
Technische Universität

München

Fakultät für Informatik

Forschungs- und Lehreinheit Informatik VII

Model Checking Malicious Code

Diplomarbeit

Johannes Kinder

Themensteller: Prof. Dr. Helmut Veith

Betreuer: Dr. Stefan Katzenbeisser

Abgabedatum: 17. Mai 2005

Erklärung: Ich versichere, dass ich diese Diplomarbeit selbständig
verfasst und nur die angegebenen Quellen und Hilfsmit-
tel verwendet habe.

München, den 17.05.2005

Abstract

Recent years have seen a dramatic increase of security incidents on the In-

ternet related to e-mail worms. These particular pieces of malicious code

are often developed by mischievous teenagers and are not very skillfully en-

gineered, but still spread globally in a matter of minutes and cause a large

amount of economic damage.

Conventional anti-virus products nowadays still rely on static pattern

matching. They do not detect a new worm variant as long as the binary

representation is sufficiently different, even if the functionality of the worm

has not significantly changed. As a result, e-mail worms remain undetected

during the phase of their initial outbreak, successfully reaching hundreds of

thousands of mailboxes.

In this thesis, a novel contribution to the field of semantic malware de-

tection is presented. This approach employs model checking, a well proven

formal verification method, to find behavioral patterns inside an executable.

In particular, the new temporal specification logic CTPL is introduced, which

allows a succinct representation of program behavior on assembler level. A

specialized model checking algorithm for CTPL allows efficient validation of

disassembled executables against malicious code specifications.

In the course of this thesis, the CTPL model checking algorithm has been

implemented in the Java programming language. Two exemplary specifica-

tions of malicious behavior are created and tested with the prototype on a

set of current e-mail worms as well as on benign programs. The positive

results prove CTPL model checking to be a very promising approach for the

sophisticated detection of viruses and worms.

5

Acknowledgements

First of all, I would like to express my gratitude towards Prof. Dr. Helmut

Veith for giving me the opportunity to work on an exciting subject, for

his continuing enthusiasm and support of this thesis, and his patience in

giving me advice on all topics of logics and model checking. His exceptional

dedication to the theoretical computer science group created a very pleasant

working environment for everyone.

I also want to thank my supervisor, Dr. Stefan Katzenbeisser, for guiding

me through this thesis, for contributing fresh perspectives and inspiring ideas,

and of course for a great deal of proofreading and advice on the twists of the

English language. Furthermore, I would like to thank Ikarus Software and

Dr. Christopher Kruegel for providing me with a large set of malware samples,

which allowed me to test and improve my specifications.

Finally, I wish to extend my thanks to my parents for supporting me

throughout my studies and to my friends for further proofreading and their

words of encouragement.

Johannes Kinder

May, 2005

7

Table of Contents

1 Introduction 13

1.1 Malware . 13

1.2 Detection Methods . 14

1.2.1 Signature Matching . 14

1.2.2 Dynamic Analysis . 15

1.2.3 Semantic Analysis . 16

1.3 Previous Work . 16

1.4 Motivation . 18

2 Technical Analysis 19

2.1 Reverse Engineering . 19

2.2 Protection Schemes . 22

2.2.1 Executable Packers . 22

2.2.2 Code Obfuscation . 24

2.2.3 Solutions . 26

2.3 Malware Analysis . 27

2.3.1 NetSky . 27

2.3.2 MyDoom . 30

2.3.3 Klez . 30

2.3.4 Dumaru . 31

3 Model Checking 33

3.1 Introduction . 33

3.1.1 Preliminaries . 33

3.1.2 Computation Tree Logic 35

3.1.3 Model Checking Assembler Code 36

9

10 TABLE OF CONTENTS

3.2 Computation Tree Predicate Logic 38

3.2.1 Why a new logic? . 38

3.2.2 Predicates . 39

3.2.3 Syntax . 40

3.2.4 Semantics . 41

3.2.5 Equivalences . 42

3.2.6 Modeling Program Behavior 45

3.3 Model Checking CTPL . 52

3.3.1 Outline of the Algorithm 52

3.3.2 Variable Bindings . 53

3.3.3 The Algorithm in Detail 55

3.4 Complexity of CTPL Model Checking 61

4 Implementation and Results 67

4.1 Toolchain . 67

4.2 The Mocca Malware Detector 69

4.2.1 Specification File Format 69

4.2.2 Specification Language 70

4.3 Experimental Results . 77

4.3.1 Testing Environment 77

4.3.2 Specifications . 79

4.3.3 Results . 81

Conclusion 85

Bibliography 87

Index 91

List of Figures

1.1 Most prolific viruses in 2004. 14

2.1 Ambiguous assembler code. 21

2.2 Reconstructed WinMain() function of NetSky.b. 28

3.1 Kripke structure of a fair mutex protocol. 34

3.2 Executable code sequence and corresponding Kripke structure. 37

3.3 Semantics of CTPL. 43

3.4 Local stack frame at the moment of a system call. 47

3.5 Code fragment of the infection routine of Klez.h. 48

3.6 CTPL formula for code creating copies of its own executable. . 50

3.7 The CTPL Model Checking Algorithm. 53

3.8 Subroutine LABELp, handling predicates. 56

3.9 Subroutine LABEL∃, handling existential quantifiers. 57

3.10 Subroutine LABEL¬, handling negations. 58

3.11 Subroutine LABEL∧, handling conjunctions. 58

3.12 Subroutine LABEL∨, handling disjunctions. 59

3.13 Subroutine LABELEU, handling EU. 59

3.14 Subroutine LABELEX, handling EX. 60

3.15 Subroutine LABELAF, handling AF. 61

3.16 Recursive model checking algorithm for CTPL. 64

4.1 Screenshot of the Mocca GUI. 68

4.2 Toolchain for the prototype. 69

4.3 Input file of the ‘CopySelf’ specification. 71

4.4 Formula of the ‘ExecOpenedFile’ specification. 80

4.5 Signature of the CreateProcess WinAPI function. 81

11

Chapter 1

Introduction

The Internet of today connects a vast number of household- and business-

owned personal computers mostly running Microsoft Windows operating sys-

tems on x86-compatible architectures. Recent security incidents have shown

that this monoculture is a very attractive target for maliciously aligned indi-

viduals developing worms—programs that spread autonomously over network

connections requiring little or no user interaction.

1.1 Malware

Apart from worms that exploit vulnerabilities in network services, such as

Sasser, SQLSlammer, and Code Red, the most successful and widespread

pests have been e-mail worms, which in most cases simply rely on users

opening attachments to e-mails out of curiosity. Replicating with this rather

unsophisticated method, various versions of NetSky , MyDoom, and Bagle

have been dominating the malware statistics for over a year (Figure 1.1).

MyDoom alone is estimated to have caused a total economic damage of

around 3 billion US Dollars during the phase of its initial outbreak [mi204].

The damage caused by these worms is completely unproportional to the

amount of creativity and skill used for programming them: In contrast to the

’classic’ viruses of the pre-Internet era that spread by infecting executable

files, creating an e-mail worm that infects hundreds of thousands of com-

puters does not require knowledge of system programming or even assembly

language. MyDoom and NetSky, for example, are written in Visual C++,

and do not appear to be very skillfully engineered, containing obvious bugs

13

14 CHAPTER 1. INTRODUCTION

Top ten viruses reported to Sophos in 2004

Others 19.5%

W32/Bagle-AA 1.6%

W32/Netsky-C 1.8%

W32/Sober-I 1.9%

W32/MyDoom-A 2.4%

W32/Netsky-Z 3.7%

W32/Netsky-D 6.1%

W32/Netsky-B 7.4%

W32/Sasser 14.2%

W32/Zafi-B 18.8%

W32/Netsky-P 22.6%

Source: Sophos Plc www.sophos.com

Figure 1.1: Most prolific viruses in 2004.

in some versions. During the last years it became evident that shortly after

a new virus is released into the wild, several modified versions of the virus

appear. These variants do not need to originate from the same author—

typically, the source code of a worm is spread via Internet forums or even

within the worm itself. That way, the level of programming skill required for

triggering the next worm epidemic is very low. As a result of these develop-

ments, we see new worm derivatives appearing on the Internet almost every

day. While these new versions differ only slightly from the original in terms

of functionality, the resulting binary file can change significantly, depending

on the compiler used and its optimization settings; this problem is further

aggravated by the use of executable packers such as UPX [OM] or FSG [Xtr].

1.2 Detection Methods

1.2.1 Signature Matching

Current anti-virus products use rather inflexible but efficient static signature

matching as their principal detection method. Static signature matching em-

ploys a database containing characteristic binary code sequences of known

1.2. DETECTION METHODS 15

malware and matches these sequences against executables. This database

of virus signatures has to be kept up-to-date in order to be able to detect

viruses that emerge after the release of the anti-virus software. Keeping the

false positives rate low is vital to the productive use of virus scanners; as

a result, signatures are chosen very narrowly so that each of them matches

exactly one single version of a specific malware. Consequently, a signature

designed for one version of a virus or worm will usually not match against

derivatives thereof. Moreover, the modifications do not even have to be

substantial—Christodorescu and Jha showed that solely inserting a nop in-

struction into the binary code might render the virus undetectable for com-

mercially available virus scanners [CJ04]. This problem is addressed by the

anti-virus community through releasing updates to their signature databases

as quickly as possible, usually daily or in some cases even several times a day.

However, there will always be a significant window of vulnerability between

the release of a mutated worm and the database updates, during which the

malware remains undetected by conventional virus scanners. It would thus

be highly desirable to have a scanner that reliably detects a virus or worm

together with a large class of its potential derivatives.

1.2.2 Dynamic Analysis

Dynamic analysis is a relatively new approach to malware detection and

solves some of the problems of static signature matching by using a more

general behavioral approach. The core component of a dynamic scanner is

the sandbox [Nor03], a virtual machine that fully simulates an environment

for the executable to be checked. The sandbox also includes files with bait

e-mail addresses and simulates a SMTP-server to provide a potential worm

with a realistic computation environment. While the executable runs on

this virtual machine, the scanner looks for suspicious interaction with the

artificial environment. For example, if the tested program sends emails with

executable attachments to addresses taken from the bait files, this behavior

will qualify as malicious.

However, while this is certainly an interesting approach to malware de-

tection, it can easily be foiled as it faces a fundamental problem: Pure ob-

servation of the behavior of an executable will always be limited to a certain

time span, and nothing can be predicted about future actions of the program.

For example, a program might set a timer to start its malicious actions five

16 CHAPTER 1. INTRODUCTION

minutes after program start; or, even simpler, a malicious software could de-

cide randomly when to run its payload. Evidently, a detection method has to

be sought that considers all possible operational sequences in the program.

1.2.3 Semantic Analysis

Sometimes also referred to as ‘static analysis’, semantic analysis methods

try to match semantic program behavior against general malicious actions.

However, contrary to dynamic analysis, this is achieved without actually

running the code, but rather by analyzing the possible program flow inside

an executable. Therefore, semantic analysis has the potential of solving the

problems of both signature matching and dynamic analysis:

• Malware definitions can be more general, matching a large class of

viruses or worms.

• All possible program paths are checked, not only a limited time span.

Semantic analysis methods can be based on model checking [CGL99], a well

proven formal verification method that is widely used for verifying proper-

ties such as fairness or liveness in hard- and software. Detecting viruses by

semantic analysis is a new and still scarcely researched area, but modern

advances in computing power make it a feasible and promising aim. In this

thesis, a new semantic analysis method is introduced that checks executables

against malware specifications defined in an extension to the temporal logic

CTL, called CTPL (introduced in Section 3.2). CTPL allows powerful and

succinct specifications of malicious program behavior.

1.3 Previous Work

The shortcomings of classic malware detection techniques are well known.

Sophisticated semantic analysis methods for virus detection have been de-

clared the goal of anti-virus research several times. While some approaches

to this goal have been discussed in the literature, a decisive breakthrough

has yet to be achieved.

Bergeron et. al. [BDD+01] extract the control flow graph of an executable

and reduce it to a subgraph whose nodes represent selected system calls. This

subgraph is then checked against a description of suspicious behavior, which

1.3. PREVIOUS WORK 17

is defined as specific sequences of system calls. However, they do not perform

any kind of data flow analysis and are not able to find dependencies between

these calls. In particular, they give an example of a suspicious system call

sequence that sends data over a network connection after reading from a file;

however they cannot tell whether the data actually originated from the file

due to the nature of their method.

Singh and Lakhotia [SL03] use a control flow graph reduced to basic

blocks; a program can be partitioned into basic blocks by cutting the code

sequence behind all instructions that influence the control flow (i.e. jump

instructions) and before every jump target, thus creating a graph in which

each node represents a set of strictly sequential instructions (a basic block).

Together with annotations to these basic blocks supplied by the IDAPro

disassembler they translate the graph into input to the model checker SPIN

to check it against a formula in linear temporal logic (LTL), which specifies

viral behavior. However, in [LS03] they express serious doubt about the

feasibility of this method and generally of malicious code detection by formal

analysis.

Christodorescu and Jha [CJ03] concentrate on fighting common virus ob-

fuscation techniques such as register renaming or the insertion of dead code

(e.g. nop or mov eax,eax) and unconditional jumps into the virus body. To

this end, they transform the disassembled program code into an automa-

ton where abstracted assembler instructions constitute transitions between

states. Another automaton is built from the code of the virus to be detected

in a similar way, but with an additional loop in every state that allows any

number of irrelevant instructions (dead code) to occur. For resistance against

register renaming, registers in the virus automaton are replaced by unresolved

symbols. In the detection phase, they check whether the languages specified

by the malicious code automaton and the program automaton have a non

empty intersection with respect to the possible variable bindings. Using

their approach, they can decide whether the executable contains a version

of the virus obfuscated by means described above. However, they do not

allow meaningful code between individual states and thus are not able to

detect versions that contain extended functionality besides any obfuscation

transformations.

18 CHAPTER 1. INTRODUCTION

1.4 Motivation

Theoretical results [Coh87] show that it will never be possible to create a

universal malware detector, as this problem is undecidable. Creation and

detection of malicious code is thus destined to be a race of arms, where each

camp has to counter the other’s newly developed methods. However, at this

time, the balance has shifted strongly in the direction of malware writers.

Current virus detection is still rather primitive and far from utilizing the

full potential of modern methods of program analysis. With conventional

detection methods, the anti-virus industry has not been able to adapt to the

pace of worms spreading around the globe in a matter of minutes.

As a result of the failure to implement new methods of malware detection,

the skill level required nowadays for releasing a new worm is highly unpro-

portional to its effect: The most successful e-mail worms of today are not

particularly well engineered, and still manage to initially remain undetected

as long as their binary code differs enough to foil signature based scanning.

These e-mail worms, oftentimes released by teenagers with no more than

high school computer science knowledge, contain absolutely no novel propa-

gation or stealth techniques. They are nearly indistinguishable in terms of

functionality, varying only in payload and the text that is sent in the e-mails,

yet outbreaks of these worms cannot be contained.

The goal has to be to significantly raise the level of effort needed to

create successful malware, since signature matching has already reached its

limits. Malware detection by semantic methods, however, seems to be the

most promising approach to achieve measurable progress in fighting malicious

code.

Chapter 2

Technical Analysis

Before focusing on the theoretical and formal aspects of malicious code de-

tection by model checking, we will take a look at the technical foundation of

the approach.

2.1 Reverse Engineering

The term reverse engineering describes the process of analyzing a hard- or

software product in order to gain insight about the inner functionality. It is

most often heard of in the context of companies trying to reduce development

costs by utilizing code belonging to their competition, or of software pirates

cracking copy protections or license limitations of programs. However, it

is also a way to understand the mechanisms of malicious software, and the

prerequisite for automated semantic virus detection tools.

Standard executables on a 32 bit Windows system are encoded in the

Portable Executable (PE) format. PE files contain a header with various

information about the file, such as the entry address or relocation informa-

tion, one or more code sections with the actual binary program code, and

multiple data sections that hold the import tables, resources (e.g. icons), or

other data such as static variables and constants. Pietrek [Pie02] provides a

detailed view on the PE format.

The executable code inside a PE-file is a continuous byte stream, that,

after being loaded into system memory, is started by calling the entry address.

