code under a different key at each replication, and
metamorphic malware, which morphs itself at each replication, are increasing threats to
malware detectors [16]. Numerous obfuscation toolkits are freely available, some with
advanced features. For example, Mistfall is a library for binary obfuscation specifically
designed to blend malicious code into a host program [29]. Other tools such as the ex-
ecutable packer UPX [30] are available as open-source packages, making it easy for
malware writers to custom-develop their own versions. Free availability of obfuscation
toolkits is spawning new malware variants rapidly, whereas commercial malware de-
tectors are commonly incapable of handling the plethora of obfuscations found in the
wild [4]. While obfuscation has found commercial application in protecting intellec-
tual property in software [11,12,31], the goal of our work is to address the particular
obfuscations used by malware writers. Recent work presented obfuscations that aim to
thwart both static and dynamic analysis by combining code encryption with expensive
decryption strategies [32]. We note a detector need not identify malicious code before
the program runs, but only before the program harms the system. A possible transfor-
mation strategy would monitor the program until the payload is decrypted and then
make use of the techniques in our present work to transform the code before detec-
tion. Achieving the low overhead required to make such a strategy practical for broad
deployment is the goal of future research.

Deobfuscation tools appeared in response to particular attacks. Detection of poly-
morphic malware requires the use of emulation and sandboxing technologies [33],
which integrated emulation into the malware detector. This approach is open to re-
source–consumption attacks and is prone to false negatives, since the execution time
in the sandbox has to be restricted for performance reasons [34,35]. In contrast, our
code-identification oracle terminates the program as soon as it attempts to execute dy-
namically generated code. Another approach to unpacking is PolyUnpack [36], which
executes the program inside a debugger until it reaches an instruction sequence that does
not appear in the static disassembly of the program. PolyUnpack suffers from limita-
tions inherent in static disassembly, limitations that we avoid in our program exposure
transformer by using a purely dynamic technique. Other work on deobfuscation has
proposed heuristics to recover the import address tables from a packed binary [37]. We



will investigate the addition of such techniques to our implementation of the program
exposure oracle.

Static analysis approaches for detecting and undoing obfuscations have been pro-
posed for particular obfuscations, such as techniques for defeating the effect of control
flow flattening [38] or for handling a given metamorphic engine through the use of
term rewriting [39]. More general approaches, similar in intent to ours, attempt to nor-
malize C programs by ordering program statements and expressions [40] and to apply
compiler-optimization techniques to eliminate obfuscated code [41,42]. These algo-
rithms complement ours as they perform local deobfuscation.

When we apply our malware transformations, we assume that the code in the pro-
gram file has been successfully disassembled. While recent work showed that an at-
tacker can make disassembly hard [24], we note that other researchers have already
proposed solutions to counter such techniques [43,44].

Several new research approaches propose semantics-based malware detectors that
can reliably handle malware variants derived through obfuscation or program evolu-
tion [45,26]. These methods are promising, but they face an uphill battle in terms of
deployment opportunities due to the fact that the current commercial malware detectors
have a large install base. We believe that our malware transformer provides an easier
upgrade path to more advanced detection techniques, as it works in conjunction with
existing detectors.

7 Conclusion

This paper presented a set of malware transformations that undoes the effects of three
common obfuscations used by malware writers. We demonstrated that the detection
rates of four commercial malware detectors can be improved by first processing an exe-
cutable by a malware transformer. An additional benefit of malware transformations is
the separation of concerns between the malware transformation stage and the malware
detection stage. This leads to more maintainable software and allows for independent
improvements in malware transformation techniques and malware detection algorithms.
In the future, we will investigate improvements to our oracle implementations. In par-
ticular, we will address the handling of opaque predicates and the reconstruction of
import tables. We also plan to expand the set of obfuscations handled by our malware
transformer and to improve overall performance.
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