
4

Protecting Software through Obfuscation:
Can It Keep Pace with Progress in Code Analysis?

SEBASTIAN SCHRITTWIESER, St. Pölten University of Applied Sciences, Austria
STEFAN KATZENBEISSER, Technische Universität Darmstadt, Germany
JOHANNES KINDER, Royal Holloway, University of London, United Kingdom
GEORG MERZDOVNIK, SBA Research, Vienna, Austria
EDGAR WEIPPL, SBA Research, Vienna, Austria

Software obfuscation has always been a controversially discussed research area. While theoretical results
indicate that provably secure obfuscation in general is impossible, its widespread application in malware and
commercial software shows that it is nevertheless popular in practice. Still, it remains largely unexplored to
what extent today’s software obfuscations keep up with state-of-the-art code analysis, and where we stand in
the arms race between software developers and code analysts. The main goal of this survey is to analyze the
effectiveness of different classes of software obfuscation against the continuously improving de-obfuscation
techniques and off-the-shelf code analysis tools.

The answer very much depends on the goals of the analyst and the available resources. On the one
hand, many forms of lightweight static analysis have difficulties with even basic obfuscation schemes, which
explains the unbroken popularity of obfuscation among malware writers. On the other hand, more expensive
analysis techniques, in particular when used interactively by a human analyst, can easily defeat many
obfuscations. As a result, software obfuscation for the purpose of intellectual property protection remains
highly challenging.

Categories and Subject Descriptors: D.2.0 [Software Engineering]: General—Protection mechanisms

General Terms: Security

Additional Key Words and Phrases: software obfuscation, program analysis, reverse engineering, software
protection, malware

ACM Reference Format:
Sebastian Schrittwieser, Stefan Katzenbeisser, Johannes Kinder, Georg Merzdovnik, and Edgar Weippl,
2015. Protecting Software through Obfuscation: Can It Keep Pace with Progress in Code Analysis? ACM
Comput. Surv. 49, 1, Article 4 (April 2016), 40 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
The development of code obfuscation techniques is driven by the desire to hide the spe-
cific implementation of a program from automatic or human-assisted analysis of exe-

The research was funded under Grant 826461 (FIT-IT) and COMET K1 by the FFG – Austrian Research
Promotion Agency, the Austrian Federal Ministry of Science, Research and Economy and the National Foun-
dation for Research, Technology and Development, CASED, and CRISP. Author’s addresses: S. Schrittwieser,
Josef Ressel Center for Unified Threat Intelligence on Targeted Attacks, Department Computer Science &
Security, St. Pölten University of Applied Sciences, Austria; S. Katzenbeisser, Security Engineering Group,
Technische Universität Darmstadt, Germany; J. Kinder, Department of Computer Science, Royal Holloway,
University of London, United Kingdom; G. Merzdovnik, SBA Research, Vienna, Austria; Edgar Weippl, SBA
Research, Vienna, Austria.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 0360-0300/2016/04-ART4 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.

4:2 Schrittwieser et al.

cutable code. Its roots date back to the early days of programming when the main pur-
pose of obfuscation was to place hidden functionality into programs—often just for hid-
ing a secret message to surprise users who reveal it by coincidence (e.g., Easter eggs).
Particularly creative ways to obscure functionality were even rewarded in competitions
like the International Obfuscated C Contest, which has been held since 19841.

By the late 1980s, malware became a major reason for the steady refinement of
code obfuscation techniques. For instance, in 1986 the Brain computer virus, which
is believed to be the first computer virus for MS-DOS, obfuscated the functionality of
its code by intercepting reads of the virus binary to return innocuous code [Avoine
et al. 2007]. These early occurrences of software obfuscation marked the beginning
of an arms race between developers and analysts. Since then, software protection re-
searchers have been developing more and more sophisticated obfuscation techniques
to hide behavior of code, while analysts have been using increasingly complex code
analysis techniques to defeat obfuscations.

The underground economy and its demand for stealthy malware is still one of the
major driving forces behind the development of obfuscation techniques. The other
leading application area of code obfuscation is the protection of commercial software
against reverse engineering [Grover 1992]. The motivation for reverse engineering can
be diverse: an analyst might be interested in extracting some secret information from
the program code that should not be revealed to the user. This secret might be a cryp-
tographic key, a sophisticated algorithm considered a trade secret, or credentials for a
remote service. Typical examples include media players that store secret keys or incor-
porate proprietary algorithms like the CSS (content scramble system) cipher to play
back copy-protected content. Another motivation for reverse engineering is the modifi-
cation of software to change its behavior. An analyst might want to use hidden program
functionality, uncover firmware features that are disabled in low-cost devices, or inter-
face commercial software with own products; all these actions will likely interfere with
the business model of the software vendor.

Techniques originally developed for malware have experienced a comeback in the
field of attack prevention. Since the early 1990’s polymorphic engines had been widely
used in malware development to generate differently looking versions of malicious
code to evade signature-based detection [Nachenberg 1997; Song et al. 2010]. Software
diversity is a related concept for delivering syntactically different but semantically
identical versions of applications to different users [Franz 2010; Davi et al. 2012]. This
way, automated attacks developed against one instance of a program are thus less
likely to work against a different obfuscated version [Forrest et al. 1997; Anckaert
et al. 2004, 2006].

On the analyst’s side, research in the area of code analysis progressed significantly
over the past years. Disassemblers, which extract the executable assembly code from
binaries, became increasingly sophisticated, implementing complex heuristics or ex-
pensive static analysis methods to reconstruct code from a potentially obfuscated bi-
nary as precisely as possible. In addition, research tools such as JAKSTAB [Kinder and
Veith 2008] or BAP [Brumley et al. 2011] directly analyze binary code to precisely re-
construct control flow and reason about the behavior of the code. Systems for dynamic
malware analysis, such as Anubis [Bayer et al. 2006], allow a detailed analysis of the
runtime behavior of a piece of code.

Since the groundbreaking work of Collberg et al. [1997] on a taxonomy of obfus-
cation techniques, a vast number of code obfuscation schemes have been proposed in
the literature. Nevertheless, the security and effectiveness of these techniques remain
controversially discussed topics. Indeed, early theoretical results for obfuscation that

1http://www.ioccc.org/1984/ (accessed February 25, 2015)

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.

Protecting Software through Obfuscation: Can It Keep Pace with Progress in Code Analysis? 4:3

is secure in a cryptographic sense were negative. Barak et al. [2001] showed that it
is impossible to construct a universal obfuscator that is applicable to any program;
positive results are known for very restricted classes of functionality such as point
functions [Lynn et al. 2004; Wee 2005; Canetti and Dakdouk 2008]. Other works on
theoretical aspects of code obfuscation are due to Dalla Preda and Giacobazzi [2005],
Goldwasser and Rothblum [2007], and Giacobazzi [2008]. While addressing the theo-
retical understanding of obfuscation, these results have little to say about the practi-
cal effectiveness of obfuscation. Recently, Garg et al. [2013] presented a first candidate
for general-purpose obfuscation (indistinguishability obfuscation). While it is unclear
how useful this progress is to hide secrets in a program in practical settings, it still
brought new momentum to the discussion and encouraged follow-up work [Brakerski
and Rothblum 2014; Barak et al. 2014; Bitansky et al. 2014].

Code obfuscation is widely employed in practice: for example, almost all newly dis-
covered malware comes with some form of obfuscation to hide its functionality, and
commercial software products such as Skype or DRM (Digital Rights Management)
engines use obfuscation techniques as part of their protection portfolio. Consequently,
a plethora of obfuscation techniques have been described in the literature (e.g., [Coll-
berg et al. 1997; Wang et al. 2000; Dedić et al. 2007; Jakubowski et al. 2007]); most of
them try to “raise the bar” for reverse engineering attempts, but do not come with a
rigorous security analysis, let alone a proof. Some attempts have been made to quantify
the additional complexity that is added to an executable by employing code obfuscation
techniques (for example, see [Madou et al. 2006]); however it remains unclear whether
such notions indeed capture all security properties of obfuscation correctly. While this
is clearly unsatisfactory from a theoretic point of view, it is probably the best one can
achieve with current knowledge.

Still, it remains largely unexplored to what extent today’s code obfuscation tech-
niques can keep up with the progress in code analysis and where we stand in the arms
race between developers and analysts. The main goal of this survey is thus to provide a
comprehensive picture of the state of the art in code obfuscation and of its effectiveness
against de-obfuscation techniques and code analysis tools that are available today.

To this end, we first build a classification of analysis scenarios in Section 2; in par-
ticular, we pair each analysis method with a specific analysis goal to define a set of
scenarios that form our basic model of the code analyst. Subsequently, we describe
and categorize existing code obfuscation techniques in Section 3. There is a large body
of literature on obfuscation and analysis, and we do not claim to survey it in all its
breadth; instead, we try to paint a representative picture of the state of the art in both
fields.

In all of our analysis scenarios, we assume that the analyst receives binary or byte
code. Thus, we limit ourselves to obfuscations that affect the binary or byte code rep-
resentation of a program. We make no distinction whether the obfuscation is applied
before, during, or after compilation, however. We decided to leave obfuscation tech-
niques targeting the readability of source code (such as the removal of comments or
renaming of variables) out of scope, even though we acknowledge the importance of
such obfuscations for languages such as JavaScript.

Section 4 discusses the state of the art in program analysis methods and particularly
focuses on their capabilities and limits. Section 5 uses the described classifications to
assess the security of code obfuscation techniques against the different scenarios, tak-
ing into account recently published attacks as well as recent off-the-shelf program
analysis tools. We rely on published results where possible and apply our own judg-
ment where we could not find literature addressing a particular scenario. Finally, Sec-
tion 6 concludes the paper.

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.

4:4 Schrittwieser et al.

2. ANALYSIS SCENARIOS
In this section, we detail our methodology and introduce the analysis scenarios we
use throughout the rest of the paper to assess the strength of obfuscation techniques
against specific adversaries with specific goals. This allows us to characterize the pro-
tection a developer may want to achieve at a finer granularity than the black-box no-
tion typically used in the formal analysis of software obfuscation [Barak et al. 2001].

2.1. Methodology of this Survey
We classify the feasibility of real-life analysis scenarios on programs in the presence
of code obfuscation, based on a careful analysis of the literature on program analysis
and reverse engineering. For our classification, we use a number of analysis scenarios
consisting of an analysis technique and a goal that an analyst wants to achieve.

We assume that a developer implements the strongest possible obfuscator of one par-
ticular class of obfuscations. We do not consider second order effects, i.e., combinations
of different types of obfuscations. A systematic analysis of how obfuscation techniques
compose with one another would be challenging already just due to the sheer number
of possible combinations. Still, it certainly makes an interesting and relevant topic for
future work, since many commercial obfuscators employ (and indeed recommend to
use) multiple obfuscations at the same time.

We make a similar assumption on the side of the analyst and evaluate the strength
of obfuscations against four code analysis categories (introduced in Section 2.2) indi-
vidually. Approaches that involve the staged application of multiple techniques are
represented by the category of their first analysis stage; for instance, pattern match-
ing on disassembled code requires an at least partially successful disassembly by static
analysis. Hybrid techniques that unite aspects of multiple categories are sorted into
the category they share the most properties with. Our strongest category involves a
human analyst who may use multiple techniques of different types; our model here
assumes that the analyst will apply techniques from either category and switch to a
different one if they do not make any more progress towards the analysis goal.

As stated above, our evaluation of the effectiveness of different classes of software
obfuscation schemes against the defined analysis scenarios is based on a literature
review. For each combination of an analysis scenario and a specific class of obfusca-
tions (see Section 3), we sought out literature specifically addressing that combination.
Sometimes we could directly report published results of analyzing particular obfusca-
tions, sometimes we had to make our own inferences from the available information.
Our results are not derived from a formal analysis and are necessarily open to inter-
pretation. Nevertheless, we believe that our scenarios capture the relevant analysis
context and that our classification presents an accurate snapshot of the current state
in the arms race between code obfuscation and analysis.

2.2. Code Analysis Categories
We categorize code analysis techniques in four general classes. An analyst can use
different analyses depending on their goal and their available resources and time.
For example, a human reverse engineer who tries to understand a piece of code of a
competitor may afford spending time and effort on highly complex and time-consuming
analyses; in contrast, an anti-virus vendor, who has to timely analyze hundreds of
thousands of different malware samples each day, may be required to resort to very
lightweight and thus limited analysis techniques that at the same time ensure a low
false positive rate.

Pattern matching. Pattern matching is the simplest and fastest form of code analy-
sis; it is a syntactic analysis performed on the program binary or byte code. Techniques

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.

Protecting Software through Obfuscation: Can It Keep Pace with Progress in Code Analysis? 4:5

in this category include identification of static sequences of instructions, regular ex-
pressions, or machine learning-based classifiers for binary data (see Section 4.1).

Automated static analysis. Static analysis inspects a program (on binary or byte code
level) without actually executing it. In contrast to syntactic pattern matching, static
analysis reasons about the program semantics. Simple forms of static analysis include
disassemblers that interpret branch targets. Static analysis is frequently used to re-
construct high-level information about programs, such as their control flow graph (see
Section 4.2).

Automated dynamic analysis. Dynamic analysis runs a program to observe its ac-
tions and/or collect its flow of information. Dynamic analysis has the advantage of
being able to very precisely reason about the program behavior along the observed
traces. However, the data gathered from one or several runs of a program does not
necessarily allow to draw conclusions about the behavior of the entire program (see
Section 4.3).

Human-assisted analysis. As the most capable “analysis”, we consider a human an-
alyst who performs a tool-assisted exploration of a piece of code; the tools can be based
on all of the other analysis types. Typically, this process is referred to as reverse engi-
neering, where the analyst aims at understanding the program structure and behavior
with the help of a variety of tools (see Section 4.4).

2.3. Analyst’s Aims
We now systematically categorize and characterize the possible motivations of an an-
alyst for analyzing software, in order of increasing complexity. We believe that almost
all analyst goals observed in practice fit in one of these four general categories. As
a running example to illustrate the goals throughout the section, we use a program
implementing a cryptographic algorithm with an embedded secret key. Furthermore,
we present other examples for each category to demonstrate the practicability of this
classification.

Finding the location of data. The analyzer wishes to retrieve some data embedded
in the program in its original, non-obfuscated representation from the obfuscated pro-
gram. In our running example, the analyzer may want to extract the secret crypto-
graphic key from the obfuscated program to be able to decrypt data in a different con-
text than provided by the application (e.g., to circumvent DRM policies). Other typical
examples that fall into this category are the extraction of licensing keys, certificates,
credentials for remote services, and device configuration data.

Finding the location of program functionality. The analyzer aims at identifying the
entry point of a particular function within an obfuscated program. In our running ex-
ample, the analyzer may want to find the entry point of a cryptographic algorithm in
the obfuscated program to subsequently analyze it. Another aim could be to find the
exact location of a copy protection mechanism (such as a check for the presence of a
hardware dongle or the validation of a licensing key) in order to circumvent it. Further-
more, finding the code representation of a particular functionality of a program can be
useful for manual reverse engineering on small areas of the program. More generally,
one may ask the question whether a program implements a particular functionality at
all (such as the AES encryption algorithm) or simply whether a program is malicious
or not.

Another related aim of the analyst might be to modify the behavior of a program in
a particular way (e.g., bypassing a copy protection mechanism). However, we consider
this to be out of scope of this work, because it falls into the field of tamper-proofing

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.

4:6 Schrittwieser et al.

rather than obfuscation (e.g., [Horne et al. 2002] and [Chang and Atallah 2002]). Still,
finding the location of program functionality is a fundamental prerequisite of this aim.

Extraction of code fragments. The analyzer aims at extracting a piece of code in-
cluding all possible dependencies that implement a particular functionality from the
obfuscated program. In our running example, the analyzer’s aim can be the extraction
of the cryptographic algorithm in order to build a custom decryption routine. Note that
for this purpose it is not necessary to fully understand the code, just using it in a new
application may be enough. This approach has been used for breaking DRM imple-
mentations. Instead of understanding how exactly the decryption routine embedded
into a player works, it is simply extracted and included in a counterfeit player, which
decrypts the digital media without enforcing the contained usage policies. Another aim
of the analyst may be the extraction of fragments of commercial software of competi-
tors. In some analysis scenarios code does not need to be extracted, but a functional
component of an executable is accessed at runtime (in-situ reuse) [Miles et al. 2012].
This technique is comparable to the concept of return oriented programming, which
reuses code fragments to create new functionality [Shacham 2007].

Understanding the program. The analyzer wishes to fully understand a code frag-
ment or even the entire obfuscated program. This requires that the analyst must be
able to remove the applied obfuscation techniques and gain full understanding of the
original, non-obfuscated program or a non-trivial fragment of it. In our running exam-
ple, the analyzer may want to understand how a proprietary cipher embedded into the
obfuscated program works in order to start cryptanalysis attempts. Other motivations
for trying to understand a program can be the desire of an analyst to find vulnerabili-
ties, to correct flaws in software for which the source code is not available, and create
new programs that are compatible with proprietary software. Finally, a major driving
force for human-assisted reverse engineering is to gain understanding of proprietary
implementation details such as file formats or protocols, which often constitutes intel-
lectual property theft.

