Making Automated Testing of Cloud Applications
an Integral Component of PaaS

Stefan Bucur

Johannes Kinder

George Candea

School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Abstract

Traditional testing is inadequate for the complexity of
modern cloud application software stacks. While the
platform-as-a-service (PaaS) model has streamlined ap-
plication development and deployment, its multiple ab-
straction layers and dependencies have made testing
more difficult. We argue that a modern PaaS offering
should include a facility to thoroughly and automatically
test a deployed cloud application with only little devel-
oper effort.

To support this vision, we propose layered parame-
terized tests (LPTs)—generalized integration tests suit-
able for cloud applications with multiple processing lay-
ers. From LPTs, a testing facility automatically gen-
erates concrete tests using layered symbolic execution,
which focuses on exercising developer-written applica-
tion logic instead of PaaS library code. We present our
design of an automated testing system built on these con-
cepts and demonstrate its use for a modern PaaS.

1 Introduction

Modern consumer software is increasingly relying on
the “cloud application” model, where a browser- or mo-
bile device-based client interacts with a functionally rich
cloud service. This model is prevalent in major sys-
tems like Facebook and GMail, as well as in smart-
phone and tablet “apps” like Instagram, Siri, or Drop-
box. For both developers and users, the economics are

highly attractive: cloud-based applications offer ubiqui-
tous access, transparent scaling, and easy deployment at
low cost.

The hidden cost is that cloud apps introduce secu-
rity, privacy, and availability risks. They store and pro-
cess critical information remotely, so the impact of fail-
ures is higher in this model than for single-user desktop
apps [17]. This increases the importance of testing for
cloud applications.

Rapid advances in development and deployment tools
have significantly lowered the barrier to entry for devel-
opers, but these tools lack similarly advanced support for
testing. Platform-as-a-service (PaaS) offerings, such as
Google App Engine or Microsoft Azure, provide easy-
to-use interfaces with automated deployment fully inte-
grated into development environments. However, testing
tools for apps running on PaaS are still immature, test
automation is limited, and developers are left with the
laborious and error-prone task of manually writing large
numbers of individual test cases.

Integration tests, which complement unit tests by
checking that all the components of a fully deployed
cloud application work together correctly, are especially
tedious to write and set up in such an environment. PaaS-
based cloud applications typically use frameworks with
a layered communication architecture and perform some
processing at each of the layers. Writing a full inte-
gration test then requires to carefully craft an HTTP
request that successfully passes through all application
and framework layers and triggers the desired behavior,
while being transformed from one representation to an-
other at each step (e.g., from an HTTP request to JSON
to language objects).

Spending precious developer time on testing for im-
proving security and reliability is particularly unattrac-
tive in a viciously competitive environment. Promoted
by the ability to deploy virtually instantly and at low cost,
the pressure is to use features to quickly acquire a large
user base. Security and reliability testing is a long-term

To appear in Proc. 4th Asia-Pacific Workshop on Systems (APSYS), Singapore, July 2013 1

Web Request

HTTP 4XX HTTP 2XX

Web Input Space
A (Error) (Success)
Application ¥ 5 oo ket 1
URL Router Invalid URL
»
Bod

Authorization Bad Authentication

Invalid JSON
Valid Request

Request
Handler

Figure 1: A sample cloud application. Clients commu-
nicate with the server through web requests that traverse
several layers inside the server before reaching the re-
quest handler logic. From the total input space, most
possible requests trigger errors in one of the processing
layers (light arrows). Only a small fraction of requests
successfully traverses all layers and is handled inside the
app (dark arrow).

investment and does not pay off immediately, thus it is
often deferred for later. High-profile failures of cloud
applications [16, 9] are thus likely to become a common
occurrence, unless we can make testing easy and cheap.

We argue that testing must become at least as easy as
deploying a new app. PaaS has made the latter easy, leav-
ing the former just as hard to do as before. A dedicated
testing service must therefore become an integral com-
ponent of PaaS. Recent commercial test automation sys-
tems (CloudBees, Skytap, SOASTA, etc.) relieve devel-
opers of managing their own test infrastructure, but still
require them to write test suites; we aim to further relieve
developers of having to write individual tests. Just as
modern PaaS APIs spare developers from having to man-
age the building blocks of their applications, so should
they spare developers from manually writing test cases,
and instead offer means to automatically test apps based
on only minimal input from developers.

