
Prototyping Symbolic Execution Engines
for Interpreted Languages

Stefan Bucur
École Polytechnique Fédérale de Lausanne

stefan.bucur@epfl.ch

Johannes Kinder
École Polytechnique Fédérale de Lausanne

Royal Holloway, University of London

johannes.kinder@rhul.ac.uk

George Candea
École Polytechnique Fédérale de Lausanne

george.candea@epfl.ch

Abstract
Symbolic execution is being successfully used to automat-
ically test statically compiled code [4, 7, 9, 15]. However,
increasingly more systems and applications are written in
dynamic interpreted languages like Python. Building a new
symbolic execution engine is a monumental effort, and so
is keeping it up-to-date as the target language evolves. Fur-
thermore, ambiguous language specifications lead to their
implementation in a symbolic execution engine potentially
differing from the production interpreter in subtle ways.

We address these challenges by flipping the problem and
using the interpreter itself as a specification of the language
semantics. We present a recipe and tool (called CHEF) for
turning a vanilla interpreter into a sound and complete sym-
bolic execution engine. CHEF symbolically executes the tar-
get program by symbolically executing the interpreter’s bi-
nary while exploiting inferred knowledge about the pro-
gram’s high-level structure.

Using CHEF, we developed a symbolic execution engine
for Python in 5 person-days and one for Lua in 3 person-
days. They offer complete and faithful coverage of language
features in a way that keeps up with future language versions
at near-zero cost. CHEF-produced engines are up to 1000×
more performant than if directly executing the interpreter
symbolically without CHEF.

Categories and Subject Descriptors D.2.5 [Software En-
gineering]: Testing and Debugging—symbolic execution;
D.3.4 [Programming Languages]: Processors—interpreters

Keywords state selection strategies; software analysis op-
timizations; interpreter instrumentation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’14, March 1–4, 2014, Salt Lake City, Utah, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2305-5/14/03. . . $15.00.
http://dx.doi.org/10.1145/2541940.2541977
Reprinted from ASPLOS ’14, Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and Operating Systems, March 1–
4, 2014, Salt Lake City, Utah, USA

1. Introduction
Developers spend much of their time writing unit and perfor-
mance tests and manually tracing hard-to-reproduce bugs;
ideally, these tasks would be automated. Symbolic execution
is a particularly successful technique for exploring multiple
execution paths fully automatically. It has been used to find
bugs and to generate high-coverage test suites for Windows
media format parsers [16], Windows device drivers [19],
and the Linux Coreutils [7], and it has helped to reproduce
crashes for debugging [29]. Symbolic execution enumerates
feasible execution paths by using a constraint solver to syn-
thesize inputs that drive the program down paths that have
not been covered before.

Most mature systems for symbolic execution target low-
level code representations. The widely used symbolic execu-
tion engines KLEE [7], SAGE [16], Bitblaze [25], and S2E [9]
all process either x86 machine code or LLVM [21] intermedi-
ate representation code. This makes them applicable to lan-
guages that are statically compiled to one of these represen-
tations.

However, an increasingly important class of software is
never statically compiled: code in languages like Python,
Perl, Lua, or Bash is directly executed by interpreters, and its
dynamic features generally prevent static compilation. These
languages are popular because they enable rapid prototyping
and are easy to use; as a result, they are increasingly used in
infrastructure and systems code [3, 18].

Consequently, there have been initial efforts to directly
implement high-level symbolic execution engines for in-
terpreted languages. For example, the NICE engine for
Python [8] symbolically executes OpenFlow controller code,
and the Kudzu engine for JavaScript [24] finds code injec-
tion vulnerabilities in web applications.

The implementation of a dedicated symbolic execution
engine is a significant undertaking for each language. A
symbolic execution engine is essentially a fully fledged in-
terpreter for the language, operating on constraints and ex-
pressions instead of concrete memory objects. This is why
existing dedicated engines usually do not support general
programs in the full target language. They either support

1

only a language subset that is relevant for a particular appli-
cation domain [8, 24], or they require the developer to write
their code to explicitly use custom types and libraries that
provide symbolic execution functionality [11].

Even supporting just a portion of the language typically
involves reading language specifications and carefully writ-
ing the engine to faithfully implement them. Unfortunately,
language specifications are often imprecise or deliberately
leave implementation choices to the developers of the in-
terpreter, which gives rise to multiple dialects. Quoting the
Python Language Reference: “Consequently, if you were
coming from Mars and tried to re-implement Python from
this document alone, you might have to guess things and in
fact you would probably end up implementing quite a dif-
ferent language.” [22, §1] Combined with the fact that lan-
guages like Ruby and Python are continuously evolving, this
makes writing and maintaining language-specific symbolic
execution engines a daunting task, thus excluding many lan-
guages from the benefits of symbolic execution-based anal-
ysis and automated testing.

In this paper, we propose and demonstrate the idea of
building a symbolic execution engine for an interpreted lan-
guage from its interpreter. The interpreter is the place where
all subtleties of the language are precisely encoded, and it is
the only specification that matters in practice.

We implement this idea in CHEF, a tool that takes a
specially-packaged interpreter as input and becomes a fully
functional symbolic execution engine for the interpreter’s
target language. CHEF’s infrastructure for symbolic execu-
tion is language-agnostic and tailored for interpreters with
a moderately-sized core (10s of KLOC), in the ballpark of
Python, Ruby, and Lua. Languages as complex and large as
Java are not yet a good target for CHEF. The interpreter has
to be instrumented using a lightweight API to interact with
CHEF.

Using CHEF, we developed symbolic execution engines
for Python and Lua. In comparison to the cost of implement-
ing a faithful new engine from scratch, adapting the language
interpreters was orders of magnitude easier: for Python, 321
lines of code had to be added to the interpreter and took 5
person-days, while Lua required 277 lines of code written in
3 person-days.

We evaluated the two engines on 11 popular Python and
Lua library packages, where they generated up to 1000×
more test cases compared to applying plain symbolic ex-
ecution on the interpreter executable. The generated tests
obtained good coverage results and uncovered a number of
bugs. We also compared the Python engine to dedicated im-
plementations and found that its slower execution speed is
balanced by more complete and accurate support of lan-
guage features.

This paper makes two contributions:

• We show how to derive high-level symbolic execution of
an interpreted language from low-level symbolic execu-

tion of the language’s interpreter, while preserving full
soundness and completeness.In addition, low-level sym-
bolic execution allows to seamlessly support native li-
brary code.

• We introduce class-uniform path analysis (CUPA), a state
selection heuristic that is crucial for a meaningful explo-
ration of the interpreted program. CUPA partitions the set
of symbolic execution states into classes based on their
corresponding high-level program path. By adjusting the
state selection probability of each class, CUPA ensures
steady progress in the exploration of the interpreted pro-
gram.

The remainder of the paper is organized as follows: we
give background on symbolic execution and challenges re-
lated to interpreted languages (§2). We then describe CHEF
and the CUPA heuristic (§3), followed by a recipe for prepar-
ing an interpreter for use with CHEF (§4). We describe how
the symbolic execution engines for Python and Lua were
produced (§5) and evaluate them (§6). Finally, we discuss
related work (§7) and conclude (§8).

2. Symbolic Execution of Interpreted Code
We briefly describe symbolic execution and its use for test
generation (§2.1). We then explain the problems in sym-
bolically executing interpreted languages (§2.2). Finally, we
present our idea of executing the target program through its
interpreter and the challenges that arise from this (§2.3).

2.1 Symbolic Execution
The intuition behind symbolic execution is to execute tar-
get code with symbolic instead of concrete input values, to
cover the entire input space and thus all possible paths. For
instance, a function foo(int x) is executed with a symbolic
variable λ assigned to x. Statements using x manipulate it
symbolically: x := x * 3 updates the value of x to 3 · λ .
The mappings from variables to expressions are kept in a
symbolic store during symbolic execution.

Path Condition Besides the symbolic store, the symbolic
program state maintains a path condition. Whenever sym-
bolic execution takes a conditional branch, the condition (or
its negation, for else branches) is added to the path con-
dition. Continuing our example, execution along the true

branch of if (x > 10) would record 3 ·λ > 10 in the path
condition. Thus, each symbolic execution state represents a
particular path through the program, and its path condition
encodes the input constraints for taking this path.