2.4. Scenarios
By combining each code analysis technique with each of the analyst’s aims, we arrive
at the analysis scenarios that form the basis of our survey.

Not all combinations are reasonable according to our definitions. While pure pattern
matching can clearly help to locate a code fragment, its extraction will then either (a)
require additional static analysis for dependency analysis and thus fall into another
category, or (b) be trivial and thus identical in difficulty. Similarly, pattern matching
does not lend itself to code understanding, so we leave out both combinations and con-
sider a total of 14 scenarios. An overview of the literature that describes code analysis
techniques based on these scenarios is provided in Table I. In the following, we explain
all 14 scenarios in more detail.

Locating data through pattern matching. A matching algorithm is used to determine
the existence and location of data that conforms to a pattern specification. Patterns for
the automated identification of data inside a program describe the structure of the data
such as its length or data type, its environment in the form of the code surrounding it,
or even properties such as its entropy.

Locating code through pattern matching. Particular code fragments are detected by
pattern matching, e.g., on instruction sequences with or without wildcards. When pat-
tern matching is applied to the outcome of a static or dynamic analysis (e.g., on disas-
sembled or normalized code [Christodorescu et al. 2007]), we classify the analysis as
static or dynamic, respectively.

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.

Protecting Software through Obfuscation: Can It Keep Pace with Progress in Code Analysis? 4:7

Locating data through static analysis. A static analysis interprets the semantics of
a program to locate particular data. For example, the reconstruction of the possible
arguments of function calls can reveal a cryptographic key that is used to decrypt
DRM-protected media or sent to an external device, or it could determine a token that
is transmitted over the network.

Locating code through static analysis. A static analysis that determines code that
could be executed at runtime. Examples are disassemblers that interpret control flow
instructions using heuristics or formal methods. The control flow graph often allows to
recognize particular structures; e.g., the control flow characteristics of a cryptographic
algorithm can reveal its location in a binary.

Extracting code through static analysis. A static analysis technique (such as def-use
chains) analyzes the dependencies of a piece of code to compute a self-contained slice
that can be extracted and run on its own. Most static analysis techniques will result
in extracting a superset of the required code (see Section 4.2).

Understanding code through static analysis. This scenario captures static de-
obfuscation techniques that are able to transform fragments or all of the obfuscated
code into a low- or high-level representation from which a human analyst can under-
stand the program functionality with reasonable effort.

Locating data through dynamic analysis. A dynamic analysis observes the data ac-
cessed or stored by a program at runtime and uses these observations to locate partic-
ular data, e.g., in the parameters of system calls or particular memory locations.

Locating code through dynamic analysis. Dynamic analysis reveals the behavior of
a program and its interaction with the environment (e.g., system calls) at runtime. In
this scenario, a particular functionality is located through its specific runtime behavior.

Extracting code through dynamic analysis. A dynamic analysis locates a piece of
code and also determines its dependencies along the observed traces. Because the code
extracted from one run may not contain everything required for another run of the
program, the resulting control flow graph is a subset of all possible execution paths
(see Section 4.3).

Understanding code through dynamic analysis. Analogous to the scenario of under-
standing code through static analysis, this scenario targets automated dynamic de-
obfuscation techniques that are able to transform the obfuscated code into a represen-
tation from which a human analyst can understand the program’s functionality with
reasonable efforts.

Human assisted analysis (four scenarios). Static and/or dynamic approaches as-
sisted by a human analyst aim at getting full understanding of a particular aspect
of the program. This aspect can be data in its pure form (data de-obfuscation), the lo-
cation of code implementing a particular functionality or its dependencies, as well as
the entire program itself.

3. SOFTWARE OBFUSCATION
In this section we briefly describe various code obfuscation schemes from the literature
and classify them into the three categories data obfuscation, static code rewriting, and
dynamic code rewriting. Many of the described obfuscation techniques appeared first
in malware samples. Consequently, it is hard to pay tribute to the original source; we
did this wherever possible. More details on early techniques are given by Collberg et al.
[1997] and Collberg and Nagra [2009].

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.

4:8 Schrittwieser et al.

Table I. Literature on code analysis categorized based on the 14 scenarios.

Pattern
Matching

Automatic
Static

Automatic
Dynamic

Human
Analysis

L
oc

at
in

g
D

at
a

[Moser et al. 2007b] [Shamir and Van Someren 1999]
[Kinder and Veith 2008]
[Kinder 2012]

[Cozzie et al. 2008]
[Lin et al. 2010]
[Slowinska et al. 2011]
[Zhao et al. 2011]

[Jacob et al. 2003]
[Link et al. 2004]
[Billet et al. 2005]
[Wyseur and Preneel 2005]
[Goubin et al. 2007]
[Piazzalunga et al. 2007]
[Wyseur et al. 2007]
[Michiels et al. 2009]
[Saxena et al. 2009]
[Wyseur 2009]
[De Mulder et al. 2010]

L
oc

at
in

g
C

od
e

[Newsome et al. 2005]
[Moser et al. 2007b]
[Tang and Chen 2007]
[Griffin et al. 2009]
[Dalla Preda et al. 2011]

[Flake 2004]
[Harris and Miller 2005]
[Bruschi et al. 2006a]
[Bruschi et al. 2006b]
[Chouchane and Lakhotia 2006]
[Dalla Preda et al. 2006]
[Walenstein et al. 2006]
[Bilar 2007]
[Karnik et al. 2007]
[Nagarajan et al. 2007]
[Popov et al. 2007]
[Gao et al. 2008]
[Coogan et al. 2009]
[Treadwell and Zhou 2009]
[Tsai et al. 2009]
[Jacob et al. 2012]
[Kinder 2012]
[Bourquin et al. 2013]

[Deprez and Lakhotia 2000]
[Madou et al. 2005]
[Zhang and Gupta 2005]
[Royal et al. 2006]
[Wilde and Scully 2006]
[Moser et al. 2007a]
[Brumley et al. 2008]
[Sharif et al. 2008]
[Song et al. 2008]
[Guizani et al. 2009]
[Li et al. 2009]
[Sharif et al. 2009]
[Webster and Malcolm 2009]
[Comparetti et al. 2010]
[Debray and Patel 2010]
[Yin and Song 2010]
[Coogan et al. 2011]
[Gröbert et al. 2011]
[Calvet et al. 2012]
[Zeng et al. 2013]

[Madou et al. 2006b]
[Madou et al. 2006c]
[Rolles 2009]
[Quist and Liebrock 2009]

E
xt

ra
ct

in
g

C
od

e invalid scenario [Sneed 2000]
[Christodorescu et al. 2007]

[Christodorescu et al. 2007]
[Leder et al. 2009]
[Sharif et al. 2009]
[Caballero et al. 2010]
[Kolbitsch et al. 2010]
[Zeng et al. 2013]

[Ning et al. 1993]
[Canfora et al. 1994]
[Field et al. 1995]
[Cimitile et al. 1996]
[Lanubile and Visaggio 1997]
[Canfora et al. 1998]
[Danicic et al. 2004]
[Fox et al. 2004]
[Danicic et al. 2005]

U
nd

er
st

an
di

ng
C

od
e invalid scenario [Rugaber et al. 1995]

[Majumdar et al. 2006]
[Raber and Laspe 2007]
[Guillot and Gazet 2010]

[Udupa et al. 2005] [Biondi and Desclaux 2006]
[Eagle 2008]
[Myska 2009]
[Kholia and Wegrzyn 2013]

3.1. Data obfuscation
Code obfuscation techniques of this category modify the form in which data is stored
in a program to hide it from direct analysis. Usually, data obfuscation also requires
the program code to be modified, so that the original data representation can be recon-
structed at runtime. Many data obfuscation techniques were first described by Collberg
et al. [1998a].

Reordering of data. Variables can be split into two or more pieces in order to make
it more difficult for an analyst to identify them. The mapping between an actual value
of a variable and its split representation is managed by two functions. One is executed

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.

Protecting Software through Obfuscation: Can It Keep Pace with Progress in Code Analysis? 4:9

at obfuscation time, the other one reconstructs the original value of a variable from its
split parts at runtime. For example, Boolean variables can be obfuscated by splitting
them into multiple Boolean values. At runtime the variable’s actual value is retrieved
by performing a specific Boolean operation (such as a logical XOR) over the parts of
the variable. Other data types such as integers and string variables can be obfuscated
in a similar way. In contrast to variable splitting, variable merging combines two or
more variables into one.

To obfuscate the structure of an array it can be split into two or more subarrays.
Conversely, multiple arrays can be merged into one. Folding (increasing the number
of dimensions of the array) and flattening (decreasing the number of dimensions) are
similar techniques which can be used for obfuscating data stored in arrays.

Obfuscating the structure of data by reordering its components to decrease local-
ity (logically related items are physically close in the binary) is another fundamental
obfuscation technique [Collberg et al. 1998a]. For example, this obfuscation is often
applied to cryptographic keys stored within commercial software.

A low-level implementation of data reordering for obfuscation was introduced by An-
ckaert et al. [2009]. By redirecting memory accesses though a software-based dis-
patcher, the order of data in memory can be shuffled periodically, making its identi-
fication and analysis more difficult.

Encoding. Static data (such as strings) within binaries contains useful information
for an analyst. Under this obfuscation technique data is converted to a different rep-
resentation with some special encoding function to mitigate the need of storing the
static data in cleartext in the binary. At runtime, the inverse function is used to de-
code the data. A variant of data encoding that works via mixed-mode computation over
Boolean-arithmetic algebras was introduced by Zhou et al. [2007].

Converting static data to procedures. This obfuscation method replaces static data
with a function that calculates the data at runtime. For example, a string object can
be built at runtime, so that an analyst is not able to extract its value by examining the
binary.

An extreme form of this obfuscation method is white-box cryptography. Its basic
idea is to merge a secret key with elements of the cipher (e.g., the S-boxes), so that
the key cannot be found in the binary anymore. The first white-box implementations
of DES [Chow et al. 2003a] and AES [Chow et al. 2003a] were proposed by Chow et
al., followed by other approaches [Link and Neumann 2005; Wyseur and Preneel 2005;
Bringer et al. 2006]. However, all published white-box algorithms have been broken so
far (for more details, please refer to Section 5).

3.2. Static code rewriting
A static rewriter is similar to an optimizing compiler, as it modifies program code dur-
ing obfuscation, but allows its output to be executed without further run-time modifi-
cations. Strictly speaking, all data obfuscation techniques described above would also
fall into the category of static code rewriting. However, as the obfuscation targets are
distinct (data vs. binary code) and require specific obfuscation techniques, we use sep-
arate categories for data obfuscation and static code rewriting. In malware obfuscation
the term metamorphism describes automated mutation of binary code through static
code rewriting techniques applied to its disassembled representation.

Replacing instructions. Any behavior of a program can be implemented in multiple
ways, and instructions or sequences of instructions can be replaced with syntactically
different, yet semantically equivalent code. For example, on the Intel x86 platform the
instructions MOV EAX, 0 and XOR EAX, EAX are equivalent and can be replaced with

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.

4:10 Schrittwieser et al.

each other. More complex obfuscations of this type include the replacement of CALLs
with a combination of PUSH and RET instructions [Lakhotia et al. 2010]. De Sutter et al.
[2009] replaced infrequently used opcodes with blocks of more frequently used ones
to reduce the total number of different opcodes used in the code and to normalize
their frequency. Similarly, shellcode for application exploits can be transformed into
innocuous-looking sequences of input characters by tools such as SCMorphism2. Mason
et al. [2009] demonstrated how shellcode can even be encoded into a representation
that looks similar to English prose. Related concepts are used to hide network traffic
by transforming an encrypted payload into a format that resembles common network
protocols such as HTTP [Dyer et al. 2013].

Potentially malicious code can also be hidden in side effects of innocent looking se-
quences of instructions [Schrittwieser et al. 2013]. A side effect can be any effect on
the state of the underlying machine that is not covered by the analysis model (e.g., the
state of the flags register). Similar concepts have also been discussed in the context of
shellcode obfuscation3.

Opaque predicates. A predicate (Boolean-valued function) is opaque if its outcome
is known to the obfuscator at obfuscation time, but difficult to determine for a de-
obfuscator [Collberg et al. 1997, 1998b]. Opaque predicates are used to make static
reverse engineering more complex by introducing an analysis problem which is diffi-
cult to solve without running the program. The prime example for the use of opaque
predicates is the obfuscation of a program’s control flow graph by adding conditional
jumps that are dependent on the result of opaque predicates.

To prevent an analyst from identifying opaque predicates through their static be-
havior across a large number of program executions, refined concepts for opaque pred-
icates were developed. Palsberg et al. [2000] introduced the concept of dynamic opaque
predicates. It uses a set of correlated opaque predicates that all evaluate to the same
result in one run, but they may all evaluate to the same different result in other runs of
the program. Majumdar and Thomborson [2006] described temporally unstable opaque
predicates for which evaluations at multiple points inside the program lead to different
results.

Inserting dead code. The term “dead code” refers to code blocks which are not or
simply cannot be reached in the control flow graph and thus never get executed [Coll-
berg et al. 1997]. Inclusion of such code can make the analysis of a program more time
consuming as it increases the amount of code that has to be analyzed. For making
the identification of dead code more difficult, opaque predicates that always resolve to
either true or false can be used.

Inserting irrelevant code. Cohen [1993] described the concept of irrelevant
(“garbage”) code. Sequences of instructions that do not have an effect on the execu-
tion of a program can be inserted into the code to make analysis more complex. The
most simple form of irrelevant code are NOP instructions which do not modify the pro-
gram’s state. In contrast to dead code, irrelevant code can be reached by the control
flow of the program and is executed at runtime, however, without any effect on the
program state.

Reordering. Similarly to data structures, also expressions and statements can be
reordered to decrease locality, whenever the order does not affect the program behavior.
Such techniques were originally introduced for code optimization [Bacon et al. 1994]
but also apply in the context of obfuscation.

2http://www.kernelhacking.com/rodrigo/scmorphism/HowItWorks.txt (accessed June 07, 2015)
3http://www.securityfocus.com/archive/82/327100/2009-02-24/1 (accessed June 07, 2015)

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.

Protecting Software through Obfuscation: Can It Keep Pace with Progress in Code Analysis? 4:11

This concept can be taken even further to move parts of the code or functionality
into different modules or programs, like it was done in the Stuxnet malware [Matrosov
et al. 2010].

Loop transformations. Many loop transformations have been designed to improve
the performance and space usage of loops [Bacon et al. 1994]. Some of them increase
the complexity of the code and can therefore be used for obfuscation purposes. Loop
tiling was originally designed to optimize the cache behavior of code. It breaks up the
iteration space of a loop and creates inner loops that fit in the cache. In loop unrolling,
originally developed to improve performance, the body of the loop is replicated one or
more times to reduce the number of loop iterations. The loop fission method splits a
loop into two or more loops with the same iteration space and spreads the loop body
over these new loops.

Function splitting/recombination. Function cloning describes the concept of split-
ting the control flow in two or more different paths that look different to the analyst,
while they are in fact semantically equivalent. Another transformation type merges
the bodies of two or more (similar) functions. The new method has a mixed parameter
list of the merged functions and an extra parameter that selects the function body to
be executed.

The related idea of overlapping functions—where the binary code of one function
ends with bytes that also define the beginning of another function—is commonly used
by compilers for optimization purposes and can also by used to confuse a disassembler.
A similar but more sophisticated concept was introduced by Jacob et al. [2007]: two
independent code blocks are interweaved in a way that, depending on the entry and
exit points of the merged code, different functionality is executed.

Aliasing. Inserting spurious aliases (i.e., pointers to memory locations) can make
code analysis more complex, as the number of possible ways for modifying a partic-
ular location in memory increases [Horwitz 1997; Ramalingam 1994]. These pointer-
references can also be used as indirections to complicate the reconstruction of the con-
trol flow graph of a program in static analysis scenarios [Wang et al. 2001].

Name scrambling. Modifying identifier names such as the ones of variables and
methods and replacing them with random strings is a prime example for source code
obfuscation, which is not covered in our work. While binary code usually does not con-
tain identifier names any more, byte code preserves some of the identifier names. For
example, Java byte code contains class, field, and method names. By substituting ex-
pressive names with random strings, semantic information that can be important for
a human analyst is removed.

Control flow obfuscation. This class of obfuscations aims at obfuscating the program
control flow graph. The control flow flattening obfuscation completely obscures the
links between basic blocks. Wang et al. [2000] described chenxification, which puts the
basic blocks of a program into a large switch-statement (called dispatcher) that de-
cides where to jump next based on an opaque variable. Control flow flattening using a
central dispatcher was also described by Chow et al. [2001]. A similar concept by Linn
and Debray [2003] uses a so-called branch function to obfuscate the targets of CALL
instructions. All calls are forced to pass through the branch function, which directs the
control flow to the actual target based on a call table. Popov et al. [2007] proposed to
replace control transfer instructions by traps that cause signals. The signal handling
code then performs the originally intended control flow transfer. Further control ob-
fuscation techniques were described by László and Kiss [2009], Cappaert and Preneel
[2010], Coppens et al. [2013], and Schrittwieser and Katzenbeisser [2011].

