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Abstract—To aid the formal verification of fault-tolerant
distributed protocols, we propose an approach that signifiantly A
reduces the costs of their model checking. These protocols | ___ 7~ ___ o _*‘ _____ Protocol-level |
often specify atomic, process-local events that consume sat X \MAPPING ¥

of messages, change the state of a process, and send zero
or more messages. We call such eventguorum transitions
and leverage them to optimize state exploration in two ways.
First, we generate fewer states compared to models where
quorum transitions are expressed by single-message tranrsi
tions. Second, we refine transitions into a set of equivalent

finer-grained transitions that allow partial-order algori thms Implementation-level
to achieve better reduction. We implement the MP-Basset . ) ) ]
model checker, which supports refined quorum transitions. Vé Figure 1. lllustration of protocol and implementationdéstates.

model check protocols representing core primitives of deplyed
reliable distributed systems, namely: Paxos consensus,galar
storage, and Byzantine-tolerant multicast. We achieve upat
92% memory and 85% time reduction compared to model
checking with standard unrefined single-message transitits.

not proven correct, the properties that hold at protocetlle
are still valuable, e.g., to justify the conceptual desigut,
they do not transfer to the implementation.

Another generic state space reduction techniqpaital-

o o order reduction(POR) [12]. POR assumes that the system
Message-passing is a broadly used communication and gefined in terms of transitions, i.e., atomic operations

programming paradigm in the design of_reliable distributed, ¢ change the state of the system. In message passing
systems [6], [32], [10], [28]. However, given the complex- gystems, for example, transitions are the sending or receiv
ity resulting from concurrency and faults, message-p@ssining of messages. The idea of POR is that the sequential
systems are prone to subtle bugs [29], [23], [35], [37]-execution of “independent” transitions leads to the same
Consequently, a variety of formal techniques is advocatedate irrespective of the relative order of the transitiand,

for ascertaining protocol correctness. A widely used fdrmagfien, the intermediate states do not impact the properties
technique for finding bugs or proving their absence is mode}y jnterest. Therefore, it suffices to explore a represemat
checking [12], i.e., the automated and exhaustive exptorat oyacution order of such transitions.

of the system’s state space. The continuing main limitation & - overall goal is to minimize the size of protocol-level

of model checking is that the size of the full state spacgyqgels and to perform space and time efficient state explo-
(and the corresponding time Pf exploration) is 'ntrac_tablyration of these models. A general pattern in the message-
large even for small systems, i.e., state space explosion. 4qqing computation model is that a transition consumes
An effective measure against state space explosion igitiple messages by a single execution. We call such tran-
abstraction [12], the separation of the conceptpadfocol-  jiions quorum transitions Generally speaking, a quorum
level state space from the low-level implementation (Fig-ansition can process multiple messages, change the state
ure 1). An implementation of protocol-level CONSWUCES ot the process that executes it, and send new messages, in a

defines a “one-to-many” mapping between protocol andjngie indivisible step. We show that quorum transitions no
implementation-level states and transitions. Once the COynly enable a natural specification of a class of protocols,

rectness of the implementation (i.e., the mapping in géneragey aiso yield succinct protocol-level models and allow
is verified, a new protocol can be checked on the reducefaiier POR performance.

protocol-level state space only [23]. If the implementati®

I. INTRODUCTION

As an example of quorum transitions, consider systems

Research supported in part by EC FP7 INDEXYS, Loewe TUD CASED that guarantee reliability under the ass_umptlon that the
and DFG GKMM. number of faulty processes lies below a given threshold and



each correct (non-faulty) process executes an instandeof t Il. MESSAGEPASSING MODELS WITH QUORUM

same replicated service [4], [6], [10], [38]. The threshold TRANSITIONS

assumption implies that a set of messages from a large |y this section, we briefly review the message-passing

enough subset (or quorum) of processes contains at leagbmputation model [4]; we use simplified but equivalent

one message from a correct process. Therefore, a comm@@mantics, which does not distinguish delivery and sending

technique in such systems is that the execution of an eveRfansitions and is better suited for model checking [8].

is triggered when aetof messages from a quorum (e.9., @\e then introduce MP, a Java-like language for specifying

majority) of processes is received. message-passing protocols. Finally, we show how quorum
Exploiting the characteristics of quorum transitions, wetransitions affect the size of protocol-level models.

make the following contributions: . .
wing fout A. The Message-Passing Computation Model

« We argue forquorum transitiongo be modeled at the Syntax. The system consists of processecommuni-
protocol-level. Otherwise, a quorum transition must becating via directecchannels which are (unordered) sets of
modeled via a sequence of transitions, each of thel’Tﬂnessagegom a setM. For processes, 7, Cij represents
processing asingle message, which generates a largeg channel from processto j and is called the outgoing
number of (implementation-level) states (Section Il). channel of process and incoming channel of. Each
Although the implementation of quorum transitions canprocess; assumes a sef; of local states Initially, every
be complex, its correctness has to be verified only onceprocess; is in some initial state frons;, and all channels

« We observe that, maybe surprisingly, the definition ofare empty.
transitions, which depends on the programming style A message passing protodslspecified by defining a set
and language, can greatly affect the reduction achieved, of transitionsfor each process Intuitively, a transition
by POR. We introduce the concept thnsition re- ¢ ¢ 7, can consume zero or more messages from the
ﬁnemen,tWhiCh explOitS this observation to tune POR incoming channels oﬁ, Change the local state Of and
for better performance. Transition refinement splits agend multiple messages. If it can consume more than one
transition into mUltlple sub-transitions such that (a) the(respectiveiy, at most One) message's called aquorum
behavior of the system remains the same and (b) PORgespectivelysingle-messagdransition.t is associated with
algorithms can detect more independent transitions. Iy predicate (oguard) g;, whose truth value depends only on
particular, we define two transition refinement strate-5 set of incoming messages aisl local state. In addition,
gies: quorum-splitandreply-split (Section Il1). t is associated withis, : S; x 2M — S;, the local state

+ We implement a POR-based model checker call®  transition function of. Intuitively, Is, returns the new local
Bassethat supports quorum transitions and the quorunktate of process depending on the current local state and
and reply-split strategies. MP-Basset is built upon Basy set of incoming messages. If the guard is true (i.és,
set, an existing model checker for actor programs, an@nabled in the current local state affor a set of messages
upon its input language ActorFoundry [23]. Our proto- X in the incoming channels of, the transitiont can be
col specification language is highly expressive, allowingexecuted After executingt, all messages inX have been
the execution of arbitrary Java code that respects thgemoved from the incoming channels af its local state
message-passing computation model (Section IV).  may have been updated via;, and messages may have

« We evaluate MP-Basset based on diverse protocol @een added (i.esen) to the incoming channels of other
amples with a range of fault semantics, namely (a)processes.

Paxos, a fundamental crash-tolerant consensus protocol Note that transitions can be non-deterministic. For exam-

[20], (b) a message-based regular storage implementgsie, if transitiont is enabled for messagés:;} and {m;},

tion [3], and (c) a Byzantine-tolerant multicast protocol then¢ non-deterministically consumes either, or m..