Dynamic Test Generation Dynamic test generation in the
spirit of DART [15] (often referred to as concolic execution)
executes the program symbolically along a single path that is
given by a concrete input assignment. This has the benefit of
reaching deeper program behaviors and reducing the number
of constraint solver invocations. To this end, the symbolic
execution state also contains a concrete store that keeps a

2

Start

Explored branch

Unexplored branch

Test cases

make_symbolic(&x);

x = 3 * x;

if (x > 10)

x=15 [λ], pc={}
x=45 [3λ], pc={}

x=45 [3λ],
pc={3λ>10}

x=15 [], pc={}

x=9 [3λ],
pc={3λ≤10}

Figure 1. Symbolic execution tree for a simple example.
States maintain concrete and symbolic values for x and carry
a path condition (pc). The bold line represents the current
concolic path, and boxes are branching points. When a can-
didate alternate branch (empty box) is selected, new input
assignments are computed that satisfy the path condition of
the new path (dashed line).

regular concrete value for each variable. We use a slight
variation that avoids re-executing common path prefixes.

Consider the tree representation of program paths for the
example in Figure 1. The current concrete path is the bold
line. At each conditional branch, the symbolic execution
engine forks the symbolic execution state. If the then branch
is implied by the concrete value in the current state, the
negated branch condition (for the else branch) is added to
the path condition of the alternate state, and vice versa. The
alternate state is tentatively added to the symbolic execution
tree (empty boxes in Figure 1) for later exploration.

Once the concrete path reaches its end (the circle), the
symbolic execution engine executes a new path (the dotted
line) by picking an alternate state and asking a constraint
solver whether the path condition of the alternate state is sat-
isfiable. If it is, the satisfying assignment of input variables
constitutes a test case that would take the program down this
new path. Plugging the assignment into the expressions of
the symbolic store yields a new concrete store for the alter-
nate path. If the path condition is unsatisfiable, the path can
never be taken at runtime—it is infeasible—and the corre-
sponding state is discarded by the engine.

Search Strategies The main scalability challenge for sym-
bolic execution is path explosion: since each conditional
branch can potentially fork the execution, the number of
states (and thus paths) grows roughly exponentially in the
size of the program. Several approaches exist for reducing
path explosion to some extent [14, 20] but, in general, it can-
not be completely avoided.

Due to path explosion, exhaustive exploration is unreal-
istic for most systems code, so symbolic execution can only
cover a subset of the possible paths. Modern symbolic exe-
cution engines therefore use search strategies to reach explo-
ration goals (e.g., line coverage) quickly [6, 7, 16, 28]. The

search strategy prioritizes alternate paths it deems “interest-
ing”. Thus, the usage model for automated test generation by
symbolic execution is to run for a fixed amount of time and
generate as many test cases as possible, or run until a fixed
coverage goal is reached (e.g., 80% line coverage).

Like all heuristics, search strategies are not universal,
and their effectiveness depends on the code being explored.
One of the challenges of effectively generating test cases by
symbolic execution is thus to find the strategy that leads to
the testing goal as fast as possible on the target code.

2.2 Supporting Interpreted Languages
Building a correct and complete symbolic execution engine
for an interpreted language is generally harder than build-
ing one for a low-level language. Statements of interpreted
languages can wrap complex operations that, in lower-level
languages, would be implemented through libraries. For in-
stance, Python strings are a built-in type offering more than
30 operations (such as find) as part of the language, imple-
mented natively in the interpreter. Other language features
that allow to inspect or even modify the code itself, i.e., run-
time reflection, are even more tedious to implement and very
hard to get right.

Finally, besides requiring an enormous initial effort to
build a symbolic execution engine that fully supports them,
dynamic languages also evolve fast. This implies constant,
labor-intensive maintenance and co-evolution of the sym-
bolic execution engine, if it is to keep up with the newest
versions of the language.

2.3 Symbolically Executing the Interpreter
Considering the difficulty of directly supporting interpreted
languages, we resort to symbolically executing the inter-
preter itself, since it completely defines the semantics of the
target language as a function of the semantics of the lan-
guage the interpreter is implemented in. After compiling the
interpreter to a format supported by an existing symbolic ex-
ecution engine, one can symbolically execute an interpreted
program by symbolically executing the interpreter with the
target program as argument. However, even though in prin-
ciple this direct approach yields a symbolic execution engine
for the target language, it is impractical, due to the engine not
being aware of the control flow of the interpreted program.

High- vs. Low-level Program Paths An interpreted pro-
gram conceptually executes both on a high level—the level
of the target language—and a low level—the level of the in-
terpreter. A high-level program path is a sequence of values
of the high-level program counter (HLPC). Each HLPC value
corresponds to a program statement or bytecode instruction
(both Python and Lua use intermediate bytecode). Branches
can occur explicitly at control flow statements, or implicitly
through exceptions. A low-level program path is a sequence
of machine instructions from the interpreter binary, includ-

3

def validateEmail(email):
 at_sign_pos = email.find("@")
 ...
 if at_sign_pos < 3:
 raise InvalidEmailError()
 ...

1
2
3
4
5
6

def average(x, y):
 return (x + y) / 2

1
2

Figure 2. Two examples of Python code that lead to path
explosion when the interpreter running it is symbolically
executed.

ing its code for internal bookkeeping (e.g., details of refer-
ence counting and garbage collection).

Due to the additional implementation details, a single
high-level path can map to multiple low-level paths. Figure 2
shows two examples of Python code that have few high-level
but many low-level paths. The validateEmail method has
only two high-level paths, but its use of string.find leads
to as many low-level paths as there can be characters in the
email string. The second example average may come as
more of a surprise: even though it has just a single high-level
path, symbolic execution can end up enumerating many low-
level paths: Python uses arbitrary-precision integers, so the
interpreter may have to iterate over digit vectors of arbitrary
length, which can in principle spawn arbitrarily many paths.

Challenges for Search Strategies The search strategy of
a low-level symbolic execution engine is oblivious to the
high-level program structure of the target program, and it
essentially just tries to cover the interpreter. This generally
leads to covering the same high-level paths many times with
multiple distinct low-level paths. For instance, a high-level
statement like find can lead to hundreds of alternate states,
whereas a primitive integer comparison might just create a
single one. Therefore, the low-level search strategy is likely
to explore multiple ways for find to succeed or fail, without
increasing high-level coverage, before eventually exploring
the alternate outcome of the comparison.

The key is to make the engine aware of the high-level
interpreted program. By tracing the values of the HLPC, the
engine can construct a high-level control flow graph (CFG)
on the fly that can be be leveraged by the search strategy.

Alas, a strategy cannot straightforwardly determine fu-
ture branching points in a high-level CFG: two low-level
paths can fork from the same prefix before their corre-
sponding high-level paths do. This can be due to having
distinct bytecode instructions for comparisons and condi-
tional jumps, or due to native library calls. In Figure 3, three
low-level paths fork within the single HLPC location for
email.find. The low-level paths remain on the same high-
level path until reaching the branching HLPC, where they
diverge into two distinct high-level paths. The relevant al-
ternate low-level states for covering the distinct high-level
paths thus were located away from the location of the code

A B C

1

email.find("@")

if pos < 3:

Low-level
branches

High-level
branch

Test cases

2 3 4 5

Figure 3. High-level execution tree (paths A, B, and C),
as induced by its low-level execution paths (1–5) for the
first running example in Figure 2. Dotted lines segment
high-level execution paths into bytecode instructions. One
high-level path may correspond to multiple low-level paths
explored.

interpreting the high-level control flow statement. The issue
of pre-determining branches is present also when exploring
regular code, but it is ubiquitous when exploring code on
interpreters.

3. The CHEF System
We now present the architecture of CHEF (§3.1) and intro-
duce CUPA, our state selection mechanism (§3.2). We then
describe CUPA optimized for exploring distinct high-level
paths (§3.3) and optimized for high line coverage (§3.4).