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.

4:12 Schrittwieser et al.

Parallelized code. While originally being a code optimization technique, paralleliz-
ing code also became popular in the context of code obfuscation, since parallelized code
tends to be harder to understand than sequential code [Collberg et al. 1997]. Adding
dummy processes to a program or parallelizing sequential code blocks that do not de-
pend on each other [Wolfe et al. 1995] increases the complexity of analysis.

Removing library calls. Calls to libraries of programming languages (particularly
ones with a high level of abstraction) offer useful information to an analyst. Because
they are called by their name, they cannot be obfuscated. By replacing standard li-
braries with custom versions, these calls can be removed and thus their functionality
obfuscated. Another variant of this obfuscation method is to link libraries statically
into the application or to combine many small libraries into a few large ones.

Breaking relations. This technique aims at obfuscating relations between compo-
nents of a program such as the structure of the call graph or the inheritance structure
of an object-oriented program. For example, classes can be split up (factoring); simi-
larly, common features of independent classes that do not have common behavior can
be moved into a new parent class (false refactoring). Sosonkin et al. [2003] presented
concepts for Java bytecode obfuscation through class coalescing, class splitting and ob-
ject type hiding. A related approach by Sakabe et al. [2005] takes advantage of concepts
in object-oriented languages such as polymorphism to obfuscate the relation between
objects. Moreover, the idea of class hierarchy flattening to remove all inheritance rela-
tions from object-oriented programs was introduced in the literature [Foket et al. 2013,
2014].

3.3. Dynamic code rewriting
The main characteristic of code obfuscation schemes in this category is that the exe-
cuted code differs from the code that is statically visible in the executable.

Packing/Encryption. Various malware obfuscation approaches analyzed in the lit-
erature follow the concept of packing, which hides malicious code by encoding or en-
crypting it as data that cannot be interpreted by static analysis. An unpacking routine
turns this data back into machine-interpretable code at runtime. By changing the en-
cryption/encoding keys, packed program code can easily be rewritten upon distribution
to complicate simple pattern matching analysis (polymorphism [Nachenberg 1997]).

The concept of packing is also used for benign software. Both the reduction of stor-
age requirements though compression and the aim for obfuscating the code of an
application to deter program analysis are key motivations for the adaption of pack-
ing technologies. For these application areas, a large number of commercial pack-
ers such as VMProtect4, ASPack5, Armadillo6, Execryptor7, Enigma8, PECompact9,
and Themida10 as well as open-source tools (e.g., UPX11 and Yoda12) exist. Most of
these tools are also popular with malware authors to hide the maliciousness of their
code [Brosch and Morgenstern 2006].

4http://vmpsoft.com (accessed February 25, 2015)
5http://www.aspack.com (accessed February 25, 2015)
6http://www.siliconrealms.com/armadillo.php (accessed February 25, 2015)
7http://www.strongbit.com/execryptor.asp (accessed February 25, 2015)
8http://enigmaprotector.com (accessed February 25, 2015)
9http://bitsum.com/pecompact (accessed February 25, 2015)
10http://www.oreans.com/themida.php (accessed February 25, 2015)
11http://upx.sourceforge.net (accessed February 25, 2015)
12http://yodap.sourceforge.net (accessed February 25, 2015)

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.

Protecting Software through Obfuscation: Can It Keep Pace with Progress in Code Analysis? 4:13

The concept of packing for software protection was also discussed in academia. Cap-
paert et al. [2006] introduced a modified form of packing, where code can be decrypted
at fine granularity right before execution using a key derived from other code sec-
tions. Wu et al. [2010] introduced a polymorphism based concept called mimimor-
phism which encodes data into a representation that looks like program code. A taxon-
omy of packer based obfuscation schemes as well as similar techniques was presented
by Mavrogiannopoulos et al. [2011]. Recently, Roundy and Miller [2013] presented a
survey on obfuscation techniques used in malware packers.

Dynamic code modification. In this technique similar functions are obfuscated by
providing a general template in memory that is patched right before its execution [Coll-
berg et al. 1997]. Static analysis techniques fail to analyze the program, as its function-
ality is available at runtime only. Other concepts of dynamic code modification [Kan-
zaki et al. 2003; Madou et al. 2006a] implement the idea of correcting intentionally
erroneous code at runtime right before execution.

Environmental requirements. Riordan and Schneier [1998] proposed the concept of
environmental key generation, in which a cryptographic key is not statically stored in
a binary but constructed from environmental data collected from within the comput-
ing environment. Only if a specific environmental condition is met (called activation
environment), the program is able to generate the key and execute its code. Outside
the activation environment the program does not reveal its secrets to an analyst.

Similar concepts can be applied to code as well. Sharif et al. [2008] proposed a mal-
ware obfuscation scheme that makes the code conditionally dependent on an external
trigger value. Without knowledge of this specific value, the triggered behavior is con-
cealed from dynamic analysis. Similar techniques are widely used in malware.

Hardware-assisted code obfuscation. Hardware tokens can be used to improve the
strength of other code obfuscation techniques [Fu et al. 2007; Zhuang et al. 2004; Bi-
tansky et al. 2011]. The basic idea is to create a hardware-software binding by making
the execution of the software dependent on some hardware token. Without this to-
ken, analysis of the software will fail, because important information (e.g., targets of
indirect jumps) is not available.

Hardware-based isolation mechanisms for trusted computation such as Intel SGX
(Software Guard Extensions) allow an application to prevent other applications and
even the operating system kernel from accessing certain memory regions [Anati et al.
2013]. Such mechanisms seem well-suited to protect code and data from runtime in-
spection and tampering and may in the future become an impediment to dynamic
analysis.

Virtualization. Virtualization describes the concept of converting the program’s
functionality into byte code for a custom virtual machine (VM) interpreter that is bun-
dled with the program [King and Chen 2006; Ghosh et al. 2010]. Virtualization can
also be combined with polymorphism by implementing custom virtual machine inter-
preters and payloads for each instance of the program [Anckaert et al. 2006]. Vrba
et al. [2010] proposed the combination of fine-granular encryption and virtualization
to hide VM code from analysis. Collberg et al. [1997] described a variant of this concept
under the term table interpretation. A similar concept by Monden et al. [2004] uses a
finite state machine-based interpreter to dynamically map between instructions and
their semantics.

Anti-debugging and -disassembly techniques. This obfuscation category includes
techniques that actively oppose analysis attempts via disassembly or debugging. For
example, attached debuggers can be detected based on timing and latency analysis or

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.

4:14 Schrittwieser et al.

the identification of code modifications caused by software breakpoints. Another tech-
nique is the execution of undocumented instructions in order to confuse a code analysis
tool or a human analyst [Brand 2010].

4. CODE ANALYSIS
We consider four broad classes of analysis against programs protected by obfuscation:
pattern matching, automated static analysis, automated dynamic analysis, and man-
ual reverse engineering by a human who has access to automated tools.

Note that there is no universally accepted definition for static or dynamic analysis;
in fact, we believe that it is impossible to draw strict boundaries between any of the
analysis classes, so we apply our best judgment to arrive at a meaningful classification
of existing approaches to analyzing programs. Madou et al. [2005] argue that consid-
ering resilience against only particular types of analysis can leave a technique open to
circumvention by hybrid approaches.

4.1. Pattern Matching
With the term “pattern matching” we refer to fast automated techniques for finding
and unveiling known structures in binary programs. For instance, this could be arti-
facts introduced by obfuscation tools or signatures of well known libraries and code
samples. In contrast to our definition of static and dynamic analysis, pattern match-
ing is purely syntactic and does not reason about the program semantics. The types of
patterns to look for can range from simple byte strings to regular expressions or other
languages allowing wildcards. We also consider machine learning techniques that es-
sentially treat programs as byte strings to be pattern matching.

One example for pattern matching is the Fast Library Identification and Recogni-
tion Technology (F.L.I.R.T.) in IDA13. It uses signatures to identify library functions
with the goal of simplifying reverse engineering. Function signatures of well known
libraries are stored in a database; when disassembling a new binary, its bytes are
checked against known signatures. Recognized functions are named and annotated
using the stored information to aid a human reverse engineer in understanding the
functionality of the code.

Usually, the patterns to look for have been generated ahead of time or are curated
by human analysts. Differential pattern matching approaches work without a pri-
ori knowledge and instead compare static or dynamic artifacts, such as control flow
graphs [Flake 2004; Nagarajan et al. 2007] or instruction traces [Zhang and Gupta
2005]. As mentioned when discussing our methodology in Section 2.1, we consider this
type of pattern matching a multi-stage analysis with an initial static or dynamic phase.
Note that a simple translation of byte patterns to instruction opcodes in the manner
of a linear sweep disassembler would still fall under pure pattern matching; we draw
the boundary to static analysis where a disassembler interprets possible jump targets.

4.2. Static Analysis
Static analysis is widely used for optimizing code, finding or proving the absence of
bugs, and reverse engineering. In its broadest sense, static analysis refers to any pro-
gram analysis that is performed just by inspecting executable code or a disassem-
bled representation of a program of interest but without ever executing it on a real
or virtual machine. In this survey, we distinguish static analysis from syntactic pat-
tern matching as describing analyses that reason about the program semantics. For
a detailed introduction to static program analysis, we refer the reader to the classic
textbook by Nielson et al. [1999].

13https://www.hex-rays.com/products/ida/tech/flirt/in depth.shtml (accessed February 25, 2015)

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.

Protecting Software through Obfuscation: Can It Keep Pace with Progress in Code Analysis? 4:15

Static analysis deduces information about a program by reasoning about the possi-
ble executions of the target program. A static analysis is considered to be sound if it
is guaranteed to include all possible executions of a program in its judgment. For ex-
ample, a static analysis that attempts to generate a control flow graph from a binary
program is sound if the resulting graph contains at least all those control transfers that
will ever occur at runtime. Because of undecidability, static analysis can only achieve
soundness by over-approximating, i.e., by generalizing the concrete program behavior
and accepting that this generalization will also include behavior that does not occur
in real executions. To continue the example, a sound control flow graph could contain
edges that will never be taken at runtime. Over-approximation is the reason why static
analysis can report false positives when it is used for bug finding or malware detection.

In principle, the precision of a static analysis can be increased to reduce the number
of false positives, but such added precision comes with a corresponding increase in
cost. As a compromise, many practical static analysis systems choose to be unsound,
i.e., they do not guarantee to cover all possible behaviors. This may introduce false
negatives in addition to false positives, but is often an acceptable trade-off to make
systems useful in practice.

An example of the trade-offs in precision, performance, and soundness can be seen
in the various approaches to reconstruct the control flow of binaries: a linear sweep
disassembler that disassembles byte after byte starting at the entry point performs a
low-precision static analysis that is unsound because it can miss code reached through
branches [Schwarz et al. 2002] (in fact, since its interpretation of the instruction se-
mantics is trivial, we classify linear sweep as pattern matching, see above). A recursive
traversal disassembler improves accuracy by trying to identify and follow the location
of branches during analysis, but it will still leave out many indirect branches whose
targets are computed at runtime. Disassembly by abstract interpretation performs a
sound static analysis of the binary code to also systematically resolve indirect branches
whose targets are computed at runtime [Kinder et al. 2009]. The computational cost
depends on the exact type of analysis performed but can be significant.

Analysis platforms such as CODESURFER/X86 [Balakrishnan and Reps 2004], JAK-
STAB [Kinder and Veith 2008], or BAP [Brumley et al. 2011] provide the necessary
infrastructure and abstractions to apply higher level static analysis to binaries. Typ-
ically, low-level details of instruction encoding and semantics are abstracted by such
platforms, and custom analyses can work on a simplified low-level language instead of
machine code.

From a conceptual standpoint, obfuscation decreases the precision a particular
static analysis can achieve, i.e., obfuscation introduces additional sources of over-
approximation [Giacobazzi and Mastroeni 2012]. Recall from Section 3.2 that control
flow flattening forces all control flow to pass through a dispatcher. Because the dis-
patcher is executed many times on all paths, a static analyzer that generalizes the
program behavior at the location of the dispatcher will be very imprecise. To maintain
precision, a static analyzer can compensate by generalizing the behavior at a finer
granularity [Kinder 2012].

In general, whenever the details of a particular obfuscation technique are known,
an analysis can be crafted to almost completely eliminate the effect of the obfusca-
tion [Krügel et al. 2004]. However, despite existing work on automated refinement of
the precision of general static analysis [Das et al. 2002; Bardin et al. 2011], tailoring
analyzers to cope with obfuscation schemes is still a largely manual process.

Besides the conceptual precision requirements, there are also significant practical
challenges for statically analyzing obfuscated code. All existing tools make some as-
sumptions about the behavior or structure of the executable code, which can be broken
by obfuscations. Many static analyzers fail even in the presence of simple obfuscations

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.

4:16 Schrittwieser et al.

used regularly by malware [Moser et al. 2007b]. Especially tools that depend on an ini-
tial disassembly phase, such as CODESURFER/X86 [Balakrishnan and Reps 2004] or
early semantic malware detectors [Christodorescu et al. 2005; Kinder et al. 2005], are
vulnerable to syntactic obfuscations. Such obfuscations target disassemblers that rely
mostly on heuristics to discover all executable code [Linn and Debray 2003]. Remov-
ing the separate disassembly phase and working on code directly improves resilience
against these simpler obfuscation schemes [Kinder et al. 2009; Brumley et al. 2011].
Nevertheless, especially dynamic obfuscations are difficult to handle for static ana-
lyzers. For example, no static tool to date is able to reliably deal with self-modifying
code, even though one could, in theory, imagine the static analysis compensating by
analyzing the possible runtime state of the code section.

However, static analysis of obfuscated code can still give a reverse engineer valuable
information and lead to a better understanding of the overall binary and further guide
additional de-obfuscation steps. Our analysis in Section 5 considers static analysis
tools at the current state of the art, including minor adaptations for each particular
scenario.

4.3. Dynamic Analysis
Dynamic analysis refers to observing the behavior of deployed and running systems,
and it is today an important part of forensic analysis of malware [Egele et al. 2012].
It analyzes real executions of a program, either online (at runtime) or offline (over a
recorded trace). In particular, any form of software testing is a dynamic analysis. Just
like static analysis, dynamic analysis is also performed with respect to particular prop-
erties of interest. For example, a dynamic analysis may record system call invocations
or executed instructions, or trace the flow of “tainted” data that is received from the
network.

Dynamic analysis is conceptually dual to static analysis: a sound dynamic anal-
ysis considers a subset of all execution traces of a program and is therefore under-
approximate. Each bug, warning, or suspicious behavior found is then guaranteed to
also occur during at least one real execution. On the flip side, a dynamic analysis may
miss behavior when the number of possible traces in a program is too large to be ex-
haustively tested. In the general case this is unavoidable due to undecidability.

While static analysis trades off precision against cost, dynamic analysis trades off
coverage against cost. Each execution of the program under test corresponds to an ad-
ditional trace covered. An automated dynamic analysis will typically try to cover traces
that exhibit diverse behaviors to get a representative profile of the program. If a pro-
gram exhibits a particular type of behavior only under very specific circumstances, it
may never be observed. This is especially problematic for malware, which may respond
only to certain “triggers” [Crandall et al. 2006; Kolbitsch et al. 2011]. This challenge
is closely related to the problem of automated test case generation, and approaches
can be roughly classified into blackbox, graybox, and whitebox depending on how they
treat the program under test.

Blackbox testing assumes no knowledge of the program and is usually done via ran-
dom input generation. Since it is very hard to achieve meaningful coverage through
blind enumeration of inputs, effective fuzz testing tools employ a graybox approach
and use domain-specific knowledge about the input format to generate inputs that
have different meaning (e.g., image files with different sizes). Coverage-guided fuzzers
such as AFL14 mutate an initial input following a variety of heuristics. Whitebox test-
ing also uses the program structure to guide input generation. Tools based on symbolic
execution [King 1976] and dynamic test generation (also referred to as concolic execu-

14http://lcamtuf.coredump.cx/afl/ (accessed June 07, 2015)

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.

Protecting Software through Obfuscation: Can It Keep Pace with Progress in Code Analysis? 4:17

tion in the literature) have been particularly successful [Godefroid et al. 2005; Cadar
et al. 2006; Sen et al. 2005]. They use a constraint solver to generate inputs system-
atically, such that one input will cover exactly one unique control flow path through
the program. However, since the number of control flow paths can be infinite (due to
loops), even symbolic execution will remain incomplete and thus under-approximate in
a finite amount of time. A survey by Schwartz et al. [2010] provides a good introduction
to symbolic execution and explains the related challenges in more detail.

