
Hypertesting: The Case for
Automated Testing of Hyperproperties

Johannes Kinder

Department of Computer Science
Royal Holloway, University of London
johannes.kinder@rhul.ac.uk

Abstract. Proof systems give absolute guarantees but are notoriously difficult
to use for non-experts. Bug-finding tools make no completeness guarantees but
offer a high degree of automation and are relatively easy to use for developers. For
safety properties, the effectiveness of automatic test generation and bug finding
is well established. For security properties like non-interference, which cannot
be expressed as properties of a single program execution (i.e., hyperproperties),
methods for testing and bug finding are in their infancy. In general, violations of
hyperproperties cannot be expressed with a single test case like safety properties,
so existing bug finding methods do not apply.
This paper takes the position that we should fill this gap in the arsenal of ver-
ification technology and outlines concepts and tools for the next generation of
bug finding systems. In particular, we aim to establish a generalized concept for
the generation of “hypertests”, sets of tests that either provide some level of con-
fidence in the system or give counterexamples to hyperproperties. As concrete
instances of hypertesting, we foresee automated testing for violations of secure
information flow and of numeric and cryptographic properties of programs.

1 Introduction

Numerous incidents have shown that many of the software systems we use are vul-
nerable to malicious attacks. Consequently, efforts are under way to secure especially
critical parts of the infrastructure, such as commonly used libraries and protocols. For
instance, the highly publicized “Heartbleed” vulnerability has led to the launch of an
extensive code audit and rewriting campaign for the OpenSSL library1. Specifications
or small reference implementations of protocols can be proven to adhere to certain secu-
rity properties. These methods are highly labor-intensive and are thus inherently limited
to few, especially valuable components. Impressive recent examples include the seL4
verified operating system kernel (20 person years for 10 KLOC) [18] or the verified
TLS reference implementation [5].

Application software, however, is not usually regarded as security critical, and end
users tend to select their favorite software based on features instead of security. Conse-
quently, the focus of developers working against tight deadlines is on adding features

1 http://www.libressl.org

http://www.libressl.org


instead of spending precious time on verifying security. Still, users entrust such applica-
tions with an increasing amount of sensitive information, as they use smartphones and
web applications to manage their finances, health records, and personal contacts.

A major part of the problem is due to software bugs: they can range from simple
syntactic typos or copy/paste mistakes (e.g., Apple’s infamous “goto fail” bug [13])
to design errors or wrong usage of library interfaces. Traditionally, low-level bugs like
buffer overflows have received most attention due to being easily exploited. But as mod-
ern programming languages and bug finding tools rule out increasingly more of these
low-hanging fruits, sophisticated government- or organized crime-sponsored attackers
will turn to other classes of weaknesses, such as information leaks or cryptographic
vulnerabilities [7, 26, 20, 27].

Bug finding tools have helped bring verification technology “to the masses”. Instead
of trying to prove a (safety) property, they focus on finding counterexamples (bugs).
This is substantially more robust and less prone to the false positives dreaded by soft-
ware developers. No similar machinery is available to developers trying to harden their
code against violations of more complex properties. Much progress has been made in
using proof systems to verify protocol specifications or small pieces of code. However,
this technology is not usable by regular developers, and no general concept of bug-
finding exists for security properties beyond safety, i.e., hyperproperties [10], such as
non-interference [16].

In this paper we take the position that we should fill this gap in the arsenal of ver-
ification technology. We introduce the concept of hypertests (§2), which either con-
stitute counter-examples to hyperproperties or serve as positive witnesses, providing
some level of confidence in them. By systematically generating hypertests—Automated
hypertesting—next-generation bug finding systems then will allow developers to auto-
matically find violations of security properties, analogously to current testing systems
for memory safety and assertions. We also briefly outline two possible applications of
hypertesting in finding violations of secure information flow and cryptographic proper-
ties (§3).

2 Hypertesting

We will now recall the definition of hyperproperties (§2.1), introduce definitions for
hypertests (§2.2) and k-hypertests (§2.3), and propose ideas for automating their gener-
ation (§2.4).

2.1 Hyperproperties

The classic types of properties used in verification are safety and liveness. An assertion
in a program or the absence of buffer overflows are examples of safety properties; a
typical liveness property is that an acquired resource is eventually freed. Safety and
liveness properties can be categorized as trace properties, i.e., properties of individual
execution traces of a program [10]. Any trace property can be formally defined as a set
P of “legal” execution traces. A system then satisfies the property if the system’s set T
of possible executions is a subset of it (T ⊆ P ).

