
1

CSS Minification via Constraint Solving

MATTHEW HAGUE, Royal Holloway, University of London
ANTHONY W. LIN, TU Kaiserslautern and University of Oxford
CHIH-DUO HONG, University of Oxford

Minification is a widely-accepted technique which aims at reducing the size of the code transmitted over the
web. This paper concerns the problem of semantic-preserving minification of Cascading Style Sheets (CSS) —
the de facto language for styling web documents — based on merging similar rules.

The cascading nature of CSS makes the semantics of CSS files sensitive to the ordering of rules in the file.
To automatically identify rule-merging opportunities that best minimise file size, we reduce the rule-merging
problem to a problem concerning “CSS-graphs”, i.e., node-weighted bipartite graphs with a dependency order-
ing on the edges, where weights capture the number of characters.

Constraint solving plays a key role in our approach. Transforming a CSS file into a CSS-graph problem
requires us to extract the dependency ordering on the edges (an NP-hard problem), which requires us to solve
the selector intersection problem. To this end, we provide the first full formalisation of CSS3 selectors (the most
stable version of CSS) and reduce their selector intersection problem to satisfiability of quantifier-free integer
linear arithmetic, for which highly-optimised SMT-solvers are available. To solve the above NP-hard graph
optimisation problem, we show how Max-SAT solvers can be effectively employed. We have implemented
our rule-merging algorithm, and tested it against approximately 70 real-world examples (including examples
from each of the top 20 most popular websites). We also used our benchmarks to compare our tool against six
well-known minifiers (which implement other optimisations). Our experiments suggest that our tool produced
larger savings. A substantially better minification rate was shown when our tool is used together with these
minifiers.

CCS Concepts: •Software and its engineering → Syntax; Semantics; Software maintenance tools; •Theory
of computation → Automated reasoning; Tree languages;

Additional Key Words and Phrases: Cascading Style Sheets, Web-optimisation, Semantics, Max-SAT

ACM Reference format:
Matthew Hague, Anthony W. Lin, and Chih-Duo Hong. 2017. CSS Minification via Constraint Solving. ACM
Trans. Program. Lang. Syst. 1, 1, Article 1 (January 2017), 76 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Minification (Souders 2007, Chapter 12) is a widely-accepted technique in the web programming
literature that aims at decreasing the size of the code transmitted over the web, which can directly
improve the response-time performance of a website. Page load time is of course crucial for users’
experience, which impacts the performance of an online business and is increasingly being included
as a ranking factor by search engines (Slegg 2017). Minification bears a resemblance to traditional
code compilation. In particular, it is applied only once right before deploying the website (therefore,
its computation time does not impact the page load time). However, they differ in at least two ways.
First, the source and target languages for minification are the same (high-level) languages. The
code to which minification can be applied is typically JavaScript or CSS, but it can also be HTML,
XML, SVG, etc. Second, minification applies various semantic-preserving transformations with the
objective of reducing the size of the code.

2017. 0164-0925/2017/1-ART1 $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:2 Matthew Hague, Anthony W. Lin, and Chih-Duo Hong

This paper concerns the problem of minifying CSS (Cascading Style Sheets), which is the de
facto language for styling web documents (HTML, XML, etc.) as developed and maintained by
the World Wide Web Constortium (W3C) (Atkins Jr. et al. 2017). We will minify the CSS without
reference to the documents it may be designed to style. We refer the reader to Section 9 for a
discussion of document-independent and document-dependent related work.

A CSS file consists of a list of CSS rules, each containing a list of selectors — each selecting
nodes in the Document Object Model (DOM), which is a tree structure representing the document —
and a list of declarations, each assigning values to selected nodes’ display attributes (e.g. blue to
the property color). Real-world CSS files can easily have many rules (in the order of magnitude
of 1000), e.g., see the statistics for popular sites (Alexa Internet 2017) on http://cssstats.com/. As
Souders wrote in his book (Souders 2007), which is widely regarded as the bible of web performance
optimisation:

The greatest potential for [CSS file] size savings comes from optimizing CSS
— merging identical classes, removing unused classes, etc. This is a complex
problem, given the order-dependent nature of CSS (the essence of why it’s called
cascading). This area warrants further research and tool development.

More and more CSS minifiers have been, and are being, developed. These include the minifiers YUI
Compressor (Sha and Contributors 2014), cssnano (Briggs and Contributors 2015), minify
(Clay and Contributors 2017), clean-css (Pawlowicz 2017), csso (Dvornov and Contributors
2017), and cssmin (Bleuzen 2017), to name a few. Such CSS minifiers apply various syntac-
tic transformations, typically including removing whitespace characters and comments, and using
abbreviations (e.g. #f60 instead of #ff6600 for the colour orange).

In this paper, we propose a new class of CSS transformations based on merging similar or dupli-
cate rules in the CSS file (thereby removing repetitions across multiple rules in the file) that could
reduce file size while preserving the rendering information. To illustrate the type of transforma-
tions that we focus on in this paper (a more detailed introduction is given in Section 2), consider the
following simple CSS file.