In practice, systematic exploration methods such as symbolic execution are addition-
ally limited by their underlying constraint solver which is used to identify valid control
flow paths. A new control flow path that exhibits hitherto unseen behavior can only be
triggered if the constraint solver is able to find an input that drives execution down
that path. If the constraint is unsupported (e.g., floating point) or simply too difficult,
the symbolic execution engine is unable to cover the path. As a best effort solution,
the engine can then resort to random testing (fuzzing) of input parameters [Godefroid
et al. 2008]. As with static analysis, there are also dynamic techniques that compro-
mise on soundness. For instance, it is possible to directly manipulate registers or mem-
ory to trigger different branches or execute particular areas of code [Madou et al. 2005;
Moser et al. 2007a]. While this may put the program into a state that would never oc-
cur under normal circumstances, it will cause a particular path to be executed without
requiring any constraint solving, which may just be enough for the particular reverse
engineering task at hand.

A significant practical advantage of dynamic over static approaches in the analysis of
obfuscated code is that it can be applied to binaries with relative ease. In fact, it is often
simpler to dynamically analyze binaries than source code, because traces recorded at
runtime show addresses of instructions in the binary and not just (obfuscated) source
code information. However, the use of anti-debugging techniques can oppose dynamic
analysis attempts.

Because dynamic analysis monitors what is actually executed at runtime, obfus-
cations cannot fully conceal the behavior of a program. For instance, a dynamic
analysis can trace self-modifying code just like regular code if it records the op-
code and operands of the current instruction in addition to the value of the program
counter [Thakur et al. 2010].

As for static analysis, Section 5 lists what is possible using the current state of
dynamic analysis tools, with only relatively minor technical adaptations.

4.4. Human Assisted Reverse Engineering
We use this very broad category to cover any kind of analysis that a skilled human
reverse engineer can perform with the help of any state-of-the-art tool. The ability for
creative problem solving and adaptation makes humans much more efficient in dealing
with obfuscations than fully automated techniques. In contrast to a purely automated
approach, however, humans can be misled by clues that suggest structure, such as type
names or inheritance relationships among classes.

Disassemblers and decompilers alike went through major improvements over the
past two decades [Cifuentes and Gough 1995; Schwarz et al. 2002; Schwartz et al.
2013]. The de facto industry standard for disassembling and reverse engineering, IDA
Pro, now includes a powerful decompiler for the x86, x64, and ARM processor archi-
tectures15. Academic research has made significant progress as well. The Boomerang
Project16 is an attempt to develop an open source decompiler. Early results from
a study [Emmerik and Waddington 2004] conducted on a real-world program were

15https://www.hex-rays.com/products/decompiler (accessed February 25, 2015)
16http://boomerang.sourceforge.net (accessed February 25, 2015)

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.

4:18 Schrittwieser et al.

promising. Despite the fact that only the core algorithm and not the entire program
was decompiled, the experiment was able to demonstrate that decompilation with
human assistance can be practical in certain use cases. The project, however, does
not seem to receive much attention anymore. Recently, a new binary-to-C decompiler
named PHOENIX was introduced by Schwartz et al. [2013]. It implements a structural
analysis algorithm that uses iterative refinement strategies as well as the property
of semantics-preservation in order to archive significantly more accurate results than
previous approaches. The reconstruction of high-level control flow structures is a chal-
lenging problem in decompiler research. State-of-the-art decompilers rely on struc-
tural analysis and advanced pattern matching and fall back to using goto-statements
for control flow transfers if no patterns can be identified. Recently Yakdan et al. [2015]
proposed a decompiler that does not rely on pattern matching and produces more com-
pact and goto-free code. It uses semantics-preserving transformations to restore struc-
tured control flow graphs.

A major driving force behind the development of human assisted code analysis ap-
proaches is the software cracking scene. In early years the SoftICE debugger was a
popular tool among reverse engineers, however it is no longer maintained [Willems
and Freiling 2012]. Today, the freely available debugger OllyDBG17 to some extent con-
tinues where SoftICE left off. A large number of plugins that are dedicated to cracking
and tampering purposes have been made available by the scene (e.g., Ollybone [Stew-
art 2006] for semi-automatic unpacking).

The concepts and tools in this code analysis category have in common that the au-
tomated analysis process can be directly influenced by the human reverse engineer
resulting in very different outcomes depending on the human’s decisions. For example,
the disassembling process of IDA Pro can be influenced by a human reverse engineer to
perform recursive traversal at specific locations of the program’s code. This code anal-
ysis category is naturally hard to grasp formally. In our analysis in the next section
we base the capabilities of human reverse engineers on published results and common
knowledge about the state of the art. A comprehensive introduction to software reverse
engineering was published by Eilam [2005].

5. ROBUSTNESS ANALYSIS
In this section we evaluate the effectiveness of different classes of software obfusca-
tion schemes against the program analysis scenarios introduced in Section 2.4. The
effectiveness of a specific type of code obfuscation is evaluated by comparing it to code
analysis approaches described in the literature. We are well aware of the arms race
between code obfuscation and analysis and the fact that in theory every obfuscation
technique can be broken with targeted analysis techniques (see Section 4). In this sur-
vey, we focus on the status quo of code obfuscation in real-life application scenarios and
evaluate the capabilities of state-of-the-art code analysis tools (also considering possi-
ble non-complex modifications to the analysis techniques) in order to target particular
obfuscations. The possibility of developing analysis techniques targeted to break a spe-
cific obfuscation scheme does not prove it useless in general, as a small modification to
the obfuscation technique can again raise the bar for analysis.

As of today’s knowledge, a precise formalization of the security of an obfuscation
scheme seems to be difficult to achieve. Previous attempts to quantify the hardness of a
particular class of code obfuscation are based on software complexity metrics [Collberg
et al. 1997; Anckaert et al. 2007]. However, it remains unclear whether such notions
are able to capture all security properties of the obfuscating transformation correctly.
In this survey, we thus follow a different approach and rate the strength of each obfus-

17http://www.ollydbg.de (accessed February 25, 2015)

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.

Protecting Software through Obfuscation: Can It Keep Pace with Progress in Code Analysis? 4:19

cation class. A summary of the results can be found in Table II. Black marks obfus-
cation techniques that break a certain type of program analysis fundamentally with
respect to its state-of-the-art techniques. Gray denotes scenarios in which a particular
code obfuscation class cannot be considered unbreakable, but still makes analysis sub-
stantially more expensive. For example, while an analysis technique might work under
lab conditions when dealing with toy programs, limits of available resources could be
reached while analyzing larger programs. White marks obfuscation techniques that
only slightly raise the cost of analysis and therefore cannot justify the cost of adopting
them, such as increased code size or added runtime overhead. Furthermore, we distin-
guish between ratings that are supported by results in the literature (marked with a
checkmark in Table II) and ones that we based on our own evaluation of the state of
the art.

5.1. Pattern Matching
The most basic form of pattern matching is limited to comparing program code on byte
level against some predefined pattern. Consequently, this type of pattern matching
is weak against all kinds of code modifications, including obfuscating transformations.
However, several more sophisticated pattern matching concepts, mostly for identifying
malicious behavior, were introduced in the literature. Such advanced pattern matching
arguably can cope with naive obfuscation techniques such as equivalent instructions.
In the following, we discuss the state of the art in research on pattern matching-based
code analysis in the presence of different classes of code obfuscation schemes.

Locating data. Naive pattern matching techniques on data break as soon as the
structure of the data changes. Thus, even simple obfuscations are effective against
simple forms of pattern matching. This was confirmed by Moser et al. [2007b], who
were able to show that simple data obfuscation techniques are sufficient to make pat-
tern matching ineffective for the identification of data. Anti-disassembly techniques
are not effective against pattern matching-based analysis of the binary, since they do
not necessarily require the program to be disassembled.

Locating code. Moser et al. [2007b] also demonstrated the limitations of pattern
matching against the static code rewriting technique control flow flattening. Their rea-
soning can be easily extended to other forms of static rewriting and dynamic code
rewriting as any modification of the binary clearly destroys the pattern.

In the literature, locating code through pattern matching is often described in a mal-
ware context. The primary aim of techniques in this analysis scenario is the generation
of generic patterns describing malicious behavior of program fragments to automati-
cally classify software as malicious or benign. While these approaches do not aim at
understanding the semantics of the program, they still can identify locations in the
code that implement abnormal (malicious) behavior. HANCOCK [Griffin et al. 2009] is
a system for the automated generation of signatures for malware. Through normal-
ization of opcodes it is resistant against simple code transformations such as register
re-assignment. Dalla Preda et al. [2011] generated signatures of metamorphic mal-
ware through abstract interpretation of semantics developed for self-modifying code.
Generally, the expressiveness of the language used for creating patterns (e.g., static
strings vs. regular expressions) dictates both their resilience against obfuscations and
the performance of matching algorithms. Since existing techniques emphasize perfor-
mance over expressiveness, we marked static code rewriting techniques in gray.

Dynamic code obfuscation techniques, for instance virtualization, remove the struc-
ture of the code entirely, thus rendering pattern matching based analysis approaches
ineffective. To some extent, however, code analysis based on patterns is still possible
as demonstrated in the literature. Tang and Chen [2007] proposed the identification

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.

4:20 Schrittwieser et al.

Table II. Analysis of the strength of code obfuscation classes in different analysis scenarios (PM = Pattern Matching,
LD = Locating Data, LC = Locating Code, EC = Extracting Code, UC = Understanding Code).

PM Autom. Static Autom. Dynamic Human Assisted

Name LD LC LD LC EC UC LD LC EC UC LD LC EC UC

Data obfuscation

Reordering data X X

Changing encodings X X

Converting static data to procedures X X X

Static code rewriting

Replacing instructions X X

Opaque predicates X

Inserting dead code X X X

Inserting irrelevant code X

Reordering

Loop transformations

Function splitting/recombination X

Aliasing X X

Control flow obfuscation X X X X X

Parallelized code

Name scrambling X

Removing standard library calls X

Breaking relations

Dynamic code rewriting

Packing/Encryption X X X X X X

Dynamic code modifications

Environmental requirements

Hardware-assisted code obfuscation X

Virtualization X X X X X

Anti-debugging techniques X ? X X X

obfuscation breaks analysis fundamentally

obfuscation is not unbreakable, but makes analysis more expensive

Legend obfuscation only results in minor increases of costs for analysis

X A checkmark indicates that the rating is supported by results in the literature

Scenarios without a checkmark were classified based on theoretical evaluation

of polymorphic malware on a network stream using statistical analysis. In contrast
to fixed string pattern matching, polymorphic versions of a program can be identi-
fied with this approach. POLYGRAPH [Newsome et al. 2005] is a concept for the auto-
mated identification of polymorphic worms which exploits the existence of invariant
substrings in all polymorphic variants of a malware. Both approaches exploit the char-
acteristic structure of polymorphic programs. To summarize, while it was shown in
literature that pure identification of the obfuscation method polymorphism is feasible
in a malware context, locating particular functionality inside the binary is still impos-

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.

Protecting Software through Obfuscation: Can It Keep Pace with Progress in Code Analysis? 4:21

sible with pattern matching if the implementation details are unknown to the analyst.
As in the previous scenario, anti-disassembly techniques do not provide additional pro-
tection against pattern matching approaches aiming at locating code.

5.2. Static code analysis
Locating data. Similar to pattern matching, automated static analysis of data is

limited when analyzed data is not stored in its original representation. In Table II
the data obfuscation class reordering is marked in gray, because a simple data flow
analysis, which is necessary for the reconstruction of reordered data, is arguably pos-
sible with automated static analysis tools such as JAKSTAB [Kinder and Veith 2008].
Furthermore, it can be argued that a static code rewriting technique can be effective
against locating data if it complicates the reconstruction of the control flow graph of the
program: static data flow analysis strongly depends on knowledge of the control flow.
For this reason, control flow modifying obfuscation techniques are marked in gray in
Table II.

Dynamic code rewriting in general is effective against locating data inside programs
as the original representation of the data is destroyed. At first sight, static analy-
sis appears completely helpless against virtualization obfuscation, as only the code
of the interpreter can be directly analyzed. In static analysis, this leads to an effect
that Kinder [2012] called domain flattening: data flow information from different loca-
tions in the original program are merged to one location in the interpreter, resulting
in a more imprecise analysis. However, Kinder [2012] was able to demonstrate that
by lifting the static analysis to a second dimension of location (the virtual program
counter), the same analysis precision as on non-obfuscated code is achievable. While
the introduced approach was evaluated on a toy example only, the preliminary results
still indicate promising directions for static analysis of VM-protected binaries. For that
reason, we marked virtualization in gray for this analysis scenario. Anti-disassembly
techniques can, to some extent, limit static analysis and thus are marked in gray as
well.

Locating code. Locating a particular program feature in binary code through static
analysis can be based on an analysis of the structure of the control flow graph
(e.g., Harris and Miller [2005]) of the program. Therefore, code obfuscation schemes
that modify or hide the control flow of a program (opaque predicates, loop transfor-
mations, parallelized code, etc.) can be considered as candidates for protection against
static analysis techniques. Opaque predicates are the most important concept for con-
trol flow obfuscation against static analysis tools. Dalla Preda et al. [2006] proposed
an abstract interpretation-based methodology for removing simple opaque predicates.
This automated, static concept was shown to be more complete than approaches for
dynamic analysis of opaque predicates. However, as the authors state, their analysis
concept is limited to simple types of opaque predicates only. Thus, we consider more
complex opaque predicates still effective in making static reconstruction of the control
flow graph significantly more difficult.

Tools for matching program code based on control flow similarities include BIN-
DIFF [Flake 2004], BINHUNT [Gao et al. 2008], BINSLAYER [Bourquin et al. 2013], and
the implementation by Nagarajan et al. [2007]. Moreover, Tsai et al. [2009] introduced
a framework for analyzing control flow obfuscation by representing it as a composition
of atomic operators to evaluate robustness. Still, it remains unclear to what extent
such theoretical results can support the evaluation of the strength of an obfuscation
in real-life applications. We conclude that while no general statement regarding the
strength of obfuscation can be made for this particular analysis scenario, obfuscation
schemes that complicate the reconstruction of the control flow graph can still make the

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.

4:22 Schrittwieser et al.

analyst’s aim of identifying the entry point into a particular functionality considerably
harder.

Code obfuscation based on dynamic code rewriting makes static analysis consid-
erably more difficult as the analyzed code in the binary does not correspond to the
code that is actually executed. However, approaches to circumvent obfuscation were
introduced in the literature on malware samples. Malware packers were analyzed
with heuristics-based static analysis techniques (e.g., Treadwell and Zhou [2009]) and
comparison with previously-seen malware samples was performed [Jacob et al. 2012;
Karnik et al. 2007]. Similar to pattern matching based approaches, in automated static
analysis, the maliciousness of code is evaluated by identification of abnormal struc-
tures of the program code. The idea of using model checking for detecting malicious
code was proposed by Kinder et al. [2005]. Furthermore, static analysis of polymor-
phism as well as metamorphism was discussed in recent literature. Bruschi et al.
[2006a] compared a normalized version of the control flow graph of a binary against
control flow graphs of known malware in order to detect malicious behavior. In a sim-
ilar concept, Walenstein et al. [2006] normalized program code (e.g., through simple
instruction substitution patterns) to be able to compare it to known malware sam-
ples. Another code normalization technique was presented by Bruschi et al. [2006b].
Coogan et al. [2009] used a combination of two static code analysis techniques (slicing
and alias analysis) to identify malware packers. The idea of using the frequency of
opcodes as a predictor for malware was proposed by Bilar [2007]. For example, mas-
sive use of mathematical operations might indicate malware that tries to obfuscate its
malicious behavior using a packer based approach. Furthermore, it was shown that a
high frequency of a usually rare opcode is an indicator for polymorphic or metamorphic
malware. Chouchane and Lakhotia [2006] proposed the detection of metamorphic mal-
ware by creating signatures for instruction-substitution engines. However, similar to
pattern matching based approaches, none of the introduced concepts for static analysis
is able to find the location of specific functionality. Only the characteristic structure of
a malware packer can be identified. As a consequence, we marked packing/encryption
and replacing instructions in gray. Like in the previous scenario (locating data), vir-
tualization obfuscation was marked gray in Table II due to preliminary results on
the challenges of statically analyzing virtualization-obfuscated programs by Kinder
[2012].

Extracting code. While the software engineering literature knows of concepts for
reusing functionality from legacy binary code (e.g., [Sneed 2000]), the automated static
extraction of obfuscated code has not been widely discussed.

