Jakstab: A Static Analysis Platform for Binaries™*
(Tool Paper)

Johannes Kinder and Helmut Veith

Technische Universitat Darmstadt, 64289 Darmstadt, @eym

Abstract. For processing compiled code, model checkers require atecorodel
extraction from binaries. We present our fully configurabileary analysis plat-
form JAKSTAB, which resolves indirect branches by multiple rounds cdisiem-
bly interleaved with dataflow analysis. We demonstrate thiatiterative disas-
sembling strategy achieves better results than the stateart tool IDA Pro.

Introduction. While most of today’s model checkers operate on source dbeeg
are various settings where we need to verify binary codet,Rivhen source code is
not available, e.g., when a software manufacturer wanttidywthe conformance of
third party modules, such as drivers or plugins, to the ARicgration. Second, to
be able to detect errors introduced in the compiling profHssvhich is of particular
importance in the field of embedded systems, where comgiterbe unreliable. Third,
binary level analysis results can supplement executiaesr@ollected by testing and
vice versa, as demonstrated by theN&RGY algorithm [2]. And finally, our original
motivation for this research stems from using model chagtardetect malicious code
inside executables [3].

Extracting a control flow graph (CFG) from an executable issimply a matter of
implementing a language front-end for assembly. Compitetedacks many comfort-
able properties of structured high level languages andymeseeral challenges for anal-
ysis tools. Function pointers are only seldom handled bycsslevel verification tools,
but on assembly level, calls and jumps to pointers are toagdnt to be ignored. The
treatment of function pointers requires dataflow analysisiwincomplete CFG. Thus,
the traditional sequence, in which an analyzer builds th& @Fst and only then per-
forms dataflow analysis, has to be replaced by an iterativegss. Another challenge is
the loss of structure in compiled code. For accurate arsbgsiults, procedures, along
with their calling conventions, need to be explicitly detet Compiler optimizations
and, worse, obfuscation techniques can further mangledhtea flow structure of an
executable and impede correct disassembly and control #taation [4].

Existing disassemblers can be divided into two catego#id jnear sweep disas-
semblers, such as GNU objdump, simply sequentially trémsteachine code into as-
sembly instructions. Recursive traversal disassemisacd) as IDA Pro, follow direct
branches and decode the program by depth first search. Weddhis classification by
defining aniterative disassembler as one that interleaves multiple disassembly rounds
with dataflow analysis to achieve accurate and complete GfE@ation.

* Supported by DFG grant FORTAS — Formal Timing Analysis Stite Real Time Programs (VE 455/1-1) and the
European Commission under Contract IST-2002-507932 EARYP

Disassembly

Intermediate Representation

Control Flovptsra

mov esi, [0x38498]
jmp Ox1fae2
push [ebp - 4]

call [0x38588]

esi := memyo[0x38498;

goto L2;

L1: memzo[esp — 4] := memgo[ebp — 4];
esp := esp — 4,

esp := esp — 4,

12] = %efi
esp = (besp - 12)

[ox1fae2]
9heax := (26eby

memgofesp] := O0X1FAE2;
goto mem2[0x38588;
lea eax, [ebp - 4] L2: eax := ebp — 4;
push eax memesp — 4] := ea;
esp 1= esp — 4; oo = noraetz2
menmp[esp — 4] := menmgolebp + 8]; ez
esp := esp — 4,
call esi esp 1= esp — 4;
memgglesp| := O0X1FAEB;
goto est;
cmp [ebp - 4], 0 tmp := memyalebp — 4] — 0;

P
32(0x38498]

L2:

(%ebp - 4)
mem32[besp - 12] = Oxlfaeb
9sesp = (seesp -12)

push [ebp + 8]

ox11
1pL := mem32[36ebp

tmp1:= m a)
962F 1= mem32l%ebp - 4] == 0) 2 1 :J0

v

Gl =tmpQ3t&(imempfebp—4Q31):
-OF—=mentfebp—Ha3 A a3

if (tmp = 0) then ZF := 1 else ZF := 0;
if (ZF = 0) then goto L1;

jne Ox1fad9

Fig. 1. Part of procedure Ox1FACA in fwdrv.sys. The second call israsolved by IDA Pro.