[26]. As the protocol properties are preserved by POR, Semantics.The semantics of a message passing protocol
our verification results are sound. While PaXOS-SimilariS given by astate graphi_e_, pairs of states forming directed
protocols and storage implementations are already segdges. Formally, a state graph (often referred to as Kripke
ing deployment in various commercial settings [10], structure [12]) is a tupldS, So, A), where S is the set of
[38], [40], ready-to-use Byzantine tolerant libraries arestates S, is the set of initial states, anl C S x S is a set of
also available [41]. Our experiments show that thestate pairs. Astates € S is a vector with all channel contents
proposed approach can be highly efficient with savingsand the local state of each process. We denote the contents
(verification memory and time) ahore than one order  of channek; ; and the local state of proces# s by s(c; ;)

of magnitudecompared to models with unsplit single- and s(;), respectively. Every transition is a relation such
message transitions. In addition, the proposed approadfat+ C S x S. For everys,s' € S andt € T}, (s,s') € t

is also suitable for fast debugging especially of “subtle”iff ¢, (x| s(i)) is true for some subse¥t of the union of all
bugs (Section V). incoming channels of in s and s’ is identical tos except



@uard
bool ean READ_REPL(READ_REPL[] nessages) {
/I guard: replies from a majority of N acceptors

return nmessages. | engt h==(Mat h. cei | ((doubl e) (N+1)/2));

@essage

voi d READ_REPL( READ_REPL nessage) {
cnt ++;
... Il stores READREPL if it is the highest seen

if (cnt>=(Math.ceil ((double)(N+1)/2))){
cnt =0;
WRI TE wri te=new WRI TE( pr opNo, readRepl Hi ghest.val);
for (ActorName w : acceptors)
send(w, wite);

@ressage
voi d READ_REPL(READ_REPL[] nessages) {
... Il select highest READREPL message amongessages

WRI TE wite=new WRI TE( pr opNo, readRepl Hi ghest.val); }
for (ActorName w : acceptors) }
send(w, wite); . . .
} Figure 3. MP syntax: Single-message Paxos transition.

Figure 2. MP syntax: Quorum transition in Paxos.

must match with the name of the transition. The transi-

for the following: (1) the messages ik are removed from ton (annotated by @message) can only be executed if its
the input channels af (2) s/ (i) = Is,(s(i), X ), and (3) zero guard (annptated by @guard) is true._ln this exa_mple, the
or more messages are added to every outgoing chanrel Ofguard requires that the quorum contains a majority of the

In this case, we say thatis executed ins with X and write N acceptors._ In the body of the transition the proposer
HX) , _ ) . sends the “highest” among the REAREPL messages to
S s Now, (s, s") € A iff there is a transitiont such 5 acceptors. Again, the name of the transition (and the
that (s, s') € . \ ) corresponding guard) determines the type of messages this
For later use, we defin@enders(X) to be {j|m €  yansition can consume. The argument of the transition (and
X Am € s(ejqi)}, e, the set of processes that haveqard) is an array of this message type, which stores the
sent a message itX. If there is s M, ¢ such that messages consumed by the transition. In accordance with
|senders(X)| > 1, thent is a quorum transition. Otherwise, the message-passing model, the order of elements in the
t is a single-message transition. array is arbitrary. It is guaranteed by the implementation

Properties. Properties of a state graph can be definedhat, given the current state of the process and the input
using temporal logics [12]. These properties are integgtet array of messages, the guard function returns true before
over paths i.e., sequences of states starting in an initialany execution of the transition.
state such that each state is connected to the next stateA transition can change the local state of a process and
in the sequence. For example, a simple but useful class afend messages. Messages are sent usirggthe operation,
properties arénvariants which define a state-local predicate which takes the recipient and the message as arguments.
that must hold in every state of any pathcAunterexample For example, the READREPL transition sends the same
is a path that violates the property. The property is true ifWRITE message to every acceptor (Figure 2).
there exist no counterexamples. . .

C. MP without Quorum Transitions

Arguably, implementing quorum transitions is more com-

We have implemented a language calldP (from plex than single-message transitions. We now show that the
message-passing) which allows specifying protocols in th&xtra effort can pay off, given that the use of only single-
message-passing computation model. MP extends the inpUiessage transitions can inflate the size of the state space.
language of the Basset model checker [23] with quorum Consider a language where ordyngle-messagéransi-
transitions. MP inherits from Basset the ability to specifytions are allowed [23], i.e., a transition cannot consume
expressive guards and transitions in native Java. The onljiultiple messages. In such a language the transition ofs?axo
restrictions compared to full-fledged Java (in both Basseghown in Figure 2 cannot be directly defined. We can de-
and MP-Basset) are imposed by the message-passing cogffibe a Paxos-like protocol by “simulating” REAREPL
putation model, e.g., transitions cannot change the laatg s Via single-message transitions. Figure 3 shows such a tran-
of other processes. sition: it receives a READREPL message, incremerasat

Figure 2 shows an example of a quorum transition fromto count the number of messages, and, if a majority of
the Paxos consensus protocol [20] written in MP. In thisacceptors have sent a REAREPL message, sends the
transition a proposer defines its behavior on receiving &VRITE message (with the same content as in Figure 2). In
READ_REPL message from a quorum of accepfoBy this case, the counter is reset, and the process of colfectin

convention, the type of the message (here RERBPL) READ_REPL messages starts over.
State space issuesA significant drawback of express-

1The original Paxos protocol is defined in terms of four phakeslb,  iNg quorum transitions with single-message transitions is
2a, and 2b, which we call READ, REAIREPL, WRITE, and ACCEPT,  that they can be interleaved with other transitions. For
respectively. In the following discussion we assume baamilfarity with . .
example, given the single-message REAEPL and an-

Paxos. As space constraints preclude us from fully degpilire protocol i ]
operations, we point the reader to [20], [21] and also pag8s 8 other transition of Paxos that can be co-enabled in states

B. MP: A Language Implementation



where READ REPL is executed, a model checker executedormally, (s, s’) € A in the generated state graph iff there
READ_REPL and this other transition in different orders in is a transition: such thaf(s, s’) € ¢. The idea of reduction is

each of these states. to generate aeducedstate graph that contains fewer edges
In general, consider a message-passing protét@nd than the original (unreduced) one.

transitionsty, ..., t; that are enabled in some state De- POR is a reduction technique that is based on the obser-

pending on the order of execution, the number of differentvation that the execution of certaindependentransitions

states resulting from executing, ..., tx is at mostk!k. leads to the same state irrespective of the order in which

Let ¢t be a quorum transition that is enabledsifior a set  the transitions are executed (e.g.,and . in Figure 4(a)).
X ands 2 o for somes’. Assume tha’ is a message- N the Paxos example; andi, can be the READREPL

passing protocol that is specified via single-messagei{ranstrans't'ons of dlffere_n_t proposers. Therefore, _|t suffites
tions only ands’ is reachable froms in P’. The shortest €Xecute these transitions in one, representative order, (e.
path froms to s’ in P’ contains at leastX| = [ transitions,  t2f1) if the states that are missed, (in this example) are
because any transition iR’ can consume a single message.|rrelevant for the truth of the property. In this exampleg th

If we assume that these transitions are enabled, ithen ~ reduced state graph consists(sfsz), (s2, s12) and(sz, s3).