3.1 System Overview
CHEF is a platform for language-specific symbolic execu-
tion. Provided with an interpreter environment, which acts
as an executable language specification, it becomes a sym-
bolic execution engine for the target language (see Figure 4).
The resulting engine can be used like a hand-written one, in
particular for test case generation. When fed with a target
program and a symbolic test case (also called test driver or
test specification in the literature), it outputs a set of concrete
test cases, as shown in Figure 4.

CHEF is built on top of the S2E analysis platform [9].
S2E symbolically executes a virtual machine containing the
interpreter and a testing library at the level of machine code,
including the OS kernel, drivers, and user programs. S2E
provides an API that guest code can use to declare memory
buffers as symbolic. Comparisons on symbolic values cause
S2E to fork new paths, which are enqueued and explored fol-
lowing a search strategy. CHEF extends the S2E guest API
with a high-level instruction instrumentation call (§4.1), in-

4

Symbolic Test

Symbolic Test
Library

Target
Program

Interpreter

HL
Instrum. API

Symb.
Data API

System call interface
Low-level Symb. Ex. Engine

(S2E)CUPA
State
Selection

Test cases

Interpreter VM

CHEF

Language-specific

Test-specific

CHEF Platform

Third-party

HL
Program
CFG

Figure 4. Schema of CHEF’s architecture.

voked by interpreters to trace the currently executing high-
level path. The explored high-level paths are used to con-
struct a high-level execution tree and a low-level to high-
level mapping (i.e., the data structure shown in Figure 3).
CHEF uses a state selection strategy to maximize the ratio of
high-level to low-level paths (§3.2).

The resulting engine is a correct symbolic execution en-
gine for the target language as defined by the interpreter. It
is fully precise and theoretically complete, i.e., it will not ex-
plore infeasible paths and will eventually explore all paths.
The usual limitations of symbolic execution engines apply:
completeness holds only under the assumption that the con-
straint solver can reason about all generated path conditions,
and it is understood that exhaustive exploration is usually
impossible in finite time.

3.2 Class-Uniform Path Analysis (CUPA)
Consider using symbolic execution for achieving statement
coverage on a program containing a function with an input-
dependent loop. At each iteration, the loop forks one addi-
tional state (or exponentially many, if there are branches in
the loop). A strategy that selects states to explore uniformly
is therefore biased toward selecting more states from this
function, at the expense of states in other functions that fork
less but contribute equally to the statement coverage goal.

We reduce this bias by introducing Class-Uniform Path
Analysis (CUPA). The main idea is to group states into
classes and then choose uniformly among classes instead of
states. For instance, in the above example, the class of each
state could be its current function. CUPA then first selects
uniformly a function, then picks at random a state inside
that function. This way, functions generating many states
are still selected with equal probability to others.

In general, CUPA organizes the state queue into a hier-
archy of state subsets rooted at the entire state queue (see
Figure 5). The children of each subset partition the subset
according to the state classification scheme at their level.
A classification scheme is defined as a function h : S → C,

All states

h1(s): S→C1

h2(s): S→C2

c1
1 c1

2 c1
3 c1

4

c2
1 c2

2 c2
1 c2

2 c2
1 c2

2 c2
1 c2

2

Figure 5. CUPA state partitioning. Each level corresponds to
a state classification scheme. Child nodes partition the parent
node according to the classification at their level.

where h(s) maps each state s into a class value c. States of
the same parent with the same class value are sorted into the
same child. CUPA selects a new state for exploration by per-
forming a random descent in the classification tree, starting
from the root. When reaching a leaf, the strategy takes out
a random state from the state set and returns it to the sym-
bolic execution engine for exploration. By default, all sibling
classes on each level have equal probability of being picked,
but they can be assigned weights if required.

A CUPA strategy is parameterized by the number N of
levels in the tree and a classification function hi for each
level i = 1 . . .N. CHEF uses two instantiations of CUPA: one
optimized for covering high-level paths (§3.3) and one for
covering the high-level CFG, i.e., statements (§3.4).

3.3 Path-Optimized CUPA

A low-level strategy unaware of the high-level program
would be implicitly biased towards picking high-level in-
structions that fork more low-level states than others, such as
string operations or native calls. To mitigate this, we instan-
tiate a two-level CUPA strategy using the following classes:

1. The location of the state in the high-level symbolic exe-
cution tree. This is the occurrence of the state’s high-level
program counter (HLPC) in the unfolded high-level CFG,
referred to as the dynamic HLPC. We choose the dynamic
HLPC to give each high-level path reaching the HLPC the
same chance to fork and subsequently diverge.

2. The low-level x86 program counter of the state. This
classification reduces the selection bias of “hot spots” of
path explosion within a single complex instruction, such
as a native function call.

3.4 Coverage-Optimized CUPA

Based on a coverage-optimized strategy introduced by the
KLEE symbolic execution engine [7], we developed a CUPA
instance that partitions states according to their minimum
distance to branches leading to uncovered code. Alas, dy-
namic language interpreters do not generally have a static
CFG view of the program, so code that has not been cov-
ered yet is not accessible to the search strategy. The high-
level CFG of the target program is dynamically discovered
along each execution path. On this CFG, we employ heuris-

5

tics that (1) identify the instruction opcodes that may branch,
and (2) weigh the state selection toward states that are closer
to these potential branching points.

First, CHEF identifies the branching opcodes by collect-
ing all high-level instructions that terminate a basic block
with an out-degree in the CFG of at least 2 (i.e., cause
branching in the control flow). We then eliminate the 10%
least frequent opcodes, which correspond to exceptions or
other rare control-flow events. Second, CHEF identifies the
potential branching points as those instructions in the CFG
that have a branching opcode (as previously identified) but
currently only one successor. Finally, CHEF computes for
each execution state the distance in the CFG to the closest
such potential branching point.

Having computed this information, we instantiate a two-
level CUPA strategy with the following classes:

1. The static HLPC of the state in the high-level CFG. On
this level, each class is weighted by 1

d , where d is the
distance in the inferred high-level CFG to the closest po-
tential branching point, making states at locations close
to a target more likely to be selected.

2. The state itself (so each partition has a single element).
On this level, the states are weighted by their fork weight.

Fork weight is computed by counting the number of con-
secutive forks at the same low-level program counter (i.e.,
at an input-dependent loop in machine code). States 1, . . . ,n
forking from the same path at the same location get weights
pn, pn−1, . . . ,1, where p < 1 de-emphasizes states forked
earlier (p = 0.75 in our implementation). The last state to
fork at a certain location thus gets maximum weight, because
alternating the last decision in a loop is often the quickest
way to reach different program behavior (e.g., to satisfy a
string equality check).

4. Preparing the Interpreter
We now explain how to prepare an interpreter for CHEF: the
first and mandatory step is to instrument the main interpreter
loop to report HLPCs (§4.1); the second and optional step
is to optimize the interpreter for efficient symbolic execu-
tion (§4.2). CHEF provides an API (Table 1) that will be ex-
plained along with its use. Finally, we discuss the remaining
work of building a language-specific testing API to the re-
sulting engine (§4.3).

4.1 Exposing the High-Level Program Location
To reconstruct the high-level program paths and CFG, CHEF
needs to identify the high-level instructions executed on each
low-level path. CHEF provides the log_pc(pc, opcode)

API call to the interpreter, which declares the current high-
level program location and the type (opcode) of the next
instruction. A high-level instruction is executed in between
two consecutive log_pc calls. Interpreters typically contain
a main interpretation loop that switch-es over the type of

API Call Description
log_pc(pc, opcode) Log the interpreter PC and opcode
start_symbolic() Start the symbolic execution
end_symbolic() Terminate the symbolic state
make_symbolic(buf) Make buffer symbolic
concretize(buf) Concretize buffer of bytes
upper_bound(value) Get maximum value for expression

on current path
is_symbolic(buf) Check if buffer is symbolic
assume(expr) Assume constraint

Table 1. The CHEF API used by the interpreters running
inside the S2E VM.

the current instruction and invokes specific handlers. The
log_pc call can be added conveniently at the head of the
interpreter loop.

In our design, we make minimal assumptions about the
language structure, so the HLPC and opcode values are
opaque; the CUPA strategies were designed accordingly.
Nonetheless, more specific versions of the system could add
structure to the two values, e.g. provide a pair of function
name and offset as HLPC. The additional information can be
used by CHEF to improve the exploration heuristics (e.g., by
creating a CUPA class).