2



However, many interesting security properties such as non-interference [16] or ob-
servational determinism [22] cannot be expressed as trace properties since they make
statements about relations of multiple traces. Clarkson and Schneider [10] therefore in-
troduced the notion of hyperproperties; a hyperproperty is a set of sets of traces, such
that a system satisfies the hyperproperty H if the system’s possible executions are an
element of the hyperproperty (T ∈ H).

In principle, this makes hyperproperties considerably harder to prove or disprove,
since all traces of a system may have to be reasoned about at the same time. Fortunately,
many properties lie in subclasses that require reasoning only about k traces (k-safety).
Observational determinism, for example, is a 2-safety hyperproperty that relates only
two executions to each other [25]. This reduces the problem to verification of a safety
property on a self-composition of the program. Barthe et al. [2] suggested directly com-
bining the program with a renamed version of itself and proving that low-clearance
values remain identical regardless of high-clearance values. Kovács et al. [19] apply
self-composition on the control flow graph and use abstract interpretation for verifica-
tion. In the context of testing, k-safety hyperproperties are particularly attractive, since
k traces are sufficient to form a counterexample.

2.2 Hypertests

Hypertests relate to hyperproperties as regular test cases relate to trace properties. A
test describes a subset of the program behavior and can be decided to either satisfy or
violate the target property. For trace properties, a test is therefore just a single test input
inducing a single trace of the program. To give a counter-example to liveness properties,
this trace can also be infinite. Deciding whether a single trace of a program or system
satisfies or violates a property is easier than constructing a proof for the entire program
or system. This allows testing to be done more cheaply than correctness proofs, and
often with full automation.

Moving to hyperproperties, a test inducing a single trace no longer suffices. Showing
that a hyperproperty H is violated requires a set of program traces C such that there is
no T ∈ H with C ⊆ T . We therefore define a hypertest to be a (possibly infinite) set of
test cases that induces a corresponding set of traces.

Note that by this definition, a trivial hypertest could be the set of all inputs, which
would induce all traces and thus be equivalent to the complete concrete semantics of the
program. This kind of hypertest would be clearly intractable, and in practical scenarios
one will clearly aim for hypertests that execute in reasonable (and certainly finite) time.

Note further that deciding whether the hypertest satisfies or violates the hyperprop-
erty is generally not as easy as it is for tests of trace properties. Consider again a hyper-
test encompassing the set of all inputs as a pathological example. Deciding whether this
test satisfies or violates the hyperproperty is equivalent to verifying the full program.
Thus we need to make sure not only that hypertests execute in finite time, but also that
deciding the property on the induced set of traces is conceptually easy and can be fully
automated. This will pose a considerable challenge for general hypertesting.

3



2.3 k-Hypertests

Fortunately many interesting properties do not require reasoning about infinite sets of
traces. In the case of k-safety, k traces are sufficient to refute the property. Therefore,
we can define corresponding k-hypertests that consist of exactly k traces. A failing k-
hypertest constitutes a proof that the program does not satisfy the target property; a
passing k-hypertest provides some degree of confidence that the property holds.

Just as with regular tests, it will be difficult to quantify the degree of confidence
gained. An interesting avenue of work will be to develop practical coverage criteria for
hypertests. On the one hand, simple metrics such as line coverage will have even less
meaning for hypertests than they have for regular test suites. On the other hand, the total
number of traces is unknown or infinite, so metrics like trace or path coverage cannot
generally be meaningfully computed.

2.4 Automated Hypertesting

While developers may write hypertests themselves, as sets of unit tests, automatic gen-
eration of hypertests will be especially desirable.

Automated test case generation and bug finding using symbolic execution has re-
ceived significant attention in recent years. The availability of powerful automated con-
straint solvers (SMT solvers) and the DART [15] and EXE [9] algorithms for combining
symbolic and concrete execution have allowed its application to real world software [8].
Symbolic execution has so far focused mostly on finding memory safety violations or
assertion failures in C code or binaries. Work on finding code injection vulnerabilities
in JavaScript [24] has shown that symbolic execution can also be applied to higher-level
programming languages and properties, but such use remains the exception.