Recent progress in automated test case generation [5,
11, 19] takes an important step in this direction. For a
typical PaaS application like the example in Figure 1, a
test case generator could use symbolic execution (a path-
based program analysis) to automatically find HTTP
packets that drive the execution to different parts of the
code. Unfortunately, these tools are not (yet) a good fit
for cloud apps: the number of execution paths success-
fully crossing all application layers is dwarfed by the vast
number of possible error paths (dark vs. light arrows in
Figure 1). Yet, most error paths are irrelevant to testing
the high-level logic of the app itself (i.e., the innermost
layer), because they test code that is part of the PaaS.

We propose layered parameterized tests (LPTs) for in-
tegration testing of PaaS-based cloud applications (§2).
LPTs describe families of integration tests (in the spirit
of parameterized unit tests [20]) across several applica-

Paa$S Platform
[~ Application
4. Deploy in
. —
p production Production Stack
LPTs | Application I

Developer LPT Test Runner

2. Deploy in
‘w LPTs |Application
3. Get back test results r Tost Eramework +
(bugs, coverage metrics, etc.) Production Stack

1. Write the application
and LPTs

Figure 2: Development flow for using a PaaS-integrated
testing service.

tion layers. We rely on developer-provided onion objects
to describe the layering of the data abstractions in the
application; onion objects encode the multiple interpre-
tations of input data as, e.g., an HTTP request, a JSON
object, etc. For the automatic generation of thorough test
cases from LPTs, we introduce layered symbolic execu-
tion (LSE), an automated program analysis that is tai-
lored for the layered structure of cloud applications (§3).
Finally, we present a design and early prototype for a
PaaS-integrated testing service based on LSE (§4).

2 A PaaS Test Interface

We propose an automated testing service integrated
in PaaS. Developers write layered parameterized tests
(LPTs) and upload them with the cloud application to
be executed by the test service. The service uses LPTs to
automatically generate application inputs (e.g., web re-
quests and persistent data) that exercise the application
layers of interest. The developer writes LPTs by speci-
fying the structure of the application inputs and a target
property to be checked.

Developer Workflow Figure 2 illustrates the workflow
of a developer using our testing service. The devel-
oper writes layered parameterized tests using a platform-
provided testing API (step 1). She then deploys the app
in test mode, which invokes the LPT test runner of the
PaaS (step 2). This test runner is responsible for gener-
ating and running the individual test cases from the LPT,
and it returns test results back to the developer (step 3).
The develop-deploy-test cycle continues until the code is
ready to be deployed in production (step 4).

Layered Parameterized Tests An LPT specifies a
family of executions (or, equivalently, classes of inputs)
plus a set of properties (expressed as assertions) that are
expected to hold for all these executions. The specified
family of executions can be large or even infinite; still,
the test runner can often efficiently check whether the

1|from onion import LPT, <instrumentLayer

2|from onion 1import str_, dint_, dict_, http_, json_
3

4lapp = PhotoUploadApp()

5

6|class TestUpload(LPT):

7 def setUp(self):

8 .. payload = dict_(

9§ 2 [("name", str_()), ("size", dint_())],
1o & lay§r=”payload")

1110 O body = json_(payload, layer="body")

12 request = http_(body, layer="request")

13 self.defineInput(request, name="img_upload™)
14

15 def runTest(self):

16 request = self.getInput("img_upload")

17 instrumentLayer (request, '"request")

18 response = app.sendRequest(request)

19 self.assertNotEqual(response.status, 500)
20

21|class UploadHandler (RequestHandler):

22 def post(self):

23 instrumentLayer (self.request.body, "body")
24 payload = self.decodeJSON(self.request.body)
25 instrumentLayer (payload, '"payload")

26

27 # ... process the request ...

Figure 3: An LPT example in Python for a photo
management application. Highlighted code is the test
code written by developers. Names in bold denote the
LPT-specific API added to the standard Python unit test
framework.

property is guaranteed to hold for the entire family (we
give more details on the symbolic execution-based mech-
anism in §3). A traditional unit test can be seen as a
special case of an LPT for which the input is fixed and
any provided assertions are checked on a single execu-
tion only.