The granularity of log_pc calls depends on the language
structure. CHEF’s correctness does not depend on the spe-
cific instrumentation pattern, but the more closely the re-
ported HLPC corresponds to statements in the target pro-
gram, the more accurately CUPA can cluster states. In the
extreme, if log_pc is never invoked, CHEF would see the
entire program as a single high-level instruction and lose the
advantage of CUPA clustering for HLPCs.

4.2 Optimizing for Symbolic Execution
In order to maximize performance, interpreters make heavy
use of special cases and sophisticated data structures. Un-
fortunately, these features hurt the performance of symbolic
execution by amplifying path explosion and increasing the
complexity of symbolic formulas [27].

We identify a number of easy optimizations that pre-
serve the interpretation semantics but significantly improve
symbolic execution performance. The optimizations use the
CHEF API in the last block of rows in Table 1.

Neutralizing Hash Functions Hash functions are espe-
cially common in interpreters, due to the internal use of hash
tables for associative data structures (e.g., Python dictionar-
ies or Lua tables). However, they are generally a problem
in symbolic execution: a symbolic value added to a hash ta-
ble (a) creates constraints that essentially ask the constraint
solver to reverse a hash function, which is often hard, and
(b) causes the exploration to fork on each possible hash
bucket the value could fall into. A simple and effective op-
timization is to neutralize the hash function, i.e., replace
it with a degenerate one returning a single constant. This

6

void *malloc(size_t size) {
 if (is_symbolic(&size, sizeof(size))) {
 size_t upper_size = upper_bound(size);
 return old_malloc(upper_size);
 }
 return old_malloc(size);
}

Figure 6. Example of a symbolic execution-aware malloc

function wrapper created using the CHEF API. If the allo-
cation size is symbolic, the wrapper determines its upper
bound and issues a concrete request to the underlying im-
plementation.

change honors the usual contracts for hash functions (equal
objects have equal hashes) and will turn hash lookups into
list traversals.

Avoiding Symbolic Pointers Input-dependent pointers (also
referred to as symbolic pointers) may point to multiple lo-
cations in the program memory, so a pointer dereference
operation would have to be resolved for each possible loca-
tion. In practice, symbolic execution engines deal with this
situation in one of two ways: (a) fork the execution state for
each possible concrete value the symbolic pointer can take;
or (b) represent the dereference symbolically as a read oper-
ation from memory at a symbolic offset and let the constraint
solver “deal” with it. Both ways hurt symbolic execution, ei-
ther by causing excessive path explosion or by burdening the
constraint solver.

While there is no generic way to avoid symbolic pointers
other than concretizing their values (the concretize API
call) at the price of losing completeness, there are specific
cases where they can be avoided.

First, the size of a buffer can be concretized before allo-
cation. A symbolic size would most likely cause a symbolic
pointer to be returned, since a memory allocator computes
the location of a new block based on the requested size.
To avoid losing completeness, a symbolic execution-aware
memory allocator can determine a (concrete) upper bound
on the requested size and use that value for reserving space,
while leaving the original size variable symbolic. This way,
memory accesses to the allocated block would not risk being
out of bounds. Figure 6 shows how the CHEF API is used to
wrap a call to the malloc function in the standard C library.

Second, caching and “interning” can be eliminated.
Caching computed results and value interning (i.e., ensur-
ing that a single copy of each possible value of a type is
created) are common ways to improve the performance of
interpreters. Alas, when a particular value is computed, its
location in memory becomes dependent on its value. If the
value was already in the cache or in the interned store, it
is returned from there, otherwise a new value is computed.
During symbolic execution, this logic becomes embedded in
the value of the returned pointer, which becomes symbolic.
Disabling caching and interning may hurt the native perfor-

Component Python Lua
Interpreter core size (C LoC) 427,435 14,553

HLPC instrumentation (C LoC) 47 (0.01%) 44 (0.30%)
Sym. optimizations (C LoC) 274 (0.06%) 233 (1.58%)
Native extensions (C LoC) 1,320 (0.31%) 154 (1.06%)
Test library (Python/Lua LoC) 103 87

Developer time (person-days) 5 3

Table 2. Summary of the effort required to support Python
and Lua in CHEF. The first row is the interpreter size without
the standard language library. The next two rows are changes
in the interpreter core, while the following two constitute the
symbolic test library. The last item indicates total developer
effort.

mance of the program, but it can give a significant boost
when running inside a symbolic execution engine.

Avoiding Fast Paths A common way to speed-up the na-
tive performance of a function is to handle different classes
of inputs using faster specialized implementations (“fast
paths”). For example, a string comparison automatically re-
turns false if the two strings have different lengths, without
resorting to byte-wise comparison.

Fast paths may hurt symbolic execution because they
cause symbolic branches in the code checking for the special
input conditions. Eliminating short-circuited returns can re-
duce path explosion. Instead of returning to the caller as soon
as it produced an answer, the function continues running and
stops on an input-independent condition. For example, when
comparing two strings of concrete length, a byte-wise string
comparison would then traverse the entire string buffers in
a single execution path, instead of returning after the first
difference found.

4.3 Testing API
Programs to be tested can be fed symbolic inputs by marking
input buffers with make_symbolic and defining conditions
over the input with the assume call, in accordance to the
test specification. Note that the buffer is a memory region
of concrete bounds. It is the job of the symbolic test library
in the interpreter VM to convert from the language data
structures (e.g., strings, integers) to the memory locations
used to store the data in the interpreter implementation.

5. Case Studies
We used CHEF to generate symbolic execution engines for
Python (§5.1) and Lua (§5.2). Table 2 summarizes the ef-
fort to set up the two interpreters for CHEF. The necessary
changes to the interpreter amount to 321 lines of code for
Python and 277 for Lua. The total developer time was 5
person-days for Python and 3 person-days for Lua, which
is orders of magnitude smaller than the effort required for
building a complete symbolic execution engine from scratch.

7

class ArgparseTest(SymbolicTest):
 def setUp(self):
 self.argparse = importlib.import_module("argparse")

 def runTest(self):
 parser = self.argparse.ArgumentParser()
 parser.add_argument(
 self.getString("arg1_name", '\x00'*3))
 parser.add_argument(
 self.getString("arg2_name", '\x00'*3))

 args = parser.parse_args([
 self.getString("arg1", '\x00'*3),
 self.getString("arg2", '\x00'*3)])

Figure 7. The symbolic test used to exercise the functional-
ity of the Python argparse package.

5.1 Symbolic Execution Engine for Python
Interpreter Instrumentation We instrumented the CPython
interpreter 2.7.3 for use with CHEF, according to the guide-
lines presented in §4.

Python programs are composed of modules, correspond-
ing to Python source files. Each source file is compiled
into an interpreter-specific bytecode format, i.e., each source
statement is translated into one or more lower-level primitive
instructions. The instructions are grouped into blocks, corre-
sponding to a single loop nesting, function, method, class,
or global module definition. We define an HLPC as the con-
catenation of the unique block address of the top frame on
the stack and the current instruction offset inside the block.
We instrumented the Python interpreter to pass this program
location to CHEF; this required adding less than 50 LoC to
the main interpreter loop.

We performed several optimizations on the Python inter-
preter: we neutralized the hash functions of strings and in-
tegers, which are the most common objects; we concretized
the memory sizes passed to the garbage-collected memory
allocator; and we eliminated interning for small integers and
strings. Most optimizations involved only adding preproces-
sor directives for conditional compilation of blocks of code.
We gathered the optimizations under a new -with-symbex

flag of the interpreter’s ./configure script.

Symbolic Tests To validate the usefulness of the resulting
symbolic execution engine, we use it as a test case genera-
tion tool. To this end, we implemented a symbolic test library
as a separate Python package, used both inside the guest vir-
tual machine, and outside, during test replay. Figure 7 is an
example of a symbolic test class for the argparse command-
line interface generator. It sets up a total of 12 symbolic char-
acters of input: two 3-character symbolic arguments to con-
figure the command-line parser plus another two to exercise
the parsing functionality.

The test class derives from the library’s SymbolicTest

class, which provides two methods to be overridden: setUp,
which is run once before the symbolic test starts, and
runTest, which creates the symbolic input and can check
properties. The symbolic inputs are created by calling the
getString and getInt methods in the SymbolicTest API.