Our reasoning regarding the effectiveness of different classes of code obfuscation
techniques in this analysis scenario is simple: extracting code from a program through
static analysis is at least as difficult as locating code, because the latter is a funda-
mental requirement for the former. Table II indicates differences between locating and
extracting code in the scenario of static code rewriting for four obfuscation techniques.
Aliasing, control flow flattening, parallelized code, and breaking relations share the
common effect of increasing code dependencies by interweaving independent parts of
the program. These interweavings are difficult to resolve through static analysis, thus
making the extraction of code sections considerably harder than just locating code.
Collberg et al. [1997] first described the effect of raising analysis complexity when
extending the scope of the obfuscating transformation. Analogously, in the category
of dynamic code rewriting, virtualization was marked in black because of the inter-
weavings that make it difficult to extract all required code sections. Anti-debugging
and Anti-disassembly was marked in black due to the existence of a wide range of
techniques that actively interfere with static disassembly [Branco et al. 2012]. This

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.

Protecting Software through Obfuscation: Can It Keep Pace with Progress in Code Analysis? 4:23

includes concepts to prevent a disassembler from recovering a correct higher level rep-
resentation of the code [Popov et al. 2007].

Understanding Code. For a human analyst to better understand an obfuscated pro-
gram, an automated analysis tool has to be able to remove at least parts of the applied
code obfuscation scheme from the binary.

Several concepts for static de-obfuscation with the aim for making the program code
more understandable for a human analyst were proposed in the literature. An early
work by Rugaber et al. [1995] has shown that detecting interleaved code (e.g., through
function recombination) is a time consuming task. Majumdar et al. [2006] evaluated
the robustness of the obfuscation technique aliasing, where two or more pointers re-
fer to the same memory location. An experimental evaluation showed that resilience
expected from the theoretical approach does not hold in real-life scenarios; still, in
general it is difficult to evaluate the actual strength of aliasing. Guillot and Gazet
[2010] developed techniques for automated static de-obfuscation. The basic concept is
to make program code more understandable by automated rewriting based on local
semantic analysis, similar to optimization steps made by compilers. Raber and Laspe
[2007] introduced a plugin for IDA Pro that is capable of removing basic obfuscation
and anti-debugging techniques from a binary. A shared limitation of all introduced
concepts is the major gap in success rates between academic examples and real-world
scenarios. While these concepts show that theoretical analysis models work under lab-
oratory conditions, practical application is limited. Thus, we marked data obfuscation
as well as static code rewriting techniques in gray.

In Table II name scrambling was marked in black. Identifier names are often criti-
cal to human understanding of a program but cannot be fully restored with the help of
automated code analysis techniques. Collberg et al. [1997] described this transforma-
tion as one-way, although limited recovery is possible via code analysis (e.g., induction
variables of loops can be identified and renamed to “i”, dynamic data structures can be
renamed to common identifiers, etc.). Parallelized code can implicitly be considered as
a strong obfuscation technique in this analysis scenario as code extraction, which is a
fundamental requirement for code understanding, is also difficult. Following the same
line of reasoning, dynamic code rewriting methods in general are effective against code
understanding through automated static analysis.

5.3. Dynamic code analysis
Locating data. Every known data obfuscation technique except for white-box cryp-

tography has a limited practical effect in dynamic analysis scenarios since data is
always visible at some point during runtime. For example, although the cryptographic
key of a DRM client might be stored in an obfuscated way (e.g., through data encoding)
in the binary, during runtime the cryptographic algorithm has to reconstruct the orig-
inal representation of the key in order to perform decryption tasks. In the literature,
several concepts for an automated dynamic extraction of data structures from program
binaries were introduced. Shamir and Van Someren [1999] proposed the identification
of cryptographic keys in binary code through entropy analysis — a concept which can
also be applied to memory.

Zhao et al. [2011] introduced a concept for dynamic extraction of data in malware.
Cozzie et al. [2008] extracted data structures from memory dumps using Bayesian
unsupervised learning. Lin et al. [2010] introduced a system called REWARDS which
reveals data structures through observation of the program execution. It marks each
memory location that was accessed at runtime with a timestamp and traces the prop-
agation of data. A similar concept called HOWARD was proposed by Slowinska et al.
[2011] in 2011. It aims at extracting data structures from binaries by dynamically trac-

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.

4:24 Schrittwieser et al.

ing (using QEMU-based emulation) how a program accesses the memory. HOWARD is
able to reconstruct large parts of the symbol table. It thus simplifies the progress of
reverse engineering and improves readability of obfuscated code as well as data.

To sum up, in a dynamic analysis context, most static as well as dynamic code rewrit-
ing techniques do not provide significant additional security in the context of data pro-
tection. The only exception are obfuscations that require special runtime enablers (ad-
ditional hardware or environmental conditions) to execute. These techniques can with-
stand dynamic analysis in situations where the runtime enabler is not present. For this
reason, both the techniques environmental requirements and hardware-assisted code
obfuscation were marked in gray in Table II.

Locating code. Locating a particular feature inside binary code through dynamic
analysis is based on the observation of the program behavior. Static code rewriting
techniques are not effective in dynamic analysis scenarios due to one important factor:
most of them are not explicitly targeted at the prevention of dynamic analysis. Replac-
ing instructions, inserting dead code, opaque predicates, code insertions, etc. were in
the first place developed to obfuscate the static representation of binary code. However,
automated dynamic analysis techniques do not depend on the static representation as
much as static analysis or even human analysis do; thus they are less affected by the
obfuscation. In the literature very diverse concepts for dynamic analysis of obfuscated
code were proposed. Li et al. [2009] described a technique that identifies malicious be-
havior based on the malware’s runtime system call sequences. MCVETO [Thakur et al.
2010] is a dynamic test generator and model checker for machine code. While tradi-
tional dynamic analysis suffers from the problem of incompleteness as a program be-
havior can only be analyzed on one input at at time, MCVETO implements a combined
static and dynamic approach which aims at reaching more code locations by actively
manipulating program inputs. Another strategy for finding a particular feature in pro-
gram code was discussed by Deprez and Lakhotia [2000] and Wilde and Scully [2006].
The basic idea is to execute the program twice with two different inputs whereby one
input invokes the feature and the other does not. From calculating the differences be-
tween the two traces conclusions on the location of the particular feature can be drawn.
Madou et al. [2005] discussed the effectiveness of hybrid (static and dynamic) analysis
approaches and demonstrated it in the context of the reconstruction of an obfuscated
control flow graph. Zhang and Gupta [2005] proposed the comparison of instrumented
executions of different program versions for matching purposes. Brumley et al. [2008]
introduced a concept for automated generation of exploits based on static and dynamic
comparison of programs and patched versions of it.

While dynamic code analysis is strong against static code obfuscation, dynamic ob-
fuscation techniques are much more robust because executed code differs from the code
that is statically visible in the executable. However, analyses targeting dynamic code
rewriting obfuscations were presented in the context of malware analysis, in particular
for packed programs. Moser et al. [2007a] proposed a solution for the incompleteness
problem of dynamic analysis by making the exploration of multiple execution paths
possible. Thus, the approach allows the identification of malicious behavior that is ex-
ecuted only if a certain conditions is met. REANIMATOR [Comparetti et al. 2010] is
a two-step malware identification system. First, known malware is dynamically an-
alyzed and code that is responsible for a particular malicious behavior is modeled.
This model can then be used in a second step to identify the same malicious behav-
ior in other code samples through static analysis. However, dynamic code rewriting
techniques such as packing can limit the detection rate of this approach significantly.
Sharif et al. [2008] introduced the EUREKA framework that automatically extracts
the payload of a packed program by running the binary in a virtual machine. RENOVO

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.

Protecting Software through Obfuscation: Can It Keep Pace with Progress in Code Analysis? 4:25

by Kang et al. [2007] is another dynamic unpacker that monitors executed instructions
and memory writes at runtime to extract a hidden payload and is based on the dynamic
code analysis component TEMU [Yin and Song 2010] of the BITBLAZE platform [Song
et al. 2008]. Heuristics- and statistics-based strategies are used to determine the exact
moment when the unpacking process is finished and the unpacked code is fully stored
in memory. Royal et al. [2006] introduced a behavioral based approach for automated
unpacking inside a VM. Its combination of static and dynamic analysis identifies un-
packing routines through its characteristic behavior. A malware analysis approach by
Debray and Patel [2010] focuses on the automated identification of unpacking rou-
tines inside binaries. Gröbert et al. [2011] proposed the detection of cryptographic al-
gorithms by analyzing program execution traces, which show unique characteristics
depending on the implemented algorithm. In a similar concept named ALIGOT [Cal-
vet et al. 2012], the identification of cryptographic algorithms in execution traces is
based on the comparison of input-output relationships with known cryptographic algo-
rithms. With this concept even heavily obfuscated algorithms can be identified because
the input-output relationship does not differ from the original version of the algorithm.

Furthermore, several approaches for automated dynamic analysis of programs pro-
tected by virtualization were introduced in recent years. Sharif et al. [2009] proposed
the use of taint- and data-flow analysis techniques to find the byte code implementing
the payload of the virtualized program. The described automated reverse engineer-
ing approach is able to reconstruct control flow graphs and was evaluated against the
code virtualization tools VMProtect and Code Virtualizer. A different strategy for au-
tomated dynamic analysis of virtualized code was proposed by Coogan et al. [2011].
Instructions that contribute to arguments of system calls are collected to understand
the functionality of the program. Webster and Malcolm [2009] proposed the use of for-
mal algebraic specifications to detect metamorphic and virtualization-based malware.
TRACESURFER [Guizani et al. 2009] uses dynamic binary instrumentation for the de-
tection of self-modifying malware.

To conclude, we marked dynamic code rewriting approaches in gray because prac-
tical application of all described approaches is limited to malware identification tools
only. In other words, they do not directly aim at locating particular functionality, but
malicious behavior in general.

Extracting code. Similar to the scenario of static extraction of code sections, dynamic
code extractors have to deal with dependencies between different parts of the program.
Several static classes of code obfuscation add bogus dependencies in order to make
analysis more difficult. Thus, we can make similar assumptions on the resilience of
the code obfuscation techniques. Still, several dynamic concepts for automated ex-
traction of code section were described in the literature. TOP by Zeng et al. [2013]
collects instruction traces and translates the executed instructions into a high level
program representation that can be reused as a normal C function in new software.
The authors claim the concept to be resilient against the obfuscation techniques pack-
ing/encryption, aliasing, control flow obfuscation (e.g., flattening), inserting dead code,
as well as several popular anti-debugging techniques such as “Soft Breakpoint Detec-
tion”, “Anti-VMware IN Instruction”, and “IsDebuggerPresent Check”. Following the
results of Zeng et al. [2013] we also marked parallelized code, which is arguably less
effective in dynamic code analysis scenarios, in gray.

Most other concepts introduced in recent literature are focused on malware. Leder
et al. [2009] proposed a concept for automated extraction of cryptographic routines
through dynamic data analysis. The automated isolation of a single function from a
(malicious) binary was proposed by Caballero et al. [2010]. In contrast, INSPECTOR
by Kolbitsch et al. [2010] allows the automated extraction of a particular malicious

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.

4:26 Schrittwieser et al.

behavior that does not necessarily have to be limited to one function of the program
only. Following the evaluation of this approach, the dynamic obfuscation class of pack-
ing/encryption has to be considered weak against the described approach.

Other dynamic code rewriting techniques were marked in gray in Table II. In con-
trast to the locating code scenario we marked virtualization in black as the technique
by Sharif et al. [2009] for analyzing virtualization-protected code is limited to locating
code and does not yield valid executables.

Understanding code. Analogously to previous scenarios, a deeper understanding of
the code of a program requires at least basic de-obfuscation in the automated analysis.
In literature, several concepts were introduced. Udupa et al. [2005] proposed auto-
mated de-obfuscation of control flow flattening and dead code insertion using a hybrid
approach of static and dynamic analysis techniques. The incomplete control flow graph
from a dynamic analysis is enriched by adding some control flow edges that could pos-
sibly be taken through static analysis. While the results presented in the paper show
that the evaluation of isolated analysis problems is possible, it is difficult to reason
about the value of the concept for real-life programs.

5.4. Human analysis
The capabilities of a human code analyst are difficult to quantify in general. Tilley
et al. [1996] first described a framework for program understanding including cog-
nitive aspects of a human reverse engineer. However, it is still safe to assume that
provided with sufficient patience a human analyst can break any class of software-
only code obfuscation (i.e., an obfuscation where no trust anchor in hardware exists)
and is only limited by scalability constraints.

Locating data. Most data obfuscation techniques have only limited strength in the
analysis scenario of a human analyst trying to locate data structures in programs.
One important concept for the protection of data (keys) inside a binary is white-box
cryptography. It was proposed to prevent the extraction of a cryptographic key from
the binary by mixing it with the algorithm. A decade ago, the first implementations of
white-box algorithms for DES and AES have been proposed [Chow et al. 2003b,a; Link
and Neumann 2005; Bringer et al. 2006]. However, all of them have been broken using
techniques such as fault injection [Jacob et al. 2003], statistical analysis [Link et al.
2004], condensed implementation [Wyseur and Preneel 2005], differential cryptanaly-
sis [Goubin et al. 2007; Wyseur et al. 2007; Billet et al. 2005; De Mulder et al. 2010] or
generic cryptanalysis [Michiels et al. 2009]. Given this mixed history, in recent years,
research on white-box cryptography focused on the question how the general idea and
its security concepts can be backed by a theoretical foundation. Wyseur [2009] dis-
cussed the state of the art of white-box cryptography and proposed new block ciphers
and design principles for the construction of white-box cryptographic algorithms. Sax-
ena et al. [2009] described a theoretical model of white-box cryptography using appro-
priate security notions and presented both positive and negative results on white-box
cryptography. This leads us to the conclusion that in its current state the strength of
white-box cryptography is unproven, although it can make the extraction of the cryp-
tographic key considerably more complex. Thus, we marked the obfuscation class con-
verting static data to procedures in gray. Other obfuscation techniques that can provide
at least limited resilience in this analysis scenario are environmental requirements and
hardware-assisted code obfuscation because of their dependencies on external factors
such as the presence of a particular hardware token. The strength of dongles for soft-
ware protection was evaluated by Piazzalunga et al. [2007]. The authors developed
a model for forecasting the amount of time an analyst would need to break dongle-
based software protection schemes and concluded that today’s available dongle solu-

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.

Protecting Software through Obfuscation: Can It Keep Pace with Progress in Code Analysis? 4:27

tions provide only minimal protection. Still, we marked the class of hardware-assisted
code obfuscation techniques in gray as dongles are only one simple concept in this class
of obfuscations. Several approaches that are more resilient to dynamic analysis were
introduced in the literature [Fu et al. 2007; Zhuang et al. 2004; Bitansky et al. 2011].

Locating Code. Some obfuscation techniques break abstractions in the code that aid
human understanding. Name scrambling, removing standard library calls, and break-
ing relations do not prevent an automated tool from analyzing a program. However,
they can make manual analysis by a human more difficult.

Other classes of code obfuscation have limited robustness against a human ana-
lyst trying to locate code. For example, Rolles [2009] introduced a semi-automated
de-obfuscation approach against virtualization-obfuscation, which is based on reverse
engineering the virtual machine, extracting the byte code, and then turning it into na-
tive code. Madou et al. [2006b,c] developed an interactive de-obfuscation tool named
LOCO that allows an analyst to navigate through the control flow graph of a program
to undo static obfuscating transformations such as control flow flattening. Quist and
Liebrock [2009] demonstrated how a sophisticated visual representation of the control
flow of a program can speed up the analysis process. In particular, unpacking routines
of malware can be identified efficiently using a visualization approach.

Extracting Code. Finding the location of code is a prerequisite for code extraction.
Thus, similar to the scenario of dynamic analysis, the extraction of code can be consid-
ered at least as difficult as locating code for a human analyst. One of the most popular
approaches for human-assisted code extraction is program slicing, which is based on
the idea of reducing the program code to a minimum slice that still produces a par-
ticular behavior or affects the value of a particular variable. In the literature, a mul-
titude of program slicing approaches have been introduced over the past two decades
(e.g., [Lanubile and Visaggio 1997] and [Ning et al. 1993]). A major limitation of pro-
gram slicing is that the human analyst needs a deep understanding of the program
internals to be able to specify a slicing criterion such as relevant variables and behav-
ior. Several attempts have been made to raise the level of abstraction in slicing and
thus make it less depended on manual analysis, such as conditioned slicing [Canfora
et al. 1994, 1998; Cimitile et al. 1996; Danicic et al. 2004] and constraint slicing [Fox
et al. 2004; Danicic et al. 2005; Field et al. 1995]. We marked opaque predicates and
aliasing in gray as these obfuscation techniques can make the identification of the
minimal subset that still implements a particular functionality more difficult.