Symbolic execution enumerates test inputs corresponding to the feasible execution
paths of an application. It is thus ideally suited for generating hypertests. The main
challenge will lie in guiding the path enumeration such that, where a program violates a
property, the violating set of traces is found quickly. For regular trace properties, search
strategies provide this kind of guidance for the path exploration, by trying to maximize
various coverage criteria.

For k-safety properties, a test generation system can be built on the existing concept
of self-composition [2]. A symbolic execution tool generating a single test case for
a self-composed program will effectively generate two inputs for the same program,
which constitutes a valid 2-hypertest.

3 Applications

We foresee two immediate applications for automatic hypertest generation in finding
violations of secure information flow (§3.1) and of cryptographic properties (§3.2).

3.1 Testing Information Flow Properties

In the context of information flow, testing is related to dynamic policy enforcement and
monitors. A security monitor runs alongside a program and terminates it once it can

4



no longer guarantee a security property. For noninterference, monitors can be proven
to be equivalent to type systems, disregarding termination [23]. Monitors (like type
systems) have to be conservative and are thus prone to false positives; this makes them
unsuitable for a direct application in testing when the goal is to generate guaranteed
counterexamples.

Based on the observation that many interesting information flow properties are in
fact 2-safety properties, one may develop suitable efficient algorithms for directed test-
ing that can produce corresponding tests and counterexamples. A valid counterexample
to observational determinism [22], for example, could consist of two traces that yield
different low-clearance outputs on identical low-clearance inputs (because the low-
clearance outputs depend on high-clearance inputs). This idea is embodied in existing
work on random-testing information flow properties [17], but no systematic approach
exists. Self-composition [2, 19] is not generally necessary for testing, but can quickly
yield a test generation engine with an existing symbolic execution tool (see §2.4). A
key question will be to find suitable novel search strategies that can efficiently guide
test generation and symbolic execution towards pairs of paths that violate the property.

3.2 Cryptographic Bugs

Cryptographic properties, such as the distribution of random numbers or the size of the
key space, are an important example of properties that go beyond basic safety. Such a
property is easily violated, e.g., by a bad typecast truncating a random number. Unlike
bugs that affect observable application behavior, however, these “cryptobugs” are diffi-
cult to spot. The introduced cryptographic weakness is subtle and can persist for long
as it does not affect the typical user experience.

A number of such weaknesses became more widely known: (i) the “Cryptocat” chat
client was discovered to be insecure because a string of decimals from a random number
generator had been mistaken for an array of bytes, reducing the possible key space [26];
(ii) the “Bitmessage” peer-to-peer messenger was found, among other problems, to lack
a secure block chaining mode [20]; (iii) the “enigmail” e-mail encryption plugin could
sometimes send an e-mail completely unencrypted to BCC recipients [11]; (iv) finally,
over 40% of Android applications using cryptography were found to have hard-coded
cryptographic keys [27].

Not all “cryptobugs” in application software manifest as violations of hyperproper-
ties; some are much simpler to find and stem from violations of API contracts and sim-
ple numeric properties like “parameter x must not be constant”. Existing light-weight
static analysis and test-generation methods for safety properties can be adopted to find
these kinds of bugs.

Hyperproperties come into play when moving on to properties of distributions such
as “parameter y must be uniformly distributed”. For instance, known PRNGs can be
assumed correct and annotated to output uniformly distributed values of a specified
range. The application code may then transform this distribution before feeding it into
other annotated cryptographic functions. These are no longer regular safety properties;
a single constant flowing into a key parameter is only a bug if that path has a probability
greater than 1 divided by the size of the key space.

5



4 Related Work

Testing has previously attracted the attention of the information flow community. Bir-
gisson et al. [6] showed how to use testing to insert security upgrade annotations au-
tomatically whenever a monitor reports a violation. Hriţcu et al. [17] proposed to test
dynamic (e.g., monitors) or static (e.g., type systems) information flow enforcement
mechanisms using the QuickCheck random testing system. Their strategy is to ran-
domly generate and run programs conforming to the mechanism and then to indepen-
dently verify the desired security property. Since their focus is on verifying the mecha-
nism, the generated programs consist of only a few instructions. Interestingly, Hriţcu et
al. note that using symbolic execution instead of random testing appears promising but
found the existing engine they tried to be ineffective.

In recent work, Phan et al. [21] successfully used symbolic execution with self-
composition for quantifying information flow. They exhaustively enumerate paths and
compute the number of outputs by counting models for path conditions (following [14])
of leaking paths. Their success on small benchmarks (up to 40 lines of code) provides
initial evidence that symbolic execution is viable for analyzing security properties.