the number of states is at mogt + 1)!(k + 1), which is POR is defined viaglobal terms thr_ough a sufficient

at least(k + 1)? times more states thahlk in P. This  S€t of paths that must be contained in the reduc_ed state
matches with the intuition that the larger the quorum thedraph. In general, it is as hard to exactly determine this
bigger the gain of using quorum transitions. We know thatSet as to explore the unreduceq state.graph. Practical POR
k < |T| where|T| is the number of all transitions if. algorithms therefor@ver—approxmateth|s set of paths to
For the smallest meaningful instance and a “reasonable”€SPECt property preservation. We now discuss two general
specification of Paxo$|T| + )2 = 169. If we assume that c_Iasses_ of POR |mplementat|onsthat can benefit from transi-
I < n, ie.,t consumes at most one message from eacfion refinement differently. Both classes implement POR by

process, then the state graph Bf can have(|T| + n)? limiting (if possible) the set of enabled transitions theg a
times more states thaf. executed in every reachable state. Such a sufficient subset o

the set of all enabled transitions is callsibborn sef31].2
[Il. TRANSITION REFINEMENT In the example of Figure 4(a)t2} is a stubborn set in
In this Section, after recalling the basics of partial-orde s. Note that stubborn sets only presergeadlocks i.e.,
reduction (Section IlI-A), we introduce and formalize tsan  they guarantee that all states without enabled transitions
tion refinement and prove that it preserves the soundness ¥fill be explored. The preservation of general temporaldogi
POR (Section I1I-B). After the general definition, we intro- properties (a class of properties calldttering equivalent
duce quorum-split, a message-passing example of tramsitig€quires additional constraints [31].
refinement (Section 111-C). Finally, we discuss reply-tpdi Static POR. The first class of implementations is called
useful and genera| quorum-sp”t Strategy (Section |||-D) static (SPOR) because the stubborn set is CompUtEd in every
As an early note, we emphasize that transition refinemerfitates when s is visited [15], [31], [12]. This means that
preserves the under|ying state graph of the system_ Itis eéhe search is blocked for the time of the stubborn set com-
sentially a “renaming” of the transitions that never affette ~ Putation. The main challenge of SPOR isgoess‘future”
truth of properties. Note that replacing quorum transiion Paths, i.e., paths starting from(note that these paths have
with single-message transitions does not have this prppertnot been explored yet). If there is a path among these future
This is because a single edge of the state graph representiRgths that is in the sufficient set defined by POR but that
a quorum transition can be divided into a path of lower-levelis not in the reduced state graph, then additional tramsitio

single-message transitions. must be added to the stubborn set. A common technique to
o _ guess future paths is the conceptcah-enablingransitions
A. Preliminary: Basic POR Terms [15]. For example, transitiot, can enablés in Figure 4(a).

In practice transition systemare used to specify how the Therefore, we know that there is a patlt; starting from
system changes its state. Every transitida a setof pairs  s. As we will illustrate, transition refinement can affect how
(s,s') and makes the system proceed from statw s’.  transitions can enable each other.

Intuitively, a transition groups “similar” state changdstlme Dynamic POR.In dynamicPOR (DPOR) the stubborn set
system. Formally, a transition system is a tupte Sy, T') in s is computed during the search [13]. In other words, the
where S (Sp) is the set of (initial) states and is the set stubborn set is computed “on-the-fly” while the successors
of transitions where C S x S for everyt € T. Note that of s are visited. In fact, instead of guessing all future paths,
message-passing protocols define a transition system wilRPOR exploressome of these and defines the stubborn
T = U, T; (see Section II-A). ) _ -

There are other notions of sufficient subsets such as am@g [1

Mo_d_el CheCker@_enerat% state graph based on an '”P%Jt persistent [15], cartesian [16], monotonic [18], etc. Tblbofving discussion
transition system in order to reason about the propertiesimilarly applies to these alternate approaches.
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Figure 4. (a) Independent transitions andt¢s. (b) Unrefined transitiort: no reduction possible. (c) Caveat: transition refinemesaldes reduction.

sets later. An important limitation of DPOR is that it is TS5 is a transition refinement of'S; and TSf and TS?
unsound withstateful model checking, where the model denote the partial-order reductions 6f; and 7'S», thenyp
checker maintains a set of visited states. Therefore, DPORolds in TS iff it holds in T'S%.

can only support stateless search, where the model checker proof: Assume thaty holds in TS but not in TS%.

cannot know if a state has been visited before and thereforgrom the property preservation of POR we know that
its successor states are visited again. _ holds in state graph generated ;. Furthermore, since

A commonality of SPOR and DPOR is that their per- 15, is a transition refinement of'S; we know that they
formance can be greatly influenced by the choice of theyenerate the same state graphs. Thereforalso holds in

transition added to the stubborn set. Intuitively, the sfe preservation of POR we know thaﬁ holds in TSR’ a

are dependent on the seed transition. In practice, hasristi

. Benefit in practice. Transition refinement is not onl
are used to select seed transitions [5], [24]. P y

theoretically useful but can also assist practical POR im-
plementations in computing smaller stubborn sets. Fijrstly
B ) _ the refinement of non-deterministic transitions into a det o
The ability of POR to achieve reduction strongly dependsjeterministic ones can be beneficial (equally for SPOR and
on the definition of transitions. Consider the transitios-sy DPOR) if the refined transitions are independent. Unfortu-
tem in Figure 4(b), which generates th@mestate graph as pately, a non-deterministic transition in practice oftemc
the system in Figure 4(a). Although the same reduction cagjns choices that are not independent. However, transitio
be used in principle, POR is unable to realize a reduction iRefinement can also help SPOR to guess future paths more
this case. This is because there is a single non-deterministaccurate|y_ Using the example of can-enabling transitions
transitiont enabled ins that must be executed in all possible 5 refined transition can enable fewer transitions. For an
ways. Therefore, to leverage PORgcan be refined intd:  example, transitiont in Figure 4(b) can enable; because
andt; as shown in Figure 4(a). ts is disabled ins and, after the execution df enabled
Transition refinement is a transformation of a transitionjp, so. Therefore, a static POR algorithm inmight falsely
system into another one such that the underlying state,..jude that there is a future run-s st LN (where

graph remains unchanged. Note that the following generalr jonotes some state). However, tifis refined intot,

definit_ion does not re_quire that the Qriginal transition setyq4 to (Figure 4(a)), ther, can enable/; but ¢; cannot
contains fewer transitions than the refined one.

e ¢ - , enablets. Therefore, the POR algorithm does not consider
Definition 1: Given transition system&S and 7'S’, TS ty

ts ’ .

: o , . s — s1 — ¢’ as a possible future run.
is atransition refinemenbf TS’ if TS and TS’ generate ! P = _
the same state graph. Caveat. Unregulated transition refinement can have un-

Transition refinement might affect the POR-reduced stat&€Sired effects. As the runtime of POR algorithms increases
graph but not the truth of any property. This is because Poﬁv'th the number of all transitions [31], t_rans_mon refinamhe
is based on transitions, whereas properties are evaluated §&" SIow down the overall model checking time. Even worse,
the state graph. The property preservation result of POIQverly refined transition can even have a negative effect in

directly implies that transition refinement also preserved®'Ms of memory reduction. To see that, consider another
temporal logic. transition system (Figure 4(c)) that also generates theesam

Theorem 1:Let TS, and TS be two transition systems state graph. Here, every change of the system state is trig-

andy a temporal logic property preserved by POR. Then, ifgered b_y anew tra_ngition. Clearly,. this transition system ¢
v P gic propery p y be obtained via refining the transitions of one of the presiou

3We remark that stateful optimizations of DPOR exists [34] doly at examples. Agaln,_ althoth_ _reductlon would be p055|blg,
a price of increased memory and time overhead. POR sees no pair of transitions that could be executed in

B. General Transition Refinement



@uard @essage

bool ean READ _REPLij( READ_REPL[] messages) { voi d READ( READ nessage) {
return nmessages. | engt h==((Mat h. cei | ((doubl e) (N+1)/2)) hi ghest Pr opNo=READ. pr opNo;
&& messages_are_sent _by_ij); READ_REPL read_r epl =new READ_REPL(accept edProp) ;
} send(message. sender, read_repl);
}
@ressage

bool ean READ REPLij( READ REPL[] messages) { Figure 6. READ transition in Paxos.