Binary instructions vary in length, depending on parameter number and

type. Hence, after reading the byte located at the address contained in the

19

20 CHAPTER 2. TECHNICAL ANALYSIS

instruction pointer (IP), the CPU has to decide at runtime whether and how

many more bytes have to be loaded to complete the instruction. However,

to be able to perform a static semantic analysis, it is important to have

a code representation that is a sequence of instructions as opposed to a

sequence of bytes. Consequently, a disassembler has to statically transform

the byte sequence into an assembler program. During this process, it resolves

potential ambiguities by a best effort method. There are two main strategies

for disassembling a binary executable [LD03]:

• The linear sweep disassembler starts at the entry point and decodes

the instructions strictly sequentially, assuming that every instruction

is aligned to the next. This rather simple algorithm is very efficient

(it requires only linear time), but it is not able to detect inlined data

in the code segment. As long as the data is skipped at runtime by a

jump instruction, inlining data is a perfectly legal practice that can

be encountered in an executable when the compiler inserted alignment

bytes or generated a jump table from a case statement.

• The evident solution to this problem is interpreting control flow chang-

ing instructions during disassembly: The recursive traversal algorithm

follows the control flow and resolves the target address whenever a jump

instruction is encountered and starts disassembling another control flow

branch from there.

In case of indirect jumps (e.g. jumps to addresses calculated in registers),

things become more difficult, as the resulting address cannot be statically

resolved. Common ways to solve the problem include processing of all sec-

tions marked as code even if they are unreferenced. Because these portions of

code are not referenced, the entry points may not be obvious; therefore, the

disassembler looks for common code patterns in the binary and determines

in multiple passes from which entry point the binary decodes to meaningful

assembler code.

Probably the worst problem for disassemblers is self-modifying code that

is produced or changed at runtime, and executed afterwards. While modifica-

tion of code segments might be forbidden on certain systems, the instruction

encoding always allows to jump right in the middle of an earlier binary in-

struction. In this case the same bytes are executed again, but this time they

are decoded into completely different instructions. Figure 2.1 illustrates an

2.1. REVERSE ENGINEERING 21

Disassembled binary:

offset binary assembler

0000: 66 33 C0 xor eax, eax

0003: 66 B9 B8 05 00 CB mov ecx, 0CB0005B8h

0009: 66 F7 E1 mul ecx

000C: 66 85 C0 test eax, eax

000F: 74 F4 jz 05h

Execution trace:

offset binary assembler

0000: 66 33 C0 xor eax, eax

0003: 66 B9 B8 05 00 CB mov ecx, 0CB0005B8h

0009: 66 F7 E1 mul ecx

000C: 66 85 C0 test eax, eax

000F: 74 F4 jz 05h

0005: B8 05 00 mov ax, 05h

0008: CB retf

Figure 2.1: Ambiguous assembler code.

example of such code—the final jz jumps to the third byte of the mov in-

struction in line 2, which reveals the instructions mov and retf that were not

visible initially. However, a very high amount of skill is required for creating

working code with one of these methods, and handcrafting larger malicious

programs one byte at a time is not feasible in reality.

These problems make the problem of disassembling executables not sim-

ply a matter of mapping bytes one to one to instructions, but a generally

undecidable problem, similar to program equivalence. A disassembler has to

put up with these difficulties and try to produce an output that is as close

as possible to an actual assembler source file that would compile to the same

executable again. Moreover, it aids analysis by also processing information

other than the code sections, notably the import section which contains all

system and library calls used by the program. For improving human read-

ability and supporting automated analysis, calls to functions imported from

known libraries may be resolved to reveal the underlying name instead of

showing just the ordinal identification number.

Despite the theoretical limitations, current disassemblers are able to cor-

22 CHAPTER 2. TECHNICAL ANALYSIS

rectly reverse engineer nearly all programs that have been created using com-

mon compilers (after unpacking, see next section). In 2004, this included at

least 80% of all currently prevalent worms: Of all worms listed in Figure 1.1,

only Bagle has been programmed in assembly language.

A completely different problem is the reverse engineering of programs

using a just-in-time compiler or some kind of interpreter language (such as

Java or Perl). These qualify as self-modifying code in the way that code

is created at runtime, and are thus not susceptible to static disassembly.

However, as their source code has to be available to the just-in-time compiler,

they will be vulnerable to analysis methods specially tailored towards their

implementation language.

2.2 Protection Schemes

Since reverse engineering is a threat to the intellectual property of commer-

cial software, there has been significant research in protecting executable

code against such analysis. For obvious reasons, vendors of commercial copy

protection libraries, such as dongle systems or CD-based copy protection

schemes, have a particularly high interest in supporting development in that

area. As a result, a wide spectrum of both commercial and open source

tools exists that can be used to make debugging and reverse engineering of

software a non-trivial task. However the use of such tools is not limited to

protecting commercial software—in fact most malicious code encountered in

the wild nowadays is at least protected by the use of an executable packer.

2.2.1 Executable Packers

The protection of most pieces of malware is limited to the use of one of the

freely available executable packers such as UPX [OM] or FSG [Xtr]. The open

source tool UPX seems to be particularly popular with malware writers, and

is very commonly found wrapping worm variants. A list of the packers used

by common malware can be found in Table 2.1. As the name suggests, their

classical purpose is simply the reduction of an executable’s size. Possible

uses are to save bandwidth when a file is published on the Internet, or to use

less space on a limited data storage, such as a USB stick. For example, the

Windows installer of the Mozilla Firefox browser and the setup program of

2.2. PROTECTION SCHEMES 23

Malware family Versions Executable Packer

Bugbear a, b, e UPX 0.x/1.x

h FSG 1.33

Dumaru c, g, h UPX 0.x/1.x

y, z FSG 1.33

Klez a, e, g, h None

MyDoom a, f, g, h, j, k, n, o, r,

s, t, u, w, x, af, ag UPX 0.x/1.x

m FSG 2.0

NetSky b, l, m, o, w UPX 0.x/1.x

c ASPack 2.12

p, r FSG 1.0

f, h, y PE Pack 1.0

z, aa, ab, ac PECompact 2.x

d, e, q PEtite 2.2

j, k, n, x tElock

Table 2.1: Executable packers used with malware.

the Cygwin environment are both packed with UPX. They compress—and

in most cases also encrypt—an executable and add an extraction routine

to the compressed file. Everytime the packed executable is run, this routine

decompresses and decrypts the original binary into system memory and cedes

control to it afterwards.

An obvious attack to this kind of protection is simply allowing the pro-

gram to load, and dumping an image of the process memory with a tool such

as ProcDump after the decompression part is finished. The dumped executable

might require some additional fixing of header structures, but the code itself

is visible in its original form and susceptible to reverse engineering and static

analysis. This simple method works for most kinds of executable packers

and encryptions, as the unpacking function typically extracts the complete

program right at start, and does not interfere with later computations.

The drawback of this method is that the executable must be loaded, which

might not be acceptable in all cases as it cannot always be guaranteed that

the program is terminated before any malicious functionality is executed.

Besides using a virtual machine to avoid potential damage, it is also possible

24 CHAPTER 2. TECHNICAL ANALYSIS

to unpack the executable by creating a separate tool out of the information

gained from the unpacking routine included in the program. There are al-

ready many unpackers for the common packing utilities, such as UPX, FSG,

ASPack or Petite. UPX even offers a decompression command by itself, how-

ever the packed file can be altered in such a way that UPX does not recognize

it anymore.

2.2.2 Code Obfuscation

More sophisticated techniques for protecting code against reverse engineering

are called code obfuscation. According to Collberg, Thomborson, and Low

[CTL97], an obfuscator transforms a program into an obfuscated program

that displays the same observable behavior but is illegible. They measure the

quality of an obfuscator by its potency, resilience, and cost. In their definition,

potency is the amount of subjective complexity added to a program, thus

making it harder for humans to comprehend the functionality. Resilience

describes the robustness of the obfuscation against automated deobfuscation

methods. Finally, cost refers to the magnitude of additional time and space

consumption caused by the transformation.

Various possibilities for obfuscating code have been identified in the lit-

erature [CJ03, CJ04, LD03]. In the scope of this work, two general kinds of

obfuscation methods are of particular interest: First, those obfuscating trans-

formations that foil the usual signature based malware detection techniques,

and second those that thwart the disassembly of an executable, which is the

prime prerequisite for employing semantic detection methods. Techniques

belonging to the first group are:

• Dead code insertion. This method inserts instructions or sequences of

instructions without effect on the machine state at random points in

the program. Examples for dead code on x86 architectures are the nop

instruction or statements such as mov eax,eax. Dead code insertion

changes the binary footprint of a piece of malicious software, yielding

false negatives in traditional anti-virus products.

• Code reordering. A sequence of binary code can be fractured into sev-

eral pieces and put together in a random order by connecting subse-

quent instructions in the original code through unconditional jumps.

As long as addresses used in the code are rewritten during the process,

2.2. PROTECTION SCHEMES 25

the program semantics is not affected even though the resulting binary

executable is very different.

• Register substitution. The x86 architecture features several general pur-

pose registers, which are fully permutable, with some exceptions such

as loop control or mixed 8/16/32 bit math operations. For example, by

changing all occurrences of ebx to edx, code can be transformed into

a semantically equivalent but binary different program.

• Instruction substitution. In large instruction sets such as those of the

x86 processor family, various different instructions can be used to per-

form equivalent operations [Int04]. The following three assembler code

snippets illustrate this fact—they all push a constant value of 0xBEEF

onto the stack, but each one of them uses different instructions to

achieve that goal, resulting in different binary representations:

mov ax,0xBEEF mov [esp],0xBEEF

push 0xBEEF push ax sub esp,0x02

The second group of obfuscations fight the successful disassembly of a binary

executable. To outsmart a linear sweep disassembler (see Section 2.1), it is

sufficient to insert an illegal instruction into the code and precede it by a

jump that skips it during normal execution. Recursive traversal is able to

cope with such problems, however its more ‘intelligent’ approach also allows

for possible attacks:

• Misusing control flow statements. Advanced disassemblers rely on the

fact that procedures are called by call and return with a ret state-

ment. However, these are only unconditional jumps using the stack to

save and restore the program counter and may as such be misused to

execute jumps to arbitrary targets. In particular, any jmp x may be

replaced by push x followed by ret.

• Unreachable conditional branches. By using conditional jumps depend-

ing on a condition which always evaluates to a constant value already

known at programming time, a disassembler can be tricked into ex-

ploring a branch that would never be executed at runtime and thus

can contain illegal instructions causing the disassembler to report an

error.

26 CHAPTER 2. TECHNICAL ANALYSIS

• Branch functions. In this method, jump instructions in the program

are replaced by a call to an intermediate function, the branch function,

whose sole functionality is to forward control to the correct target ad-

dress for this jump. This can be done by calculating the target address

from an argument passed to the branch function, or by using a lookup

table.

While there is evidence that perfect obfuscation of program behavior is the-

oretically unachievable [BGI+01], a disassembler will still be unable to pro-

duce correct output for a thoroughly obfuscated program, thus making static

analysis extremely difficult or even impossible.

2.2.3 Solutions

Malware detectors relying on signature matching may be foiled by the ob-

fuscation techniques in the first part of the last section. However, semantic

methods, such as the approach described in this thesis, are mostly resistant

against these transformations. Obfuscators based on instruction substitution

may at a first glance seem to be an exception, but their power is dependent

on static tables of equivalent assembly code. The obfuscator uses such ta-

bles to choose randomly among equivalent instructions for every instruction

it translates. However this is a static process, and conversely these tables

might as well be used by a detector to generate abstracted, non-ambiguous

pseudo-assembly code from a binary.

Strong obfuscation methods as in the second part, though, practically

enable a skilled author of malicious code to prohibit successful disassembly

and thus semantic analysis of his code. However, the practical impact may

be rather small: On the one hand, the vast majority of malware plaguing the

networks at the time of writing is not very well engineered. It is evident that

the authors usually lack the skill to incorporate strong obfuscation methods

that go beyond the use of simple packing tools. On the other hand, while

the actual functionality of obfuscated code might be resistant to disassembly

and analysis, the sheer fact that it is strongly obfuscated is often a reliable

indicator for an untrustworthy piece of software.

2.3. MALWARE ANALYSIS 27

2.3 Malware Analysis

In this section we take a closer look at some of the most important worm

families of the last two years, which will be used as exemplary targets for the

malware detection technique proposed in later chapters. Each one consists

of several versions spawned from the same codebase, either by the author

updating and improving his worm code, or by other virus writers who gained

access to the source.

2.3.1 NetSky

NetSky serves as an excellent example of a typical e-mail worm, and as such

will be analyzed in detail. From February 2004 until his arrest three months

later in early May, the author of NetSky, an 18-year-old German student,

released 24 versions of the worm, each of which needed new signatures to be

detected by virus scanners. The quick succession of new variants combined

with their fast proliferation clearly showed the deficiencies of non pro-active

virus scanners, that failed to contain the outbreak. According to the virus

wildlist [Wil], sightings of nearly every version of NetSky are still being re-

ported after one year. This makes NetSky probably the most ‘successful’

worm of 2004.

Despite of its success, NetSky is neither particularly innovative nor does

it take too much care to hide itself from detection. Protection is limited

to the use of executable packers; the author seems to have changed the

compression tools a lot in order to minimize the similarities of the binary

code in the different versions. NetSky is written in Microsoft Visual C++

and most versions rely on social engineering for propagation: Sending mails

with executable attachments designed to arouse the interest of the victims

and thus tricking them into executing the worm. NetSky variants a, b, and c

also copy themselves into shared folders of popular peer to peer file sharing

programs, using various names suggesting pornographic content or ‘cracks’

to popular commercial software. In addition, the worm tries to terminate

processes matching names from a hard coded list of anti-virus monitoring

software and also removes instances of other malware such as Bagle variants

and MyDoom. The author seems to have seen himself in a competition

against other worm authors over the top ranks in the virus threat lists, or,

28 CHAPTER 2. TECHNICAL ANALYSIS

char[] mailAddresses;

boolean[] mailFlag;

int addressCount;

int WinMain(int hInst, int hPreInst, char* args, int nCmdShow)

{

int inetFlags;

InitRandom(GetTickCount());

CreateMutex(0, 0, "AdmSkynetJklS003");

if (GetLastError() == ERROR_ALREADY_EXISTS) return 0;

if (strlen(args) <= 0)

MessageBoxA(0, "The file could not be opened!",

"Error", MB_ICONERROR);

mailAdresses[0] = "skynet@skynet.de";

addressCount = 1;

Infect(); /* Copies worm to Windows directory, modifies

registry to autostart the worm and

removes autostart entries of anti-virus

shields and other worms. */

ScanDrives(); /* Copies worm to shared folders and harvests

e-mail addresses. The total number is

stored in addressCount */

for(i=0; i<addressCount; i++) {

while (!InternetGetConnectedState(&inetFlags, 0)))

Sleep(50);

if (!mailFlag[i])

if (SendMail(mailAdresses[i])) /* sendMail generates

a mail with a spoofed sender address chosen randomly

from the addressList, tries to send it to the

specified address and returns 1 on success */

mailFlag[i] = 1;

Sleep(50);

}

}

Figure 2.2: Reconstructed WinMain() function of NetSky.b.

2.3. MALWARE ANALYSIS 29

as he states in strings embedded in some of the versions, because he wanted

his creation, in some twisted way, to be seen as a virus removal tool [Ciu04].

Figure 2.2 shows the WinMain function of NetSky.b that was reconstructed

from the disassembly and thus should resemble the original C++ code. After

initialization of the pseudo random generator, it checks via a system mutex

whether the same NetSky version is already active on this machine, to allow

only one running instance at the same time. To discourage possible suspicion

by the user expecting an e-mail attachment to open, the worm displays an

error message. Most victims will not take special notice of this incident,

as undisplayable content is a rather common error they are accustomed to.

NetSky continues by copying itself to the Windows directory—an action,

which is common to a large range of worms and will be the basis for the

malicious behavior specification created in Section 3.2.6—and modifying the

registry to have itself started after every system boot as well as removing

auto-start entries of anti-virus software and a set of other viruses.