#a { color:red; font-size:large }
#c { color:green }
#b { color:red; font-size:large }

The selector #a selects a node with ID a (if it exists). Note that the first and the third rules above
have the same property declarations. Since one ID can be associated with at most one node in a
DOM-tree, we can merge these rules resulting in the following equivalent file.

#a, #b { color:red; font-size:large }
#c { color:green }

Identifying such a rule-merging-based minification opportunity — which we shall call merging
opportunity for short — in general is non-trivial since a CSS file is sensitive to the ordering of rules
that may match the same node, i.e., the problem mentioned in Souders’ quote above. For example,
let us assume that the three selectors #a, #b, and #c in our CSS example instead were .a, .b, and
.c, respectively. The selector .a selects nodes with class a. Since a class can be associated with
multiple nodes in a DOM-tree, the above merging opportunity could change how a page is displayed
and therefore would not be valid, e.g., consider a page with an element that has two classes, .b and
.c. This element would be displayed as red by the original file (since red appears later), but as
green by the file after applying the transformation. Despite this, in this case we would still be able
to merge the subrules of the first and the third rules (associated with the font-size property)
resulting in the following smaller equivalent file:

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

http://cssstats.com/

CSS Minification via Constraint Solving 1:3

.a { color:red }

.c { color:green }

.b { color:red }

.a, .b { font-size:large }

This example suggests two important issues. First, identifying a merging opportunity in a general
way requires a means of checking whether two given selectors may intersect, i.e., select the same
node in some document tree. Second, a given CSS file could have a large number of merging
opportunities at the same time (the above example has at least two). Which one shall we pick? There
are multiple answers to this question. Note first that merging rules can be iterated multiple times to
obtain increasingly smaller CSS files. In fact, we can define an optimisation problem which, given
a CSS file, computes a sequence of applications of semantic-preserving merging rules that yields
a globally minimal CSS file. Finding a provably globally minimal CSS file is a computationally
difficult problem that seems well beyond the reach of current technologies (constraint solving, and
otherwise). Therefore, we propose to use the simple greedy strategy: while there is a merging
opportunity that can make the CSS file smaller, apply an optimal one, i.e., a merging opportunity
that reduces the file size the most1. There are now two problems to address. First, can we efficiently
find an optimal merging opportunity for a given CSS file? This paper provides a positive answer
to this question by exploiting a state-of-the-art constraint solving technology. Second, there is a
potential issue of getting stuck at a local minimum (as is common with any optimisation method
based on gradient descent). Does the greedy strategy produce a meaningful space saving? As we
will see in this paper, the greedy approach could already produce space savings that are beyond the
reach of current CSS minification technologies.

1.1 Contributions
We first formulate a general class of semantic-preserving transformations on CSS files that captures
the above notion of merging “similar” rules in a CSS file. Such a program transformation has a
clean graph-theoretic formulation (see Section 4). Loosely speaking, a CSS rule corresponds to a
biclique (complete bipartite graph) B, whose edges connect nodes representing selectors and nodes
representing property declarations. Therefore, a CSS file F corresponds to a sequence of bicliques
that covers all of the edges in the bipartite graph G which is constructed by taking the (non-disjoint)
union of all bicliques in F . Due to the cascading nature of CSS, the file F also gives rise to an
(implicit) ordering ≺ on the edges of G. Therefore, any new CSS file F ′ that we produce from
F must also be a valid covering of the edges of G and respect the order ≺. As we will see, the
above notion of merging opportunity can be defined as a pair (B, j) of a new rule B and a position
j in the file, and that applying this transformation entails inserting B in position j and removing all
redundant nodes (i.e. either a selector or a property declaration) in rules at position i < j.

Several questions remain. First is how to compute the edge order ≺. The core difficulty of this
problem is to determine whether two CSS selectors can be matched by the same node in some doc-
ument tree (a.k.a. the selector intersection problem). Second, among the multiple potential merging
opportunities, how do we automatically compute a rule-merging opportunity that best minimises
the size of the CSS file. We provide solutions to these questions in this paper.

Computing the Edge Order ≺. In order to handle the selector intersection problem, we first pro-
vide a complete formalisation of CSS3 selectors (Çelik et al. 2011) (currently the most stable version
of CSS selectors). We then give a polynomial-time reduction from the selector intersection problem

1Not to be confused with the smallest CSS file that is equivalent with the original file, which in general cannot be obtained
by applying a single merging

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:4 Matthew Hague, Anthony W. Lin, and Chih-Duo Hong

to satisfiability over quantifier-free theory of integer linear arithmetic, for which highly optimised
SMT-solvers (e.g. Z3 (de Moura and Bjørner 2008)) are available. To achieve this reduction, we
provide a chain of polynomial-time reductions. First, we develop a new class of automata over
data trees (Bojańczyk 2010), called CSS automata, which can capture the expressivity of CSS se-
lectors. This reduces the selector intersection problem to the language intersection problem for CSS
automata. Second, unlike the case for CSS selectors, the languages recognised by CSS automata
enjoy closure under intersection. (.b .a and .c .a are individually CSS selectors, however their
conjunction is not a CSS selector2.) This reduces language intersection of CSS automata to lan-
guage non-emptiness of CSS automata. To finish this chain of reductions, we provide a reduction
from the problem of language non-emptiness of CSS automata to satisfiability over quantifier-free
theory of integer linear arithmetic. The last reduction is technically involved and requires insights
from logic and automata theory, which include several small model lemmas (e.g. the sufficiency
of considering trees with a small number of node labels that can be succinctly encoded). This is
despite the fact that CSS selectors may force the smallest satisfying tree to be exponentially big.