A symbolic test is executed by a symbolic test runner,
which is also part of the library. The runner can work in ei-
ther symbolic or replay mode. In symbolic mode, the runner
executes inside the guest virtual machine. It creates a sin-
gle instance of the test class, whose getString and getInt

methods create corresponding Python objects and invoke the
make_symbolic call to mark their memory buffers as sym-
bolic. In replay mode, the runner creates one instance of the
test class for each test case created by CHEF. The getString
and getInt methods return the concrete input assignment of
the test case.

5.2 Symbolic Execution Engine for Lua
Lua is a lightweight scripting language mainly used as an
interpreter library to add scripting capabilities to software
written in other languages. However, it also has a standalone
interpreter and several Lua-only projects exist. We generated
a symbolic execution engine for Lua based on version 5.2.2
of the Lua interpreter.

Interpreter Instrumentation Similar to Python, Lua pro-
grams are composed of one or more Lua source files, com-
piled into a bytecode format. The code is compiled into a set
of functions that operate on a global stack of values. Each
function is composed of a sequence of bytecode instructions,
where each instruction is defined by an offset, opcode, and
parameters. We construct the HLPC as the concatenation of
the unique address of the function in the top frame and the
current instruction offset being executed. The instrumenta-
tion amounts to less than 50 LoC added to the interpreter
loop.

We optimized the Lua interpreter for symbolic execution
by eliminating string interning. In addition, we configured
the interpreter to use integer numbers instead of the default
floating point, for which S2E does not support symbolic ex-
pressions. This change was easy, because it was available as
a macro definition in the interpreter’s configuration header.

6. Evaluation
After presenting our testing targets and methodology (§6.1),
we answer the following questions:

• Is a CHEF-based symbolic execution engine effective for
automated test generation (§6.2)?

• How much do CUPA and interpreter optimizations con-
tribute to the engine’s effectiveness (§6.3)?

• How efficient is the test case generation (§6.4)?
• What is the impact of each optimization technique pre-

sented in §4.2 on effectiveness (§6.5)?
• How does a generated symbolic execution engine com-

pare to a dedicated implementation (§6.6)?

All reported experiments were performed on a 48-core
2.3 GHz AMD Opteron 6176 machine with 512 GB of

8

RAM, running Ubuntu 12.04. Each CHEF invocation ran on
1 CPU core and used up to 8 GB of RAM on average.

6.1 Testing Targets and Methodology
Testing Targets We evaluated the symbolic execution en-
gines for Python and Lua on 6 Python and 5 Lua packages,
respectively, including system, web, and office libraries. In
total, the tested code in these packages amounts to about
12.8 KLOC. We chose the latest versions of widely used
packages from the Python standard library, the Python Pack-
age Index, and the Luarocks repository. Whenever possible,
we chose the pure interpreted implementation of the package
over the native optimized one (e.g., the Python simplejson

package). The first five columns of Table 3 summarize the
package characteristics; LOC numbers were obtained with
the cloc tool [1].

The reported package sizes exclude libraries, native ex-
tension modules, and the packages’ own test suites. How-
ever, the packages ran in their unmodified form, using all the
language features and libraries they were designed to use, in-
cluding classes, built-in data structures (strings, lists, dictio-
naries), regular expressions, native extension modules, and
reflection.

All testing targets have a significant amount of their
functionality written in the interpreted language itself; we
avoided targets that are just simple wrappers around native
extension modules (written in C or C++) in order to focus
on the effectiveness of CHEF at distilling high-level paths
from low-level symbolic execution. Nevertheless, we also
included libraries that depend on native extension modules.
For instance, all the testing targets containing a lexing and
parsing component use Python’s standard regular expression
library, which is implemented in C. To thoroughly test these
parsers, it is important to also symbolically execute the na-
tive regular expression library. For this, the binary symbolic
execution capabilities of CHEF are essential.

Methodology: Symbolic Tests For each package, we wrote
a symbolic test that invokes the package’s entry points with
one or more symbolic strings. Figure 7 in §5.1 is an example
of such a symbolic test.

Each symbolic test ran for 30 minutes within CHEF, after
which we replayed the collected high-level tests on the host
machine, in a vanilla Python/Lua environment, to confirm
test results and measure line coverage. To compensate for
the randomness in the state selection strategies, we repeated
each experiment 15 times. In each graph we present average
values and error margins as +/- one standard deviation.

For our experiments, we did not use explicit speci-
fications, but relied on generic checks for finding com-
mon programming mistakes. For both Python and Lua, we
checked for interpreter crashes and potential hangs (infinite
loops). For Python—which, unlike Lua, has an exception
mechanism—we also flagged whenever a test case led to un-
specified exceptions being thrown. In general, one could find

application-specific types of bugs by adding specifications
in the form of assertions, as in normal unit tests.

Methodology: Coverage Measurement Line or statement
coverage remains widely used, even though its meaningful-
ness as a metric for test quality is disputed. We measure and
report line coverage to give a sense of what users can expect
from a test suite generated fully automatically by a symbolic
execution engine based on CHEF. For Python, we rely on the
popular coverage package, and for Lua we use the luacov

package.
Since our prototype only supports strings and integers

as symbolic program inputs, we count only the lines of
code that can be reached using such inputs. We report this
number as “coverable LOC” in the fifth column of Table 3,
and use it in our experiments as a baseline for what such a
symbolic execution engine could theoretically cover directly.
For example, for the simplejson library, this includes only
code that decodes JSON-encoded strings, not code that takes
a JSON object and encodes it into a string. Note that, in
principle, such code could still be tested and covered by
writing a more elaborate symbolic test that sets up a JSON
object based on symbolic primitives [5].

6.2 Effectiveness for Automated Testing
We evaluate the effectiveness of the generated symbolic ex-
ecution engines for bug detection and exception exploration.

Bug Detection The specifications we used for our experi-
ments are application-agnostic and only check for per-path
termination within a given time bound and for the absence
of unrecoverable crashes. The first specification checks
whether a call into the runtime returns within 60 seconds.
In this way, we discovered a bug in the Lua JSON package
that causes the parser to hang in an infinite loop: if the JSON
string contains the /* or // strings marking the start of a
comment but no matching */ or line terminator, the parser
reaches the end of the string and continues spinning waiting
for another token. This bug is interesting for two reasons:
First, comments are not part of the JSON standard, and the
parser accepts them only for convenience, so this is a clear
case of an interpreter-specific bug. Second, JSON encodings
are normally automatically generated and transmitted over
the network, so they are unlikely to contain comments; tradi-
tional testing is thus likely to miss this problem. However, an
attacker could launch a denial of service attack by sending a
JSON object with a malformed comment.

The second implicit specification checks that a program
never terminates non-gracefully, i.e., the interpreter imple-
mentation or a native extension crashes without giving the
program a chance to recover through the language exception
mechanisms. In our experiments, our test cases did not ex-
pose any such behavior.

Exception Exploration This scenario focuses on finding
undocumented exceptions in Python code. Being memory-
safe languages, crashes in Python and Lua code tend to be

9

Package LOC Type Description Coverable LOC Exceptions Hangs

Python
argparse∗ 1,466 System Command-line interface 1,174 4 / 0 —
ConfigParser∗ 451 System Configuration file parser 145 1 / 0 —
HTMLParser∗ 623 Web HTML parser 582 1 / 0 —
simplejson 3.10 1,087 Web JSON format parser 315 2 / 0 —
unicodecsv 0.9.4 126 Office CSV file parser 95 1 / 0 —
xlrd 0.9.2 7,241 Office Microsoft Excel reader 4,914 5 / 4 —

Lua
cliargs 2.1-2 370 System Command-line interface 273 — —
haml 0.2.0-1 984 Web HTML description markup 775 — —
sb-JSON v2007 454 Web JSON format parser 329 — �
markdown 0.32 1,057 Web Text-to-HTML conversion 673 — —
moonscript 0.2.4-1 4,634 System Language that compiles to Lua 3,577 — —

TOTAL 18,493 12,852

Table 3. Summary of testing results for the Python and Lua packages used for evaluation. Items with (*) represent standard
library packages. Exception numbers indicate total / undocumented exception types discovered.

due to unhandled exceptions rather than bad explicit point-
ers. When such exceptions are not caught by the program,
they propagate to the top of the stack and cause the program
to be terminated prematurely. In dynamic languages, it is dif-
ficult to determine all the possible exceptions that a func-
tion can throw to the callee, because there is no language-
enforced type-based API contract. Users of an API can only
rely on the documentation or an inspection of the implemen-
tation. Therefore, undocumented exceptions are unlikely to
be checked for in try-except constructs and can erroneously
propagate further. They can then hurt productivity (e.g., a
script that crashes just as it was about to complete a multi-
TB backup job) or disrupt service (e.g., result in an HTTP
500 Internal Server Error).