After successful infection, the worm starts recursing through all directo-

ries on all fixed disks looking for text files, which it subsequently scans for

e-mail addresses. Along the way, the worm also copies itself under random

names into every folder found that contains either the string ‘share’ or ‘shar-

ing’. Finally it enters an infinite loop in which NetSky waits until a live

Internet connection is found and iteratively sends itself to the mail addresses

found, remembering successful deliveries to avoid multiple mailings during

one instance—on the next system startup, however, the whole process is re-

peated. Regardless of the addresses found, the list of emails always starts

with a hard coded address pointing to a freemail account which belongs to

the author. This way he receives an email to this account for every newly

infected machine, thus being able to monitor the outbreak of NetSky. How-

ever these accounts were always closed down rather quickly after a thorough

analysis of the worm by security firms, so the addresses changed with every

new version of the worm.

Later versions of NetSky are a little more advanced and use multiple

threads to harvest addresses and send mails, and also contain a payload that

emits sound from the system speaker during a certain time period. Some

versions may also include a separate backdoor that is extracted and installed

when the worm is run, or launch a denial service attack on several websites

on certain dates.

30 CHAPTER 2. TECHNICAL ANALYSIS

2.3.2 MyDoom

Soon after its appearance in January 2004, MyDoom.a broke all existing

records becoming the fastest spreading worm of all time. During its initial

proliferation phase, MyDoom was allegedly responsible for up to 20% of all

mail traffic on the Internet. MyDoom is very similar to NetSky in terms

of functionality: It spreads primarily via e-mail attachments but also copies

itself to the shared folder of the Kazaa file sharing program. It contains a

simple payload that launches a denial of service attack at a specific time.

Most versions are packed with UPX, and MyDoom.a additionally employs a

simple ROT13 encoding to hide the registry keys and other sensitive strings

it uses [Sza04b].

MyDoom.a installed a backdoor on each victim machine, which of course

created a tempting target for other malware writers due to the sheer number

of infected hosts. Soon a new generation of malware emerged that replicated

by exploiting this new widespread vulnerability—for example Doomjuice (al-

legedly from the same author as MyDoom), Vesser, Welchia, or some versions

of Agobot [Sza04a]. Doomjuice.a also dropped the source code of MyDoom.a

on all infected hosts, which effectively made the source freely available to

everyone interested. As a result, MyDoom has seen a large number of differ-

ent versions, and is at the time of writing obviously still being developed, as

new MyDoom versions are still released from time to time. The most recent

version, MyDoom.bh, was discovered on March 21, 2005.

2.3.3 Klez

Klez was named the most prolific malware of 2002 by several anti-virus com-

panies, having topped the infections charts for 15 consecutive months. Aside

from relying on the usual social engineering concept, it tries to exploit a se-

curity hole in certain Outlook express versions that causes the attachment

to be automatically executed upon reading the mail. Starting with version

Klez.e, it also copies itself to network shares, and replaces executable files

with itself, preserving the original file under a different name (companion in-

fection). These versions also contain a particularly destructive payload that

overwrites data files such as source code files, spreadsheets, and MP3 files

found on the hard disk. Klez also drops the (seriously bugged) Elkern virus

on infected systems, a classical file infector that spreads independently from

2.3. MALWARE ANALYSIS 31

the worm. Both pieces of malware are written by the same author, and newer

Klez variants also carry improved versions of Elkern.

The motivation of the Klez author seem just as naive as those of the Net-

Sky creator two years later. He tries to gain a positive image by terminating

the processes of some other malware and even asks for employment in hid-

den messages embedded in the worm, disregarding the amount of damage he

caused by releasing the worm. Besides terminating the processes of Sircam,

Nimda, and the like, Klez also looks for running anti-virus programs and kills

their processes. At that time, anti-virus software was not necessarily immune

against this type of attack, which might be one of the reasons why Klez.h

infections were top ranking even one year after updated signatures had been

released.

2.3.4 Dumaru

The Dumaru family is a very heterogeneous pool of related worms and back-

doors, that has had its high times in late 2003 and the first quarter of 2004.

The worm code has obviously been available to a number of authors, as func-

tionality and targets vary over the versions. Large portions of the code seem

to have been taken from other malware. For example, the worm contains

the NTFS-streams [Esp00] based file infection routine of the experimental

W2K/Stream virus; however, the borrowed code has not been particularly

carefully integrated, and is severely bugged, effectively reducing propagation

by file infection to a minimum [Fer04].

Some variants drop a Trojan horse that logs itself into an IRC server and

listens to remote control requests, while others feature an integrated IRC

backdoor or a simple TCP interface that allows executing files or performing

common pranks like opening the CD-ROM tray or playing sound files. Ap-

parently all versions also try to harvest sensitive information such as bank

account credentials by logging key strokes inside windows whose titles match

a string from a list of names of login windows of several popular banking and

money transfer services. The harvested information is stored and sent in spe-

cific time intervals to a hard coded e-mail address. Some of the later Dumaru

versions do not even contain propagation code anymore, but concentrate on

the backdoor functionality instead.

This particular piece of malware leaves an overall impression of criminal

intentions on the side of the different authors because of all the strategies

32 CHAPTER 2. TECHNICAL ANALYSIS

to profit from their creation, in contrast to the obviously more naive and

excited style of the NetSky author.

Chapter 3

Model Checking

The malicious code detection technique described in this thesis is based on

the concept of model checking, which has classically been used as an efficient

method to verify the concordance of systems to specifications, such as proving

the correctness of protocols in concurrent environments. Section 3.1 serves

as introduction to the general area of model checking, before the concept is

adapted to suit the problem of malicious code detection in Sections 3.2 and

3.3.

3.1 Introduction

3.1.1 Preliminaries

In model checking, a system is described by a Kripke structure, which is es-

sentially a labeled directed graph consisting of states and transitions between

states.

Definition 3.1. A Kripke structure M is a triple 〈S,R, L〉, where S is a

set of states, R ⊆ S × S is a total transition relation, and L : S → 2P is a

labeling function that associates a set of propositions (elements of P , where

P is the set of all propositions) to each state.

The labeling reflects the truth values of the atomic propositions with regard

to the system state. The labeling causes propositions to represent different

truth values depending on the state in which they are evaluated.

33

34 CHAPTER 3. MODEL CHECKING

p1 = idle

p2 = idle

s0

p1 = idle

p2 = req

s1

p1 = req

p2 = idle

s2

p1 = idle

p2 = crit

s3

p1 = req

p2 = req

s4

p1 = req

p2 = req

s5

p1 = crit

p2 = idle

s6

p1 = req

p2 = crit

s7

p1 = crit

p2 = req

s8

Figure 3.1: Kripke structure of a fair mutex protocol.

Definition 3.2. A proposition p holds in s, if and only if p is contained in

the set of labels of a state s of the Kripke structure M :

M, s |= p ⇔ p ∈ L(s).

For reasoning about systems, the paths through a Kripke structure are of

particular interest, as they denote the possible sequences of valid state tran-

sitions during execution of the program or protocol specified in the model.

Definition 3.3. A path π = s0s1s2 . . . in M is an infinite sequence of states

si ∈ S with (si, si+1) ∈ R for each i ≥ 0.

As an abbreviation, we denote with πi the state at position i in a path π, in

such a way that π0 is the first state in π. Πs denotes the set of all possible

paths in M starting in state s.

A Kripke structure that represents a fair mutex protocol between two

processes p1 and p2 can be found in Figure 3.1. The propositions in this

3.1. INTRODUCTION 35

example are of the form ‘p1 = idle’, ‘p1 = req’, or ‘p1 = crit’, which

represent that process 1 is idle, requests to enter its critical section, or is inside

its critical section, respectively. Every state is labeled with two propositions

that reflect the status of both processes. The mutex has been designed such

that whenever a process requests to enter its critical section (‘pi = req’), it

is eventually allowed to do so (‘pi = crit’). This property is called fairness

and is generally desirable for concurrent systems. We can use temporal logics

such as the one presented in the next section to formulate properties of this

kind.

3.1.2 Computation Tree Logic

For reasoning about Kripke structures, we need a logic that allows to specify

temporal properties of Kripke structures by statements such as ‘there will

eventually be a state in which the proposition p holds ’. This is possible with

temporal logics such as LTL [Pnu81] or CTL [CE81]. CTL (Computation

Tree Logic) is a branching time logic that allows to quantify over several

paths originating from a state, while linear time logics only consider one

path at once. Besides the standard propositional logic operators ∧, ∨, and

¬, CTL offers six special temporal operators, A, E, X, F, G, and U. A and

E are path quantifiers that intuitively express ‘for all paths ’ and ‘there is a

path’, respectively. X, F, G, and U are linear-time operators that can be

used to specify properties along one path π.

Formally, the semantics of the individual temporal operators can be de-

fined as follows:

• Aψ is true in a state s, written M, s |= Aψ, if ψ is true for all paths

in Πs.

• In contrast, M, s |= Eψ holds if there exists a path in Πs where ψ

holds.

The linear time operators express properties of one specific path π:

• Xψ is true on a path π if ψ holds in state π1, i.e. the next state from

the path’s initial state.

• Fψ is true if there exists a state somewhere along π where ψ holds (ψ

finally holds).

36 CHAPTER 3. MODEL CHECKING

• Gψ is true if ψ holds in all states of π (ψ holds globally).

• ψ1 Uψ2 is true if ψ1 holds in all states on the path π until a state in

which ψ2 holds.

In CTL, path and linear-time operators can occur only pairwise in the com-

binations AX, EX, AU, EU, AF, EF, AG, EG; without this restriction,

the logic is called CTL*, which is a superset of both CTL and LTL.

Coming back to the mutex example of last section (Figure 3.1), we are

now able to formulate the fairness property in CTL as:

AG((p1 = req) → AF(p1 = crit))

∧ AG((p2 = req) → AF(p2 = crit))

The formula expresses that the following holds in every state on all paths:

Whenever a process requests to enter its critical region, all subsequent paths

will finally reach a state where this process does enter its critical region.

For CTL there exists a number of useful equivalences, which in particular

allow to define an adequate set of temporal operators from which all other

combinations of temporal operators can be derived, thus decreasing the num-

ber of operators needed to be implemented in a CTL model checker. These

equivalences are (the proofs can be found in [HR00]):

¬AFψ ≡ EG¬ψ

¬EFψ ≡ AG¬ψ

¬AXψ ≡ EX¬ψ

AFψ ≡ A[> U ψ]

EFψ ≡ E[> U ψ]

A[ψ1 U ψ2] ≡ ¬(E[¬ψ2 U (¬ψ2 ∧ ¬ψ1)] ∨ EG¬ψ2)

Adequate sets of operators are e.g. AU, EU and EX or AF, EU, and EX. In

particular, a set of temporal connectives is adequate if and only if it contains

EU, at least either of AX or EX, and at least one of EG, AF, and AU

[Mar01].

3.1.3 Model Checking Assembler Code

Model checking, as described in this section, allows to validate abstract sys-

tems defined by a Kripke structure against a formula defined in a specification

3.1. INTRODUCTION 37

label1: cmp ebx,[bp-4]

jz j

dec ebx

jmp c

label2: mov eax,[bp+8]

cmp(ebx,[bp-4])

#loc(0)
s0

jz(label2)

#loc(1)
s1

dec(ebx)

#loc(2)
s2

jmp(label1)

#loc(3)
s3

mov(eax,[bp+8])

#loc(4)
s4

Figure 3.2: Executable code sequence and corresponding Kripke structure.

logic such as CTL. The Kripke structure is usually obtained by the model

checker through an abstract notation of state transition systems. However,

such an abstraction is not available when checking machine code.

The basic idea used in this thesis for applying model checking to malicious

code detection is to transform a disassembled executable into a Kripke struc-

ture by creating a state for every instruction, and to label this state with two

propositions: one representing the instruction (opcode and parameters), and

one identifying the location (#loc(L)), which makes every instruction distin-

guishable from other, equal instructions. These states are then connected by

edges:

• Every state that is labeled with an unconditional jump (i.e. jmp) is

connected only to its jump target.

• States labeled with a conditional jump (such as jz, jbe) are connected

to both the state representing their immediate successor in the disas-

sembled procedure and their jump target.

38 CHAPTER 3. MODEL CHECKING

• Return statements do not have a successor and are connected to them-

selves in a loop transition.

• Indirect jumps cannot be statically resolved and will become dead ends

if they are unconditional. These dead ends are given a loop transition

to avoid leaf nodes in the Kripke structure.

• Every other state is connected to its immediate successor.

Figure 3.2 demonstrates how a snippet of assembler code can be transformed

into a Kripke structure. The Kripke structure generated this way can then

be checked against a specification. In standard CTL, a formula specifying

that the system function DeleteFile is called at some point in the future

would have the form

EF(call DeleteFileA).

While it would be possible to create specifications in pure CTL, there are

significant drawbacks which will be examined further in the next section.

3.2 Computation Tree Predicate Logic

3.2.1 Why a new logic?

In this section we introduce the new branching time logic CTPL (Computa-

tion Tree Predicate Logic) as an extension to CTL. Despite being equally ex-

pressive as CTL, CTPL substantially simplifies the defining of specifications

for model checking assembler code. The need for extending CTL becomes

evident when considering the problem of detecting recurring behavioral pat-

terns in different families and versions of malware. In a flexible specification

logic, it has to be possible to formulate statements such as ‘The value 2Fh

is assigned to some register, and the contents of that register is later pushed

onto the stack ’. As the number of possible register assignments is finite, this

can be formulated in CTL by simply enumerating all possible combinations

in one large expression. The above example would result in this formula:

EF(mov eax,2Fh ∧ AF(push eax)) ∨

EF(mov ebx,2Fh ∧ AF(push ebx)) ∨

EF(mov ecx,2Fh ∧ AF(push ecx)) ∨

. . .

3.2. COMPUTATION TREE PREDICATE LOGIC 39

Plain CTL formulas that model potentially malicious behavior will always

be very large if these specifications are general enough to allow for register

substitution (as explained in Section 2.2.2). In CTL, this is only possible

by explicitly mentioning each possible register assignment. While this is al-

ready impractical in case of register substitution, it becomes outright infea-

sible when using memory variables in specifications. Using CTL, this would

require creating a formula containing every possible memory address com-

bination, or at least adapting the formula to each specific Kripke structure

before model checking by generating clauses with all variable names found in

the disassembly. Either way, it becomes obvious that it is certainly not real-

istic to specify malicious behavior for assembler programs in an instruction

oriented way using standard CTL.

In order to account for these difficulties we introduce the temporal logic

CTPL. CTPL is an extension to CTL, tailored towards specification of code

patterns in a general and natural way. Even though CTPL is not more ex-

pressive than CTL, it allows specialized model checking algorithms to handle

all possible combinations of register and memory variable assignments suc-

cinctly by introducing quantified variables in a formula.

3.2.2 Predicates

The transformation from assembler code to a Kripke structure M yields

propositions of the form ‘push eax’. In the new logic, we want to be able to

differentiate the instruction (push) from its parameters (eax) in the labeling

of M . To this end, we allow propositions to be predicates :

Definition 3.4. A predicate describes a property of a state with respect to

zero or more parameters.

Unlike first-order logic, where a predicate of arity 0 will become a Boolean

constant, predicates may have zero parameters, as their truth value depends

on the state in which they are evaluated. In particular, predicates of arity 0

resemble the propositions defined in Section 3.1.2.

The parameters of a predicate can be constants, which are elements of

the infinite set I:

Definition 3.5. The set of all constants I is the infinite set of all arbitrary

alphanumeric strings and numbers.

40 CHAPTER 3. MODEL CHECKING

In the context of modeling assembler programs as Kripke structures, I corre-

sponds to all integer values, all memory addresses, all possible local variables,

all register names, and combinations thereof (e.g. for indexed addressing).

We now define a finite subset U of I that will be part of the extended Kripke

structure introduced below:

Definition 3.6. A universe U ⊂ I is the finite set of constants available as

parameters for predicates in labels of states in a certain Kripke structure.

Again in the context of assembler programs, the universe describes the set

of those constants, memory addresses, and registers in use by the actual

program that is being analyzed. With the universe U , we now define the set

P ′ of all predicates over elements of U .

Definition 3.7. P ′ denotes the set of all predicates p(c1, . . . , cn) of arbi-

trary arity n ≥ 0 with all possible combinations of parameters ci ∈ U , where

1 ≤ i ≤ n.