Understanding Code. Despite the fact that getting a comprehensive understanding
of the program structure and functionality can be considered the most ambitious aim
of a human analyst, today’s state of the art in code obfuscation provides only limited
protection in this analysis scenario. This assumption is backed by a plethora of re-
ports about successfully removed copy protection schemes for digital media such as
CSS (DVD copy protection), Windows Media DRM [Myska 2009], and HDCP (high-
bandwidth digital content protection) [Lomb and Guneysu 2011]. Another piece of ev-
idence for this assumption is the successful reverse engineering of the VoIP (Voice
over IP) software Skype. While Skype is known for its extensive use of code obfusca-
tion, Biondi and Desclaux [2006] still were able to reveal the internal structure of the
software. Furthermore, the client software of the cloud service provider Dropbox was
successfully reverse engineered despite being heavily obfuscated [Kholia and Wegrzyn
2013]. A decisive factor for these recent success stories in code analysis are today’s
sophisticated reverse engineering tools that have become better and better in deal-
ing with obfuscated code [Eagle 2008; Ferguson and Kaminsky 2008; Eilam 2005].
For instance, the F.L.I.R.T. library of IDA Pro enables the recognition of standard li-

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.

4:28 Schrittwieser et al.

brary functions generated by a variety of different compilers. It can be concluded that
almost all code obfuscation techniques have to be considered ineffective against a hu-
man analyst that puts enough time and effort into manual de-obfuscation. We marked
name scrambling, removing standard library calls, breaking relations, and virtualiza-
tion in gray as these obfuscations can make manual analysis by a human more diffi-
cult. Furthermore, the obfuscation classes environmental requirements and hardware-
assisted code obfuscation can be considered as strong against human analysis as long
as the external requirement cannot be accessed by the analyst. Anti-debugging and
Anti-disassembly was also marked in gray as all human-assisted analysis approaches
described in the literature are still based on automated static and dynamic analysis
tools.

6. CONCLUSIONS
In this survey we addressed the question to what extent software obfuscation is able to
provide reasonable protection of programs against state-of-the-art code analysis tech-
niques and tools. Despite more than two decades of research on obfuscation theory,
reliable concepts for the evaluation of the resilience of an obfuscation technique have
still not been found, and there are similar limitations for the evaluation of code anal-
ysis and de-obfuscation techniques. With these constraints in mind, we conducted a
literature review of code analysis techniques applied against different classes of ob-
fuscations in specific attack scenarios. Where we could not find direct evidence of the
resilience of an obfuscation in a particular analysis scenario in the literature, we made
and justified our own inferences. Hence, this survey should not be seen as a formal
analysis but as a snapshot of the current state in the arms race between obfuscation
and code analysis. We considered the effects of obfuscations applied in isolation of each
other, but we would like to point out that the analysis of combinations of multiple types
of obfuscations constitutes an interesting area for future research.

Our results indicate that the strength of obfuscations heavily depends on the goals
of the analyst and the available resources. Most of the more heavyweight analysis ap-
proaches introduced in academia have only been demonstrated to work on relatively
small and specific examples, whereas large real-world programs can be significantly
harder to analyze. A major limiting factor for code analysis is that the high complexity
of the analysis problems often exceeds the resources available to the analyst. There-
fore, simple obfuscations can still be quite effective where the deployed techniques
have to be fast and lightweight, like many pattern matching or static analysis algo-
rithms. This explains the unbroken popularity of software obfuscation among malware
writers. Where more resources are available to run an expensive dynamic analysis or
even perform manual reverse engineering, obfuscations are much less effective. As a
result, intellectual property protection against a human adversary remains challeng-
ing.

Another observation is that much of the current academic research on code analysis
in the presence of obfuscations focuses on malware. Frequently, the relevant literature
describes methods for classifying programs as malicious based on identifying obfusca-
tion techniques that are common in malware. The analysis of the actual functionality
of an obfuscated program is typically left out of scope. Substantially less academic re-
search has been done on reverse engineering obfuscated general (non-malicious) pro-
grams, and tool support is worse.

The arms race between software obfuscation and analysis is still ongoing and the
fundamental challenge of devising software protection mechanisms that are resistant
against a human analyst remains. With today’s software obfuscation techniques one
has to assume that a dedicated analyst who is willing to spend enough time and effort
will always be able to successfully analyze a program. Nevertheless, as this survey

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.

Protecting Software through Obfuscation: Can It Keep Pace with Progress in Code Analysis? 4:29

shows, specific classes of software obfuscation can be effective in more restricted anal-
ysis scenarios.

Acknowledgments
This work has been carried out partially within the scope of TARGET, the Josef Ressel
Center for Unified Threat Intelligence on Targeted Attacks. The financial support by
the Austrian Federal Ministry of Science, Research and Economy and the National
Foundation for Research, Technology and Development is gratefully acknowledged.
The research was partially funded under Grant 826461 (FIT-IT) by the FFG – Austrian
Research Promotion Agency.

REFERENCES

ANATI, I., GUERON, S., JOHNSON, S., and SCARLATA, V. 2013. Innovative technol-
ogy for cpu based attestation and sealing. In Proceedings of the 2nd International
Workshop on Hardware and Architectural Support for Security and Privacy.

ANCKAERT, B., DE SUTTER, B., and DE BOSSCHERE, K. 2004. Software Piracy Pre-
vention through Diversity. In Proceedings of the 4th Acm Workshop on Digital Rights
Management. ACM, 63–71.

ANCKAERT, B., JAKUBOWSKI, M., and VENKATESAN, R. 2006. Proteus: Virtualization
for Diversified Tamper-Resistance. In Proceedings of the ACM Workshop on Digital
Rights Management. ACM, 47–58.

ANCKAERT, B., JAKUBOWSKI, M. H., VENKATESAN, R., and SAW, C. W. 2009. Run-
time Protection Via Dataflow Flattening. In 3rd International Conference on Emerg-
ing Security Information, Systems and Technologies (SECURWARE ’09). IEEE, 242–
248.

ANCKAERT, B., MADOU, M., DE SUTTER, B., DE BUS, B., DE BOSSCHERE, K., and
PRENEEL, B. 2007. Program Obfuscation: A Quantitative Approach. In Proceedings
of the 2007 ACM Workshop on Quality of Protection. ACM, 15–20.

AVOINE, G., JUNOD, P., and OECHSLIN, P. 2007. Computer System Security: Basic
Concepts and Solved Exercises. EPFL Press.

BACON, D., GRAHAM, S., and SHARP, O. 1994. Compiler Transformations for High-
Performance Computing. ACM Computing Surveys 26, 4 (1994), 345–420.

BALAKRISHNAN, G. and REPS, T. W. 2004. Analyzing Memory Accesses in x86 Exe-
cutables. In Compiler Construction, Evelyn Duesterwald (Ed.). Vol. 2985. Springer,
5–23.

BARAK, B., GARG, S., KALAI, Y. T., PANETH, O., and SAHAI, A. 2014. Protecting ob-
fuscation against algebraic attacks. In Advances in Cryptology–EUROCRYPT 2014.
Springer, 221–238.

BARAK, B., GOLDREICH, O., IMPAGLIAZZO, R., RUDICH, S., SAHAI, A., VADHAN, S.,
and YANG, K. 2001. On the (Im)possibility of Obfuscating Programs. In Advances in
Cryptology–Crypto 2001. Springer, 1–18.

BARDIN, S., HERRMANN, P., and VÉDRINE, F. 2011. Refinement-Based CFG Recon-
struction from Unstructured Programs. In Proceedings of the 12th International
Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI
’11). 54–69.

BAYER, U., KRUEGEL, C., and KIRDA, E. 2006. TTAnalyze: A Tool for Analyzing Mal-
ware. In 15th Annual Conference of the European Institute for Computer Antivirus
Research (EICAR).

BILAR, D. 2007. Opcodes as Predictor for Malware. International Journal of Electronic
Security and Digital Forensics 1, 2 (2007), 156–168.

BILLET, O., GILBERT, H., and ECH-CHATBI, C. 2005. Cryptanalysis of a White Box

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.

4:30 Schrittwieser et al.

AES Implementation. In Proceedings of the 11th International Conference on Se-
lected Areas in Cryptography. Springer, 227–240.

BIONDI, P. and DESCLAUX, F. 2006. Silver Needle in the Skype. Black Hat Europe 6
(2006), 25–47.

BITANSKY, N., CANETTI, R., COHN, H., GOLDWASSER, S., KALAI, Y. T., PANETH,
O., and ROSEN, A. 2014. The impossibility of obfuscation with auxiliary input or a
universal simulator. In Advances in Cryptology–CRYPTO 2014. Springer, 71–89.

BITANSKY, N., CANETTI, R., GOLDWASSER, S., HALEVI, S., KALAI, Y. T., and ROTH-
BLUM, G. N. 2011. Program Obfuscation with Leaky Hardware. In Advances in
Cryptology–Asiacrypt 2011. Vol. 7073. Springer, 722–739.

BOURQUIN, M., KING, A., and ROBBINS, E. 2013. BinSlayer: accurate comparison of
binary executables. In Proceedings of the 2nd ACM SIGPLAN Program Protection
and Reverse Engineering Workshop. ACM.

BRAKERSKI, Z. and ROTHBLUM, G. N. 2014. Virtual black-box obfuscation for all
circuits via generic graded encoding. In Theory of Cryptography. Springer, 1–25.

BRANCO, R. R., BARBOSA, G. N., and NETO, P. D. 2012. Scientific but Not Academical
Overview of Malware Anti-Debugging, Anti-Disassembly and Anti-VM Technologies.
In Blackhat 2012.

BRAND, M. 2010. Analysis Avoidance Techniques of malicious software. Ph.D. Disser-
tation. Edith Cowan University.

BRINGER, J., CHABANNE, H., and DOTTAX, E. 2006. White Box Cryptography: An-
other Attempt. IACR Cryptology Eprint Archive 2006 (2006).

BROSCH, T. and MORGENSTERN, M. 2006. Runtime Packers: The Hidden Problem.
Black Hat USA (2006).

BRUMLEY, D., JAGER, I., AVGERINOS, T., and SCHWARTZ, E. J. 2011. BAP: A Binary
Analysis Platform. In 23th International Conference on Computer Aided Verification
(CAV ’11). 463–469.

BRUMLEY, D., POOSANKAM, P., SONG, D., and ZHENG, J. 2008. Automatic patch-
based exploit generation is possible: Techniques and implications. In Security and
Privacy, 2008. SP 2008. IEEE Symposium on. IEEE, 143–157.

BRUSCHI, D., MARTIGNONI, L., and MONGA, M. 2006a. Detecting Self-Mutating Mal-
ware Using Control-Flow Graph Matching. Detection of Intrusions and Malware &
Vulnerability Assessment (2006), 129–143.

BRUSCHI, D., MARTIGNONI, L., and MONGA, M. 2006b. Using code normalization for
fighting self-mutating malware. In Proceedings of the International Symposium on
Secure Software Engineering. 37–44.

CABALLERO, J., JOHNSON, N. M., MCCAMANT, S., and SONG, D. 2010. Binary Code
Extraction and Interface Identification for Security Applications. In Proceedings of
Network and Distributed System Security Symposium (NDSS ’09).

CADAR, C., GANESH, V., PAWLOWSKI, P. M., DILL, D. L., and ENGLER, D. R. 2006.
EXE: Automatically Generating Inputs of Death. In Proceedings of the 13th ACM
Conference on Computer and Communications Security. 322–335.

CALVET, J., FERNANDEZ, J. M., and MARION, J.-Y. 2012. Aligot: Cryptographic Func-
tion Identification in Obfuscated Binary Programs. In Proceedings of the 19th ACM
Conference on Computer and Communications Security. ACM, 169–182.

CANETTI, R. and DAKDOUK, R. 2008. Obfuscating Point Functions with Multibit
Output. Advances in Cryptology–Eurocrypt 2008 (2008), 489–508.

CANFORA, G., CIMITILE, A., and DE LUCIA, A. 1998. Conditioned Program Slicing.
Information and Software Technology 40, 11 (1998), 595–607.

CANFORA, G., CIMITILE, A., DE LUCIA, A., and DI LUCCA, G. A. 1994. Software
Salvaging Based on Conditions. In Proceedings of the International Conference on
Software Maintenance (ICSM ’94). IEEE, 424–433.

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.

Protecting Software through Obfuscation: Can It Keep Pace with Progress in Code Analysis? 4:31

CAPPAERT, J., KISSERLI, N., SCHELLEKENS, D., and PRENEEL, B. 2006. Self-
Encrypting Code to Protect against Analysis and Tampering. In 1st Benelux Work-
shop on Information and System Security.

CAPPAERT, J. and PRENEEL, B. 2010. A General Model for Hiding Control Flow.
In Proceedings of the 10th Annual ACM Workshop on Digital Rights Management.
ACM, 35–42.

CHANG, H. and ATALLAH, M. J. 2002. Protecting Software Code by Guards. In Revised
Papers from the ACM CCS-8 Workshop on Security and Privacy in Digital Rights
Management. Springer, 160–175.

CHOUCHANE, M. R. and LAKHOTIA, A. 2006. Using Engine Signature to Detect Meta-
morphic Malware. In Proceedings of the 4th ACM Workshop on Recurring Malcode.
ACM, 73–78.

CHOW, S., EISEN, P., JOHNSON, H., and VAN OORSCHOT, P. 2003a. White-Box Cryp-
tography and an AES Implementation. In Revised Papers from the 9th Annual Inter-
national Workshop on Selected Areas in Cryptography. Springer, 250–270.

CHOW, S., EISEN, P., JOHNSON, H., and VAN OORSCHOT, P. C. 2003b. A White-Box
DES Implementation for DRM Applications. In Digital Rights Management. Vol.
2696. Springer, 1–15.

CHOW, S., GU, Y., JOHNSON, H., and ZAKHAROV, V. A. 2001. An Approach to the
Obfuscation of Control-Flow of Sequential Computer Programs. In Information Se-
curity. Springer, 144–155.

CHRISTODORESCU, M., JHA, S., KINDER, J., KATZENBEISSER, S., and VEITH, H.
2007. Software Transformations to Improve Malware Detection. Journal in Com-
puter Virology 3, 4 (2007), 253–265.

CHRISTODORESCU, M., JHA, S., SESHIA, S., SONG, D., and BRYANT, R. 2005.
Semantics-Aware Malware Detection. In 26th IEEE Symposium on Security and
Privacy. IEEE, 32–46.

CIFUENTES, C. and GOUGH, K. J. 1995. Decompilation of Binary Programs. Software:
Practice and Experience 25, 7 (1995), 811–829.

CIMITILE, A., DE LUCIA, A., and MUNRO, M. 1996. A Specification Driven Slicing
Process for Identifying Reusable Functions. Journal of Software Maintenance: Re-
search and Practice 8, 3 (1996), 145–178.

COHEN, F. 1993. Operating System Protection through Program Evolution. Computers
& Security 12, 6 (1993), 565–584.

COLLBERG, C. and NAGRA, J. 2009. Surreptitious Software: Obfuscation, Watermark-
ing, and Tamperproofing for Software Protection. Addison-Wesley Professional.

COLLBERG, C., THOMBORSON, C., and LOW, D. 1997. A Taxonomy of Obfuscating
Transformations. Technical Report. Department of Computer Science, The Univer-
sity of Auckland, New Zealand.

COLLBERG, C., THOMBORSON, C., and LOW, D. 1998a. Breaking Abstractions and
Unstructuring Data Structures. In Proceedings of the 1998 International Conference
on Computer Languages. IEEE, 28–38.

COLLBERG, C., THOMBORSON, C., and LOW, D. 1998b. Manufacturing Cheap, Re-
silient, and Stealthy Opaque Constructs. In Proceedings of the 25th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. ACM, 184–196.

COMPARETTI, P. M., SALVANESCHI, G., KIRDA, E., KOLBITSCH, C., KRUEGEL, C.,
and ZANERO, S. 2010. Identifying Dormant Functionality in Malware Programs. In
30th IEEE Symposium on Security and Privacy. IEEE, 61–76.

COOGAN, K., DEBRAY, S., KAOCHAR, T., and TOWNSEND, G. 2009. Automatic Static
Unpacking of Malware Binaries. In 16th Working Conference on Reverse Engineering
(WCRE ’09). IEEE, 167–176.

COOGAN, K., LU, G., and DEBRAY, S. 2011. Deobfuscation of Virtualization-

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.

4:32 Schrittwieser et al.

Obfuscated Software: A Semantics-Based Approach. In Proceedings of the 18th ACM
Conference on Computer and Communications Security. ACM, 275–284.

COPPENS, B., DE SUTTER, B., and MAEBE, J. 2013. Feedback-driven binary code
diversification. ACM Transactions on Architecture and Code Optimization (TACO)
9, 4 (2013).

COZZIE, A., STRATTON, F., XUE, H., and KING, S. T. 2008. Digging for Data Struc-
tures. In Symposium on Operating Systems Design and Implementation (OSDI ’08).

CRANDALL, J. R., WASSERMANN, G., DE OLIVEIRA, D. A., SU, Z., WU, S. F., and
CHONG, F. T. 2006. Temporal Search: Detecting Hidden Malware Timebombs with
Virtual Machines. ACM SIGPLAN Notices 41, 11 (2006), 25–36.

DALLA PREDA, M. and GIACOBAZZI, R. 2005. Semantic-Based Code Obfuscation
by Abstract Interpretation. In Automata, Languages and Programming. Springer,
1325–1336.