VWRI TE write=new WRI TE( pr opNo, readRepl Hi ghest.val);

for (ActorName w: acceptors)
) send(w, write);: single-message transition is an exact quorum transitian. W
now state that quorum-split is a transition refinement.

Theorem 2:Let P be an MP protocol,I’S the transition
system of P, ¢ an exact quorum transition i with
thresholdg;, P" a quorum-split of P via ¢, and TS’ the
transition system of’. Then, TS’ is a transition refinement
of TS.
C. Quorum-split: Refined Quorum Transitions Proof: Let S andT be the set of states and transitions

) ; o e
The idea of refining quorum transitions is to define a newIn TS and T the set of ransitions inf'S". Assume that

/ . .
transition for each set of processes from which the originaITS and_TS gener/ate d|ﬁergnt state graphs with Set.s of

o tate pairsA and A’, respectively. Assume that there is a
quorum transition can consume a message. For exampl%

consider the READREPL transition of Paxos in Figure 2. 58) €A suc/h thalgs’ s') ¢ A'. Lett’ € T be a transition
This transition is executed by a proposer process and i?UCh th,a;()s,s) € t'. Let X be a set of messages such
can only be enabled if a majority of all acceptor processeghats —— s'. If ' # ¢, thent’ € T" and thus(s, s’) €
has sent a READREPL message to this proposer. If there A, @ contradiction. Since is an exact quorum transition,
are three acceptors 2, and3, then READ REPL can be it must be that|senders(X)| = ¢.. P’ is a quorum-split
executed with messages from acceptbrand2, 1 and3,  of P via t, so there is a; € T’ such thats LLAC N
and 2 and 3. Therefore, the transition can be refined intowhereQ, = senders(X), a contradiction. The reverse can
three transitions REACREPL:;j for every unordered pair  be shown similarly. ]
and; of acceptors (Figure 5). The transition REAREPL;j Note that in principle every transition can be split by
behaves exactly as REAREPL except that it can only adding a new transitioty, for everysubsetQ of processes.

consume messages from acceptorand j. We call this  However, this would mean addirgj* extra transitions for

Figure 5. Quorum-split READREPL with three acceptors.

different orders. Despite these warning scenarios, we wil
show that transition refinement is effective in practice.

refinement strategguorum-split everyt (n is the number of all processes), which can worsen
Intuitively, READ_REPLi; tells more about the possible the time overhead of the POR algorithm.
state transitions of the system than the unsplit RERBPL. Implementation. Quorum-splits can be performed auto-

In fact, we know that READREPL;j only consumes mes- matically by conservatively analyzing the guards of quorum
sages from acceptorsand j. This additional information transitions. If the guard of a quorum transitiospecifies an
can be used by POR algorithms to achieve better reductiosxact quorum size, (as in the example in Figure 2), then
(we will show examples in Section IlI-D). refining ¢ for eachset of processes of sizg is guaranteed
Formal definition. Transition refinement must not alter to be a transition refinement.
the system behavior. Thus, we define conditions under which The number of new transitions can be further reduced by
a quorum-split can be performed and yields a valid transitio ruling out a process that never sends messages consumed
refinement. We start by defining a special class of quorunby ¢, i.e., if ¢ is executed in a state with son€, then:
transitions where the number of sender processes is fixedcannot be insenders(X). For example, learner processes in
Definition 2: A transition¢ is anexact quorum transition Paxos send no messages at all. Or, a proposer process sends
with a thresholdy, iff s LSRN implies|senders(X)| = ¢, N0 Message to another proposer. The automatic detection
for all s,s' € S and sets of messagés. of all possiblesenders(X) sets can be done using simple
Next, we formally define quorum-split. patterns, otherwise we conservatively assume ile#n be

Definition 3: Given a message-passing protofoand an N such a set.
exact quorum transition with thresholdg,, a quorum-split  p_ spjitting Reply Transitions

A0 P .
OfP. viatis an MP protocoP” derived fromPn by replacing We discussed in Section II1I-B how transition refinement
t with transitionst,,to, ..., tm, for m = (qt), such that

£ () _ +(X) _ can benefit frqm POR._ We now pre_sent some implications
s —= &' iff s —= §' Asenders(X) = Qr, whereQy, is  of quorum-split for static POR algorithms.
the k** of the m sets of process IDs of sizg. As refined transitions are dependent on fewer transitions
Note that the definition of quorum-split also allows single-than their unrefined counterpart, the SPOR algorithm can
message transitions (with quorum-size one). In fact, everynore accurately approximate future paths. In fact, a quorum



transition ¢ can be enabledby (possibly) any process. Java Virtual Machine
However, ift;, is the quorum-split version @f thent;, can be JPF-VM
enabled only by transitions that are executed by processes MP-Basset (MP language)
in Q. For example, consider the transition REAREPL
in Figure 2. For acceptor processes 1 and 2 this transition Basset (ActorFoundry)
is split into READ REPL12 according to Figure 5. Now, (Mﬁi‘;’gm DPoR
READ_REPL can be enabled by every acceptor whereas
READ_REPL12 can be enabled by transitions of acceptors JPF-MJI
1 and 2 but not by acceptor 3. @
Reply transition. We observe that the quorum-split of JPF-Core
some special transitions can yield even more reduction. The
idea is that the split version of these special transiticens Figure 7. MP-Basset architecture illustration.

enablefewer transitions than the original one. We observe

that many protocols defineply transitionswhere a process

receives one or more messages and sends messages only toVhile Basset supports a wide range of DPOR algorithms,

the senders of these messages (e.g., acknowledgement). MP-Basset implements a new SPOR algorithm called MP-
For example, consider the READ transition of PaxosLPOR [9]. The novelty of MP-LPOR is two-fold: (1) it uses

written in MP (Figure 6, guard is not depicted). Before a newpre-computationto decrease the time overhead of SPOR

value can be proposed in Paxos, the proposer process asksd (2) it specifiesndependent transitions the message-

all acceptors about the values they have previously seen ljyassing model. Despite these special characteristics, MP-

sending a READ message to every acceptor. If an accept&tPOR is essentially an SPOR algorithm as discussed in

receives such a message, it executes a reply-transition feection IlI-A. Therefore, we expect that transition refine-

send a READREPL message to this proposer. Formally, ment can improve the reduction achieved by MP-LPOR.

we have the following. In the following sections, we present the architecture
Definition 4: Given an MP protocol and a process of MP-Basset and key design issues. The complete source

t; € T; is a reply transition if for all s,s’ € S and code and installation instructions of MP-Basset are alkila
for all subsetsX of messagess LX) g implies that ©nline [43].

{jls(cij) C §'(ci;)} = senders(X).