We looked at all the Python exceptions triggered by the
test cases generated using CHEF and classified them into
documented and undocumented. The documented excep-
tions are either exceptions explicitly mentioned in the pack-
age documentation or common Python exceptions that are
part of the standard library (e.g., KeyError, ValueError,
TypeError). Undocumented exceptions are all the rest.

The sixth column in Table 3 summarizes our findings.
We found four undocumented exceptions in xlrd, the largest
package. These exceptions occur when parsing a Microsoft
Excel file, and they are BadZipfile, IndexError, error,
and AssertionError. These errors occur inside the inner
components of the Excel parser, and should have either been
documented or, preferably, been caught by the parser and re-
raised as the user-facing XLRDError.

6.3 Impact of CUPA Heuristics and Interpreter
Optimizations

We now analyze the impact of the CUPA heuristics (de-
scribed in §3.2) and the interpreter optimizations (described
in §4.2) on test generation effectiveness. Specifically, we

measure the number of paths (respectively source code lines)
covered by the test suite generated in 30 minutes for the
packages in Table 3.

We compare the results obtained in 4 different configura-
tions: (1) the baseline, consisting of performing random state
selection while executing the unmodified interpreter, and
then either use (2) the path- or coverage-optimized CUPA
only, (3) the optimized interpreter only, or (4) both CUPA
and the optimized interpreter. This way we measure the in-
dividual contribution of each technique, as well as their ag-
gregate behavior.

Test Case Generation Figure 8 compares the number of
test cases generated with each of the 4 CHEF configurations,
using the path-optimized CUPA (§3.3). We only count the
relevant high-level test cases, that is, each test case exercises
a unique high-level path in the target Python program.

For all but one of the 11 packages (6 Python plus 5 Lua),
the aggregate CUPA + interpreter optimizations performs the
best, often by a significant margin over the baseline. This
validates the design premises behind our techniques.

The CUPA strategy and the interpreter optimizations
may interact non-linearly. In two cases (Python’s xlrd and
simplejson), the aggregate significantly outperforms either
individual technique. These are cases where the result is bet-
ter than the sum of its parts. In the other cases, the result
is roughly the sum of each part, although the contribution
of each part differs among targets. This is visually depicted
on the log-scale graph: for each cluster, the heights of the
middle bars measured from level 1× roughly add up to the
height of the aggregate (left) bar.

In one case (Lua’s JSON), the aggregate performs worse
on average than using the interpreter optimizations alone.
Moreover, the performance of each configuration is less pre-
dictable, as shown by the large error bars. This behavior is
due to the generated tests that cause the interpreter to hang,

10

 0.1

 1

 10

 100

 1000

 10000

xlrd simplejson
argparse

HTMLParser
ConfigParser

unicodecsv

P
at

h
R

at
io

 (P
 /

P
B

as
el

in
e)

Package

CUPA + Optimizations
Optimizations Only

CUPA Only
Baseline

Python

 0.1

 1

 10

 100

JSON Moonscript
cliargs lua-haml

markdown

P
at

h
R

at
io

 (P
 /

P
B

as
el

in
e)

Package

CUPA + Optimizations
Optimizations Only

CUPA Only
Baseline

Lua

Figure 8. The number of Python and Lua test cases gener-
ated by coverage- and path-optimized CUPA relative to ran-
dom state selection (logarithmic scale).

as explained in §6.2. To detect hangs, the test runs for 60
seconds before switching to another test case. This acts as a
“penalty” for the configurations that find more paths leading
to the hang and also skews the distribution of path execution
times, since the hanging paths take significantly longer than
the normal (terminating) paths.

Line Coverage Figure 9 shows the line coverage achieved
by each configuration, using CUPA optimized for line cov-
erage (§3.4). In 6 out of 11 packages, the coverage improve-
ment is noticeable, and for Python’s simplejson and xlrd,
the improvements are significant (80% and 40%).

Note that these coverage improvements are obtained us-
ing basic symbolic tests that do not make assumptions about
the input format. We believe that tailoring the symbolic tests
to the specifics of each package could improve these results
significantly.

6.4 Efficiency of Test Case Generation
We now look at the efficiency of high level test case gener-
ation. Since some low-level paths do not contribute to high-
level path coverage, we evaluate the ratio of high-level tests
to the total number of low-level test cases produced. We
again use the same four configurations as before.

Figure 10 shows what fraction of low-level paths cover
new high-level paths over time; said differently, this shows
the fraction of low-level tests that turn into high-level tests.
A point (t,φ) on the graph represents the ratio φ between
the number of high-level paths to low-level paths explored

 0

 20

 40

 60

 80

 100

simplejson
HTMLParser

argparse
unicodecsv

ConfigParser
xlrd

Li
ne

 C
ov

er
ag

e
[%

]

Package

CUPA + Optimizations
Optimizations Only

CUPA Only
Baseline

Python

 0

 20

 40

 60

 80

 100

lua-haml
markdown

cliargs JSON Moonscript

Li
ne

 C
ov

er
ag

e
[%

]

Package

CUPA + Optimizations
Optimizations Only

CUPA Only
Baseline

Lua

Figure 9. Line coverage for the experiments of Figure 8.

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30

Lo
w

-le
ve

l/H
ig

h-
le

ve
l P

at
h

R
at

io
 [%

]

Time [minutes]

CUPA + Optimizations
Optimizations Only

CUPA Only
Baseline

Python

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30

Lo
w

-le
ve

l/H
ig

h-
le

ve
l P

at
h

R
at

io
 [%

]

Time [minutes]

CUPA + Optimizations
Optimizations Only

CUPA Only
Baseline

Lua

Figure 10. Average evolution in time of the fraction of low-
level paths that contributed to high-level path coverage for
Python and Lua.

in time t. Just like before, φ is averaged across all testing
targets.

The aggregate configuration fares the best in the compar-
ison, by a significant margin. Throughout the execution, the
aggregate efficiency stays at about 25% for Python and 12%
for Lua. This is about 10×, respectively 2.6× higher than the
best performing among the other three configurations. This

11

 0

 50

 100

 150

 200

 250

xlrd simplejson
argparse

HTMLParser
unicodecsv

ConfigParser

P
at

h
R

at
io

 (P
 /

P
Fu

llO
pt

) [
%

]

Package

No Optimizations
+ Symbolic Pointer Avoidance

+ Hash Neutralization
+ Fast Path Elimination

Figure 11. The contribution of interpreter optimizations for
Python as number of high-level paths explored. Number
of paths is relative to full optimizations (100%) for each
package.

result justifies employing both CUPA and the interpreter op-
timizations during symbolic execution.

6.5 Breaking Down Interpreter Optimizations
We now analyze in more depth the impact of the interpreter
optimizations by breaking them down into the three types
mentioned in §4.2: avoiding symbolic pointers, hash neu-
tralization, and fast-path elimination. We run again the sym-
bolic tests for 30 minutes, using the path-optimized CUPA
and four different interpreter builds, starting from the vanilla
interpreter and adding the optimization types one by one. For
each build and package, we count the number of high-level
paths discovered by CHEF.

Figure 11 shows the results for Python. The data is nor-
malized such that the number of high-level paths for each
target reaches 100%. For 3 out of 6 packages (simplejson,
argparse, and HTMLParser), CHEF’s performance monoton-
ically increases as more optimizations are introduced. For
unicodecsv and ConfigParser, the optimizations do not
bring any benefits or even hurt slightly.