We are now able to give the extended definition of a Kripke structure M

which allows predicates in labels:

Definition 3.8. An extended Kripke structure M is a tuple 〈S,R, L,U〉 with

the set of states S, the total transition relation R ⊆ S × S, the labeling

function L : S → 2P ′

, and the universe U .

From now on we will refer to this extended definition when using Kripke

structures.

3.2.3 Syntax

The specification logic CTPL is built as an extension to CTL, and as such

allows all syntax elements known from CTL (see Section 3.1.2). In addition,

we allow propositions to be predicates as defined above. Aside from con-

stants, parameters of predicates in CTPL formulas can also be variables. We

generalize variables and constants to be terms :

Definition 3.9. A term t is either a variable or a constant, i.e. t ∈ (I ∪V),

where V is the set of all variables.

3.2. COMPUTATION TREE PREDICATE LOGIC 41

For easier identification, from now a r, x or y will refer to a variable, while t

refers to a general term (either constant or variable). Constants may be num-

bers or words or combinations of both; where the actual value of a constant

is not given, it will be represented by the symbol c.

Definition 3.10. The syntax of CTPL is defined inductively:

• > and ⊥ are CTPL formulas.

• If p is a predicate of the arity n ≥ 0 and t1, . . . , tn are terms, then

p(t1, . . . , tn) is a CTPL formula.

• If ψ is a CTPL formula, then ¬ψ, AXψ, AFψ, AGψ, EXψ, EFψ,

and EG ψ are CTPL formulas.

• If ψ1 and ψ2 are CTPL formulas, then ψ1 ∧ ψ2, ψ1 ∨ ψ2, E[ψ1 U ψ2],

and A[ψ1 U ψ2] are CTPL formulas.

• If ψ is a CTPL formula and x is a variable, then ∀x ψ and ∃x ψ are

CTPL formulas.

3.2.4 Semantics

In order to define the semantics for CTPL, we first introduce a set of pre-

liminary definitions for later use. These are related to similar concepts in

first-order logic.

As CTPL allows variables, we need a mapping that collects assignments to

free variables, called the environment B, similar as in the semantics definition

of first-order logic [HR00]. The environment contains pairs of variable names

and constants (from the universe U) and can be implemented as a lookup

table.

Definition 3.11. The environment B is a partial function that maps free

variables to constants from the universe U , and by definition every constant

to itself. B[x 7→ c] denotes the environment that maps the variable x to

the constant c and every other variable y to B(y). B(t) represents the value

mapped to the term t in the environment B.

We now define a modeling relation that takes the environment into account

when evaluating the formula:

42 CHAPTER 3. MODEL CHECKING

Definition 3.12. M, s |=B ϕ denotes that the formula ϕ holds at state s in

the Kripke structure M with respect to the environment B.

The semantics of CTPL is shown in Figure 3.3; in most parts, this definition

is similar to the one of CTL, modified only to respect the environment B.

Rule 1 initializes the environment by implicitly existentially quantifying any

free variables. Rule 6 defines the quantifier ∀ in the way that M, s |=B ∀x ψ

holds if ψ holds with respect to all environments that extend B by a mapping

of x to an element of the universe U . Rule 7 handles ∃ analogously. Rule 2

defines the semantics of CTPL predicates: A predicate p(t1, . . . tn) over the

terms t1, . . . , tn (variables or constants) evaluates to true in a state s with

respect to a binding B if and only if s is labeled with p(B(t1), . . . ,B(tn)),

where B(ti) expresses the constant value of the term ti in the environment

B.

3.2.5 Equivalences

Two formulas ψ and ϕ are semantically equivalent if for every M and every

s we have M, s |= ψ ⇔M, s |= ϕ. All equivalences for CTL given in Section

3.1.2 also hold in CTPL. In addition, the variable quantifiers provide for some

more equivalent expressions that can be useful when creating specifications.

Theorem 3.13. If ψ(x) is a formula containing the free variable x, and ϕ

a formula that does not contain x, then the following equivalences hold:

(i) AG(∀x ψ(x)) ≡ ∀x(AG ψ(x)).

(ii) AX(∀x ψ(x)) ≡ ∀x(AX ψ(x)).

(iii) EF(∃x ψ(x)) ≡ ∃x(EF ψ(x)).

(iv) EX(∃x ψ(x)) ≡ ∃x(EX ψ(x)).

(v) E[ψ1 U(∃x ψ2(x))] ≡ ∃xE[ψ1 U ψ2(x)].

(vi) A[(∀x ψ1(x)) U ψ2] ≡ ∀xA[ψ1(x) U ψ2].

Proof. These equivalences can be proved in a straightforward manner by

using the semantics definitions of Figure 3.3. The notation ψ([x\t]) will

represent the formula ψ in which all occurrences of x have been syntactically

replaced by t.

3.2. COMPUTATION TREE PREDICATE LOGIC 43

1. M, s |= ψ ⇔ There is a B such that M, s |=B ψ.

2. M, s |=B p(t1, . . . , tn) ⇔ p(B(t1), . . . ,B(tn)) ∈ L(s).

3. M, s |=B ¬ψ ⇔ M, s |=B ψ does not hold.

4. M, s |=B ψ1 ∨ ψ2 ⇔ M, s |=B ψ1 or M, s |=B ψ2.

5. M, s |=B ψ1 ∧ ψ2 ⇔ M, s |=B ψ1 and M, s |=B ψ2.

6. M, s |=B ∀x ψ ⇔ For all c ∈ U , M, s |=B[x 7→c] ψ.

7. M, s |=B ∃x ψ ⇔ For some c ∈ U , M, s |=B[x 7→c] ψ.

8. M, s |=B EFψ ⇔ There is a path π ∈ Πs containing a

state si ∈ π such that M, si |=B ψ.

9. M, s |=B EGψ ⇔ There is a path π ∈ Πs such that

M, si |=B ψ for all states si ∈ π.

10. M, s |=B EXψ ⇔ There is a state s1 such that of (s, s1) ∈

R and M, s1 |=B ψ.

11. M, s |=B E [ψ1Uψ2] ⇔ For a path π = (s0, s1, . . .) where s =

s0 there is a k ≥ 0 such that M, si |=B

ψ1 for all i < k and M, sj |=B ψ2 for

all j ≥ k.

12. M, s |=B AFψ ⇔ Every path π from s contains a state

si ∈ π such that M, si |=B ψ.

13. M, s |=B AGψ ⇔ On every path π from s, there holds

M, si |=B ψ in all states si ∈ π.

14. M, s |=B AXψ ⇔ For all s1 such that (s, s1) ∈ R, holds

M, s1 |=B ψ.

15. M, s |=B A [ψ1 Uψ2] ⇔ For all paths π = (s0, s1, . . .) where

s = s0 there is a k ≥ 0 such that

M, si |=B ψ1 for all i < k andM, sj |=B

ψ2 for all j ≥ k.

Figure 3.3: Semantics of CTPL.

44 CHAPTER 3. MODEL CHECKING

(i) Besides the semantics definition we only need the knowledge that quan-

tifiers of the same kind commute, i.e. that ∀x∀y ψ ≡ ∀y∀x ψ:

M, s |= AG(∀x ψ(x)) ⇔ ∀π ∈ Πs,∀i ∈ N, M, πi |= ∀x ψ(x)

⇔ ∀π ∈ Πs,∀i ∈ N,∀t ∈ U , M, πi |= ψ([x\t])

⇔ ∀t ∈ U ,∀π ∈ Πs,∀i ∈ N, M, πi |= ψ([x\t])

⇔ ∀t ∈ U , M, s |= AG(ψ([x\t]))

⇔ M, s |= ∀x(AG ψ(x)).

(ii) Proving this equivalence is largely analogous to the above approach:

M, s |= AX(∀x ψ(x)) ⇔ ∀π ∈ Πs, M, π1 |= ∀x ψ(x)

⇔ ∀π ∈ Πs,∀t ∈ U , M, π1 |= ψ([x\t])

⇔ ∀t ∈ U ,∀π ∈ Πs, M, π1 |= ψ([x\t])

⇔ ∀t ∈ U , M, s |= AX(ψ([x\t]))

⇔ M, s |= ∀x(AX ψ(x)).

(iii) Since EF ψ ≡ ¬AG ¬ψ and ∃x ψ(x) ≡ ¬∀x ¬ψ(x), we can prove this

equivalence by using (i):

EF(∃x ψ(x)) ≡ ¬AG(¬(¬∀x ¬ψ(x)))

≡ ¬AG(∀x(¬ψ(x)))
(i)
≡ ¬∀xAG(¬ψ(x))

≡ ∃x ¬AG(¬ψ(x))

≡ ∃x EF ψ(x)

(iv) For this proof, we use EX ψ ≡ ¬AX ¬ψ and (ii):

EX(∃x ψ(x)) ≡ ¬AX(¬(¬∀x ¬ψ(x)))

≡ ¬AX(∀x(¬ψ(x)))
(ii)
≡ ¬∀xAX(¬ψ(x))

≡ ∃x ¬AX(¬ψ(x))

≡ ∃x EXψ(x)

3.2. COMPUTATION TREE PREDICATE LOGIC 45

(v) This equivalence can again be proved using the semantics definition

only:

M, s |= E[ψ1 U (∃x ψ2(x))] ⇔

⇔ ∃π ∈ Πs,∃i ∈ N(M,πi |= ∃x ψ2(x) ∧ ∀j < i, M, πj |= ψ1)

⇔ ∃π ∈ Πs,∃i ∈ N(∃t ∈ U(M,πi |= ψ2([x\t])) ∧ ∀j < i, M, πj |= ψ1)

⇔ ∃π ∈ Πs,∃i ∈ N,∃t ∈ U(M,πi |= ψ2([x\t]) ∧ ∀j < i, M, πj |= ψ1)

⇔ ∃t ∈ U ,∃π ∈ Πs,∃i ∈ N(M,πi |= ψ2([x\t]) ∧ ∀j < i, M, πj |= ψ1)

⇔ ∃t ∈ U , M, s |= E[ψ1 U (∃x ψ2([x\t]))]

⇔M, s |= ∃x E[ψ1 U ψ2(x)]

(vi) Here we use (v) and the CTL equivalence

A[ψ1 U ψ2] ≡ ¬(E[¬ψ2 U (¬ψ2 ∧ ¬ψ1)] ∨ EG ¬ψ2)

A[(∀x ψ1(x)) U ψ2] ≡ ¬(E[¬ψ2 U (¬ψ2 ∧ ¬∀x ψ1(x))] ∨ EG ¬ψ2)

≡ ¬(E[¬ψ2 U (¬ψ2 ∧ ∃x ¬ψ1(x))] ∨ EG ¬ψ2)

≡ ¬(E[¬ψ2 U ∃x (¬ψ2 ∧ ¬ψ1(x))] ∨ EG ¬ψ2)
(v)
≡ ¬(∃x E[¬ψ2 U (¬ψ2 ∧ ¬ψ1(x))] ∨ EG ¬ψ2)

≡ ∀x ¬(E[¬ψ2 U (¬ψ2 ∧ ¬ψ1(x))] ∨ EG ¬ψ2)

≡ ∀xA[ψ1(x)) U ψ2]

3.2.6 Modeling Program Behavior

CTPL has been designed to allow for much flexibility in specifying program

behavior. Using the translation from an assembler program to a Kripke

structure described in Section 3.1.3, we are able to specify behavior of an

executable such as ‘An execution path exists such that at some point some

register is set to zero, and in the next instruction pushed onto the stack ’ by

the succinct CTPL formula

∃r EF(mov(r, 0) ∧ EX push(r)).

Here, r is a variable, existentially quantified by ∃, and 0 is a constant, while

mov and push are both predicates. By replacing EX with EF, we can specify

46 CHAPTER 3. MODEL CHECKING

a code sequence where other instructions are allowed to occur between mov

and push, thus transforming the sentence into ‘An execution path exists such

that at some point some register is set to zero, and from there a path exists

such that this register is finally pushed onto the stack ’, written in CTPL as:

∃r EF(mov(r, 0) ∧ EF push(r)).

Note that this specification does not prevent the presence of instructions

between mov and push that modify the contents of the register r. To ensure

that the value of 0 is still present in r it is necessary, however, to disallow any

change to the register. Of course there are many instructions that affect the

contents of a register, but for simplicity reasons, we assume for a moment

that a register is only changed by a mov instruction. We need to find a

path on which the register r is not changed between the first and the second

instruction, so we will want to use the construction E¬∃t mov(r, t)) U . . .

in the CTPL formula. The register needs to be protected starting with the

instruction immediately following the assignment of 0 to r, which is specified

by prefixing the EU construction with EX:

∃r EF(mov(r, 0) ∧ EX E(¬∃t mov(r, t)) U push(r)).

In specifications it is generally desirable to ensure the integrity of values

between two specified instructions that are not necessarily consecutive. We

can always generate a specification similar to the above that prohibits certain

instructions from occurring.

Of particular interest for specifying malicious behavior in executables are

calls to the system API, as they are necessary to perform any I/O operation,

be it network or file access. On the assembler level, a system call to the

Windows API will be represented as a call instruction. Immediately before

this call, one or more push instructions will be present, pushing the parame-

ters of the system call onto the stack. The stack layout for the parameters

of a system call at the moment the call is executed can be seen in Figure

3.4; for illustration purposes, we use the WinAPI call GetModuleFileName.

The push instructions either have constant parameters, or they are preceded

by other instructions that compute the parameter value dynamically. CTPL

can be used to specify the behavior of such code fragments independently of

the actual instruction scheduling produced by the compiler. Such a specifi-

cation enforces only the correct computation of the parameter values and the

3.2. COMPUTATION TREE PREDICATE LOGIC 47

C Declaration:

DWORD GetModuleFileName(

HMODULE hModule,

LPTSTR lpFilename,

DWORD nSize

);

Assembler Code:
xor ebx, ebx

push 80h

lea eax, lpFileName

push eax

push ebx

→ call GetModuleFileName

hModule

Return Address

esp

nSize

lpFileName

ebp

Figure 3.4: Local stack frame at the moment of a system call.

correct stack layout at the time of the function call. This can be achieved in

CTPL by the conjunction of several different subformulas. One subformula

represents the order in which the function parameters are pushed onto the

stack, finishing with the system call itself, while the other subformulas spec-

ify the computation of the individual parameter values. In order to correctly

anchor these subformulas in each other, we use the special location predicate

#loc(L) mentioned in Section 3.1.3, which is true only in the L-th node of

the Kripke structure.

Using this predicate, a specification for a correct call to a function fn

that takes two parameters, where the second parameter is set to zero, can be

written as:

∃L∃r1(EF(mov(r1, 0) ∧ EF#loc(L)) ∧

∃r2EF(push(r2) ∧ EF(push(r1) ∧ #loc(L) ∧ EF(call(fn))))

)

The first line of the formula expresses that there exists a mov instruction in

the code that clears some register r1, before there will be some state after

this instruction, which corresponds to the location L specified in the next

48 CHAPTER 3. MODEL CHECKING

mov edi, [ebp+arg 0]

xor ebx, ebx Clear register ebx for later use.

push edi
...

lea eax, [ebp+ExFileName] Load the address of the string buffer.

push 104h Push string buffer size.

push eax Push the string buffer address.

push ebx Set the first argument to NULL.

call ds:GetModuleFileName Call GetModuleFileName.

lea eax, [ebp+FileName] Load the address of the destination

filename.

push ebx Set the third argument to zero.

push eax Push the address of the destination

filename.

lea eax, [ebp+ExFileName] Fetch source filename address.

push eax Push the address as first argument.

call ds:CopyFileA Call CopyFile.

Figure 3.5: Code fragment of the infection routine of Klez.h.

line. The second line specifies a sequence of push instructions that precede

a call to function fn. In particular, it asserts that

• eventually a register r2 will be pushed onto the stack,

• at some later point register r1 (which is the same register as in the first

line of the formula) is also pushed onto the stack,

• and finally a call to function fn is executed.

For simplicity, the subformula that would ensure integrity of r1 between the

mov and its corresponding push instruction has been omitted, as well as

the subformulas that would assert that the stack is not altered between the

push instructions and the final call. Note that the formula does not specify

a temporal relationship of line one and two based on operators. The only

temporal link between the two subformulas is the location L of the instruction

that pushes register r1. We will refer to such a location as anchor in the

future.