We call the quorum-split of reply-transitioneply-split
The additional benefit of reply-split is that the split traios
tr can only enable transitions executed by processég;in

A. Leveraging JPF & Basset

MP-Basset extends Basset, which runs as a Java applica-
tion within the JPF model checker [39]. While JPF is written
For example, the reply-split of READ for proposer 1 canin Java itself and is executed by the JVM, the execution of

target Java programs is “modeled” within JPF’'s model layer.

only enable transitions of this proposer. ) . X A
Implementation. For example, it is possible to automat- We call this layer JPF-VM to refer to its functional similigri

ically detect that a transition is a single-message reply- With the host JVM. Basset is an ordinary Java program that
transition if the recipient argument of any send operatior Uns Within the JPF-VM. JPF defines a gateway called Model
Java Interface (JPF-MJI) between the modeled program

and the core of JPF (JPF-Core). JPF-Core implements the
search (model checking) functionalities of JPF such as the
computation of concurrently enabled transitions in each
IV. THE MP-BASSETMODEL CHECKER state. By default, JPF assumes a fine-grained interleaving
of Java threads. In order to prevent JPF from exploring un-
necessary interleavings, Basset uses JPF-MJI (a) to impose
the concurrency of the message-passing computation model,
. : e » 1. €.0., the execution of a transition is an atomic event, and
the inclusion of a box denotes that it is "subsumed byg)) to implement different DPOR algorithms. In Basset, the

the outer boxes, e.g., JavaPathfinder (JPF) runs within th . : .
Java Virtual Machine (JVM). MP-Basset is built upon BassetmOdeI checking of an actor program written in ActorFoundry

[23], a model checker that supports a subset of ActorFoundrglltarts W'th creatllng.the processes of the input actor progra
4 : . nd sending an initial message. Then, JPF explores the state
[19].* Therefore, protocols using only single-message tran-

sitions (the common subset of MP and ActorFoundry) ar space of the program corresponding to interleavings defined

! %y (a) and (b).
supported by both MP-Basset and Basset. MP-Basset utilizes Basset's core architecture and imple-

4Basset also supports a subset of Scala Actors, an actorapegng ~ MENts quorum tran5|_t|ons by extending Basset's concept of
language within Scala [25]. “enabled message” into “enabled set of messages”. More

appearing int is message. sender, wherenessage is
the message consumed bgndnessage. sender is the
sender of this message (Figure 6).

We implemented a tool calledP-Basseto model check
protocol-level specifications written in MP. The architeet
of MP-Basset is illustrated in Figure 7. The intuition isttha



precisely, setX of messages in the current stateis  modeled program. Second, the pre-computed data is state
“e?(a)\(b)led" if there is a transitiom and a states’ such that unconditional, thus, it need not be stored in the state (an
s —= s'. Note that computing these sets is time-expensivegxpensive measure as explained above).
in worst case they compose the powerset of all pending An obvious approach to pre-compute and query indepen-
messages, which is an exponential overhead compared tent transitions through JPF-MJI calls would be to seraliz
the single-message case. Therefore, using quorum t@msiti pass, and de-serialize transitions as primitive types.voda
can only reduce verification time if the space-reduction carthis expensive and tedious task, we instantiate an et
compensate for the increased time overhead. of each transition within JPF-Core. As a result JPF-MJlscall
Example. Consider a states where some process has can simply address transitions and the result of the queries
three pending messages , ms andms in its input buffers.  (whether or not two transitions are independent) is passed
In order to find the enabled sets of messages, MP-Bass#trough primitive boolean types. Note that this solution is
generateeveryset X in the powerset of m;, ma,m3} to  only possible because the set of all transitions is fixed.
check if X is enabled for some transitigni.e., the guard,;
is true for X in s. These ar@?® sets compared to only three V. EVALUATION
messages that need to be considered in a model of single- | this Section, we first briefly discuss the protocols we
message fransitions. Intuitively, this is the price we paly f sejected for analysis and how they are modeled in MP
the memory gain with quorum transitions as discussed ifsection V-A). Next we detail the verification results using
Section II-C. Basset and MP-Basset (Section V-B).

B. Efficient Design of MP-Basset A
We observe the following issues that are important with
respect to the design of MP-Basset: We use three widely used and representative fault-tolerant

« Executing code within MP-Bass@ue to the indirec- protocols to demonstrate the benefits of our approach. Each
tion that MP-Basset runs in JPF-VM, any piece of Protocol assumes a threshold of the minimum number of
code executed in MP-Basset is slower than in nativecorrect processes. However, they define different fault-mod
Java. Fortunately, most message-passing protocols g&ls and also specify different p_roperties. We now intrloduce
fine simple code. However, other computation-intensivén€Se protocols and the properties that we analyzed with MP-
functionality such as stubborn set computation can b asset. Note that the goal _o_f this evaIuauqr_l is to _evaluate

the benefit of quorum transitions and transition refinement,
and not a complete verification of these protocols.

o The Paxos protocol solvesonsensusa fundamental
primitive that can be used to implement state-machine
replication [20]. Intuitively, consensus means that at
most one value is “chosen”, i.e., all processes agree
on this value. Paxos solves consensus if a minority of
processes can fail by crashing.

Our second example is a consistemtllticastprotocol

. Target Systems and Protocol-Level Abstractions

ineffective if executed within MP-Basset.

« State sizeThe larger the state of the modeled program
the less thehroughputof JPF, i.e., number of visited
states per time unit. Reasons for this include that
the time for hashing, storing, and state comparison
increases with the size of the state.

o MJI overhead.Communication through JPF-MJI is
expensive and tedious because JPF-MJI calls are imple-
mented via Java methods that can only pass primitive e

type parameters. Therefore, the conversion (serializa-
tion and de-serialization) of complex types is required,
which comes at the price of increased invocation time
and additional code.

called Echo Multicast [26]. Theagreementproperty

of consistent multicast specifies that no two processes
receive different messages. Echo Multicast implements
agreement in a Byzantine environment [22] where up

to one third of the processes can fail arbitrarily and the
remaining processes are called honest.

Our third example isegular storageprotocol in the
style of [3]. The objective of distributed storage is to
reliably store data despite failures of the base (storing)
objects. A regular storage guarantees that a read op-
eration returns a value not older than the one written
by the latest preceding write operation. The protocol
assumes a crash-tolerant setting where a minority of

These issues necessitate tuning of how and where MP-
Basset is implemented in the JPF architecture. It turned out
to be efficient to compute enabled message sets entirely ®
within MP-Basset (without JPF-MJI calls). However, the
efficient design of MP-LPOR was more elaborate. It is
possible for MP-LPOR to compute independent transitions
before model checking as MP-LPOR uses a notion of
independency that is unconditional, i.e., itnist a function
of the system state. This information is queried (and not
re-computed) repeatedly during the search. We perform pre-  all base objects might crash.
computatioroutsideMP-Basset, i.e., through JPF-MJI calls, We remark that none of our target protocols assumes
for two reasons. First, even if pre-computation is a oneetim synchrony, i.e., an upper-bound of the worst-case message
cost, it takes considerably longer when executed within thelelivery time. Synchrony is required only for progress, &g



value is eventually chosen in Paxos. Furthermore, messagése two operations are concurrent (“wrong regularity”).
can be delivered out-of-order. :

Protocol settings. The protocols are parametric in the B. Evaluation Strategy and Results.
number of processes. In addition, processes can be of We perform three experiments for each protocol setting:
different type. In a given protocol setting we specify the « (Table I) We show that using quorum semantics reduces
number of processes of each type. Next we summarize the the size of theoverall state space. We run our exper-
different process types in each protocol: iments with POR-optimization. We use two stubborn

« Paxosdefines proposer, acceptor, and learner processes. Set-based POR implementations, a DPOR algorithm
A proposer can initiate a consensus instance by propos-  [13] implemented in Basset and an SPOR algorithm [9]
ing a value to be chosen. Acceptors store values pro-  (see Section IV}. As Basset does not support quorum
posed by proposers. Learners receive messages from transitions, we apply DPOR only for models with
acceptors to learn about proposals and output a chosen ~ Single-message transitions. Furthermore, as the safety
value. A Paxos setting (P,A,L) gives the number of  Property of regular storage (a form of linearizability) is
proposers, acceptors, and learners, respectively. For not preserved by the DPOR implementations of Basset,
example, Paxos (2,3,1) (as in Tables I-1) specifies two we use unreduced search for verification in this case.