LPTs are defined by developers using a platform-
provided API in the implementation language of the
application (e.g., Python). The testing API builds on
the popular xUnit testing paradigm [3] and extends it
with constructs to specify the structure of families of
application inputs. The API is easily integrated with
existing testing fixtures and frameworks that developers
use today.

We illustrate the structure of an LPT and how it is used
by the test runner using the example LPT Testupload
shown in Figure 3, which tests the upload functionality
of a photo management application. Under the /upload
URL, the application accepts POST requests containing a
JSON-encoded dictionary describing photo information.
Figure 4 shows an example HTTP request for the appli-
cation.

We assume that the app follows the structure given in
Figure 1, that it is written in Python using a popular web
framework like Django [8] or WebApp [22], and that it is
deployed on a PaaS infrastructure like Google App En-
gine [12] or Heroku [13]. The web framework takes care
of dispatching any POST request to the /upload appli-
cation URL to the post method of the UploadHandler
class (lines 21-27). The Testupload LPT checks that,

POST /upload HTTP/1.1

Host: photo.example.com

Authorization: Basic QWxhZGRpbjpvcGVuUIHNlc2FtzQ==
Content-Type: application/json

Content-Length: 104446

{

"name'": "cat.jpg",

"size": 104385,

"data": "gzZnJvbSBvdGhlciBhbmltYW[...]"
}

Figure 4: An example HTTP request for the upload fea-
ture of the photo management application. The text in
bold denotes input processed by the application at vari-
ous layers.

for arbitrary upload requests, the server never returns an
internal error (HTTP 500) in its response.

The test runner uses the LPT to automatically generate
application input according to the following procedure:

1. The test runner invokes the setup method (line 7),
which declares the application inputs and their
structure as onion objects (described below) using
the defineInput call at line 13.

2. Based on the onion objects, the test runner generates
a default input for the application.

3. The test runner invokes runTest, which retrieves
the concrete input generated by the test runner with
a call to getInput (line 16). In our example, the in-
put is a web request, which is then sent to the appli-
cation (line 18). Behind the scenes, the web frame-
work dispatches the request to the post method of
UploadHandler (line 22). When the handler finishes
handling the request, a response object with a status
code and body is returned. In our example, the LPT
checks that no internal error (HTTP 500) occurred
during request handling (line 19).

4. Based on the information collected during the exe-
cution of runTest (described below), the test runner
uses the onion objects to generate a new application
input (available to the LPT through the getInput
call) and goes back to step 3 for a new iteration. Any
assertion failures triggered by the generated inputs
are reported to the developers.

Note that the generation and execution of multiple inputs
is well suited for parallelization across multiple nodes
in the cloud. This allows to leverage the availability of
additional nodes to reduce the total testing time.

The test runner uses symbolic execution to generate
new inputs (described in more detail in §3). To generate
inputs that exercise the application at specific layers, the
test runner needs:

* the unwrapped application inputs for the current ex-
ecution at the different application layers, provided
by developers through annotations in the applica-
tion source code; and

¢ information about the input structure, provided by
the LPT’s onion objects.

Annotating Application Layers A web request tra-
verses several processing layers in an application. First,
it is received as an HTTP packet string; second, it is de-
coded into a URL, a set of headers, and request a body;
third, the body contents is decoded and processed. De-
pending on the application framework, processing can
involve additional layers, e.g., for converting JSON rep-
resentations to language objects.

The application layers process data at corresponding
layers of the input data (the bold parts of the HTTP re-
quest in Figure 4). For instance, the application typically
maps the URL to a request handler, checks the headers
for authentication information, and processes the body
contents in the request handler code.

To expose the application input to the LPT as it is be-
ing processed at each layer, developers annotate the vari-
ables holding the input data structures in the application
source code. Three layers have been declared in Fig-
ure 3: the HTTP request at line 17, the request body at
line 23, and the JSON payload extracted from the body at
line 25. The instrumentLayer call attaches a layer name
to a variable. Similar to assertion statements, the call is
active when executed as part of a test invocation, but dis-
abled in production, where the LPTs are not used. For
a typical web stack, only about three layers have to be
annotated for each request handler, keeping the required
effort on the developer side low.

Onion Objects An onion object is a data structure that
describes the representations of the application input as
it traverses multiple processing layers. The onion object
(i) enables more convenient assertion-writing by directly
exposing the data layers, and (ii) enables automated test
generation to focus on specific layers of the application.
Onion objects are needed to specify the application in-
puts for onion tests, but they can also be used to store
output as the cloud application constructs a response in
layers.