3.2. COMPUTATION TREE PREDICATE LOGIC 49

Figure 3.5 shows a part of the disassembled infection routine of the

worm Klez.h that exhibits a behavior typical to e-mail worms. The code

uses the Windows API call GetModuleFileName to determine the filename

of the executable it was loaded from, and afterwards uses a second sys-

tem call CopyFile to copy this file to another location, which is usually a

Windows system directory or a shared folder. The Windows API function

GetModuleFileName can be used to retrieve the filename of the executable

belonging to a specific process module and takes three parameters:

1. hModule: A numerical handle to the process module whose name is

requested.

2. lpFilename: A pointer to a string buffer designated to hold the re-

turned filename.

3. nSize: The size of the string buffer.

If hModule is zero (NULL), the filename of the calling process is returned,

which is the case in this example and enforced in the corresponding specifi-

cation created later on. The system call CopyFile takes three parameters:

1. lpExistingFilename: A pointer to a string holding the name of the

source file.

2. lpNewFilename: A pointer to a string containing the target filename.

3. bFailIfExists: A Boolean flag that determines whether the target

file should be overwritten if it already exists.

The fragment of assembler code in Figure 3.5 displays the invocation of those

two system calls, along with the necessary parameter initializations (relevant

lines are explained in the figure).

This typical proliferation behavior of a worm is specified in the CTPL

formula in Figure 3.6. The structure of the formula is consistent with the

process of specifying system calls described above. It matches code that

calls GetModuleFileName with a zero handle to retrieve its own filename,

and later uses the result as a parameter to the system call CopyFile. It

is divided into three main subformulas that are put into conjunction with

each other. Temporal dependencies between different clauses are expressed

by the use of location predicates. The first line of the formula quantifies the

variables common to all three of the main subformulas:

50 CHAPTER 3. MODEL CHECKING

1 ∃Lm∃Lc∃vFile(

2 ∃r0∃r1∃L0∃L1∃c0(

3 EF(lea(r0, vFile)

4 ∧EXE(¬∃t(mov(r0, t) ∨ lea(r0, t)))U#loc(L0))

5 ∧EF(mov(r1, 0)

6 ∧EXE(¬∃t(mov(r1, t) ∨ lea(r1, t)))U#loc(L1))

7 ∧EF(push(c0)

8 ∧EXE(¬∃t(push(t) ∨ pop(t)))

9 U(push(r0) ∧ #loc(L0)

10 ∧EXE(¬∃t(push(t) ∨ pop(t)))

11 U(push(r1) ∧ #loc(L1)

12 ∧EXE(¬∃t(push(t) ∨ pop(t)))

13 U(call(GetModuleFileName)

14 ∧#loc(Lm))

15)

16)

17)

18)

19 ∧∃r0∃L0(

20 EF(lea(r0, vFile)

21 ∧EXE(¬∃t(mov(r0, t) ∨ lea(r0, t)))U#loc(L0))

22 ∧EF(push(r0) ∧ #loc(L0) ∧ EXE(¬∃t(push(t) ∨ pop(t)))

23 U(call(CopyFileA) ∧ #loc(Lc)))

24)

25 ∧EF(#loc(Lm) ∧ EF#loc(Lc))

26)

Figure 3.6: CTPL formula for code creating copies of its own executable.

3.2. COMPUTATION TREE PREDICATE LOGIC 51

• Lm, the location of the GetModuleFileName call,

• Lc, the location of the CopyFile call, and

• vFile, the string buffer which holds the filename of the process.

The first and largest subformula, from lines 2 to 18 represents the call to

GetModuleFileName. It is itself split into three conjugated subformulas,

which share the following local variables:

• r0, in which the address of the string buffer for the executable filename

is loaded,

• r1, the register holding the NULL value passed as parameter hModule,

• L0, the location in which the pointer to the string buffer r0 is pushed,

• L1, the location where r1 is pushed, and

• c0, the size of the string buffer (the correct initialization of this constant

does not need to be checked and is assumed).

Line 3 starts the subformula that specifies that the string buffer pointer is

stored in r0. There has to be a path afterwards on which this register is not

altered by mov or lea instructions until the location L0 is reached, which

is assured using the data integrity construction described earlier. Line 5

asserts that register r1 is set to zero and again enforces that this register

remains unchanged until it is pushed onto the stack at location L1. Lines

7 to 12 specify the order in which the individual parameters are written to

the stack, and enforce that no stack operations are performed in-between

that would break the correct parameter layout. The push instructions are

conjugated with location predicates to mark the locations L1 and L2, which

anchor the former two subformulas regarding parameter initialization. This

subformula is concluded by the actual system call to GetModuleFileName in

line 13, bound to location Lm.

The second system call to CopyFile is specified in lines 19 to 24 in a

similar way. This time, only two local variables are used:

• r0, some register r0 (not necessarily the same register as in the first

subformula!) that is assigned the address of the string buffer containing

the executable filename, and

52 CHAPTER 3. MODEL CHECKING

• L0, the location in which this pointer is pushed onto the stack.

The structure is completely analogous to the first system call; the first two

lines assert loading of the buffer address to r0, and the third and fourth line

specify r0 as first parameter to CopyFile. This time, other parameters are

not given, because we are not interested in the values of neither destina-

tion filename nor overwrite flag. The last line in the specification, line 25,

enforces the correct ordering of the two system calls, using their locations.

GetModuleFileName has to be called before CopyFile, i.e. the location Lm

must occur before Lc.

Using constructions similar to the one described for this whole CTPL

formula, it is possible to specify a wide range of malicious behavior. Another

example for a CTPL formula describing malicious behavior can be found in

Section 4.3.

3.3 Model Checking CTPL

3.3.1 Outline of the Algorithm

The efficiency of the classical explicit model checking algorithm for CTL

[CE81] is based on the fact that it uses a form of dynamic programming.

CTPL is derived from CTL—accordingly, the algorithm to check whether a

Kripke structure M is a model of a CTPL formula ϕ is an extension to the

model checking algorithm for CTL. The algorithm also iterates over the set

of subformulas of ϕ, and visits the states of the Kripke structure as often as

the classical algorithm. But as CTPL allows quantified variables, the algo-

rithm has to keep track of those variable bindings that make the individual

subformulas evaluate to true. The number of bindings might become expo-

nentially large in the worst case, increasing the complexity of the algorithm.

The complexity of CTPL model checking will be analyzed in detail in Section

3.4, where it will be shown that the model checking problem for CTPL is

PSPACE-complete. However, PSPACE-completeness tells little about the

practical performance on real world formulas and models. Experiments show

that in particular the exponential growth of binding sets is not a performance

bottleneck.

An outline of the model checking algorithm is given in Figure 3.7. It takes

a formula ϕ and a Kripke Structure M as input. We assume that ϕ is passed

3.3. MODEL CHECKING CTPL 53

Algorithm ModelCheckCTPL:

Input: a Kripke structure M and a CTPL formula ϕ (as parse tree)

Output: set of states in M which satisfy ϕ

1 for all subformulas ϕ′ of formula ϕ in ascending order of size

2 case ϕ′ of

3 ⊥: label no states;

4 p(t1, . . . , tn): LABELp(ϕ
′);

5 ∃x (ψ): LABEL∃(ϕ
′);

6 ¬ψ : LABEL¬(ϕ′);

7 ψ1 ∧ ψ2: LABEL∧(ϕ′);

8 ψ1 ∨ ψ2: LABEL∨(ϕ′);

9 E[ψ1Uψ2]: LABELEU(ϕ
′);

10 EXψ: LABELEX(ϕ
′);

11 AF ψ: LABELAF(ϕ
′);

12 output all s ∈ S where ∃C (s, ϕ, C) ∈ L;

Figure 3.7: The CTPL Model Checking Algorithm.

in the form of a parse tree, so we can traverse it in a bottom-up fashion from

the smallest subformulas, which are the predicates used, up to the complete

formula ϕ. In every step of the iteration over the subformulas ϕ′ of ϕ, all

states in which ϕ′ holds are labeled with ϕ′. Because the subformulas are

ordered by size, all subformulas smaller than the current ϕ′ are guaranteed to

have been processed in previous steps and may be used in this step. M |= ϕ

holds if the initial state s0 of M is finally labeled with ϕ.

The algorithm needs to process only predicates and the CTPL operators

⊥, ¬, ∧, ∃, EX, EU, and AF, as every formula containing other CTPL

connectives can be transformed to use only operators of this subset (see

Section 3.1.2). For efficiency reasons, both ∧ and ∨ are handled directly

even though one implementation would suffice for completeness.

3.3.2 Variable Bindings

The reason model checking of CTPL formulas is different from CTL model

checking is the fact that the truth value of an expression depends on the

assignment of variables. Bindings are generated at the moment the algorithm

54 CHAPTER 3. MODEL CHECKING

matches a predicate in the formula against a predicate in a label of the Kripke

structure; in terms of first-order logic, bindings are the most general unifier

for those two predicates. As the algorithm traverses the CTPL formula in

a bottom-up manner, it has to remember these bindings in order to deduct

the truth of a larger formula out of the truth values of its subformulas. If

a subformula holds only with respect to certain bindings, these bindings

have to be propagated up to every larger formula that includes it. If two

subformulas ψ1 and ψ2 are combined with a binary operator, the bindings

have to be consistent with each other: The variables that are bound to a

certain value in ψ1 must not be assigned otherwise in ψ2. The bindings are

collected and managed in the following ways:

• A single assignment of a constant to a variable is called atomic assign-

ment a and is of the form (v = c) or (v 6= c), where v ∈ V, c ∈ U .

Here, V is the set of all variables. Because U is finite, (v 6= c) is an

abbreviation for
∨

u∈U ,u 6=c

(v = u).

We will denote the set of all atomic assignments by A.

• A binding B is a conjunction of one or more such atomic assignments:

B = (a1 ∧ · · · ∧ an) with a1 . . . an ∈ A,

or, in clause notation, B ⊆ A. Note that this notation is consistent with

the definition of the environment B in the semantics of CTPL (Figure

3.3). The empty binding that does not contain any assignments will be

denoted by >, as it formulates an empty condition that is always true.

• As several bindings may exist that satisfy a specific formula, bindings

need to be collected in a set of legal bindings C ⊆ 2A. This set of

satisfying bindings may be seen as a disjunction of individual bindings:

C = (B1 ∨ . . . ∨ Bn).

Sets of bindings are disjunctions of conjunctions of atoms, which can be

represented as Boolean formulas in disjunctive normal form (DNF). Thus,

whenever sets of bindings have to be merged during the algorithm, this can

be done by Boolean operations. The algorithm again transforms the resulting

3.3. MODEL CHECKING CTPL 55

Boolean formula in DNF, and simplifies atoms as necessary according to the

following natural semantics:

¬(v = c) ≡ (v 6= c),

(v = c1) ∧ (v = c2) ≡ ⊥,

(v = c) ∧ (v 6= c) ≡ ⊥,

(v = c1) ∧ (v 6= c2) ≡ (v = c1),

where v ∈ V , c1, c2 ∈ U , and c1 6= c2. We will call a binding containing ⊥

contradictory; such bindings can be eliminated from its enclosing binding set

as they are unsatisfiable. A binding set that does not contain any bindings

is also unsatisfiable and can be simplified to ⊥. Furthermore, a binding set

containing the empty binding > makes its associated CTPL formula hold

unconditionally and can be simplified to > itself.

To account for the possibility of multiple satisfying binding sets, the

labeling L of a Kripke structure is extended to be a relation of the form

L ⊆ (S × Φ × 2(2A)), where S is the set of states, Φ is the set of all CTPL

formulas, and 2(2A) is the power set of all possible bindings. In particular,

a tuple (s, ϕ′, C) is stored in L, if the subformula ϕ′ holds in state s with

respect to all variable bindings B ∈ C. The extended labeling relation is

initialized by assigning > as set of satisfying bindings C to all initial labels

of the Kripke structure.

3.3.3 The Algorithm in Detail

This section will demonstrate the processing of the individual operators in

the subroutines referenced in the outline of the algorithm in Figure 3.7.

Predicates. The procedure in Figure 3.8 handles the smallest CTPL for-

mulas, the predicates. In particular, it adds the tuple (s, p(t1, . . . , tn), {B})

to the labeling relation L for every state s in which the predicate p(t1, . . . , tn)

holds with respect to the variable binding B. Note that the Kripke structure

is already labeled with predicates over constants (instructions and locations,

see Section 3.1.3) before the model checking algorithm is started. These ini-

tial labels are all associated to the binding set > to denote that they hold

unconditionally. Predicates hold in states if they match these initial labels

with respect to their associated variable bindings.

56 CHAPTER 3. MODEL CHECKING

1 procedure LABELp(ϕ
′) // ϕ′ = p(t1, . . . , tn)

2 stateIteration: for all s ∈ S

3 if ∃c1, . . . , cn with (s, p(c1, . . . , cn),>) ∈ L then

4 B := >;

5 for i := 1 to n

6 if ti is a variable then B := B ∧ (ti = ci);

7 else if ti 6= ci then continue stateIteration;

8 if B 6≡ ⊥ then L := L ∪ (s, ϕ′, {B});

Figure 3.8: Subroutine LABELp, handling predicates.

The subroutine iterates over all states: It checks for every state s whether

it has been initially labeled with an instance p(c1, . . . , cn) of the predicate p

(line 3). Whenever a predicate of the same kind has been found, the proce-

dure calculates the most general unifier over the parameters: It instantiates

an empty binding B and iterates over all parameters. During this iteration,

it adds the atomic assignment (ti = ci) to B for every parameter ti of the

predicate to be checked that is a variable (line 6). For each ti that is a con-

stant, it requires that the exact same constant is also present at the same

place in the existing label, i.e. that ti = ci. If this is not the case, the state

is not labeled and the iteration is resumed (line 7).

After all parameters have been processed, this instance of the predicate is

associated with the generated binding B and added to the labeling relation,

as long as B does not contain a contradiction. A contradiction would cause

B to equal ⊥, and could emerge when the same variable had to be bound to

different values to unify the two instances of p.

Existential Quantifiers. Existential quantifiers are processed in the sub-

routine depicted in Figure 3.9. Because subformulas are iterated from small-

est to largest, the algorithm can safely assume that all states where ψ holds

are already labeled with ψ. The subroutine searches for those states and

copies the labels of ψ to the new label ϕ′, except for those atomic assign-

ments that contain x.

An existential quantifier limits the scope of the quantified variable to the

enclosed subformula. In the algorithm, assignments of this variable have to

be removed from the set of bindings at the time the subformula headlined

3.3. MODEL CHECKING CTPL 57

1 procedure LABEL∃(ϕ
′) // ϕ′ = ∃x (ψ)

2 for all s ∈ S

3 if ∃C with (s, ψ, C) ∈ L then

4 C ′ := ⊥;

5 for all B ∈ C

6 B0 := >;

7 for all a ∈ B

8 if x /∈ a then B0 := B0 ∧ a ;

9 C ′ := C ′ ∨ B0;

10 L := L ∪ (s, ϕ′, C ′);

Figure 3.9: Subroutine LABEL∃, handling existential quantifiers.

by the quantifier is processed. To justify this behavior, consider the formula

AF(∃x p(x)); it specifies that on every path there will be a state in which

some x exists such that p(x) holds. This is fundamentally different from

∃xAF p(x), which would express that there is one specific x, such that on

all paths there will be states in which p(x) holds.

As the algorithm works from bottom up, it would start for both formulas

by labeling all states containing a predicate p with p(x) and associating the

label to a binding that assigned the variable x to some constant value. In the

latter case, the next subformula to be checked would be AF p(x). Bindings

in which x had been assigned different values would cause contradictions,

which would prevent states from being labeled with this subformula. In the

former case, however, ∃x p(x) would be evaluated first. This would cause all

assignments of x to any constants to be purged, thus making all p(x) labels

compatible.

The subroutine iterates over all states and processes those labeled with

ψ. It uses two loops to enumerate all atomic assignments a (line 7) in all

bindings (line 5), and creates a new set of bindings by copying all atomic as-

signments except those containing x (line 8). Finally, the new set of bindings

is associated with the subformula ϕ′ and added to the labeling (line 10).