Traditional verification of cryptographic protocols is based on symbolic analysis
of high-level Dolev-Yao models [12]. Verification of cryptographic implementations is
a more recent endeavor; particularly successful have been type systems such as those
in the F7 verification system [4], which led the way to later work on verifying cryp-
tographic implementations using refinement types [1, 5, 3]. While type systems are
applicable to real code, they require careful annotations and are intrinsically prone to
false positives.

5 Conclusion

Today’s users rely on the security of a diverse range of application code, much of it
written by application developers who are not security experts. Automated generation
of hypertests promises to yield a system for identifying a wide range of security vi-
olations fully automatically, without requiring expert users. Since no complete proofs
with manual intervention are required, such a system would allow even developers of
commodity software to easily find security bugs in their code.

If fully developed and broadly deployed, this has the chance to increase the overall
robustness and security of the IT ecosystem and help fight the all too common sentiment
that “the bad guys are winning”.

Acknowledgments

The author would like to thank David Cock, Sergio Maffeis, and José Santos for valu-
able discussions that helped to shape the ideas in this paper. This work has been partially
supported by EPSRC grant EP/L022710/1.

6



References

[1] M. Backes, M. Maffei, and D. Unruh. “Computationally sound verification of source
code”. In: Proc. 17th ACM SIGSAC Conf. Computer and Communications Security (CCS
2010). ACM, 2010, pp. 387–398.

[2] G. Barthe, P. R. D’Argenio, and T. Rezk. “Secure Information Flow by Self-Composition”.
In: 17th IEEE Computer Security Foundations Workshop (CSFW 2004). IEEE Computer
Society, 2004, pp. 100–114.

[3] G. Barthe, C. Fournet, B. Grégoire, P. Strub, N. Swamy, and S. Z. Béguelin. “Probabilis-
tic relational verification for cryptographic implementations”. In: Proc. 41st Annu. ACM
SIGPLAN-SIGACT Symp. Principles of Programming Languages (POPL 2014). 2014,
pp. 193–206.

[4] J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and S. Maffeis. “Refinement Types
for Secure Implementations”. In: Proc. 21st IEEE Computer Security Foundations Symp.
(CSF 2008). IEEE Computer Society, 2008, pp. 17–32.

[5] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, and P. Strub. “Implementing TLS
with Verified Cryptographic Security”. In: IEEE Symp. Security and Privacy (S&P 2013).
2013, pp. 445–459.

[6] A. Birgisson, D. Hedin, and A. Sabelfeld. “Boosting the Permissiveness of Dynamic
Information-Flow Tracking by Testing”. In: Proc. 17th European Symp. Research in Com-
puter Security (ESORICS 2012). 2012, pp. 55–72.

[7] D. Bongard. Offline bruteforce attack on WiFi Protected Setup. Presentation at Password-
scon 2014, Las Vegas. 2014.

[8] C. Cadar, D. Dunbar, and D. R. Engler. “KLEE: Unassisted and Automatic Generation
of High-Coverage Tests for Complex Systems Programs”. In: Proc. 8th Symp. Operating
Systems Design and Implementation (OSDI 2008). 2008, pp. 209–224.

[9] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler. “EXE: automatically
generating inputs of death”. In: Proc. 13th ACM SIGSAC Conf. Computer and Communi-
cations Security (CCS 2006). ACM, 2006, pp. 322–335.

[10] M. R. Clarkson and F. B. Schneider. “Hyperproperties”. In: Journal of Computer Security
18.6 (2010), pp. 1157–1210.

[11] L. Constantin. Encryption failures fixed in popular PGP email security tool Enigmail.
PCWorld. 2014. URL: http : / / www . pcworld . com / article / 2604880 /
encryption-failures-fixed-in-popular-pgp-email-security-
tool-enigmail.html.

[12] D. Dolev and A. C.-C. Yao. “On the security of public key protocols”. In: IEEE Trans.
Information Theory 29.2 (1983), pp. 198–207.

[13] P. Ducklin. Anatomy of a “goto fail” – Apple’s SSL bug explained, plus an unofficial patch
for OS X! Sophos – Naked Security. Feb. 2014. URL: https://nakedsecurity.
sophos.com/2014/02/24/anatomy-of-a-goto-fail-apples-ssl-
bug-explained-plus-an-unofficial-patch/.