The framed area in Figure 3 shows the onion object
for our running example. The structure consists of a set
of onion nodes (the identifiers ending in an underscore)
connected in a nested structure. There is one onion node
for each layer and one for each input structure or value
that is supposed to be generated automatically by the test
engine. The abstraction level is declared using the 1ayer
parameter passed to the node constructor and matches
one of the layers annotated in the code. Structures and

values can be nested within the same layer. For example,
the dictionary structure on lines 8—10 has constant keys
and wildcard values of type str_ and int_, which mimic
the standard string and integer types.

Checking Properties LPTs express application prop-
erties through standard xUnit assertion statements
(line 19 in the example). Through the dynamic test gen-
eration mechanism explained in §3, the test runner ac-
tively attempts to generate inputs that cause an assertion
to be violated. Each generated test input not failing the
assertion serves as a witness for an entire equivalence
class of inputs that cannot violate the assertion. When
an assertion does fail, the input that caused the failure is
reported back to the developer.

To allow input variables at each layer to be used in
assertions, each onion node offers a value property that
refers to the value matched in the current test execution
(not shown in the example).

3 Layered Symbolic Execution

In this section, we introduce layered symbolic execu-
tion (LSE), an LPT execution technique that focuses on
covering a particular application layer. LSE uses sym-
bolic execution—a test case generation technique that
observes the program structure—to generate inputs in the
representation of the layer of interest (e.g., HTTP head-
ers or a JSON payload). Each generated layer-level input
is then assembled back into application-level input based
on the structure encoded in the onion object, in order to
form an integration test case. In the rest of the section,
we briefly introduce symbolic execution and describe our
technique in more detail.

Dynamic Test Generation LSE is based on dynamic
test generation by symbolic execution [11]. Dynamic test
generation replaces concrete inputs with symbolic values
and executes a single program path symbolically, rep-
resenting all variables in terms of the symbolic inputs,
and building a “path condition” out of all branch condi-
tions along that path (using the negated condition when-
ever the else branch was taken). A satisfying assign-
ment of the path condition is a test input that makes the
program follow the path corresponding to the path con-
dition. Negating a constraint in the path condition then
yields—if the path condition is still feasible—new test
inputs causing execution to diverge from the earlier path.
This process can be iterated until all paths are covered.
The number of paths can be large or virtually infinite, so
the test generation has to settle for covering only a subset
of paths. The focus on progressing one path at a time has
allowed symbolic execution to be successfully applied to
large systems [11, 6, 4].

Naive application of dynamic test generation to exe-
cute the LPT for a cloud app is of little use, however:
First, the path exploration can end up exploring many
different paths within the framework code, but might
test only a single path within the application layer over
and over again. Second, the path conditions will en-
code many branches due to the multiple layers of pars-
ing logic, making symbolic execution of cloud apps pro-
hibitively expensive. Third, if the exploration is unaware
of the connections between abstraction layers, blindly
negating just single branch conditions will produce many
infeasible paths before finding a new valid test input.

LSE and Onion Objects LSE relies on onion objects
to mark input variables as symbolic and generate new
values based on the alternate path conditions. To this
end, each onion object exposes a number of operations:

* instrument (var) instruments the variable var for
symbolic execution, i.e., injects a fresh symbolic in-
put value in dynamic test generation. The variable
is expected to match the structure described by the
onion object.

* reconstruct (var, val) applies an assignment of
value val to variable var that is demanded by the
satisfying assignment representing a new path. In
doing the assignment, the function performs the
necessary modifications to other variables to respect
the cross-layer invariants.

* getDefault () returns a default value for the object
node. It is used for generating the initial test case
or any padding values required by invariants (e.g.,
changing the content length field of an HTTP re-
quest requires to extend the actual contents).

For example, applying the instrument method of a
string onion object on a string variable in Python marks
as symbolic the string length and the contents of the char-
acter buffer. Then, during symbolic execution, the alter-
nate path constraint yields new values for the length and
for the buffer. The reconstruct method takes both val-
ues and creates a new Python string object.

The reconstruction method is essential for enforcing
the object and cross-layer invariants of the input struc-
ture. For instance, the length of the reconstructed string
would always match the size of its buffer (and avoid spu-
rious overflows); the Content-length HTTP header would
always match the size of the new request body, and so on.