DALLA PREDA, M., GIACOBAZZI, R., DEBRAY, S., COOGAN, K., and TOWNSEND, G.
2011. Modelling Metamorphism by Abstract Interpretation. Static Analysis (2011),
218–235.

DALLA PREDA, M., MADOU, M., DE BOSSCHERE, K., and GIACOBAZZI, R. 2006.
Opaque Predicates Detection by Abstract Interpretation. Algebraic Methodology and
Software Technology (2006), 81–95.

DANICIC, S., DAOUDI, M., FOX, C., HARMAN, M., HIERONS, R. M., HOWROYD, J. R.,
OURABYA, L., and WARD, M. 2005. Consus: A Light-Weight Program Conditioner.
Journal of Systems and Software 77, 3 (2005), 241–262.

DANICIC, S., DE LUCIA, A., and HARMAN, M. 2004. Building Executable Union Slices
Using Conditioned Slicing. In Proceedings of the 12th IEEE International Workshop
on Program Comprehension. IEEE, 89–97.

DAS, M., LERNER, S., and SEIGLE, M. 2002. ESP: Path-Sensitive Program Verifica-
tion in Polynomial Time. In Proceedings of the ACM SIGPLAN 2002 Conference on
Programming Language Design and Implementation. 57–68.

DAVI, L., DMITRIENKO, A., NÜRNBERGER, S., and SADEGHI, A.-R. 2012. XIFER:
A Software Diversity Tool against Code-Reuse Attacks. In 4th ACM International
Workshop on Wireless of the Students, by the Students, for the Students (S3 2012).

DE MULDER, Y., WYSEUR, B., and PRENEEL, B. 2010. Cryptanalysis of a Perturbated
White-Box AES Implementation. In Progress in Cryptology - INDOCRYPT 2010.
Springer, 292–310.

DE SUTTER, B., ANCKAERT, B., GEIREGAT, J., CHANET, D., and DE BOSSCHERE,
K. 2009. Instruction Set Limitation in Support of Software Diversity. Information
Security and Cryptology (2009), 152–165.

DEBRAY, S. and PATEL, J. 2010. Reverse Engineering Self-Modifying Code: Unpacker
Extraction. In 17th Working Conference on Reverse Engineering (WCRE ’10). IEEE,
131–140.

DEDIĆ, N., JAKUBOWSKI, M., and VENKATESAN, R. 2007. A Graph Game Model for
Software Tamper Protection. In Proceedings of the 9th International Conference on
Information Hiding. Springer-Verlag, 80–95.

DEPREZ, J. and LAKHOTIA, A. 2000. A Formalism to Automate Mapping from Pro-
gram Features to Code. In Proceedings of the 8th International Workshop on Program
Comprehension. IEEE, 69–78.

DYER, K. P., COULL, S. E., RISTENPART, T., and SHRIMPTON, T. 2013. Protocol
misidentification made easy with format-transforming encryption. In Proceedings of
the 2013 ACM SIGSAC conference on Computer & communications security. ACM,
61–72.

EAGLE, C. 2008. The IDA Pro Book: The Unofficial Guide to the World’s Most Popular
Disassembler. No Starch Press.

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.

Protecting Software through Obfuscation: Can It Keep Pace with Progress in Code Analysis? 4:33

EGELE, M., SCHOLTE, T., KIRDA, E., and KRUEGEL, C. 2012. A Survey on Automated
Dynamic Malware-Analysis Techniques and Tools. ACM Computing Surveys 44, 2
(2012).

EILAM, E. 2005. Reversing: Secrets of Reverse Engineering. Wiley.
EMMERIK, M. and WADDINGTON, T. 2004. Using a Decompiler for Real-World Source

Recovery. In In Proceedings of the 11th Working Conference on Reverse Engineering.
IEEE, 27–36.

FERGUSON, J. and KAMINSKY, D. 2008. Reverse Engineering Code with IDA Pro.
Syngress.

FIELD, J., RAMALINGAM, G., and TIP, F. 1995. Parametric Program Slicing. In Pro-
ceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages. ACM, 379–392.

FLAKE, H. 2004. Structural Comparison of Executable Objects. In Detection of Intru-
sions and Malware & Vulnerability Assessment, GI SIG SIDAR Workshop, DIMVA
2004, Dortmund, Germany, July 6.7, 2004, Proceedings. 161–173.

FOKET, C., DE SUTTER, B., COPPENS, B., and DE BOSSCHERE, K. 2013. A novel
obfuscation: class hierarchy flattening. In Foundations and Practice of Security.
Springer, 194–210.

FOKET, C., DE SUTTER, B., and DE BOSSCHERE, K. 2014. Pushing Java Type Ob-
fuscation to the Limit. IEEE Transactions on Dependable and Secure Computing 6
(2014), 553–567.

FORREST, S., SOMAYAJI, A., and ACKLEY, D. H. 1997. Building diverse computer
systems. In Operating Systems, 1997., The Sixth Workshop on Hot Topics in. IEEE,
67–72.

FOX, C., DANICIC, S., HARMAN, M., and HIERONS, R. M. 2004. ConSIT: A Fully
Automated Conditioned Program Slicer. Software: Practice and Experience 34, 1
(2004), 15–46.

FRANZ, M. 2010. E Unibus Pluram: Massive-Scale Software Diversity as a Defense
Mechanism. In Proceedings of the 2010 Workshop on New Security Paradigms. ACM,
7–16.

FU, B., ARAVALLI, S., and ABRAHAM, J. 2007. Software Protection by Hardware and
Obfuscation. In Proceedings of the 2007 International Conference on Security & Man-
agement (SAM 2007). 367–373.

GAO, D., REITER, M. K., and SONG, D. 2008. Binhunt: Automatically finding seman-
tic differences in binary programs. In Information and Communications Security.
Springer, 238–255.

GARG, S., GENTRY, C., HALEVI, S., RAYKOVA, M., SAHAI, A., and WATERS, B. 2013.
Candidate indistinguishability obfuscation and functional encryption for all circuits.
In Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium
on. IEEE, 40–49.

GHOSH, S., HISER, J. D., and DAVIDSON, J. W. 2010. A secure and robust approach
to software tamper resistance. In Information Hiding. Springer, 33–47.

GIACOBAZZI, R. 2008. Hiding Information in Completeness Holes: New Perspectives
in Code Obfuscation and Watermarking. In 6th IEEE International Conference on
Software Engineering and Formal Methods (SEFM ’08). IEEE, 7–18.

GIACOBAZZI, R. and MASTROENI, I. 2012. Making Abstract Interpretation Incom-
plete: Modeling the Potency of Obfuscation. In Proceedings of the 19th International
Symposium Static Analysis (SAS 2012). Springer, 129–145.

GODEFROID, P., KLARLUND, N., and SEN, K. 2005. DART: Directed Automated Ran-
dom Testing. In Proceedings of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’05). 213–223.

GODEFROID, P., LEVIN, M. Y., and MOLNAR, D. A. 2008. Automated Whitebox Fuzz

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.

4:34 Schrittwieser et al.

Testing. In Proceedings of Network and Distributed System Security Symposium
(NDSS ’08).

GOLDWASSER, S. and ROTHBLUM, G. N. 2007. On Best-Possible Obfuscation. In
Theory of Cryptography. Vol. 4392. Springer, 194–213.

GOUBIN, L., MASEREEL, J., and QUISQUATER, M. 2007. Cryptanalysis of White Box
DES Implementations. In Selected Areas in Cryptography. Vol. 4876. Springer, 278–
295.

GRIFFIN, K., SCHNEIDER, S., HU, X., and CHIUEH, T. 2009. Automatic Generation of
String Signatures for Malware Detection. In Recent Advances in Intrusion Detection.
Lecture Notes in Computer Science, Vol. 5758. Springer, 101–120.

GRÖBERT, F., WILLEMS, C., and HOLZ, T. 2011. Automated Identification of Crypto-
graphic Primitives in Binary Programs. In Recent Advances in Intrusion Detection.
Lecture Notes in Computer Science, Vol. 6961. Springer, 41–60.

GROVER, D. 1992. Protection of Computer Software: Its Technology and Application.
Cambridge University Press.

GUILLOT, Y. and GAZET, A. 2010. Automatic Binary Deobfuscation. Journal in Com-
puter Virology 6, 3 (2010), 261–276.

GUIZANI, W., MARION, J.-Y., and REYNAUD-PLANTEY, D. 2009. Server-side dynamic
code analysis. In Malicious and unwanted software (MALWARE), 2009 4th interna-
tional conference on. IEEE, 55–62.

HARRIS, L. and MILLER, B. 2005. Practical Analysis of Stripped Binary Code. ACM
SIGARCH Computer Architecture News 33, 5 (2005), 63–68.

HORNE, B., MATHESON, L., SHEEHAN, C., and TARJAN, R. E. 2002. Dynamic Self-
Checking Techniques for Improved Tamper Resistance. In Revised Papers from
the ACM CCS-8 Workshop on Security and Privacy in Digital Rights Management.
Springer, 141–159.

HORWITZ, S. 1997. Precise Flow-Insensitive May-Alias Analysis is NP-Hard. ACM
Transactions on Programming Languages and Systems 19, 1 (1997), 1–6.

JACOB, G., COMPARETTI, P. M., NEUGSCHWANDTNER, M., KRUEGEL, C., and VI-
GNA, G. 2012. A Static, Packer-Agnostic Filter to Detect Similar Malware Samples.
In Proceedings of the 9th International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment. Springer-Verlag, 102–122.

JACOB, M., BONEH, D., and FELTEN, E. 2003. Attacking an Obfuscated Cipher by
Injecting Faults. Digital Rights Management (2003), 16–31.

JACOB, M., JAKUBOWSKI, M. H., and VENKATESAN, R. 2007. Towards Integral Bi-
nary Execution: Implementing Oblivious Hashing Using Overlapped Instruction En-
codings. In Proceedings of the 9th Workshop on Multimedia & Security. ACM, 129–
140.

JAKUBOWSKI, M., NALDURG, P., PATANKAR, V., and VENKATESAN, R. 2007. Software
Integrity Checking Expressions (ICEs) for Robust Tamper Detection. In Information
Hiding. Vol. 4567. Springer, 96–111.

KANG, M. G., POOSANKAM, P., and YIN, H. 2007. Renovo: A Hidden Code Extractor
for Packed Executables. In Proceedings of the 2007 ACM Workshop on Recurring
Malcode. ACM, 46–53.

KANZAKI, Y., MONDEN, A., NAKAMURA, M., and MATSUMOTO, K.-I. 2003. Exploiting
Self-Modification Mechanism for Program Protection. In Proceedings of the 27th An-
nual International Conference on Computer Software and Applications. IEEE, 170–
179.

KARNIK, A., GOSWAMI, S., and GUHA, R. 2007. Detecting Obfuscated Viruses Using
Cosine Similarity Analysis. In 1st Asia International Conference on Modelling &
Simulation (AMS ’07). IEEE, 165–170.

KHOLIA, D. and WEGRZYN, P. 2013. Looking inside the (Drop)Box. In 7th Usenix

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.

Protecting Software through Obfuscation: Can It Keep Pace with Progress in Code Analysis? 4:35

Workshop on Offensive Technologies (Woot ’13).
KINDER, J. 2012. Towards Static Analysis of Virtualization-Obfuscated Binaries. In

Proceedings of the 19th Working Conf. Reverse Engineering (WCRE 2012). IEEE, 61–
70.

KINDER, J., KATZENBEISSER, S., SCHALLHART, C., and VEITH, H. 2005. Detecting
Malicious Code by Model Checking. In Detection of Intrusions and Malware, and
Vulnerability Assessment. Vol. 3548. Springer, 174–187.

KINDER, J. and VEITH, H. 2008. Jakstab: A Static Analysis Platform for Binaries. In
20th International Conference on Computer Aided Verification (CAV ’08). Springer,
423–427.

KINDER, J., ZULEGER, F., and VEITH, H. 2009. An Abstract Interpretation-Based
Framework for Control Flow Reconstruction from Binaries. In Proceedings of the
10th International Conference on Verification, Model Checking, and Abstract Inter-
pretation (VMCAI ’09). Springer, 214–228.

KING, J. C. 1976. Symbolic execution and program testing. Commun. ACM 19, 7
(1976), 385–394.

KING, S. and CHEN, P. 2006. SubVirt: Implementing Malware with Virtual Machines.
In 27th IEEE Symposium on Security and Privacy. IEEE.

KOLBITSCH, C., HOLZ, T., KRUEGEL, C., and KIRDA, E. 2010. Inspector Gadget:
Automated Extraction of Proprietary Gadgets from Malware Binaries. In 30th IEEE
Symposium on Security and Privacy. IEEE, 29–44.

KOLBITSCH, C., KIRDA, E., and KRUEGEL, C. 2011. The Power of Procrastination:
Detection and Mitigation of Execution-Stalling Malicious Code. In Proceedings of the
18th ACM Conference on Computer and Communications Security. ACM, 285–296.

KRÜGEL, C., ROBERTSON, W. K., VALEUR, F., and VIGNA, G. 2004. Static Disassem-
bly of Obfuscated Binaries. In Usenix Security Symposium. 255–270.

LAKHOTIA, A., BOCCARDO, D. R., SINGH, A., and MANACERO JR, A. 2010. Context-
sensitive analysis without calling-context. Higher-Order and Symbolic Computation
23, 3 (2010), 275–313.

LANUBILE, F. and VISAGGIO, G. 1997. Extracting Reusable Functions by Flow Graph
Based Program Slicing. IEEE Transactions on Software Engineering 23, 4 (1997),
246–259.

LÁSZLÓ, T. and KISS, Á. 2009. Obfuscating C++ Programs Via Control Flow Flatten-
ing. Annales Universitatis Scientarum Budapestinensis De Rolando Eötvös Nomi-
natae, Sectio Computatorica 30 (2009), 3–19.

LEDER, F., MARTINI, P., and WICHMANN, A. 2009. Finding and Extracting Crypto
Routines from Malware. In IEEE 28th International Performance Computing and
Communications Conference (IPCCC ’09). IEEE, 394–401.

LI, J., XU, M., ZHENG, N., and XU, J. 2009. Malware Obfuscation Detection Via Maxi-
mal Patterns. In 3rd International Symposium on Intelligent Information Technology
Application (LITA ’09), Vol. 2. IEEE, 324–328.

LIN, Z., ZHANG, X., and XU, D. 2010. Automatic Reverse Engineering of Data Struc-
tures from Binary Execution. In 17th Network and Distributed System Security Sym-
posium.

LINK, H. E. and NEUMANN, W. D. 2005. Clarifying Obfuscation: Improving the Se-
curity of White-Box DES. In International Conference on Information Technology:
Coding and Computing (ITCC ’05), Vol. 1. IEEE, 679–684.

LINK, H. E., SCHROEPPEL, R. C., NEUMANN, W. D., CAMPBELL, P. L., BEAVER,
C. L., PIERSON, L. G., and ANDERSON, W. E. 2004. Securing Mobile Code. Techni-
cal Report. Sandia National Laboratories.

LINN, C. and DEBRAY, S. 2003. Obfuscation of Executable Code to Improve Resistance
to Static Disassembly. In Proceedings of the 10th ACM Conference on Computer and

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.

4:36 Schrittwieser et al.

Communications Security. ACM, 290–299.
LOMB, B. and GUNEYSU, T. 2011. Decrypting HDCP-Protected Video Streams Using

Reconfigurable Hardware. In International Conference on Reconfigurable Computing
and FPGAs (ReConFig ’11). IEEE, 249–254.

LYNN, B., PRABHAKARAN, M., and SAHAI, A. 2004. Positive Results and Techniques
for Obfuscation. In Advances in Cryptology–Eurocrypt 2004. Springer, 20–39.

MADOU, M., ANCKAERT, B., BUS, B. D., BOSSCHERE, K. D., CAPPAERT, J., and PRE-
NEEL, B. 2006. On the Effectiveness of Source Code Transformations for Binary
Obfuscation. In Proceedings of the International Conference on Software Engineer-
ing Research and Practice (SERP06). 527–533.

MADOU, M., ANCKAERT, B., DE SUTTER, B., and DE BOSSCHERE, K. 2005. Hybrid
Static-Dynamic Attacks against Software Protection Mechanisms. In Proceedings of
the 5th Acm Workshop on Digital Rights Management. ACM, 75–82.

MADOU, M., ANCKAERT, B., MOSELEY, P., DEBRAY, S., DE SUTTER, B., and DE BOSS-
CHERE, K. 2006a. Software Protection through Dynamic Code Mutation. In Infor-
mation Security Applications. Springer, 194–206.

MADOU, M., VAN PUT, L., and DE BOSSCHERE, K. 2006b. LOCO: An Interactive
Code (De) Obfuscation Tool. In Proceedings of the 2006 ACM SIGPLAN Symposium
on Partial Evaluation and Semantics-Based Program Manipulation. ACM, 140–144.