[14] A. Filieri, C. S. Pasareanu, and W. Visser. “Reliability analysis in symbolic pathfinder”.
In: 35th Int. Conf. Software Engineering (ICSE 2013). 2013, pp. 622–631.

[15] P. Godefroid, N. Klarlund, and K. Sen. “DART: directed automated random testing”. In:
Proc. ACM SIGPLAN 2005 Conf. Programming Language Design and Implementation
(PLDI 2005). ACM, 2005, pp. 213–223.

[16] J. A. Goguen and J. Meseguer. “Security Policies and Security Models”. In: IEEE Symp.
Security and Privacy (S&P 1982). 1982, pp. 11–20.

7

http://www.pcworld.com/article/2604880/encryption-failures-fixed-in-popular-pgp-email-security-tool-enigmail.html
http://www.pcworld.com/article/2604880/encryption-failures-fixed-in-popular-pgp-email-security-tool-enigmail.html
http://www.pcworld.com/article/2604880/encryption-failures-fixed-in-popular-pgp-email-security-tool-enigmail.html
https://nakedsecurity.sophos.com/2014/02/24/anatomy-of-a-goto-fail-apples-ssl-bug-explained-plus-an-unofficial-patch/
https://nakedsecurity.sophos.com/2014/02/24/anatomy-of-a-goto-fail-apples-ssl-bug-explained-plus-an-unofficial-patch/
https://nakedsecurity.sophos.com/2014/02/24/anatomy-of-a-goto-fail-apples-ssl-bug-explained-plus-an-unofficial-patch/


[17] C. Hritcu, J. Hughes, B. C. Pierce, A. Spector-Zabusky, D. Vytiniotis, A. A. de Amorim,
and L. Lampropoulos. “Testing noninterference, quickly”. In: ACM SIGPLAN Int. Conf.
Functional Programming (ICFP’13). 2013, pp. 455–468.

[18] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe, K.
Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. “seL4: formal
verification of an OS kernel”. In: Proc. 22nd ACM Symp. Operating Systems Principles
(SOSP 2009). ACM, 2009, pp. 207–220.

[19] M. Kovács, H. Seidl, and B. Finkbeiner. “Relational abstract interpretation for the veri-
fication of 2-hypersafety properties”. In: Proc. 20th ACM SIGSAC Conf. Computer and
Communications Security (CCS 2013). ACM, 2013, pp. 211–222.

[20] S. D. Lerner. Bitmessage v1.0: completely broken crypto. 2012. URL: http://bitslog.
wordpress . com / 2012 / 11 / 30 / bitmessage - completely - broken -
crypto/.

[21] Q. Phan, P. Malacaria, C. S. Pasareanu, and M. d’Amorim. “Quantifying information leaks
using reliability analysis”. In: Proc. Int. Symp. Model Checking of Software (SPIN 2014).
2014, pp. 105–108.

[22] A. W. Roscoe. “CSP and determinism in security modelling.” In: IEEE Symp. Security
and Privacy (S&P 1995). IEEE Computer Society, 1995, pp. 114–127.

[23] A. Sabelfeld and A. Russo. “From Dynamic to Static and Back: Riding the Roller Coaster
of Information-Flow Control Research”. In: 7th Int. Andrei Ershov Memorial Conf. Per-
spectives of Systems Informatics (PSI 2009). 2009, pp. 352–365.

[24] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song. “A Symbolic
Execution Framework for JavaScript”. In: IEEE Symp. Security and Privacy (S&P 2010).
IEEE Computer Society, 2010, pp. 513–528.

[25] T. Terauchi and A. Aiken. “Secure Information Flow as a Safety Problem”. In: 12th Int.
Symp. Static Analysis (SAS 2005). Vol. 3672. LNCS. Springer, 2005, pp. 352–367.

[26] S. Thomas. DecryptoCat. 2013. URL: http://tobtu.com/decryptocat.php.
[27] Veracode. State of software security report: The intractable problem of insecure software.

Dec. 2011.

8

http://bitslog.wordpress.com/2012/11/30/bitmessage-completely-broken-crypto/
http://bitslog.wordpress.com/2012/11/30/bitmessage-completely-broken-crypto/
http://bitslog.wordpress.com/2012/11/30/bitmessage-completely-broken-crypto/
http://tobtu.com/decryptocat.php

	Hypertesting: The Case for Automated Testing of Hyperproperties