LSE Algorithm LSE allows the test runner to focus
on exploring paths inside inner application layers. Con-
ceptually, LSE decouples the input layers to give the test
runner the flexibility to freely explore an individual layer.

JSON
parsing

Error paths

Payload
handling

Figure 5: Exploring an execution tree using layered
symbolic execution.

When constructing a new application input, LSE recon-
nects the layers, taking care to respect cross-layer invari-
ants (e.g., the value of a JSON field has to be present also
in the HTTP packet). The LSE algorithm proceeds along
the following steps:

1. Generate an initial valid input (i.e., a web request)
using the getbefault call on the root node. The
LPT can read this input by calling get Input.

2. Symbolically execute the program through the test
(the runTest method), using symbolic inputs cre-
ated by calling the instrument method on the onion
object nodes corresponding to the layer of interest.
Any existing symbolic expressions for these vari-
ables (which implicitly encode the parsing logic)
are overwritten in this step, effectively decoupling
the input at the current layer from the previous
ones. This permits the symbolic execution engine
to negate constraints inside the current layer with-
out being constrained by the previous layers.

3. When the execution completes, negate a constraint
in the path condition to obtain new values for the
onion nodes.

4. Using the reconstruct function of the onion object
node, assemble the new values back into a new com-
plete program input (e.g., the HTTP request) for the
next iteration.

Figure 5 illustrates an execution tree explored in an
iteration of LSE. Consider an initial input for the exam-
ple in Figure 3, where the value of the size field in the
JSON request payload is 8 (Path A in the figure). At
step 2 of the algorithm, a symbolic value is injected for
size, together with the rest of the onion object wild-
card fields (the highlighted segment of Path A). Now,
if the tested path contains the conditional statement if
payload.size < 16, the then branch of the statement is
taken and the size < 16 constraint is recorded. At the
end of the execution (step 3), if this constraint is negated
to size > 16, a new value for size is generated, say 20
(the alternate potential Path A’). Then, at step 4, the
reconstruct functions assembles the new values of all

leaves into a new HTTP packet to be sent to the app,
which will cause the else branch of the if statement to
be taken in the next execution (Path B). Note that Path
A’ is not globally feasible and never explored, but only
transiently used to produce the feasible Path B.

Compared to a solution that only marks the variables
at the layers of interest as symbolic, LSE is superior
in two ways: (1) By obtaining the root input, it is able
to run integration tests for a fully deployed application;
(2) LSE supports data structures of variable sizes, e.g.,
arrays whose lengths are symbolic values, by regenerat-
ing the input structure at each new iteration.

4 A Testing Platform for the Cloud

We deploy LSE inside a symbolic execution-aware vir-
tual machine (the symbolic VM) that encapsulates the
“entire universe” of the application, including the frame-
work and even the language interpreter and operating
system, enabling integration testing of the entire appli-
cation stack. The test-mode deployment then requires
just the push of a button for the system to execute the
layered parameterized tests, generate coverage statistics,
and highlight any failing test cases.

This deployment model leverages the properties of
PaaS in several ways: (1) By hiding the testing VMs be-
hind a service interface, the PaaS system can faithfully
reproduce the exact environment of production VMs
inside the testing VMs without exposing its internals.
(2) The testing task can be transparently scaled across
multiple VMs by using parallel symbolic execution [4].
(3) Since the application uses standard interfaces for ac-
cessing the PaaS components (storage, networking, etc.),
the provider is able to substitute production-optimized
implementations with testing-optimized stubs that offer
a simplified behavior that is better suited to automated
program analysis.

From the perspective of the PaaS provider, the test run-
ner service consists of a set of symbolic VMs, operated
separately from the production infrastructure. When an
application is deployed in test mode, one of the symbolic
VMs is allocated for testing: the application code and
tests are copied to the guest, and the LSE algorithm is
invoked.

Architecture Figure 6 illustrates the architecture of the
symbolic VM environment. Inside the VM @, all ap-
plication components are symbolically executed in the
same low-level representation (e.g., x86 machine code or
LLVM [15]). The components execute inside their own
vanilla interpreters @. The test framework @ plays two
roles: it implements (1) the APIs for LPTs and onion ob-
jects that developers use to write the testing code, and (2)
the LSE algorithm that guides the test case generation.