However, in the case of xlrd, hash neutralization and fast
path elimination seem to actually hurt symbolic execution,
since the best performance is attained when only symbolic
pointer avoidance is in effect. We explain this behavior by
the fact that the different optimization levels cause the search
strategy to explore different behaviors of the target package.
xlrd is by far the largest Python package in our evaluation
(7.2KLOC vs. the second largest of 1.4KLOC) and includes
a diverse set of behaviors, each with its own performance
properties.

This result suggests that, for large packages, a portfolio of
interpreter builds with different optimizations enabled would
help further increase the path coverage.

6.6 Comparison Against Hand-Made Engines
We now evaluate the trade-offs in using a symbolic execution
engine generated with CHEF over building one “by hand”.

Hand-Made Engines To our knowledge, no symbolic ex-
ecution engine for Lua exists. For Python, we found three

research tools, which we compare CHEF to. (1) CutiePy [23]
is a concolic engine based on a formal model of the Python
language. It uses a custom CPython interpreter to drive a
concrete execution, along with updating the symbolic state
according to model semantics. (2) NICE-PySE [8] is part
of the NICE framework for testing OpenFlow applications.
We will refer to it as NICE, for brevity. It wraps supported
data types into symbolic counterparts that carry the symbolic
store, and uses Python’s tracing mechanisms to implement
the interpretation loop fully in Python. (3) The symbolic ex-
ecution engine of the scalability testing tool Commuter [11]
is also entirely built in Python. Its primary purpose is the
construction of models that explicitly use an API of sym-
bolic data types.

We perform our comparison along three aspects: lan-
guage features supported, implementation faithfulness, and
performance. The last two aspects are evaluated only against
NICE, which, besides being open source, is most compatible
with our symbolic data representation (based on STP [13]).

Language Feature Support Table 4 summarizes the lan-
guage feature support for CHEF, NICE, CutiePy, and Com-
muter, as implemented at the moment of writing. We relied
on information from the respective papers in all cases and
additionally on the implementation in the cases of NICE and
Commuter, which are available as open source.

We distinguish engines designed to support arbitrary
Python code (the “Vanilla” label) and those where the sym-
bolic data types are an API used by model code (the “Model”
label). Engines in the “Model” category essentially offer a
“symbolic domain-specific language” on top of the inter-
preted language. CHEF, CutiePy, and NICE are “vanilla”
engines, since their testing targets do not have to be aware
that they are being symbolically executed. Commuter is a
model-based engine, since its testing targets are bound to
the symbolic API offered by the engine.

We grouped the supported language features into program
state representation (the language data model and types) and
manipulation (the operations on data). We divide data types
into values (integers, strings and floating-point), collections
(lists and dictionaries), and user-defined classes. The opera-
tions consist of data manipulation, basic control flow (e.g.,
branches, method calls), advanced control flow (e.g., excep-
tion handling, generators), and native method invocations
(they are atomic operations at the high level). We also in-
clude in the comparison the ability to execute unsupported
operations in concrete-only mode.

In a nutshell, CutiePy is able to complete correctly any
execution in concrete mode by using the interpreter im-
plementation directly. However, the symbolic semantics for
each data type and native function must be explicitly pro-
vided by the developer, which makes CutiePy impractical
to use with rich Python applications. NICE suffers from the
additional limitation that it has to support each bytecode in-
struction explicitly, which makes the tool impossible to use

12

CHEF CutiePy NICE Commuter

Engine type Vanilla Vanilla Vanilla Model

Data types
Integers � � � �
Strings � � � ��
Floating point � � � �
Lists and maps �∗ �� � �
User-defined classes �∗ � �� ��
Operations
Data manipulation � �� �� ��
Basic control flow � � �� �
Advanced control flow � � � �
Native methods � �� � �

�Complete ��Partial �Not supported

Table 4. Language feature support comparison for CHEF
and dedicated Python symbolic execution engines. Complete
support with (*) refers to the internal program data flow and
not to the initial symbolic variables.

beyond its target applications. Finally, Commuter provides a
rich set of symbolic data types, including lists and maps, by
taking advantage of Z3’s extended support for arrays [12].
However, it supports only Python programs explicitly writ-
ten against its API and does not handle native functions.

The engine generated by CHEF offers complete symbolic
support for almost all language features. Floating point oper-
ations are supported only concretely, due to lack of support
in STP, the constraint solver used by S2E. For the same rea-
sons, the symbolic program inputs can only be integers and
strings. However, all data structures are supported during the
execution.

Each half or empty bullet in Table 4 implies that sig-
nificant engineering effort would be required to complete a
feature. While useful for their evaluation targets, NICE and
CutiePy are unable to handle a complex software package
that makes use of Python’s many language features.

Use as Reference Implementation When the need for per-
formance justifies investing in a dedicated engine implemen-
tation, an engine created from CHEF can serve as a reference
implementation during development. One can find bugs in a
symbolic execution engine by comparing its test cases with
those generated by CHEF. The process can be automated by
tracking the test cases generated by the target engine along
the high level paths generated by CHEF to determine dupli-
cates and missed feasible paths.

In this mode, we found a bug in the NICE implementa-
tion, which was causing it to generate redundant test cases
and miss feasible paths. The bug was in the way NICE han-
dled if not <expr> statements in Python, causing the en-
gine to select for exploration the wrong branch alternate and
end up along an old path. We are assisting the NICE devel-
opers in identifying and fixing any other such bugs.

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4 5 6 7 8 9 10

C
H

E
F

O
ve

rh
ea

d
T C

H
E

F/
T N

IC
E

Size of Symbolic Input [# of frames]

No Optimizations
+ Sym. Ptr. Avoidance

+ Hash Neutral.
+ Fast Path Elim.

Figure 12. Average overhead of CHEF compared to NICE,
computed as ratio of average per-path execution times. The
average divides total tool execution time by number of high-
level paths generated.

In conclusion, the experiment provides evidence that a
system combining an established low-level symbolic execu-
tion engine (e.g., S2E) with a reference interpreter imple-
mentation is more robust than a symbolic execution engine
built from scratch.

Performance The downside of CHEF is that the symbolic
execution engines produced are slower than their hand-
written equivalents. We quantify this drawback by apply-
ing CHEF to the experimental setup of NICE, consisting of
an OpenFlow switch controller program that implements a
MAC learning algorithm. The controller receives as input
a sequence of Ethernet frames and, in response, updates its
forwarding table (stored as a Python dictionary). We use
symbolic tests that supply sequences of between 1 and 10
Ethernet frames, each having the MAC address and frame
types marked as symbolic.

Given the small size of the controller (less than 100 LOC),
the number of execution paths is relatively small, and choos-
ing low-level paths at random quickly discovers new high-
level paths. Therefore, the search strategy has no impact (in
the experiments we used path-optimized CUPA). However,
the interpreter optimizations are crucial, since the controller
code relies heavily on the dictionary. As in §6.5, we use
several interpreter builds with optimizations introduced one-
by-one.

Figure 12 illustrates the overhead for each optimization
configuration, as a function of number of Ethernet frames
supplied. The overhead is computed as the ratio between
the average execution times per high-level path of NICE
and CHEF. In turn, the execution time per high-level path
is computed by dividing the entire execution time of each
tool by the number of paths it produced.

The performance of each optimization configuration il-
lustrates the sources of path explosion and slowdown in the
vanilla interpreter. With no optimizations, symbolic keys in
the MAC dictionary cause massive path explosion due to
symbolic pointers. When avoiding symbolic pointers, per-
formance drops even more due to symbolic hash computa-

13

tions. This penalty is reduced up to two orders of magni-
tude with hash neutralization. Finally, fast path elimination
reduces the forking inside string key comparisons in the dic-
tionary.

The shape of the final performance curve (the solid line)
is convex. For 1 and 2 symbolic frames, the search space is
quickly exhausted and the execution time is dominated by
CHEF’s initialization costs, i.e., setting up the symbolic VM
and executing the interpreter initialization inside the guest.
This results in an execution overhead as high as 120×. For
more symbolic frames, the initialization cost is amortized,
and the overhead goes below 5×. However, as the number
of frames increases, so does the length of the execution
paths and the size of the path constraints, which deepens the
gap between CHEF’s low-level reasoning and NICE’s higher
level abstractions. For 10 symbolic frames, the overhead is
around 40×.