Negations. Figure 3.10 shows the subroutine for processing subformulas

headed by a negation. It iterates all states: If ψ does not hold in a state

s, i.e. s is not labeled with the enclosed subformula ψ, then ¬ψ holds in s

regardless of variable bindings, and a label (s,¬ψ,>) is added (line 5). If s

58 CHAPTER 3. MODEL CHECKING

1 procedure LABEL¬(ϕ′) // ϕ′ = ¬ψ

2 for all s ∈ S

3 if ∃C with (s, ψ, C) ∈ L then

4 if ¬C 6≡ ⊥ then L := L ∪ (s, ϕ′,¬C);

5 else L := L ∪ (s, ϕ′,>);

Figure 3.10: Subroutine LABEL¬, handling negations.

1 procedure LABEL∧(ϕ′) // ϕ′ = ψ1 ∧ ψ2

2 for all s ∈ S

3 if ∃C1 with (s, ψ1, C1) ∈ L and ∃C2 with (s, ψ2, C2) ∈ L then

4 if C1 ∧ C2 6≡ ⊥ then L := L ∪ (s, ϕ′, C1 ∧ C2);

Figure 3.11: Subroutine LABEL∧, handling conjunctions.

does have a label ψ, then ¬ψ still holds in s under all variable bindings that

cause ψ to evaluate to false in s.

Consequently, a new set of bindings is created by negating the Boolean

formula representing the set of bindings for ψ. This negated formula is then

again brought into DNF, which creates new bindings and eventually causes

equality assignments in the binding to be changed to inequality and vice

versa. For example, if the set of bindings C is

((x 6= c) ∧ (x 6= d) ∧ (y = e)) ∨ ((y = c)),

the negated binding set ¬C becomes

((x = c) ∧ (y 6= c)) ∨ ((x = d) ∧ (y 6= c)) ∨ ((y 6= e) ∧ (y 6= c)).

However, if C contains the empty binding, i.e. C = >, the new set equals ⊥

and is not added (line 4).

Conjunctions. The subroutine for conjunctions is depicted in Figure 3.11.

It iterates all states, labeling those in which both subformulas ψ1 and ψ2

hold. The binding set C ′ for the new label ϕ′, however, has to suit both

subformulas in this state. This is achieved by creating C ′ as the Boolean

conjunction of the two individual binding sets, C1 ∧ C2; afterwards, C ′ is

transformed to DNF again. If C ′ is not contradictory, i.e. the resulting DNF

is not simplified to ⊥, then finally the new label is added (line 4).

3.3. MODEL CHECKING CTPL 59

1 procedure LABEL∨(ϕ′) // ϕ′ = ψ1 ∨ ψ2

2 for all s ∈ S

3 if ∃C1 with (s, ψ1, C1) ∈ L then C ′ := C1 else C ′ := ⊥;

4 if ∃C2 with (s, ψ2, C2) ∈ L then C ′ := C ′ ∨ C2;

5 if C ′ 6≡ ⊥ then L := L ∪ (s, ϕ′, C ′);

Figure 3.12: Subroutine LABEL∨, handling disjunctions.

1 procedure LABELEU(ϕ
′) // ϕ′ = E[ψ1Uψ2]

2 for all s ∈ S

3 if ∃C2 with (s, ψ2, C2) ∈ L then L := L ∪ (s, ϕ′, C2);

4 while L has changed do

5 for all states s if ∃Cs with (s, ϕ′, Cs) ∈ L then

6 for all (p, s) ∈ R // for all parents of s

7 if ∃C1 with (p, ψ1, C1) ∈ L then

8 C ′ := Cs ∧ C1;

9 if C ′ 6≡ ⊥ then

10 if ∃Cp with (p, ϕ′, Cp) ∈ L then

11 L := L ∪ (p, ϕ′, C ′ ∨ Cp);

12 else L := L ∪ (p, ϕ′, C ′);

Figure 3.13: Subroutine LABELEU, handling EU.

Disjunctions. Disjunctions are processed by the pseudo code in Figure

3.12. If a state s is labeled with one of the subformulas ψ1 and ψ2, it copies

the binding set of this subformula to the new label ϕ′. If s is labeled with

both formulas, the new binding set is created as the union of the existing

ones, as any of the variable bindings in both sets will cause ψ1∨ψ2 to evaluate

to true in s.

In particular, if s is labeled with ψ1, the algorithm copies C1, the set of

bindings of ψ1 in s, to a new binding set C ′. Else, C ′ is initialized with ⊥

(line 3). Next, if ψ2 holds in s with respect to the binding set C2, these

bindings are added to C ′, i.e. connected by Boolean ‘or’ (line 4). In case C ′

was ⊥, the result of this operation is just C2. Finally, if it is not still equal to

⊥, the new binding is associated with ϕ′ and added to the labeling relation.

60 CHAPTER 3. MODEL CHECKING

1 procedure LABELEX(ϕ
′) // ϕ′ = EX ψ

2 for all s ∈ S

3 if ∃Cs with (s, ψ, Cs) ∈ L then for all (p, s) ∈ R

4 if ∃Cp with (p, ϕ′, Cp) ∈ L then L := L ∪ (p, ϕ′, Cs ∨ Cp);

5 else L := L ∪ (p, ϕ′, Cs);

Figure 3.14: Subroutine LABELEX, handling EX.

EU. Figure 3.13 shows the labeling algorithm for a subformula ϕ′ of the

form E[ψ1Uψ2]. The basic idea is that ϕ′ trivially holds in every state in

which ψ2 holds. Beginning from there, a fixed point iteration labels every

state with ϕ′ in which ψ1 holds and which has a predecessor labeled with ϕ′.

To implement this, the algorithm first labels all states with ϕ′ that are

labeled with ψ2 (line 2). After this initial step, the algorithm enters the main

while loop, a fixed point iteration which terminates as soon as the labeling

does not change anymore (line 4).

Inside this loop, all states s already labeled with ϕ′ are iterated (line

5). Because ϕ′ = E[ψ1Uψ2] holds in these states, ϕ′ will also hold in every

predecessor state in which ψ1 holds. Consequently, every predecessor state

p that is already labeled with ψ1 is labeled with ϕ′ (lines 7–11). In order to

satisfy both subformulas, the binding set C ′ of the new label ϕ′ in p has to

take into account both the set C1 associated with ψ1 in the label of p, and

the set Cs coming from the child state’s label ϕ′.

To this end, C ′ is created as the conjunction of C1 and Cs (line 8). If C ′ is

not contradictory, the subroutine checks whether p has already been labeled

with ϕ′ because of another successor in another iteration step (line 10), and

unions C ′ with the existing set of bindings in this case (line 11). If the label

is new, ϕ′ is added as a new label to p with respect to the binding C ′ (line

12).

EX. The section of the CTPL model checking algorithm responsible for

validating EX expressions is shown in Figure 3.14. It iterates over the parents

p of those states s labeled with ψ and labels them with ϕ′ = EXψ, as ψ will

hold in a successor state of p, namely s. A state can have multiple successors

that are labeled with ψ, thus the union of all individual binding sets has to

3.4. COMPLEXITY OF CTPL MODEL CHECKING 61

1 procedure LABELAF(ϕ
′) // ϕ′ = AF ψ

2 for all s ∈ S

3 if ∃C with (s, ψ, C) ∈ L then L := L ∪ (s, ϕ′, C);

4 while L has changed do

5 stateIteration: for all states s

6 C ′ := >;

7 for all (s, c) ∈ R // for all children of s

8 if ∃Cc with (c, ϕ′, Cc) ∈ L then C ′ := C ′ ∧ Cc;

9 else continue stateIteration;

10 if C ′ ≡ ⊥ then continue stateIteration;

11 L := L ∪ (s, ϕ′, C ′);

Figure 3.15: Subroutine LABELAF, handling AF.

be associated to the label ϕ′ (line 4), because ϕ′ will hold with respect to

each set of bindings.

AF. The temporal operator AF is, analogously to EU, implemented by a

fixed point algorithm, which is given in Figure 3.15. In line 3, all states with

a label ψ are initially labeled with ϕ′, as AF ψ is sure to also hold where ψ

already does. Afterwards, the while loop labels—in each step—every state

with ϕ′ of which all successors are currently labeled with ϕ′.

The set of bindings generated for this new label has to take the binding

sets of all successor states into account: In the pseudo code, this is accom-

plished by successively adding binding sets of child states of s labeled with ϕ′

into a conjunction with a binding set that is initially > (line 8). If any child

state is not labeled with ϕ′ (line 9), or if the iteratively generated binding set

is contradictory (line 10), the next s is processed. The loop continues until a

fixed point is reached, i.e., until the labeling relation remains unchanged for

one iteration.

3.4 Complexity of CTPL Model Checking

A model checker for plain CTL can be implemented as an efficient bottom

up algorithm (see Section 3.1.2) and thus requires only polynomial time,

while the more powerful CTL* logic is already PSPACE-complete [CES86].

62 CHAPTER 3. MODEL CHECKING

As the logic CTPL, which was introduced in Section 3.2, allows succinct

definitions of specifications that would take exponential space when written

as a CTL formula, the model checking problem for CTPL can be expected to

be of higher complexity. More precisely, in the following paragraphs it will

be proved that model checking CTPL is, like CTL*, PSPACE-complete.

Lemma 3.14. The model checking problem for CTPL is PSPACE-hard.

Proof. For proving PSPACE-hardness, it is sufficient to find a polynomial

reduction from a PSPACE-hard problem to CTPL model checking. A clas-

sic problem known to be PSPACE-complete is the satisfiability of quantified

Boolean formulas (QBF) [SM73]. A QBF is a propositional formula in which

literals may be quantified by ∃ or ∀, e.g.

∀a∃b (a ∨ b) ∧ (¬a ∨ ¬b).

W.l.o.g. it suffices to consider closed formulas in prenex normal form, as free

variables are implicitly existentially quantified. Let

q = Q1a1 . . . Qnan k

be a closed QBF in prenex normal form with the quantifiers Q1 . . . Qn, the

variables a1 . . . an, and the propositional kernel k containing only the vari-

ables a1 . . . an. Furthermore, let ϕ be the CTPL formula

ϕ = Q1x1 . . . Qnxn k
′

with the same quantifiers Q1 . . . Qn as in q, and the variables x1 . . . xn. k′ is

obtained by replacing the variable ai in k by a unique unary predicate Pi(xi)

for every 1 ≤ i ≤ n. Further, let M be the following Kripke structure:

s0 {P1(1), . . . Pn(1)}

We will now show that q is satisfiable if and only if ϕ is true in the Kripke

structure M , i.e.

q ⇔M, s0 |= ϕ.

In QBF, the universe is predefined as consisting of true and false; accordingly,

we choose the universe for M to be U = {0, 1}. Because the initial state of

3.4. COMPLEXITY OF CTPL MODEL CHECKING 63

M is labeled with P1(1) . . . Pn(1), M, s0 |= Pi(1) holds (i.e. Pi(1) evaluates

to true) for every 1 ≤ i ≤ n; correspondingly, also M, s0 6|= Pi(0) holds

(i.e. Pi(0) evaluates to false) for every 1 ≤ i ≤ n.

When omitting the temporal operators of CTPL, the evaluation rules in

the semantics of CTPL and QBF are now equivalent, as rule 2 of the CTPL

semantics definition,

M, s |=B p(t1, . . . , tn) ⇔ p(B(t1), . . . ,B(tn)) ∈ L(s),

degenerates in the context of this specially crafted Kripke structure into

M, s |=B p(t) ⇔ B(t) = 1,

which is equivalent to saying that a (QBF) variable evaluates to true when

it is set to true in the environment. The remaining semantics for Boolean

operators and quantifiers are identical, consequently we can now conclude

that q is satisfiable if and only if M, s0 |= ϕ.

The transformation for turning a QBF into a CTPL formula described

above obviously uses only polynomial space, as the formula only grows by

one predicate symbol per variable, which causes the required space to double

in worst case.

Lemma 3.15. The model checking problem for CTPL is in PSPACE.

Proof. To prove membership in PSPACE, we have to find an algorithm

that solves the model checking problem for CTPL using only a polynomial

amount of space. Unfortunately, the algorithm given in Section 3.3.1, while

being efficient in most practical cases, uses an exponential amount of space

in the worst case, as the binding sets can become exponentially large on ∧

and ¬ operators. This is due to the bottom-up approach of the algorithm

that considers all satisfying combinations of bindings at once. However, it

is possible to formulate a recursive top-down model checking algorithm for

CTPL that tests possible variable bindings one by one and thus uses only

polynomial space.

The algorithm given in Figure 3.16 passes the formula ϕ and the initial

state of the Kripke structure M to the function check that recurses through

the syntax tree of ϕ. In every recursion step, the topmost symbol of the

current subtree determines which part of the switch-statement is executed.

Because every formula can be rewritten using only polynomial space to an

64 CHAPTER 3. MODEL CHECKING

Algorithm ModelCheckCTPLTopDown:

Input: A Kripke structure M and a closed CTPL formula ϕ

Output: Whether the starting state s0 of M satisfies ϕ

1 output check(s0, ϕ);

2

3 function check (state s, formula ϕ′) : Boolean

4 case topOperator(ϕ′) of

5 ⊥: return false;

6 ψ1 ∧ ψ2: return check(s, ψ1) and check(s, ψ2);

7 ¬ψ: return not check(s, ψ);

8 EX ψ:

9 for all (s, c) ∈ R

10 if check(c, ψ) then return true;

11 return false;

12 E[ψ1Uψ2]:

13 mark(s, ϕ′);

14 if check(s, ψ2) then return true;

15 else if check(s, ψ1) then

16 for all (s, c) ∈ R

17 if (not isMarked(c, ϕ′)) and check(c, ϕ′) then

18 return true;

19 return false;

20 AF ψ:

21 mark(s, ϕ′);

22 if check(s, ψ) then return true;

23 else for all (s, c) ∈ R

24 if (not isMarked(c, ϕ′)) and (not check(c, ϕ′)) then

25 return false;

26 return true;

27 ∃x ψ:

28 for all t ∈ U

29 if check(s, ψ[x\t]) then return true;

30 return false;

31 P (t):

32 if (s, P (t)) ∈ L then return true;

33 else return false;

Figure 3.16: Recursive model checking algorithm for CTPL.

3.4. COMPLEXITY OF CTPL MODEL CHECKING 65

equivalent one containing only predicates, ⊥, ¬, ∧, ∃, EX, EU, and AF, it

is sufficient to handle only this subset of CTPL. We will prove by induction

over the size of CTPL formulas that space cost is only polynomial in the

input size (formula ϕ and model M).

As the function check is recursive, the size of the stack frame has to

be taken into account: Every instance of the function occupies at least the

space for its two parameters, which is O(|ϕ| + log |S|) where S is the set of

all states in M . The space for parameters can be reused for the return value,

so it does not add to the space complexity. In particular, this allows to give

the induction start, because checking of all atomic CTPL formulas, namely

⊥ (line 5) and all predicates (line 31), does not use space other than its stack

frame (for the Boolean return value).

The induction hypothesis is that the maximum space cost C(n) needed

for checking any formula ψ of size |ψ| ≤ n is polynomial. What needs to be

shown is that if an operator is added in front of a formula of size |ψ| ≤ n, or

if two formulas of size ≤ n are combined by an operator, the cost for checking

the resulting formula is still polynomial. This is done separately for every

operator:

• ∧: The two checks are performed sequentially, so the required space is

bounded by O(C(n)+|ϕ|+log |S|) which is polynomial by the induction

hypothesis.

• ¬: Analogous to the above.

• EX ψ: All recursive calls are sequential, thus the space for every call

can be reused. The relation R is already given in the model, so only a

counter variable for the forall statement is needed, thus total space is

O(C(n) + |ϕ| + 2 log |S|) = O(C(n) + |ϕ| + log |S|).

• E[ψ1Uψ2]: This case is different in that it may call the check func-

tion with the same formula on child states. To avoid infinite recursion

caused by loops in the model, every state is marked with the subformula

it has been already checked with, so every state is checked at most once.