« Echo Multicastdefines initiator and receiver processes. tlonally_ save _model chgcklng resources. As our split
In a setting (HR,HI,BR,BI), we define the number strategies refine transitions of the same process, the
of honest receivers, initiators, Byzantine receivers and  refined transitions are inter-dependent. Thus, transition
initiators, respectively. refinement is ineffective with dynamic POR (see discus-

« Every storage protocol defines writers, base objects, ~ Sion in Section llI-B) and the results are not depicted.

and readers. Since the selected protocol is a single- In Table Il we measure the performance of SPOR [9]
writer one, a setting (B,R) defines the number of base  for models splitting only reply transitions (reply-split)

objects and readers, respectively. only non-reply quorum transitions (quorum-split), and
all of these transitions (combined-split).

(Across Tables I-1I) We demonstrate that our approach
can be used for efficientlebugging We show that
finding thefirst bud® in faulty protocols or in protocols
with wrong specification requires little resources.

Process faults.The above protocols tolerate two classes
of faults, crash (Paxos and regular storage) and Byzantine *
(multicast). We do not explicitly model crash faults. Thss i
because MP-Basset schedules processes in all possible ways
and the effect of crash is implicitly modeled by scheduling = } ) )
other (non-crashed) processes first. In other words, cdashe S€ed transitions. As explained in Section III-A, the
and correct processes taking no steps are equivalent. Rerformance of POR depends on the first transition in
model Byzantine faults, we specify processes that do noihe stubborn S(_et. We use a he_'unstlc where transitions are
obey the protocol. We consider different attack strategie®referred that either start a new instance of the protocgl,(e
to challenge the multicast protocol. A complete model of READ transition in Paxos) or, if there is no such transition,

Byzantine faults is beyond the scope of this paper. do not terminate an ongoing instance (e.g., RERBPL
We distinguish Byzantine processes whether they ar&' WRITE transitions but not an ACCEPT transition). This
initiators or receivers: heuristic shows good performance in our POR experiments.

S . Intuitively, the execution of such a transition “delays’eth
» A Byzantine |n|t|qtoratt_empts to violate the agreement decision of which instance is pursued at a given process.
g;gES;B;?%SI:}:S'TSCZ;EEM messages to each of tW%urprisir.lgly, this heuristic sug.gests the opposite of the
« A Byzantine receiversends; invalid confirmations to transactlon stra?egy_ proposed in [S]. We speculate that
h t initiator and cooperates with a B zantinethe difference lies in that our target protocols allow more
%ri]tiat(())rr]ebsy confirming (signin%) both of its mes)fsages concurrency than the cac_he coherence protocol analyz_ed
"in [5]. There, the processing of further client requests is
Fault injection. For debugging purposes we also inject pjocked until the centralized cache controller (assumed to

faults into (a) correct processes and (b) the specificatiope fault-free) completes the ongoing instance of the prtoc
of the protocols. In particular, we specify “Faulty Paxos”, started by another client.
where learners do not compare the values received from the Note that our heuristic depends on the semantics of the
acceptors. In case of Echo Multicast and regular storaggrotocol, which might be hard to automate. In fact, our seed
we utilize deliberately incorrect specifications. For exden
in Echo Multicast we exceed the threshold of the number 5Other DPOR algorithms in Basset such as [27] have propegepr

; ; “ »” ation guarantees other than stubborn sets. We chose [13h ftair
of maximum Byz_amme Processes ( W_rong agreement ) I:OPéomparison with the stubborn-set based SPOR algorithm oBlsiset.
storage we require that a read operation that completes afte sy bug first found by the model checker, after which the $edsc

a write has to return the value written by the write even ifterminated and a counterexample is returned.



Table |
QUORUM SEMANTICS RESULTS

Baseline experiments Our quorum results

Protocol Property Result | No quorum (DPOR[13])’ No quorum (SPOR[9]) Quorum? (SPOR[9])
States Time States Time States Time

Paxos (2,3,1) Consensus Verified | >16,087,468| >48h" 6,247,530 23h 2,822,764 9h37m
Faulty Paxos (2,3,1) Consensus [o=4 162 8s 524 12s 279 10s
Echo Multicast (3,0,1,1) Agreement Verified 2911 41s 9222 2m22s 652 12s
Echo Multicast (2,1,0,1) Agreement Verified 2010 27s 9986 1m55s 2787 31s
Echo Multicast (2,1,2,1)] Wrong agreement| CE° 66 6s 66 9s 48 6s
Regular storage (3,1) Regularity Verified 2,358,345 8h57n? 185,711 33m49s 20,039 3mds

Regular storage (3,2) | Wrong regularity (=4 286,410 1hlm 72,937 12m37s 41,331 6mA46s

TRun by Basset (stateless searcipPOR not supported® Unreduced (stateful) searchiTime-out after 48h? Counterexample found.

Table I
TRANSITION REFINEMENT IN ACTION.

Our transition refinement results

Protocol Property Result | Quorum (SPOR[9])! Reply-split?® Quorum-splitZ> Combined-split?"®
States Time States Time States Time States Time
Paxos (2,3,1) Consensus Verified 2,822,764 | 9h37m 1,087,486 3h47m | 1,826,560 | 11h28m | 548,061 3h30m
Faulty Paxos (2,3,1) Consensus [o=4 279 10s 105 8s 279 10s 105 8s
Echo Multicast (3,0,1,1) Agreement Verified 652 12s 652 12s 232 12s 232 12s
Echo Multicast (2,1,0,1) Agreement Verified 2787 31s 1165 18s 2787 31s 1165 18s
Echo Multicast (3,1,1,1) Agreement Verified | 12,023,663 >48h | >10,472,557| >48h" | 7,600,843 | >48h 7,087,193 42h21m
Echo Multicast (2,1,2,1)] Wrong agreement| CE° 48 6s 48 7s 48 9s 48 9s
Regular storage (3,1) Regularity Verified 20,039 3m4s 18,451 3m13s 18,451 4m31s 18,451 4m32s
Regular storage (3,2) | Wrong regularity CE° 41,331 6m46s 6,969 1m32s 29,877 9m51s 6,987 2m34s
TUnsplit from Table I.ZAll protocols are modeled with quorum transition@Jsing the static POR algorithm from [9]Time-out after 48h° Counterexample found.

plex semantics), the overall verification time is less
because of state space reduction.