Our tool AksTAB? (Java tookit for static analysis ofbinaries) serves as a flexible
front end to make executables accessible to static analgdisnodel checking. To this
end, AKSTAB contains an iterative disassembler and a library of semadescriptions
that translates assembly instructions to an RTL-styleinégliate representation. Dis-
assembler and semantic descriptions are fully configurtabsipport multiple target
platforms. Using the intermediate representatiaRSIAB iteratively creates the CFG,
calculating and resolving indirect branch targets usirsyiite from dataflow analysis.
JAKSTAB is implemented in Java and can be either used as a libranadisségommand
line interface, which outputs plain disassembly or therimixdiate representation as a
CFG in graphviz-format. The intermediate representatiomsisting of assignments,
if, and goto statements, is independent of the target hasdasad provides a natural
interface to model checkers and program analysis tools.

Today'’s de facto industry standard for disassembly is IDé& Rs heuristic matches
common prologue bytes to identify procedures and assuna¢ewery call returns to
its original site, regardless of the call target, which cead to erroneous fall-through
edges. Furthermore, the CFG is usually incomplete, sinéeR® has only a very ba-
sic ability to resolve indirect branch instructions (fuonatpointers): It propagates con-
stants just within a basic block, and decorates calls to sodstants with comments
containing the actual target. While this is enough to aid anrengineers, it is insuf-
ficient for automated analysis. Figure 1 shows an exemplegepof assembly code
from a Windows driver executable (fwdrv.sys frddanbelt Personal Firewall), where
IDA Pro (v4.7) fails to identify an indirect call to an imped function, whose address
is stored at a memory location pointed to by the regieserFinally, even though IDA

! Project page online &t t p: / / ww. j akst ab. org

Pro offers an (unsupported) SDK for plugin developmens itlosed source software
and thus cannot be easily integrated with an analysis tool.

To the best of our knowledge, the most successful approastatic analysis of
executables currently is the CodeSurfer/x86 project [pd€Surfer/x86 uses IDA Pro
to access binaries, and combines two program analysisitligs; value set analy-
sis (VSA) and aggregate structure identification (ASI).doent work, they combined
VSA with a property automaton that encodes certain usags fat the Windows driver
API [6]. Generally, they assume a standard compilation rhimddinaries, which guar-
antees correct disassembly by IDA Pro. They acknowleddé@#aPro’s output can be
incomplete and do connect missing edges from indirect,oadisthey lack a complete
loop to disassemble previously unprocessed branch targets

Closely related to executable analysis is the idea of mdldidecompiler, which
transforms an executable back to source code [7, 8]. Chaalg @&tscribe an architec-
ture of communicating decompilers at different languagele[9]. Their implemen-
tation propagates static analysis facts through all lagguevels one instruction at a
time, instead of strictly separating decompilation stametanguage level. The proto-
type targets assembly source files generated by a set of lym@End thus requires
access to source code. We believe thatsiras would fit nicely into this tool-chain as
a provider of well-formed CFGs from generic executables.

Control Flow Reconstruction. In most assembly languages, instructions can affect
multiple registers and status flags. The x86 architectutechwwe first focused on,
features an especially rich instruction set where insimastoften represent non-trivial
operation sequences. To fully capture instruction seroguatid enable easy extensibil-
ity, JAKSTAB is designed to read Semantic Specification Language (S8k)dilpplied
with the Boomerang decompiler, which are available for sgharchitectures including
x86, PowerPC, 68K, and SPARC [10, 8]. Figure 1 shows thermeliate representa-
tion JAKSTAB produces from the assembly snippet using SSL definitionshi®ix86
architecture. Mapping every assembly instruction to iteaetic specification creates
a program representation with obvious pieces of dead codeairticular, most of the
status flags are not used but simply overwritten by lateruetibns. To reduce the pro-
gram size, our tool executes a live variable analysis arehafird removes any dead
code. In our experiments, usually about 30% of the statesremnet identified as dead
code and removed from the control flow graph. In the exampledare 1, three flag
updates are removed (crossed out text), and only one relepdate remains.