Despite CHEF’s performance penalty, the alternative of
writing an engine by hand is daunting. It involves develop-
ing explicit models that, for a language like Python, are ex-
pensive, error-prone, and require continuous adjustments as
the language evolves. Where performance is crucial, a hand-
written engine is superior; however, we believe that CHEF is
a good match in many cases.

7. Related Work
To the best of our knowledge, we are the first to use sym-
bolic execution on an interpreter to symbolically execute
a program written in the target interpreted language. How-
ever, there has been work on writing dedicated symbolic
execution engines for interpreted languages directly. Beside
Python engines, the Kudzu [24] symbolic execution engine
for JavaScript was used to detect code injection vulnerabili-
ties. It relies on an intermediate representation of JavaScript
that it directly executes symbolically. Apollo [2] is another
engine targeting PHP code to detect runtime and HTML er-
rors, while Ardilla [17] uses this system to discover SQL
injection and cross-site scripting attacks in PHP.

The general area of automated software testing has a rich
body of published literature. We highlight here only the clos-
est concepts. Symbolic tests are closely related to the idea of
parameterized unit tests [26]. These extend regular unit tests
with parameters marked as symbolic inputs during symbolic
execution. QuickCheck [10] allows writing specifications in
Haskell, which again share their basic concept with symbolic
tests, and tries to falsify them using random testing. Sym-
bolic execution can offer an alternative to random testing in
evaluating QuickCheck test specifications.

8. Conclusion
Implementing and maintaining a symbolic execution en-
gine is a significant engineering effort. It is particularly
hard for interpreted dynamic languages, due to their rich
semantics, rapid evolution, and lack of precise specifica-

tions. Our system CHEF provides an engine platform that
is instantiated with a language interpreter, which implic-
ity defines the complete language semantics, and results
in a correct and theoretically complete symbolic execu-
tion engine for the language. A language-agnostic strat-
egy for selecting paths to explore in the interpreter al-
lows the generated engine to systematically explore and
test code in the target language (including possible na-
tive calls) effectively and efficiently. CHEF is available at
http://dslab.epfl.ch/proj/chef.

Acknowledgments
We thank the reviewers and Jonas Wagner for their valu-
able feedback on our paper. We thank Marco Canini, Peter
Perešíni, and Daniele Venzano for their generous help with
NICE. We are grateful to the European Research Council
(StG #278656) and to Google for supporting our work.

References
[1] Al Danial. Cloc. http://cloc.sourceforge.net/.

[2] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M. D.
Ernst. Finding bugs in dynamic web applications. In Intl. Symp. on
Software Testing and Analysis, 2008.

[3] T. F. Bissyandé, F. Thung, D. Lo, L. Jiang, and L. Réveillère. Popular-
ity, interoperability, and impact of programming languages in 100,000
open source projects. In Computer Software & Applications Confer-
ence, 2013.

[4] E. Bounimova, P. Godefroid, and D. Molnar. Billions and billions of
constraints: Whitebox fuzz testing in production. Technical Report
MSR-TR-2012-55, Microsoft Research, 2012.

[5] S. Bucur, J. Kinder, and G. Candea. Making automated testing of
cloud applications an integral component of PaaS. In Proc. 4th Asia-
Pacific Workshop on Systems (APSYS 2013). USENIX, 2013.

[6] J. Burnim and K. Sen. Heuristics for scalable dynamic test generation.
In Intl. Conf. on Automated Software Engineering, 2008.

[7] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and au-
tomatic generation of high-coverage tests for complex systems pro-
grams. In Symp. on Operating Sys. Design and Implem., 2008.

[8] M. Canini, D. Venzano, P. Peresini, D. Kostic, and J. Rexford. A NICE
way to test openflow applications. In Symp. on Networked Systems
Design and Implem., 2012.

[9] V. Chipounov, V. Kuznetsov, and G. Candea. S2E: A platform for
in-vivo multi-path analysis of software systems. In Intl. Conf. on
Architectural Support for Programming Languages and Operating
Systems, 2011.

[10] K. Claessen and J. Hughes. QuickCheck: A lightweight tool for
random testing of haskell programs. In ACM SIGPLAN International
Conference on Functional Programming, 2000.

[11] A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T. Morris, and
E. Kohler. The scalable commutativity rule: Designing scalable soft-
ware for multicore processors. In Symp. on Operating Systems Prin-
ciples, 2013.

[12] L. de Moura and N. Bjorner. Generalized, efficient array decision
procedures. In Intl. Conf. on Formal Methods in Computer-Aided
Design, 2009.

[13] V. Ganesh and D. L. Dill. A decision procedure for bit-vectors and
arrays. In Intl. Conf. on Computer Aided Verification, 2007.

[14] P. Godefroid. Compositional dynamic test generation. In Symp. on
Principles of Programming Languages, 2007.

14

http://dslab.epfl.ch/proj/chef
http://cloc.sourceforge.net/

[15] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated
random testing. In Intl. Conf. on Programming Language Design and
Implem., 2005.

[16] P. Godefroid, M. Y. Levin, and D. Molnar. Automated whitebox fuzz
testing. In Network and Distributed System Security Symp., 2008.

[17] A. Kiezun, P. J. Guo, K. Jayaraman, and M. D. Ernst. Automatic
creation of SQL injection and cross-site scripting attacks. In Intl.
Conf. on Software Engineering, 2009.

[18] R. S. King. The top 10 programming languages. IEEE Spectrum, 48
(10):84, 2011.

[19] V. Kuznetsov, V. Chipounov, and G. Candea. Testing closed-source
binary device drivers with DDT. In USENIX Annual Technical Conf.,
2010.

[20] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea. Efficient state
merging in symbolic execution. In Intl. Conf. on Programming Lan-
guage Design and Implem., 2012.

[21] C. Lattner and V. Adve. LLVM: A compilation framework for life-
long program analysis and transformation. In Intl. Symp. on Code
Generation and Optimization, 2004.

[22] The Python Language Reference. Python Software Foundation.
http://docs.python.org/3/reference/.

[23] S. Sapra, M. Minea, S. Chaki, A. Gurfinkel, and E. M. Clarke. Finding
errors in python programs using dynamic symbolic execution. In Intl.
Conf. on Testing Software and Systems, 2013.

[24] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song.
A symbolic execution framework for JavaScript. In IEEE Symp. on
Security and Privacy, 2010.

[25] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang,
Z. Liang, J. Newsome, P. Poosankam, and P. Saxena. Bitblaze: A
new approach to computer security via binary analysis. In Intl. Conf.
on Information Systems Security, 2008.

[26] N. Tillmann and W. Schulte. Parameterized unit tests. In Symp. on
the Foundations of Software Eng., 2005.

[27] J. Wagner, V. Kuznetsov, and G. Candea. -OVERIFY: Optimizing
programs for fast verification. In Workshop on Hot Topics in Operat-
ing Systems, 2013.

[28] T. Xie, N. Tillmann, J. de Halleux, and W. Schulte. Fitness-guided
path exploration in dynamic symbolic execution. In Intl. Conf. on
Dependable Systems and Networks, 2009.

[29] C. Zamfir and G. Candea. Execution synthesis: A technique for
automated debugging. In ACM EuroSys European Conf. on Computer
Systems, 2010.

15

http://docs.python.org/3/reference/

	Introduction
	Symbolic Execution of Interpreted Code
	Symbolic Execution
	Supporting Interpreted Languages
	Symbolically Executing the Interpreter

	The Chef System
	System Overview
	Class-Uniform Path Analysis (CUPA)
	Path-Optimized CUPA
	Coverage-Optimized CUPA

	Preparing the Interpreter
	Exposing the High-Level Program Location
	Optimizing for Symbolic Execution
	Testing API

	Case Studies
	Symbolic Execution Engine for Python
	Symbolic Execution Engine for Lua

	Evaluation
	Testing Targets and Methodology
	Effectiveness for Automated Testing
	Impact of CUPA Heuristics and Interpreter Optimizations
	Efficiency of Test Case Generation
	Breaking Down Interpreter Optimizations
	Comparison Against Hand-Made Engines

	Related Work
	Conclusion