Transition refinement can achieaeditional reduction

in terms of both memory and time (up to 81% and 64%
for Paxos) compared to the unsplit case. Although the
throughput falls with quorum-split (because split quo-
rum transitions trigger a time-consuming optimization
of the SPOR algorithm), it can achieve significant space
reduction, which adds up to an overall time reduction
(see combined-split of Paxos and multicast (3,1,1,1)).
The proposed optimizations can also find bugst
usinglittle memory If the bug is “deep” in the search
space, we observe similar trends as for verification (see
regular storage results with wrong property).

priorities were set by hand. Other heuristics that require n
user intervention are proposed in [5], [24]. For example,
some heuristics are based on different characteristickeof t  «
pending messages [24]. A comprehensive comparison of
how different heuristics perform for quorum transitionsbd
protocols is beyond the scope of this paper.

Evaluation results. We use Basset and MP-Basset to
run the experiments. All experiments ran on DETERIlab
machines [42] with Xeon processors and 4 GB of memory.
The results are shown in Tables I-l1l. Our POR experiments
utilize the “opposite transaction heuristic” explainedes. .
The transaction heuristic resulted in very little reductfoot
shown). The depicted protocol settings were selected such
that they represent a meaningful instance of the protocol
(€.9., enough processes to tolerate faults) and are feasibl gehing the numbers. The above results offer interesting
for model checking. Since the current version of MP'Bassansights about the different search strategies. Firstig t
does not support the automation of transition refinementyenefit of stateful over stateless search becomes sigrifican
the split models were created by hand. For each protoci jarge state spaces. Otherwise, the stateless seanch ca
and setting, we highlight the best search strategy (if any}e faster because (1) it has no overhead of state comparison
with bold italic numbers. For example, the quorum modelynq (2) it revisits just a few states. In this case, the benefit
of Paxos in Table | is the smallest and its model checkingy ppoR over SPOR can be exposed, e.g., for Faulty
takes the shortest time. We observe the following trends: pgyos (Table 1). In addition, the benefit of quorum models

« Using quorum transitions can reduce botrification — decreases with the small quorum size of Echo Multicast

memoryand time (up to 89% and 91% for regular (2,1,0,1) (Table I).

storage with SPOR) compared to the single-message If an optimization is ineffective in a particular fraction
case. First, the models with quorum transitions areof the state space, then the search strategy with the least
smaller. Second, although the throughput of modeloverhead achieves the best result, as can be seen for Echo
checking quorum models is smaller (due to more com-Multicast (2,1,2,1) in Table Il. In other cases, the split
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strategies achieve no reduction in the entire state space. Fprimarily on the modeling-side as substantiated by our MP-
example, reply-split is ineffective if there is a singletiafor ~ Basset experiments. However, we could have as well used
to which the receivers can reply (Echo Multicast (3,0,1,1)) other model checkers such as SPIN for these experiments.
or quorum-split makes no difference if the quorum containsSPIN’s POR algorithm is limited taexclusivereads and

all receivers (Echo Multicast (2,1,0,1)). Another examigle writes of FIFO channels. MP-Basset (and Basset) implement
regular storage (3,1), where reply-split and quorum-splt  more general POR algorithms and can be extended with such
both ineffective. Note that the size of the reduced stateespa FIFO-specific independencies.

is slightly different (smaller) compared to the unspliteas  Automated verification of specific message-passing fault-
This is because split models define other (refined) tramsitio tolerant protocols is often done via model checking, e.g.,
and the order in which these are executed can be differerf29], [28]. Other approaches target general classes of pro-
(depending on the scheduler of the model checker). tocols. For example, MODIST is a POR-optimized di-

Note that, in general, there is no guarantee that a bugected testing tool for the analysis of unmodified distrdalit
is found if POR does not preserve the property undemessage-passing protocols [35]. As MODIST explores the
verification. However, if the bug is contained also in thestate space of the real, unabstracted system, it is geperall
reduced state space, then the POR search tends to fimbn-exhaustive due to state space explosion. A related ap-
the bug quicker as it explores “different” paths [35]. For proach is the network abstraction layer from [2], which is
example, we refer to the DPOR result of wrong regularityuseful if the processes being model checked communicate
in Table | for which the unreduced search times out (notwith other external processes. Crystalball is a tool to debu
depicted). and prevent failures through a combination of real exeautio
and model checking [33]. Other work utilizes symmetry
reduction for scalable model checking of message-passing

Our formal model of message-passing systems adaptgstotocols [7]. These and similar techniques are orthogonal
from [4] can be seen as an actor program [1]. Similarly,to ours and can be used in combination.
the proposed MP language shares commonalities with ac-
tor languages such as ActorFoundry [19]. For example,
a concept similar to quorum transitions appears as joint We have devised, implemented, and evaluated a frame-
transitions of actors [14]. However, these are proposed t&/ork for efficient model checking of message-passing dis-
make a specification language expressive and not to mitigaféibuted protocols using quorum transitions. The framéwor
state space explosion. The actor model implements rickonsists of (a) using quorum transitions in protocol-level
semantics, e.g., synchronization between actors or dynampbstractions and (b) a new technique called transition re-
creation of actors. New transition refinement strategies cafinement to improve the performance of certain partial-orde
be devised for such richer semantics, if needed. reduction algorithms.

The protocol design and also verification can be simplified An open issue to pursue in our future work is whether
by making assumptions such as synchrony and fail-silenthe presented reduction techniques show similar trends in
faults [30], [11] (note that none of our example proto- Symbolic model checking. Such a comparison is especially
cols makes synchrony assumptions). The benefit of quorurotivated by the fact that certain POR methods, e.g. [18],
transitions is possibly less significant in such systems agre best suited for symbolic model checking.
the possible interleavings of single-message transitisns
constrained by synchronized events. Acknowledgement: We are deeply appreciative of Gul

Existing work on POR concentrates on the definitionAgha, Steven Lauterburg and Rajesh Karmani from UIUC
and implementation of sound POR-conditiog&zen the  for making the sources of Basset available as well as for
transitions of the system [15], [31], [12]. A concept simila their continuing support of Basset.
to transition refinement is operation refinement in [15].
However, operation refinement is specific for a proof-of-
concept modeling language, it is discussed informally, andl] G. Agha, I. A. Mason, S. Smith, and C. Talcott, A foundatio
its effect on the performance of POR implementations is for Actor Computation.Journal of Functional Programming
not studied. In addition, no general applicable operation 7(1):1-72, 1997.
refinement is proposed nor its effect is evaluated in praktic 2] c. Artho, W. Leungwattanakit, M. Hagiya, Y. Tanabe. Eiffict
verification. Model Checking of Networked Application©bjects, Models,

Promela, the input language of the SPIN model checker Components and Patternpp. 22-40, 2008.

[17], supports message-passing and can be used, as H. Attiya, A. Bar-Noy, D. Dolev. Sharing Memory Robustly

other general-purpose specification language, to implemen™ ; Message-Passing Systends ACM 42(1):124-142, 1995.
the semantics of quorum transition (via atomic blocks).