JAKSTAB recreates the control flow graph in an iterative processtiSgafrom the
entry point of the executable, it propagates and folds emstthrough registers and
memory cells to resolve indirect branch targets<SITAB supports indirect memory
access, which is common for local variables stored on tloek stdhenever Jakstab can-
not resolve the address of an indirect write, it currentlguases that every memory
cell can become undefined. Calls to shared libraries, wiriche Windows PE-format,
appear as indirect calls to memory locations, are handlectdsting stub procedures
in the control flow graph. Constant propagation and foldsgerformed on all parts of
the CFG already known, which allowsKISTAB, in contrast to IDA Pro, to successfully
recover the CFG of the example in Figure 1. Note that the tesfilconstant propaga-

| cmd.exe | dnsrsivr.dll | faultrep.dll| ftp.exe | nmnt.sys| rcp.exe |svchost.exe

IDA Pro ‘74% 9.454 81% 36.21 73% 5.4j 88% 2.4j 74% 3.1j 42% 1.4j 56%)] 1.5s

JAKSTAB 91%|32.4992%| 3.2s|98%|9.0s{94%|2.7596%|4.55 100%] 1.15 88%| 1.0s

Fig. 2. Success rates and processing times for resolving indiraothes in executables.

tion can theoretically be incorrect if incoming edge&tisting nodes are discovered in
later iterations. In such cases, the CFG reconstructiocgahas to be restarted.

Any target location that has been successfully resolved@itration is scheduled
for disassembly in the next one. Newly detected proceduessbned to ensure correct
interprocedural results in the next round of constant pgagian. Figure 1 shows the
CFG extracted from the example code, including stubs foioirga library functions.
The stubs non-deterministically assign those registeistwimight be overwritten by
library functions €ax, ecx, edx according to the Intel application binary interface).

We comparedAksTAB’s and IDA Pro’s capabilities in resolving indirect branshe
on Microsoft Windows system binaries. The results we preseRig. 2 clearly show
that AKSTAB is able to provide significantly more accurate CFGs than IDA &
similar, and in some cases even faster, execution speeds.

Applicationsand FutureWork. Our goal is to useAKSTAB as a versatile platform for
different verification tasks on binary level. Currently, s building a bounded model
checker on top of the existing framework to allow better hason of indirect jumps and
the extraction of all targets from jump tables. Besides iiternal use of the bounded
model checker for improving the CFG, we will investigate wkiad of specifications
can be verified on binary level, with particular focus on AB&ge specifications.

JAKSTAB, unlike IDA Pro, does not assume a standard compilation indtiere-
fore it is well suited to process code protected againssde&ably, in particular mali-
cious code. Anti-disassembly patterns that obscure theeadtow of a program will
thwart traditional recursive traversal disassemblers [y example, return instruc-
tions are commonly misused as generic jumps by pushing thieedetarget address
on the stack immediately beforehand. SinegSITAB supports local constant propaga-
tion through the stack, it can retarget disassembly cdyratthese cases and is able
to recover the real control flow. A CFG extracted from such teptially malicious
program can then be used as input to a semantic malware oigiglct

References

1. Balakrishnan, G., Reps, T., Melski, D., Teitelbaum, TYS$INWYX: What You See Is Not
What You eXecute. In: VSTTE, Zurich, Switzerland (2005)

2. Gulavani, B., Henzinger, T., Kannan, Y., Nori, A., Rajal&.: SYNERGY: a new algo-
rithm for property checking. In: SIGSOFT FSE'06, ACM (2008)7-127

3. Kinder, J., Katzenbeisser, S., Schallhart, C., Veith, Betecting malicious code by model
checking. In: DIMVA'05. Volume 3548 of LNCS., Springer (28)0174-187

4. Linn, C., Debray, S.: Obfuscation of executable code torave resistance to static disas-
sembly. In: CCS’03, ACM (2003) 290-299

10.

. Balakrishnan, G., Reps, T.: Analyzing memory accessesfnexecutables. In: CC'04.

Volume 2985 of LNCS., Springer (2004) 5-23

. Balakrishnan, G., Reps, T.: Analyzing stripped devigeed executables. In: TACAS'08.

LNCS, Springer (2008) 124-140

. Cifuentes, C.: Reverse Compilation Techniques. PhDigh€aieensland University of

Technology (1994)

. van Emmerik, M., Waddington, T.: Using a decompiler falraorld source recovery. In:

WCRE 2004, IEEE Computer Society (2004) 27-36

. Chang, B., Harren, M., Necula, G.: Analysis of low-levetle using cooperating decompil-

ers. In: SAS. Volume 4134 of LNCS., Springer (2006) 318-335
Cifuentes, C., Sendall, S.: Specifying the semantiesathine instructions. In: International
Workshop on Program Comprehension (IWPC’98), IEEE Compiibeiety (1998) 126-133