(@ Symbolic Virtual Machine

Onion Tests Application

(®Test Framework
| Onion TestAPI || Input API |

Web PaaS
Framework | | Stack

| Layered Symbolic Execution |

|®Symbo|ic Primitives ModuleJ

@ Server Container

Figure 6: The PaaS test runner service.

Prototype We implemented a prototype of the sym-
bolic VM that tests Python-based Google App Engine
PaaS applications and is built on top of the S2E symbolic
virtual machine.

In our implementation, the symbolic execution engine
and the LSE logic live at different levels in the symbolic
VM stack. The symbolic execution engine operates with
low-level abstractions such as memory bytes. It resides
on the host level, as an S2E plugin that exposes the core
symbolic execution primitives to the guest as S2E sys-
tem calls, e.g., to allow marking memory buffers as sym-
bolic. The LSE algorithm operates on web application
state (e.g., by accessing the onion objects), and is imple-
mented in the guest as a native Python extension module.
We implemented LSE on top of WebTest [23], a popular
fixture library for testing Python web applications. The
resulting system is extensible to other languages with
limited engineering effort: since the symbolic execution
logic is provided at the host level, only the test frame-
work component needs to be implemented in the cloud
app language.

Early experiences with the prototype are encouraging:
for the full application stack of a simple cloud app, our
prototype generates a test case every few seconds.

5 Related Work

Previous work in the space of web application testing
on the client or server side focused test case generation
on specific types of bugs [18, 1, 2, 14, 21]. On the
client, for JavaScript, the Kudzu [18] symbolic execu-
tion engine was used to detect code injection vulnerabil-
ities, while Artzi el al. [1] developed a coverage-oriented
testing framework to detect programming errors such as
HTML validity problems. On the server side, Apollo [2]
employs symbolic execution on PHP code to detect run-
time and HTML errors, while Ardilla [14] discovers SQL
injection and cross-site scripting attacks in PHP. Finally,
Wasserman and Su [21] combine static taint checking
with string analysis to produce a sound and precise au-
tomated checker for SQL injections. Unlike these ap-

proaches, we aim for a flexible platform for automated
test generation that is amenable to PaaS integration and
allows developers to concisely define the desired proper-
ties to check.

Layered parameterized tests are based on the concept
of parameterized unit tests [20], which extend test case
methods with parameters marked as symbolic inputs dur-
ing symbolic execution. LPTs further generalize this
concept to integration testing across application layers
by allowing internal onion object nodes to be marked as
symbolic, thus bypassing parsing layers of the program.

Godefroid et al. [10] successfully traverse parsing lay-
ers in dynamic test generation by using an input grammar
in the symbolic analysis to generate only syntactically
valid inputs for a compiler. Onion objects generalize to
the multiple processing layers that are typical for cloud
applications.

Finally, QuickCheck [7] uses random testing to try
and falsify specifications, which share their basic concept
with LPTs and parameterized tests in general. LSE lever-
ages the program structure to generate only test cases that
cover different paths.

6 Conclusion

We proposed a new PaaS-integrated service for auto-
matic and thorough testing of layered cloud applications.
Instead of traditional test cases, developers write layered
parameterized tests covering a wide range of application
behavior, while the service takes care of the concrete test
case generation using the novel layered symbolic execu-
tion algorithm.

Our design decouples the underlying program analy-
sis from the input generation logic and bundles the test
generation logic with the rest of the application and its
environment. This naturally allows deploying our frame-
work as a service and promises to extend the convenience
of PaaS-based development and deployment to testing of
cloud applications as well.

Acknowledgments

We thank the anonymous reviewers for their feedback
and suggestions for future work. We thank Adam Chli-
pala, Lorenzo Martignoni, Alexandra Olteanu, and Jonas
Wagner for their input on earlier revisions of this paper.
This work is supported by the European Research Coun-
cil and a Google doctoral fellowship to Stefan Bucur.

References

[1] ARTzI, S., DOLBY, J., JENSEN, S. H., MOLLER, A., AND TIP,
F. A framework for automated testing of JavaScript web applica-
tions. In Intl. Conf. on Software Engineering (2011).