We consider our contribution, regarding quorum transgjon [4] H. Attiya, J. Welch. Distributed Computing Wiley, 2004.
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APPENDIX with the recipient, the type, and the parameters of the
message.
A special class of transitions igjuorum transitions
Basic Model Structure. MP-Bassetnodelsare written in ~ Quorum transitions can consume more than one messages.
Java-syntax and consist of the following (copying Basset'sA quorum transition msgType has an additional param-
actor programs): eter of the Java typebj ect[] that is an array of

« Process (or actorflassesare “types” of processes. Mmessages each of them of type msgType. The order of
For example, Paxos defines three classes of processd€ elements in this array is arbitrary, in accordance to
proposers, acceptors, and learners. An actual processtﬁe the MP semantics. Given a quorum transition of the
an instantiation of its class. Every process class mustorm msgType(pl, ..., pN, Object[] messages),
extend the Actor class and define a constructor fothe parameterpl,...pN define the format of the message
instantiation. In additions, a process class can defin€0 that a message can be cast fronlt§ ect type in the
variablesandtransitions Variables are used to encode array-By conventionpl,...pN must not be read or written
the local state of the process. Transitions specify thdy & quorum transition!
change of the local state. Every transition msgType can be associated witjuard

. A driver is a configuration file describing the number (similarly to disabling “local synchronization guards” in

and classes of processes of the system under test. Evef{gtorFoundry). Guards are annotated wi@uar d. The
process is created as an instance of its class and @Jard is a Java function with boolean return value. A guard

launched by the driver. If a transitioh requires no Must not change the local state of the process nor send any

message to be executed, then “fake” messages calldB€ssage. If no guard is defined, any set containing messages
t are sent by the driver to the process executing Of type msgType and sent to this process is accessible for
For example, proposers in Paxos can be triggered frorffansition msgType (as of MP semantics).
within the driver. SPOR Support. Transitions can be annotated with
« The specificationexpresses the desired properties of @PORAnNNnot at i on in order to ease SPOR and to enable
the system. In the current version of MP-Basset, theour transition refinement strategies (Table IV). The meshod
specification is a set of Java assertions that can bef this annotation are summarized in Table IV. The last three
defined within transitions. In other words, the spec-methods relate to quorum and reply-split, respectively. In
ification restricts to invariants (or global predicates).particular, the user can tune the initial transition heiais
If the assertion evaluates to false, then the searchf POR. A possible heuristic is the “opposite transaction
is terminated and a counterexample is given (if theheuristic” where the greatgri ority() the most likely
+f w. ce=1 flag is set). thatt doesnot finish a concurrent operation (e.g., a Paxos
Models are stored under /jpf-actor/src/examples. An ex.nstance ora multicastj the curren_t version of MPTBasset,
ample model of the Paxos protocol can be found in thdhe correctness of @LPORAnNNotation must be verified by the

package paxos.actor (DriverMP.java, ProposerMP.java, AcHser _ ) )
ceptorMP.java, and LearnerMP.java). We now review the most important property preservation

Defining Transitions. The syntax of transitions is ex- features of the SPOR algorithm in MP-Basset:

I. MP-BASSET— USERGUIDE

plained in Table Ill. In MP-Basset, every transitignis « All deadlock states are preserved, i.e., the reduced
annotated with@ressage and is named after théype state graph contains a deadlock statéf s is in the
of the messages that can be consumedtbyormally, unreduced state graph.

the type of the message corresponds to a subset of all » If the unreduced state graph contains no cycles, no
messages and a transition can only process messages from infinite paths, and all visible transitions with respect
the corresponding subset. A message consists of its type 10 a “state-predicate”P [12] are annotated (with
(or name) and a tuple of values. These values are passed i sVisi bl e=true), thenglobal reachabilityis pre-
as parameters to the transition consuming the message. For served, i.e., there is a state € S in the reduced
example, “READ(proposerl, 2)” in Paxos is a message of  sState graph such thatP(s) iff there is s’ € S in the
type READ carrying the parameters proposerl (the name of ~ unreduced state graph such tha®(s’).

the sender of the message) and 2 (proposal number). A tran- Transition Refinement: Reply-split. Reply-split can be
sition might change the local state of the process and senghplemented by usingsRepl yTransi ti on() (see Ta-
messages to other processes. Sending a message follogig 1V). The current implementation only supports reply-
the syntaxsend(r eci pi ent, nsgType, p1,..., pN)  split of single-message transitions. If a transitiorcon-

suming messages of typesgType is flagged by this
“Note that although the message-passing computation mdstehte” annotation, then we assume that
one process from another, Java in MP-Basset allows acceahs &tate of
a remote process. Be aware: this is a hack and side effectsbmasoided! « the transition is calledrsgType_sender | D where
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Name Syntax Description
Single-message @essage megType: type of incoming message
transition megType(Typel pl, ..., TypeN pN) pi: i*® parameter of the message
Quorum @ressage negSet : incoming messages, each of typegType
transition megType(Typel p1, ..., TypeN pN pi: it" parameter ofrsgType
Obj ect[] msgSet)
@uard Guard ofnmsgType, returns boolean
Guard _nmsgType(Typel pl, ..., TypeN pN, nmegSet : only for quorum transitions
Obj ect[] msgSet)

Table Il
THE SYNTAX OF MP-BASSET TRANSITIONMSGTYPE.

Name Default return value | Description
messageln() " The only type of messagecan receive.
messageOut() " The only type of messagecan send.
isReceiver() true t might process incoming messages.
recipients() Actor.cl ass The class of processes that might send a message to thigitrang
isSender() true t might send messages.
senders() Actor.class The class of processes whom this transition might send aagesg
isStateSensitive() fal se t's guard reads the local state.
isWrite() fal se ¢ writes the local state.
priority() 0 POR initial transition heuristic.
isQuorumTransition()| fal se t is quorum transition.
quorumPeers() {} (quorum-split)¢ receives messages only from the listed processgs.
isReplyTransition() fal se (reply-split) ¢ is a reply transition.
quorumSize() 0 Size of the quorum it is an exact quorum transition.
isVisible() fal se True if ¢ is a visible transition.
Table IV

SUMMARY OF ANNOTATIONS OF TRANSITION{.

senderID is the ID of the (only) process that “commu- MP-Basset implements a static POR algorithm called
nicates” with this transition, LPOR. LPOR can be run with NET-optimization (necessary
« the process senderlID sending messages of typenabling transitions). We call this algorithm LPOR-NET.
nsgType to the process executing renames these Currently, the NET relation (required by LPOR-NET) is
messages tarsgType_sender | D before sending based on quorum transitions. Therefore, if there are no
them. quorum transitions in the protocol, then LPOR and LPOR-
Note that the’ressage| n() annotation 0farep|y transi- NET achieve the same reduction. Since LPOR-NET has
tion does not have to be changed, i.e., it assumsgsType.  additional overhead compared to LPOR, we recommend to
Transition Refinement: Quorum-split. A quorum-split ~ use LPOR in these cases. The fiefgw. spor = shall be set
transition is a special quorum transition where the setof pr 1 for LPOR and 4 for LPOR-NET (the values 2 and 3 are
cesses (quorum peers) from which the transition consumestgserved for pre-computed versions of LPOR).
message is fix. A quorum transitimgType can be “Sp"t” Compatlblllty with Basset. The current implementation
into a set of quorum transitions by Specifying the quorumOf MP-Basset is not fU”y Compatible with Basset. For exam-
peers as an array of process IDgjimor unPeer s() . Since  ple, the dynamic POR (DPOR) algorithms implemented by
Java does not allow identical method names with the samBasset do not work with quorum transitions. Also, DPOR
signature quorum-split transition names must have a prefignd LPOR cannot be combined. Protocols without quorum

nmsgType__ (“__" means double underscore). transitions and using the “guards” of ActorFoundry can be
Examples of both transition refinements techniques cafodel checked with Basset. The different DPOR algorithms
be found in paxos.actor in classes QSplit*.java. can be used by setting the value-dfw. dpor (see Basset

Running MP-Basset.MP-Basset is built upon Basset and documentation).
can be run similarly using the additional flad w. np=1.
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