Space used by sequential check calls inside a recursion instance (lines

14 and 15) can be reused, so it is needed only once. More influential

are the maximum recursion depth of |S| and the space needed per re-

cursion instance for parameters and the forall iterator. Because marks

66 CHAPTER 3. MODEL CHECKING

of nested subformulas must not interfere with each other, they need to

be unique for each subformula, causing an additional requirement of

|S| · |ϕ|. Thus the total space needed is

O(

marks
︷ ︸︸ ︷

|S| · |ϕ|+

stack
︷ ︸︸ ︷

|S| · (|ϕ| + 2 log |S|) +

call
︷︸︸︷

C(n))

which can be simplified to

O(|S| · (|ϕ| + log |S|) + C(n)),

which is obviously polynomial.

• AF ψ: The proof for AF is analogous to the one for EU.

• ∃x ψ: The universe iterator will need O(log |U|) space, the individual

check calls may reuse the same space, thus counting only once, and

substituting the variables in their parameters does not take extra space.

Consequently, the total is the polynomial

O(C(n) + |ϕ| + log |S| + log |U|).

Regardless which operator is added to a CTPL formula ψ, the space needed

for checking it with the algorithm in 3.16 is always polynomial in the size of

model and formula.

From Lemma 3.14 and Lemma 3.15 we get:

Theorem 3.16. CTPL model checking is PSPACE-complete.

Chapter 4

Implementation and Results

The CTPL model checking algorithm described earlier has been implemented

as a Java application called Mocca (‘Model Checking Assembler’), which

will be presented in this chapter together with the results produced during

experimental runs with different specifications on several malware specimens.

4.1 Toolchain

Mocca expects a plain text assembler file as input to construct the internal

model representation, so there is some amount of preprocessing necessary

when a new executable is to be checked. As a first step, it has to be deter-

mined whether the potentially malicious program is encoded with some kind

of executable packer (see Section 2.2.1). There are tools available that are

able to perform this task automatically and reliably, such as PEiD [JQsx].

Knowing which packer was used to protect the program, the correspond-

ing unpacking tool can be chosen to correctly unpack the executable. The

unpacking routine is usually completely separated from the underlying pro-

gram, due to the fact that programs are packed by an external tool after their

compilation. More complex obfuscation methods, which change the control

flow of the code itself (as mentioned in Section 2.2.2), would typically have

to be integrated into the program already during development.

After unpacking, the resulting plain binary can be passed to a disassem-

bler. The prototype toolchain uses Datarescue’s IDAPro for this task, which

generates the plain text assembler file used as input to the Mocca model

checker. Mocca creates the Kripke structure of the executable by parsing the

67

68 CHAPTER 4. IMPLEMENTATION AND RESULTS

Figure 4.1: Screenshot of the Mocca GUI.

assembler file. During parsing, it is able to perform some simple syntactical

substitutions to disambiguate the assembler code; currently, instructions of

the form xor r, r are replaced by mov r, 0. Finally, Mocca checks the Kripke

structure against a malicious code specification file, which is a plain text file

of the format described in Section 4.2.1.

Mocca has both a graphical (screenshot in Figure 4.1) and a command

line interface. Both allow to load an assembler file and a specification, and

check either all procedures or an individual one. In the graphical version,

the Kripke structure of the matching procedure can also be inspected with

all states labeled with matching subformulas.

The complete sequence of steps in the toolchain of the prototype can be

seen in Figure 4.2. The steps are currently performed manually, but are

rather mechanic in nature and thus can be automated towards an integrated

analysis environment.

4.2. THE MOCCA MALWARE DETECTOR 69

plain binary

MoccaIDA Pro- --- �
�
�7

S
S
Sw

Preanalysis Unpacking

binary assembler
source

binary

UPX Unpacker

FSG Unpacker

...

PEiD

Disassembly Model Checking

Figure 4.2: Toolchain for the prototype.

4.2 The Mocca Malware Detector

4.2.1 Specification File Format

Mocca reads specifications from text files, which consist of five sections.

Every section is identified by a corresponding section header, a keyword

enclosed in brackets; all lines of text read after the header are regarded as

belonging to the section until the line where the next section header is en-

countered.

• [version]: A version tag in a single line identifying this specification

file as belonging to a specific Mocca version.

• [name]: The name identifying the specification.

• [description]: Several lines of text describing the specification, for

use in a graphical interface to give explanatory feedback to the user.

• [clues]: A list of the clues to look for in procedures, one per line.

Clues are a simple concept to drastically decrease model checking times

in larger assembler files. Malicious code specifications usually describe

a specific connection between different system calls. If a procedure

does not even contain these system calls, it can be safely skipped in

the analysis. Every procedure is textually scanned for every clue in

the list, and if one is missing, the procedure is excluded from model

checking. In principle, a clue can be any kind of string that must occur

in the disassembled procedure code. However, using system calls as

clues has proved to be the most reasonable approach.

70 CHAPTER 4. IMPLEMENTATION AND RESULTS

• [formula]: The actual malicious code specification as a CTPL formula

in the format described in the next section.

All text in a line after a semicolon (‘;’) is treated as a comment and is

ignored; empty lines are skipped as well. An example input file, containing

the specification used for detecting variants of NetSky, Klez and MyDoom,

can be found in Figure 4.3.

4.2.2 Specification Language

The syntax for malicious code specification formulas used in Mocca is very

similar to the CTPL syntax as defined in Section 3.2.3.

Operators. In its current state, Mocca supports the operators ∃, ∧, ∨,

¬, AF, EF, EX, and EU, which are sufficient to express every possible

CTPL statement, as all other operators can be transformed to combinations

of operators from this set by using rewrite rules from Section 3.1.2. The

following table reflects the Mocca syntax of the operators:

CTPL Operator Mocca syntax

ψ1 ∧ ψ2 ψ1 & ψ2

ψ1 ∨ ψ2 ψ1 | ψ2

¬ψ -ψ

AF ψ AF ψ

EF ψ EF ψ

EX ψ EX ψ

E[ψ1 U ψ2] E ψ1 U ψ2

∃x ψ exists x ψ

Predicates. For nearly all operators, the parameters are predicates; the

only exception to this rule is the exists operator, which takes a variable

as first parameter. Consequently, Mocca implicitly treats those symbols as

predicates that ought to be predicates due to the parse tree.

Variables. Inside the parameter list of a predicate, symbols are either

variables or constants. To avoid ambiguity, the specification language dis-

tinguishes between variables and constants. In Mocca specifications, every

4.2. THE MOCCA MALWARE DETECTOR 71

CopySelfMacro.spec

[version]

Mocca 0.1

[name]

CopySelf(Macro)

[description]

CopySelf specification using Macros.

An executable matching this specification retrieves

its own filename and uses this information to copy

itself to a different location.

Supports indirect and direct parameter initialization.

[clues]

call(CopyFileA)

call(GetModuleFileNameA)

[formula]

EF(%syscall(GetModuleFileNameA, $*, $pFile, 0) &

E %noassign($pFile) U %syscall(CopyFileA, $pFile))

; The handle to the own file is stored in $pFile.

Figure 4.3: Input file of the ‘CopySelf’ specification.

72 CHAPTER 4. IMPLEMENTATION AND RESULTS

variable is preceded by a dollar sign ($). Variables that are not explicitly

quantified in the formula are assumed to be existentially quantified over the

whole formula. For example, the CTPL formula

∃x EF(p(x) ∧ E[¬q(x) U ∃y (q(y) ∧ AFp(y)))])

can, by exploiting the implicit existential quantification of the free variable

x, be written in Mocca syntax as

EF(p($x) & E -q($x) U exists $y (q($y) & AF p($y)))

Constants. Every symbol that occurs inside of a predicate that is not pre-

ceded by a dollar sign is treated as a constant. Predicates in the formula that

contain constants as parameters can only hold in a state if these constants

exactly match the values at the respective places in the predicate labeling

the state.

Wildcards. A common occurrence in malicious code specifications are vari-

ables used as wildcards that match every parameter to a certain instruction.

Their actual value is of no interest, as they are not needed in other parts of

the formula.

Consider the following example: To specify that there is a path on which

nothing is pushed onto the stack before a pop instruction is reached, we

would usually write

E(¬∃x push(x)) U (∃y pop(y)).

To simplify specifications and improve their human readability by reducing

the abundance of exists statements in the formula, the special wildcard

$* is supported in Mocca, which corresponds to a variable that is locally

existentially quantified around the enclosing predicate. Accordingly, every

predicate p(. . . , $*, . . .) containing the wildcard $* is implicitly expanded to

∃x p(. . . , x, . . .). The above formula can thus be written succinctly as

E (-push($*)) U pop($*)

It is noteworthy that using the wildcard is not equal to using a free singular

variable, which would be implicitly quantified over the whole formula while

it is this way only quantified over the local predicate.

4.2. THE MOCCA MALWARE DETECTOR 73

Location. The special location predicate described in Section 3.1.3 is ref-

erenced by the notation #loc(location). Mocca ensures uniqueness of labels

inside a procedure by labeling every state in the extracted control flow graph

with its line number relative to the procedure start. Variables may be used

to refer to specific locations, as in #loc($L1).

Macros. CTPL allows succinct specifications for assembler programs, but

still examples such as the formula in Figure 3.6 show that these specifications

can grow beyond easy legibility, and might be somewhat error prone due to

the large number of nested expressions.

Mocca’s specification language alleviates this problem by the introduction

of several macros that encapsulate commonly used specification patterns. As

an illustrative example, the formula depicted in Figure 3.6 can be written by

the use of macros in the much more simple and natural form

EF(

%syscall(GetModuleFileNameA, $*, $pFile, 0) &

E %noassign($pFile) U %syscall(CopyFileA, $pFile)

)

Macros supported by the current version of the prototype are:

• %nostack. This macro expands to

(-push($*) & -pop($*)),

which is a statement to ensure that the stack is not altered in a state.

This macro is most commonly used together with the EU operator to

assure stack integrity, as in

E %nostack U call(DeleteFileA)

• %noassign(variable). This macro specifies that no value is assigned

to the given variable in this state. In the prototype implementation,

this expands to (-mov(variable, $*) & -lea(variable, $*)). On the

x86 architecture, there are of course many more operations than mov

and lea that assign a value to a register or memory operand. How-

ever, during practical testing this rather narrow definition proved to be

sufficient.

74 CHAPTER 4. IMPLEMENTATION AND RESULTS

This macro is also useful in the context of the EU operator in situations

when it must be ensured that a register is not altered in the timespan

between the state in which it is assigned a value and the state in which

it is used in another instruction. For example, a formula that specifies

that some register is assigned a constant value and pushed on the stack

at a later time, while enforcing that the contents of the register do not

change is given by:

EF mov($r, FFh) & E %noassign($r) U push($r)

• %syscall(function, param1, param2, . . .). System calls usually follow

the pattern explained in Section 3.2.6: Parameters are pushed onto

the stack either directly or indirectly by assigning them to a register

which is subsequently pushed—code of the latter form is commonly

produced by compilers when the same constant is used multiple times;

finally the call is executed. The %syscall macro generates a CTPL

formula that models exactly this behavior, and allows for direct or

indirect parameter initialization. To this end, it uses multiple location

predicates to tie the different initialization branches together and to

enable choice between the individual ways of initialization. For picking

the correct initialization instructions, it relies on a simple type system:

– Parameters that are a variable and start with the letter i are trea-

ted as immediate parameters that need no initialization branch.

Thus, they are represented by a simple push(variable) in the main

system call branch of the formula. The wildcard $* is handled

analogously and translated to push($*).

– Every parameter that is a variable and starts with the letter p is

treated as a memory address and is thus expected to be initialized

by using lea to load the memory address into some register, which

is then pushed onto the stack.

– For parameters that fit in neither category, the expanded formula

will specify both the possibility to be passed directly (as immedi-

ate parameters) or indirectly using an intermediate register and

an initial mov($r,param).

This macro is different from the aforementioned in that it is not simply

expanded by substituting a portion of text at the same position in the

4.2. THE MOCCA MALWARE DETECTOR 75

formula; the macro string in the formula is merely replaced by the final

call instruction, paired with a location predicate used as anchor for the

initialization branches, resulting to

call(function) & #loc(Lcn)

where n is a number unique to every macro invocation. Regarding the

use of this macro in a CTPL formula, this also implies that the macro

is anchored in the state of its call instruction. This is important, as it

leads to natural semantics of statements such as

E %noassign($pFile) U %syscall(CopyFileA, $pFile),

and allows for partially parallel parameter initialization of subsequent

system calls, i.e. to reuse the intermediate registers filled with values

needed by both calls.

Other formula branches are put into conjunction with the CTPL for-

mula. There is one branch defining the correct sequence of push in-

structions, ending with a reference to the location predicate of the call

state. Every push instruction in this branch is paired with a location

predicate of its own, serving as anchor for the individual parameter ini-

tialization subformulas, which constitute the remaining branches. For

performance reasons, location predicates are always paired with an in-

struction, even if this causes some redundancy in the formula.

• %sysfunc(variable, function, param1, param2, . . .). The %sysfunc

macro specifies a system call, too, but takes return values into account.

The arguments of the macro resemble those of %syscall, with the

addition of the parameter variable that denotes the place in which the

return value of the system call is to be stored.

Windows API functions return 32bit values by storing them in the

eax register. If the value is to be saved for later use, there must be

an instruction in which eax is moved to some other location (which

is specified in variable). This instruction also has to be the anchor

state for this macro because in the case of any earlier anchor state,

%noassign could not be used on variable after a %sysfunc; the as-

signment of the return value in eax to the variable would contradict

76 CHAPTER 4. IMPLEMENTATION AND RESULTS

the consistency requirement. To this end, the macro string is replaced

with mov(variable, eax) & #loc(Lcn), where again n is unique for

each macro occurrence. The actual call branch is appended at the end

of the formula, specified to prohibit the return value in eax from being

overwritten by either usual assignment or another call:

EF(%syscall(function) & EX(E (%noassign(eax) & -call($*))

U (mov(variable, eax) & #loc($Ln))))

This expansion references the %syscall macro defined above, as the

call itself is completely analogous; macros are resolved recursively to

allow this simplification.

The following example illustrates the behavior and power of macro expansion:

EF(

%sysfunc($ibuf, LockResource) &

EX(E %noassign($ibuf)

U %syscall(WriteFile, $ibuf, $*)

)

)

This formula specifies that the return value of the system call LockResource

is used as an immediate parameter to WriteFile, and assures that it is not

altered between the two calls. After expansion of the %syscall and %sysfunc

macros, the formula has transformed to this expression:

EF(

mov($ibuf, eax) & #loc($Lc1)

& EX(E %noassign($ibuf)

U (call(WriteFile) & #loc($Lc3)))

)

& EF(

call(LockResource)

& EX(E (%noassign(eax) & -call($*))

U (mov($ibuf, eax) & #loc($Lc1))

)

)

4.3. EXPERIMENTAL RESULTS 77

& EF(

push($ibuf) & EX(E %nostack

U (push($*) & EX(E %nostack

U (call(WriteFile) & #loc($Lc3)))

)

)

)

The first one of the three large EF clauses has been generated from the

original formula by replacing the macro strings with their immediate substi-

tutes given in their definitions above. The second clause is derived from the

%sysfunc macro, and anchored via location #loc(Lc1) in the first step of the

first clause, while the third clause takes care of parameters for the WriteFile

call and is anchored via #loc(Lc3) at the last step of the first clause. In

the first clause, the mov and call instructions could have been omitted as

they are already defined in the other two clauses, and a reference to the lo-

cation would have been sufficient. However, stand-alone location predicates

degrade the performance of the model checker as they cause many subformu-

las to match in states where they are not needed. Connecting them to the

instruction in a conjunction prohibits propagation of the location labels to

larger subformulas.

4.3 Experimental Results

4.3.1 Testing Environment

For testing purposes, Mocca has been installed on an AMD Athlon 1800+

machine with 768MB of RAM. The Java virtual machine was configured to

allocate 100MB of RAM initially and at maximum 512MB to meet memory

demands when checking complex and large procedures.

To evaluate both the performance and detection accuracy, the prototype

has been tested on malicious code and benign programs. In particular, the

test suite of worms consisted of:

• Various versions of all worms described in Section 2.3, namely

– Dumaru, versions a and b,

78 CHAPTER 4. IMPLEMENTATION AND RESULTS

– Klez, versions a, e, g, h,

– MyDoom, versions a, i, m, and aa, and

– NetSky, versions b, c, d, e, and p.

• Badtrans.a. The e-mail worm Badtrans originated in April 2001. Be-

sides the usual propagation routines, it also drops an executable on the

system that logs keystrokes of the users.