MADOU, M., VAN PUT, L., and DE BOSSCHERE, K. 2006c. Understanding Obfuscated
Code. In 14th IEEE International Conference on Program Comprehension (ICPC ’06).
IEEE, 268–274.

MAJUMDAR, A., MONSIFROT, A., and THOMBORSON, C. 2006. On Evaluating Obfus-
catory Strength of Alias-Based Transforms Using Static Analysis. In International
Conference on Advanced Computing and Communications (ADCOM 2006). IEEE,
605–610.

MAJUMDAR, A. and THOMBORSON, C. 2006. Manufacturing opaque predicates in
distributed systems for code obfuscation. In Proceedings of the 29th Australasian
Computer Science Conference-Volume 48. Australian Computer Society, Inc., 187–
196.

MASON, J., SMALL, S., MONROSE, F., and MACMANUS, G. 2009. English shellcode. In
Proceedings of the 16th ACM conference on Computer and communications security.
ACM, 524–533.

MATROSOV, A., RODIONOV, E., HARLEY, D., and MALCHO, J. 2010. Stuxnet under
the microscope. ESET LLC (September 2010) (2010).

MAVROGIANNOPOULOS, N., KISSERLI, N., and PRENEEL, B. 2011. A Taxonomy of
Self-Modifying Code for Obfuscation. Computers & Security 30, 8 (2011), 679–691.

MICHIELS, W., GORISSEN, P., and HOLLMANN, H. D. 2009. Cryptanalysis of a Generic
Class of White-Box Implementations. In Selected Areas in Cryptography. Vol. 5381.
Springer, 414–428.

MILES, C., LAKHOTIA, A., and WALENSTEIN, A. 2012. In situ reuse of logically ex-
tracted functional components. Journal in Computer Virology 8, 3 (2012), 73–84.

MONDEN, A., MONSIFROT, A., and THOMBORSON, C. 2004. A framework
for obfuscated interpretation. In Proceedings of the second workshop on Aus-
tralasian information security, Data Mining and Web Intelligence, and Software
Internationalisation-Volume 32. Australian Computer Society, Inc., 7–16.

MOSER, A., KRUEGEL, C., and KIRDA, E. 2007a. Exploring Multiple Execution Paths
for Malware Analysis. In 28th IEEE Symposium on Security and Privacy. IEEE,
231–245.

MOSER, A., KRUEGEL, C., and KIRDA, E. 2007b. Limits of Static Analysis for Malware
Detection. In 23rd Annual Computer Security Applications Conference (ACSAC ’07).
IEEE, 421–430.

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.

Protecting Software through Obfuscation: Can It Keep Pace with Progress in Code Analysis? 4:37

MYSKA, M. 2009. The True Story of DRM. Masaryk Ujl & Tech. 3 (2009).
NACHENBERG, C. 1997. Computer Virus-Coevolution. Communications of the ACM

50, 1 (1997), 46–51.
NAGARAJAN, V., GUPTA, R., ZHANG, X., MADOU, M., and DE SUTTER, B. 2007.

Matching control flow of program versions. In Software Maintenance, 2007. ICSM
2007. IEEE International Conference on. IEEE, 84–93.

NEWSOME, J., KARP, B., and SONG, D. 2005. Polygraph: Automatically Generating
Signatures for Polymorphic Worms. In 26th IEEE Symposium on Security and Pri-
vacy. IEEE, 226–241.

NIELSON, F., NIELSON, H. R., and HANKIN, C. 1999. Principles of Program Analysis.
Springer.

NING, J. Q., ENGBERTS, A., and KOZACZYNSKI, W. 1993. Recovering Reusable Com-
ponents from Legacy Systems by Program Segmentation. In Proceedings of the Work-
ing Conference on Reverse Engineering. IEEE, 64–72.

PALSBERG, J., KRISHNASWAMY, S., KWON, M., MA, D., SHAO, Q., and ZHANG, Y.
2000. Experience with software watermarking. In Computer Security Applications,
2000. ACSAC’00. 16th Annual Conference. IEEE, 308–316.

PIAZZALUNGA, U., SALVANESCHI, P., BALDUCCI, F., JACOMUZZI, P., and MORON-
CELLI, C. 2007. Security Strength Measurement for Dongle-Protected Software.
Security & Privacy, IEEE 5, 6 (2007), 32–40.

POPOV, I. V., DEBRAY, S. K., and ANDREWS, G. R. 2007. Binary Obfuscation Using
Signals. In Usenix Security Symposium. 275–290.

QUIST, D. A. and LIEBROCK, L. M. 2009. Visualizing Compiled Executables for Mal-
ware Analysis. In 6th International Workshop on Visualization for Cyber Security,
2009 (VizSec ’09). IEEE, 27–32.

RABER, J. and LASPE, E. 2007. Deobfuscator: An Automated Approach to the Iden-
tification and Removal of Code Obfuscation. In 14th Working Conference on Reverse
Engineering (WCRE ’07). IEEE, 275–276.

RAMALINGAM, G. 1994. The Undecidability of Aliasing. ACM Transactions on Pro-
gramming Languages and Systems 16, 5 (1994), 1467–1471.

RIORDAN, J. and SCHNEIER, B. 1998. Environmental Key Generation Towards Clue-
less Agents. Mobile Agents and Security (1998), 15–24.

ROLLES, R. 2009. Unpacking Virtualization Obfuscators. In 3rd Usenix Workshop on
Offensive Technologies (Woot ’09).

ROUNDY, K. A. and MILLER, B. P. 2013. Binary-Code Obfuscations in Prevalent
Packer Tools. ACM Computing Surveys 46, 1 (2013).

ROYAL, P., HALPIN, M., DAGON, D., EDMONDS, R., and LEE, W. 2006. Polyunpack:
Automating the Hidden-Code Extraction of Unpack-Executing Malware. In 22nd
Annual Computer Security Applications Conference (ACSAC ’06). IEEE, 289–300.

RUGABER, S., STIREWALT, K., and WILLS, L. 1995. The Interleaving Problem in
Program Understanding. In Proceedings of the 2nd Working Conference on Reverse
Engineering. IEEE, 166–175.

SAKABE, Y., SOSHI, M., and MIYAJI, A. 2005. Java obfuscation approaches to con-
struct tamper-resistant object-oriented programs. IPSJ Digital Courier 1 (2005),
349–361.

SAXENA, A., WYSEUR, B., and PRENEEL, B. 2009. Towards Security Notions for
White-Box Cryptography. In Information Security. Springer, 49–58.

SCHRITTWIESER, S. and KATZENBEISSER, S. 2011. Code Obfuscation against Static
and Dynamic Reverse Engineering. In Proceedings of the 13th International Confer-
ence on Information Hiding (IH ’11). Springer, 270–284.

SCHRITTWIESER, S., KATZENBEISSER, S., KIESEBERG, P., HUBER, M., LEITHNER,
M., MULAZZANI, M., and WEIPPL, E. 2013. Covert Computation: Hiding Code in

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.

4:38 Schrittwieser et al.

Code for Obfuscation Purposes. In Proceedings of the 8th ACM SIGSAC Symposium
on Information, Computer and Communications Security. ACM, 529–534.

SCHWARTZ, E. J., AVGERINOS, T., and BRUMLEY, D. 2010. All You Ever Wanted to
Know about Dynamic Taint Analysis and Forward Symbolic Execution (but Might
Have Been Afraid to Ask). In 31st IEEE Symposium on Security and Privacy, S&P
2010. 317–331.

SCHWARTZ, E. J., LEE, J., WOO, M., and BRUMLEY, D. 2013. Native x86 Decompi-
lation Using Semantics-Preserving Structural Analysis and Iterative Control-Flow
Structuring. In Usenix Security Symposium.

SCHWARZ, B., DEBRAY, S., and ANDREWS, G. 2002. Disassembly of Executable Code
Revisited. In 9th Working Conference on Reverse Engineering. IEEE, 45–54.

SEN, K., MARINOV, D., and AGHA, G. 2005. CUTE: a concolic unit testing engine for
C. In Proceedings of the 10th European Software Engineering Conference held jointly
with 13th ACM SIGSOFT International Symposium on Foundations of Software En-
gineering, 2005, Lisbon, Portugal, September 5-9, 2005. 263–272.

SHACHAM, H. 2007. The geometry of innocent flesh on the bone: Return-into-libc
without function calls (on the x86). In Proceedings of the 14th ACM conference on
Computer and communications security. ACM, 552–561.

SHAMIR, A. and VAN SOMEREN, N. 1999. Playing ’Hide and Seek’ with Stored Keys.
In Financial Cryptography. Vol. 1648. Springer, 118–124.

SHARIF, M., LANZI, A., GIFFIN, J., and LEE, W. 2009. Automatic Reverse Engineering
of Malware Emulators. In 30th IEEE Symposium on Security and Privacy. IEEE,
94–109.

SHARIF, M., YEGNESWARAN, V., SAIDI, H., PORRAS, P., and LEE, W. 2008. Eureka: A
Framework for Enabling Static Malware Analysis. Computer Security-Esorics 2008
(2008), 481–500.

SHARIF, M. I., LANZI, A., GIFFIN, J. T., and LEE, W. 2008. Impeding Malware Analy-
sis Using Conditional Code Obfuscation.. In Proceedings of Network and Distributed
System Security Symposium (NDSS ’08).

SLOWINSKA, A., STANCESCU, T., and BOS, H. 2011. Howard: A Dynamic Excavator
for Reverse Engineering Data Structures. In Proceedings of Network and Distributed
System Security Symposium (NDSS ’11).

SNEED, H. M. 2000. Encapsulation of Legacy Software: A Technique for Reusing
Legacy Software Components. Annals of Software Engineering 9, 1-2 (2000), 293–
313.

SONG, D., BRUMLEY, D., YIN, H., CABALLERO, J., JAGER, I., KANG, M. G., LIANG, Z.,
NEWSOME, J., POOSANKAM, P., and SAXENA, P. 2008. BitBlaze: A New Approach
to Computer Security Via Binary Analysis. In Proceedings of the 4th International
Conference on Information Systems Security. Keynote Invited Paper.

SONG, Y., LOCASTO, M. E., STAVROU, A., KEROMYTIS, A. D., and STOLFO, S. J.
2010. On the infeasibility of modeling polymorphic shellcode. Machine learning 81,
2 (2010), 179–205.

SOSONKIN, M., NAUMOVICH, G., and MEMON, N. 2003. Obfuscation of design intent
in object-oriented applications. In Proceedings of the 3rd ACM workshop on Digital
rights management. ACM, 142–153.

STEWART, J. 2006. Ollybone: Semi-Automatic Unpacking on IA-32. In Proceedings of
the 14th Def Con Hacking Conference.

TANG, Y. and CHEN, S. 2007. An Automated Signature-Based Approach against Poly-
morphic Internet Worms. IEEE Transactions on Parallel and Distributed Systems
18, 7 (2007).

THAKUR, A., LIM, J., LAL, A., BURTON, A., DRISCOLL, E., ELDER, M., ANDERSEN,
T., and REPS, T. 2010. Directed Proof Generation for Machine Code. In 22th Inter-

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.

Protecting Software through Obfuscation: Can It Keep Pace with Progress in Code Analysis? 4:39

national Conference on Computer Aided Verification (CAV ’10). Springer, 288–305.
TILLEY, S., PAUL, S., and SMITH, D. 1996. Towards a Framework for Program Un-

derstanding. In 4th Workshop on Program Comprehension. IEEE, 19–28.
TREADWELL, S. and ZHOU, M. 2009. A Heuristic Approach for Detection of Obfuscated

Malware. In IEEE International Conference on Intelligence and Security Informatics
(ISI ’09). IEEE, 291–299.

TSAI, H., HUANG, Y., and WAGNER, D. 2009. A Graph Approach to Quantitative
Analysis of Control-Flow Obfuscating Transformations. IEEE Transactions on In-
formation Forensics and Security 4, 2 (2009), 257–267.

UDUPA, S., DEBRAY, S., and MADOU, M. 2005. Deobfuscation: Reverse Engineering
Obfuscated Code. In 12th Working Conference on Reverse Engineering. IEEE.

VRBA, Z., HALVORSEN, P., and GRIWODZ, C. 2010. Program Obfuscation by Strong
Cryptography. In International Conference on Availability, Reliability, and Security
(ARES ’10). IEEE, 242–247.

WALENSTEIN, A., MATHUR, R., CHOUCHANE, M., and LAKHOTIA, A. 2006. Nor-
malizing Metamorphic Malware Using Term Rewriting. In 6th IEEE International
Workshop on Source Code Analysis and Manipulation (SCAM ’06). IEEE, 75–84.

WANG, C., DAVIDSON, J., HILL, J., and KNIGHT, J. 2001. Protection of Software-Based
Survivability Mechanisms. In Proceedings of the 2001 International Conference on
Dependable Systems and Networks (Formerly: FTCS). IEEE, 193–202.

WANG, C., HILL, J., KNIGHT, J., and DAVIDSON, J. 2000. Software Tamper Resistance:
Obstructing Static Analysis of Programs. Technical Report. CS-2000-12, University
of Virginia.

WEBSTER, M. and MALCOLM, G. 2009. Detection of Metamorphic and Virtualization-
Based Malware Using Algebraic Specification. Journal in Computer Virology 5, 3
(2009), 221–245.

WEE, H. 2005. On Obfuscating Point Functions. In Proceedings of the 37th Annual
ACM Symposium on Theory of Computing. ACM, 523–532.

WILDE, N. and SCULLY, M. 2006. Software Reconnaissance: Mapping Program Fea-
tures to Code. Journal of Software Maintenance: Research and Practice 7, 1 (2006),
49–62.

WILLEMS, C. and FREILING, F. C. 2012. Reverse Code Engineering-State of the Art
and Countermeasures. IT-Information Technology 54, 2 (2012), 53–63.

WOLFE, M., SHANKLIN, C., and ORTEGA, L. 1995. High Performance Compilers for
Parallel Computing. Addison-Wesley Longman Publishing Co., Inc.

WU, Z., GIANVECCHIO, S., XIE, M., and WANG, H. 2010. Mimimorphism: A New
Approach to Binary Code Obfuscation. In Proceedings of the 17th ACM Conference
on Computer and Communications Security. ACM, 536–546.

WYSEUR, B. 2009. White-Box Cryptography. Ph.D. Dissertation. KU Leuven.
WYSEUR, B., MICHIELS, W., GORISSEN, P., and PRENEEL, B. 2007. Cryptanalysis

of White-Box DES Implementations with Arbitrary External Encodings. In Pro-
ceedings of the 14th International Conference on Selected Areas in Cryptography.
Springer, 264–277.

WYSEUR, B. and PRENEEL, B. 2005. Condensed White-Box Implementations. In Pro-
ceedings of the 26th Symposium on Information Theory in the Benelux. 296–301.

YAKDAN, K., ESCHWEILER, S., GERHARDS-PADILLA, E., and SMITH, M. 2015. No
More Gotos: Decompilation Using Pattern-Independent Control-Flow Structuring
and Semantics-Preserving Transformations. Proceedings of the 22nd Network and
Distributed Systems Security Symposium (NDSS) (2015).

YIN, H. and SONG, D. 2010. TEMU: Binary Code Analysis Via Whole-System Lay-
ered Annotative Execution. Technical Report UCB/EECS-2010-3. EECS Department,
University of California, Berkeley.

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.

4:40 Schrittwieser et al.

ZENG, J., FU, Y., MILLER, K. A., LIN, Z., ZHANG, X., and XU, D. 2013. Obfuscation
Resilient Binary Code Reuse through Trace-Oriented Programming. In Proceedings
of the 20th ACM Conference on Computer and Communications Security.

ZHANG, X. and GUPTA, R. 2005. Matching execution histories of program versions. In
ACM SIGSOFT Software Engineering Notes, Vol. 30. ACM, 197–206.

ZHAO, Z., AHN, G., and HU, H. 2011. Automatic Extraction of Secrets from Malware.
In 18th Working Conference on Reverse Engineering (WCRE ’11). IEEE, 159–168.

ZHOU, Y., MAIN, A., GU, Y. X., and JOHNSON, H. 2007. Information hiding in software
with mixed boolean-arithmetic transforms. In Information Security Applications.
Springer, 61–75.

ZHUANG, X., ZHANG, T., LEE, H., and PANDE, S. 2004. Hardware Assisted Control
Flow Obfuscation for Embedded Processors. In Proceedings of the 2004 International
Conference on Compilers, Architecture, and Synthesis for Embedded Systems. 292–
302.

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.

	Introduction
	Analysis Scenarios
	Methodology of this Survey
	Code Analysis Categories
	Analyst's Aims
	Scenarios

	Software Obfuscation
	Data obfuscation
	Static code rewriting
	Dynamic code rewriting

	Code Analysis
	Pattern Matching
	Static Analysis
	Dynamic Analysis
	Human Assisted Reverse Engineering

	Robustness Analysis
	Pattern Matching
	Static code analysis
	Dynamic code analysis
	Human analysis

	Conclusions