(2]

[3]

[4]

(5]

(6]

(71

(8]
[9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

ARTZI, S., KIEZUN, A., DOLBY, J., TIP, F., DIG, D., PARAD-
KAR, A., AND ERNST, M. D. Finding bugs in dynamic web
applications. In Intl. Symp. on Software Testing and Analysis
(2008).

BECK, K. Simple Smalltalk testing: With patterns. http://www.
xprogramming.com/testfram.htm.

BUCUR, S., URECHE, V., ZAMFIR, C., AND CANDEA, G. Par-
allel symbolic execution for automated real-world software test-
ing. In ACM EuroSys European Conf. on Computer Systems
(2011).

CADAR, C., DUNBAR, D., AND ENGLER, D. R. KLEE: Unas-
sisted and automatic generation of high-coverage tests for com-
plex systems programs. In Symp. on Operating Sys. Design and
Implem. (2008).

CHIPOUNOV, V., KUZNETSOV, V., AND CANDEA, G. S2E: A
platform for in-vivo multi-path analysis of software systems. In
Intl. Conf. on Architectural Support for Programming Languages
and Operating Systems (2011).

CLAESSEN, K., AND HUGHES, J. QuickCheck: A lightweight
tool for random testing of haskell programs. In ACM SIGPLAN
International Conference on Functional Programming (2000).

The Django project. https://www.djangoproject.com/.

Gmail bug deletes e-mails for 150,000 users.
/Iwww.pcworld.com/article/220886/google_gmail_mail_
disappears.html.

http:

GODEFROID, P., KIEZUN, A., AND LEVIN, M. Y. Grammar-
based whitebox fuzzing. In Intl. Conf. on Programming Lan-
guage Design and Implem. (2008).

GODEFROID, P., LEVIN, M. Y., AND MOLNAR, D. Automated
whitebox fuzz testing. In Network and Distributed System Secu-
rity Symp. (2008).

Google App Engine. https://developers.google.com/appengine/.

The Heroku cloud application platform. https://www.heroku.
comny/.

KIEZUN, A., GUoO, P. J., JAYARAMAN, K., AND ERNST, M. D.
Automatic creation of SQL injection and cross-site scripting at-
tacks. In Intl. Conf. on Software Engineering (2009).

LATTNER, C., AND ADVE, V. LLVM: A compilation framework
for lifelong program analysis and transformation. In Intl. Symp.
on Code Generation and Optimization (2004).

LinkedIn passwords leaked by hackers. http://www.bbc.co.uk/
news/technology-18338956.

PERET, S., AND NARASIMHAN, P. Causes of failure in web
applications. Tech. Rep. CMU-PDL-05-109, Carnegie Mellon
University, 2005.

SAXENA, P., AKHAWE, D., HANNA, S., Mao, F., McCA-
MANT, S., AND SONG, D. A symbolic execution framework
for JavaScript. In IEEE Symp. on Security and Privacy (2010).

TILLMANN, N., AND DE HALLEUX, J. Pex — white box test
generation for .NET. Tests and Proofs (2008).

TILLMANN, N., AND SCHULTE, W. Parameterized unit tests. In
Symp. on the Foundations of Software Eng. (2005).

WASSERMANN, G., AND SU, Z. Sound and precise analysis of
web applications for injection vulnerabilities. In Intl. Conf. on
Programming Language Design and Implem. (2007).

The webapp2 Python web framework. http://webapp-improved.
appspot.com/.

The WebTest Python testing framework.
pythonpaste.org/en/latest/.

http://webtest.

http://www.xprogramming.com/testfram.htm
http://www.xprogramming.com/testfram.htm
https://www.djangoproject.com/
http://www.pcworld.com/article/220886/google_gmail_mail_disappears.html
http://www.pcworld.com/article/220886/google_gmail_mail_disappears.html
http://www.pcworld.com/article/220886/google_gmail_mail_disappears.html
https://developers.google.com/appengine/
https://www.heroku.com/
https://www.heroku.com/
http://www.bbc.co.uk/news/technology-18338956
http://www.bbc.co.uk/news/technology-18338956
http://webapp-improved.appspot.com/
http://webapp-improved.appspot.com/
http://webtest.pythonpaste.org/en/latest/
http://webtest.pythonpaste.org/en/latest/

	Introduction
	A PaaS Test Interface
	Layered Symbolic Execution
	A Testing Platform for the Cloud
	Related Work
	Conclusion