• Bugbear, versions a and e. Bugbear (discovered in September 2002) is

yet another e-mail worm that drops a keylogger on the infected sys-

tems and uses different threads to open a backdoor and stop anti-virus

processes.

• Nimda, versions a and e. Nimda does not only propagate via e-mail, but

also infects files both locally and on network shares, and tries to exploit

vulnerabilities of IIS web servers. File infection works by overwriting

the target file with a generated worm executable where the original file

is contained inside the worm as a data resource. Each time the worm

starts, it extracts this resource to a file and launches it.

• Swen.a. The author of the e-mail worm Swen, which emerged in Sep-

tember 2003, put remarkable effort into the social engineering quality

of the e-mails. He even went so far as to mimic the visual behavior

of Microsoft patches once run on the system. Furthermore, e-mails

sent by Swen also try to exploit a vulnerability in unpatched Microsoft

Outlook versions.

Each of the malicious programs was prepared for analysis by disassembling

the machine code with IDAPro and writing the disassembly to a plain text

file. If an executable was initially packed, the file was extracted prior to this

step with a suitable tool.

Keeping the false positives rate low is vital for a malware detector; thus

it was important to validate that the specifications do not match benign

code sequences. To this end, the following programs were disassembled and

afterwards analyzed by the prototype:

• notepad.exe: The standard Microsoft Windows text editor.

4.3. EXPERIMENTAL RESULTS 79

• cvs.exe: Release 2.0.51 of the Free Software Foundation’s Concurrent

Versions System for Win32.

• j2re-1 4 2 06-windows-i586-p.exe: The windows installer of the

Java Runtime Environment 1.4.6. Setup programs are of particular

interest, as they copy files to different locations. This is a behavior

similar to the first specification in Figure 4.3, and might thus yield

false positives.

• winamp276 full.exe: The installer of the Winamp media player, ver-

sion 2.76.

• setup.exe: Setup program of the Cygwin runtime environment for

UNIX programs on Windows platforms. The executable is originally

UPX-packed, but has been unpacked for testing.

Most of these tested programs perform a large number of file manipulations.

Due to the nature of the specifications, programs that use system calls related

to file operations could be expected to be the most prone to generate false

positives, and have thus been preferred when selecting the test subjects.

4.3.2 Specifications

All executables were tested against two specifications. The first one was

described in Section 3.2.6, and specifies that an executable retrieves its own

filename and copies itself to a different location. The corresponding input

file can be seen in Figure 4.3.

The other specification describes a program that first opens a file and later

executes it. This behavior might not seem malicious at a first glance, but

it is exactly the behavior of Trojan droppers, which create a file containing

a Trojan horse somewhere on the hard drive and execute it. While there

might be benign programs that also match this specification, e.g. integrated

development environments, it is still a strong indicator for malware if it is

found in an executable that is not expected to exhibit such behavior.

The somewhat lengthy specification is given in Figure 4.4. The for-

mula owes its complexity mostly to two facts: First, both the system call

CreateFile and the C library function fopen can be used to open a file.

Second, the signature of the CreateProcess system call (given in Figure 4.5),

80 CHAPTER 4. IMPLEMENTATION AND RESULTS

exists $r0 (

EF(lea($r0, $pfname) & EX(E %noassign($r0)

U (push($r0) & EX(E %nostack

U ((call(CreateFileA) | call(fopen)) & #loc($Lopen))

; Both CreateFile and fopen may be used to open the file

)))))

& exists $Lp1 exists $Lp2 (

EF(push($*) & #loc($Lp2) & EX(E %nostack

U (push($*) & #loc($Lp1) & EX(E %nostack

U (call(CreateProcessA) & #loc($Lproc))

))))

& (exists $r0 (

; CreateProcess parameters variant 1

EF(lea($r0, $pfname) & EX(E %noassign($r0)

U (push($r0) & #loc($Lp1)))))

| exists $r0 (

; CreateProcess parameters variant 2

EF(lea($r0, $pfname) & EX(E %noassign($r0)

U (push($r0) & #loc($Lp2)))))

& (EF(push(0) & #loc($Lp1))

| exists $r1 (

EF(mov($r1,0) & EX(E %noassign($r1)

U (push($r1) & #loc($Lp1))

))))))

& EF (call($*) & #loc($Lopen) & EF(call($*) & #loc($Lproc)))

Figure 4.4: Formula of the ‘ExecOpenedFile’ specification.

4.3. EXPERIMENTAL RESULTS 81

BOOL CreateProcess(

LPCTSTR lpApplicationName,

LPTSTR lpCommandLine,

LPSECURITY ATTRIBUTES lpProcessAttributes,

LPSECURITY ATTRIBUTES lpThreadAttributes,

BOOL bInheritHandles,

DWORD dwCreationFlags,

LPVOID lpEnvironment,

LPCTSTR lpCurrentDirectory,

LPSTARTUPINFO lpStartupInfo,

LPPROCESS INFORMATION lpProcessInformation

);

Figure 4.5: Signature of the CreateProcess WinAPI function.

which is used to execute a file, makes it necessary to formulate alternatives

for the parameter ordering. CreateProcess takes a total of ten parameters;

in particular, the path and name of the file to be executed can be either

passed as the first parameter lpApplicationName, or, if lpApplicationName is

set to zero, as the first token of the command line string passed as second

parameter, lpCommandLine.

In this case, the need to consider alternatives in the invocations makes it

more efficient—and actually smaller in the expanded form—to code the calls

manually and reuse as many subformulas as possible than to take advantage

of system call macros.

4.3.3 Results

Testing results are displayed in Table 4.1. To give a measure for the amount

of code in a program, it lists the number of procedures contained in each

disassembled executable. Every program was tested against both specifica-

tions, and the time was taken individually. The depicted time reflects the

processing time of Mocca, namely parsing of the assembler file, construct-

ing the control flow graph, and model checking. Time used for unpacking

(by various tools) or disassembly (by IDAPro) is not included, as it was not

influenced by the prototype.

82 CHAPTER 4. IMPLEMENTATION AND RESULTS

Tested Proc. CopySelf ExecOpened Result

Program count Time Match Time Match

J2RE Installer 719 50531 n 19824 n +

Notepad 74 31 n 16 n +

CVS 1057 937 n 5890 n +

Winamp Installer 50 53641 n 58469 n +

Cygwin Setup 2031 860 n 1281 n +

Badtrans.a 36 37141 n 102016 y +

Bugbear.a 226 1078 y 9297 y +

Bugbear.e 199 1719 n 1640 n −

Dumaru.a 45 3797 y 12 n +

Dumaru.b 78 3687 y 78 n +

Klez.a 73 2250 y 282 n +

Klez.e 130 5891 y 262 n +

Klez.g 130 5829 y 313 n +

Klez.h 133 6031 y 343 n +

MyDoom.a 92 2781 y 2719 n +

MyDoom.i 116 2281 y 31 n +

MyDoom.m 97 2203 y 1593 n +

MyDoom.aa 98 2047 y 31 n +

NetSky.b 30 563 y 63 n +

NetSky.c 31 587 y 15 n +

NetSky.d 27 1937 y 16 n +

NetSky.e 31 2437 y <1 n +

NetSky.p 5 641 y <1 n +

Nimda.a 87 62 n 3437 y +

Nimda.e 87 47 n 4938 y +

Swen.a 74 121469 y 3172 n +

Table 4.1: Results from testing various programs against both specifications.

A ‘+’ in the results column denotes that an executable has been correctly

categorized, a ‘−’ the opposite. Time is given in ms.

4.3. EXPERIMENTAL RESULTS 83

The figure shows that Mocca was able to correctly categorize all but one

executable, producing no false positives on the benign code. Analysis times

on large or complex programs are rather high (up to 2 minutes), but most

worms could be detected in less than 6 seconds. Analysis times below 100

milliseconds generally indicate that almost all procedures were skipped due

to not matching one of the listed clues. However, the implementation is

a prototype and far from being optimized; improved data structures such

as OBDDs will allow more efficient operations on binding sets and can be

expected to further lower checking times.

The original model for designing the ‘CopySelf’ specification (Figure 4.3)

was derived from analyzing the source code of the worms NetSky.b and My-

Doom.a. As the results show, this one specification does not only match

these two families of worms, but even a whole class of functionally related

malware.

Conclusion

Methods for detecting malicious code have not significantly improved over the

last decades. The Internet has multiplied the replication speed of malware,

and at the same time allows curious teenagers to get hold of worm source code

and virus toolkits. These facts result in a large number of worm outbreaks,

each wave surpassing the previous one in economic damage and infection

count.

This thesis introduced a novel approach towards a new generation of mal-

ware detection. To allow for more general malware specifications that are

not limited to a specific variant of a virus or worm, the new temporal logic

CTPL was introduced. CTPL allows to write succinct specifications that

capture the typical behavior of a virus or worm. In particular, two speci-

fications were created that match a wide variety of current e-mail worms.

To further simplify the design of specifications, several macros were imple-

mented that encapsulate common specification patterns. The feasibility of

the approach was demonstrated by implementing a prototype of a CTPL

based model checker that validates behavior of assembler programs against

malicious code specifications.

The experimental results show that CTPL model checking is a promising

approach for robust detection of whole classes of functionally similar worms

and viruses. There are several opportunities for future research to improve

the efficiency of this technique: By abstracting x86 assembler code into a

non-ambiguous form, specifications can be made smaller and more general

through elimination of equivalent alternatives. Moreover, the use of efficient

data structures such as OBDDs to hold the Boolean formulas representing

satisfying variable assignments can be expected to further improve the overall

performance of the model checker.

It is a widely accepted fact that semantic analysis is the future of malware

detection. As new techniques such as the one described in this thesis are

85

86 CONCLUSION

being developed, there is hope that semantic methods will be the tool to

once again shift the balance of powers on the Internet towards a more secure

and reliable future of computer networks.

Bibliography

[BDD+01] J. Bergeron, M. Debbabi, J. Desharnais, M.M. Erhioui, Y.Lavoie,

and N. Tawbi. Static detection of malicious code in executable

programs. In Symposium on Requirements Engineering for Infor-

mation Security, March 2001.

[BGI+01] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai,

S. Vadhan, and K. Yang. On the (im)possibility of obfuscating

programs, volume 2139 of Lecture Notes in Computer Science,

pages 1–18. Springer-Verlag, August 2001.

[CE81] E. Clarke and E. Emerson. Design and synthesis of synchroniza-

tion skeletons using branching time temporal logic. In Logics

of Programs, volume 131 of Lecture Notes in Computer Science,

pages 52–71. Springer, 1981.

[CES86] E. Clarke, E. Emerson, and A. Sistla. Automatic verification

of finite-state concurrent systems using temporal logic specifica-

tions. ACM Transactions on Programming Languages and Sys-

tems, 8(2):244–263, January 1986.

[CGL99] E. Clarke, O. Grumberg, and D. Long. Model Checking. MIT

Press, 1999.

[Ciu04] M. Ciubotariu. Netsky: conflict starter? Virus Bulletin, May

2004.

[CJ03] M. Christodorescu and S. Jha. Static analysis of executables to

detect malicious patterns. In Proceedings of the 12th USENIX

Security Symposium (Security’03), pages 169–186. USENIX As-

sociation, August 2003.

87

88 BIBLIOGRAPHY

[CJ04] M. Christodorescu and S. Jha. Testing malware detectors. In

Proceedings of the International Symposium on Software Testing

and Analysis (ISSTA’04), 2004.

[Coh87] F. Cohen. Computer viruses: theory and experiments. Computers

and Security, 6(1):22–35, February 1987.

[CTL97] Christian Collberg, Clark Thomborson, and Douglas Low. A tax-

onomy of obfuscating transformations. Technical Report 148, July

1997.

[Esp00] D. Esposito. A programmer’s perspective on NTFS 2000. MSDN

Online, March 2000.

[Fer04] P. Ferrie. How Dumaru? the W32/Dumaru family. Virus Bul-

letin, March 2004.

[HR00] M. Huth and M. Ryan. Logic in Computer Science: Modelling

and Reasoning about Systems. Cambridge University Press, Cam-

bridge, England, 2000.

[HU79] J. Hopcroft and J. Ullman. Introduction to Automata Theory,

Languages, and Computation. Addison-Wesley, 1979.

[Int04] Intel Corporation. IA-32 Intel Architecture Software Developer’s

Manual, 2004.

[JQsx] Jibz, Qwerton, snaker, and xineohP. PEiD. http://peid.has.

it/. (Last accessed: 18 Apr. 2005).

[LD03] C. Linn and S. Debray. Obfuscation of executable code to improve

resistance to static disassembly. In 10th ACM Conference on

Computer and Communications Security (CCS 2003), October

2003.

[LS03] A. Lakhotia and P. Singh. Challenges in getting ’formal’ with

viruses. Virus Bulletin, September 2003.

[Mar01] Alan Martin. Adequate sets of temporal connectives in CTL.

Electronic Notes in Theoretical Computer Science, 52(1), 2001.

BIBLIOGRAPHY 89

[mi204] mi2g. MyDoom causes $3 billion in damages as SCO offers $250k

reward. January 2004. http://www.mi2g.com/cgi/mi2g/press/

280104.php.

[Nor03] Norman ASA. Norman sandbox whitepaper. Technical report,

2003.

[OM] M. Oberhumer and L. Molnár. Ultimate Packer for eXecutables.

http://upx.sourceforge.net/. (Last accessed: 14 Apr. 2005).

[Pie02] M. Pietrek. An in-depth look into the Win32 portable executable

file format. MSDN Magazine, February 2002.

[Pnu81] A. Pnueli. A temporal logic of programs. Theoretical Computer

Science, 13:45–60, 1981.

[SL03] P. Singh and A. Lakhotia. Static verification of worm and virus

behavior in binary executables using model checking. In 4th IEEE

Information Assurance Workshop, June 2003.

[SM73] L. Stockmeyer and A. Meyer. Word problems requiring exponen-

tial time(preliminary report). In Proceedings of the fifth annual

ACM symposium on Theory of computing, pages 1–9. ACM Press,

1973.

[Sza04a] G. Szappanos. Doomquest: Life after MyDoom. Virus Bulletin,

April 2004.

[Sza04b] G. Szappanos. We’re all doomed. Virus Bulletin, March 2004.

[Wil] The WildList Organization International. WildList. http://www.

wildlist.org/WildList. (Last accessed: 30 Mar. 2005).

[Xtr] Xtreeme. Fast Small Good. http://www.xtreeme.prv.pl/. (Last

accessed: 16 Dec. 2004).

Index

$*, 72

anchor, 47, 48, 75

ASPack, 23

atomic assignment, 54

Badtrans, 78

Bagle, 13

binding, 54

binding set, 54

branching time logic, 35

Bugbear, 23, 78

clues, 69

constants, 39, 72

control flow, 20

CreateProcess, 79

CTL, 35

CTL*, 61

CTPL, 38

complexity, 61

equivalences, 42

model checking, 52

semantics, 41

syntax, 41

disassembly, 20

Dumaru, 23, 31, 77

dynamic analysis, 15

environment, 41

FSG, 14, 22, 23

IDAPro, 67

Klez, 23, 30, 78

Kripke structure, 33, 38, 40

labeling, 33, 55

linear sweep, 20

location predicate, 73, 77

macro, 73

malware, 13

Mocca, 67, 69

model checking

algorithm, 52, 53, 55, 64

assembler code, 37

MyDoom, 13, 23, 30, 78

NetSky, 13, 23, 27, 78

Nimda, 78

obfuscation, 24

packer, 14, 22

path, 34

PE format, 19

PE Pack, 23

PEiD, 67

performance, 81

PEtite, 23

predicates, 39, 70

proposition, 33

91

92 INDEX

PSPACE, 61

recursive traversal, 20

reverse engineering, 19

sandbox, 15

semantic analysis, 16

signature matching, 14

specification

CopySelf, 50, 71

ExecOpenedFile, 80

files, 69

language, 70

specifications, 79

stackframe, 46

static analysis, 16

Swen, 78

system call, 46, 74, 75

tElock, 23

term, 40

test suite, 77

universe, 40, 62

UPX, 14, 22, 23

variable bindings, 53

variables, 70

virus, 13

virus detection, 14

wildcards, 72

worm, 13