Formulation of the “Best” Rule-Merging Opportunity and how to Find It. Since our objective
is to minimise file size, we may equip the graph G by a weight function wt which maps each
node to the number of characters used to define it (recall that a node is either a selector or a property
declaration). Hence, the function wt allows us to define the size of a CSS file F (i.e. a covering of G
respecting ≺) by taking the sum of weights wt(v) ranging over all nodesv in F . The goal, therefore,
is to find a merging opportunity (B, j) of F that produces F ′ with a minimum file size. We show how
this problem can be formulated as a (partially weighted) Max-SAT instance (Argelich et al. 2016)
in such a way that several existing Max-SAT solvers (including Z3 (Bjørner and Narodytska 2015)
and MaxRes (Narodytska and Bacchus 2014)) can handle it efficiently. This Max-SAT encoding
is non-trivial: the naive encoding causes Max-SAT solvers to require prohibitively long run times
even on small examples. A naive encoding would allow the Max-SAT solver to consider any rule
constructed from the nodes of the CSS file, and then contain clauses that prohibit edges that do
not exist in the original CSS file (as these would introduce new styling properties). Our encoding
forces the Max-SAT solver to only consider rules that do not introduce new edges. We do this
by enumerating all maximal bicliques in the graph G (maximal with respect to set inclusion) and
developing an encoding that allows the Max-SAT solver to only consider rules that are contained
within a maximal biclique. We employ the algorithm from (Kayaaslan 2010) for enumerating all
maximal bicliques in a bipartite graph, which runs in time polynomial in the size of the input and
output. Therefore, to make this algorithm run efficiently, the number of maximal bicliques in the
graph G cannot be very large. Our benchmarking (using approximately 70 real-world examples
including CSS files from each of the top 20 websites (Alexa Internet 2017)) suggests that this is
the case for graphs G generated by CSS files (with the maximum ratio between the number of
bicliques and the number of rules being 2.05). Our experiments suggest that the combination of
the enumeration algorithm of (Kayaaslan 2010) and Z3 (Bjørner and Narodytska 2015) makes the
problem of finding the best merging opportunity for CSS files practically feasible.

Experiments. We have implemented our CSS minification algorithm in the tool SATCSS which
greedily searches for and applies the best merging opportunity to a given CSS file until no more
rule-merging can reduce file size. The source code, experimental data, and a disk image is available
on Figshare (Hague et al. 2018). The source code is also available at the following URL.

https://github.com/matthewhague/sat-css-tool

2The conjunction can be expressed by the selector group .b .c .a, .c .b .a, .b.c .a.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://github.com/matthewhague/sat-css-tool

CSS Minification via Constraint Solving 1:5

Our tool utilises Z3 (Bjørner and Narodytska 2015; de Moura and Bjørner 2008) as a backend
solver for Max-SAT and SMT over integer linear arithmetic. We have tested our tool on around 70
examples from real-world websites (including examples from each of the top 20 websites (Alexa
Internet 2017)) with promising experimental results. We found that SATCSS (which only performs
rule-merging) yields larger savings on our benchmarks in comparison to six popular CSS mini-
fiers (Slant 2017), which support many other optimisations but not rule-merging. More precisely,
when run individually, SATCSS reduced the file size by a third quartile of 6.90% and a median
value of 3.79%. The six mainstream minifiers achieved savings with third quantiles and medians
up to 5.45% and 3.29%, respectively. Since these are orthogonal minification opportunities, one
might suspect that applying these optimisations together could further improve the minification per-
formance, which is what we discover during our experiments. More precisely, when we run our tool
after running any one of these minifiers, the third quartile of the savings can be increased to 8.26%
and the median to 4.70%. The additional gains obtained by our tool on top of the six minifiers (as
a percentage of the original file size) have a third quartile of 5.03% and a median value of 2.80%,
Moreover, the ratios of the percentage of savings made by SATCSS to the percentage of savings
made by the six minifiers have third quartiles of at least 136% and medians of at least 48%. In fact,
in the case of cleancss which has a third quartile saving of 5.26% and median saving of 3.03%,
applying SATCSS thereafter results in a third quartile saving of 9.50% and median saving of 6.10%.
These figures clearly indicate a substantial proportion of extra space savings made by SATCSS. See
Table 1 and Figure 15 for more detailed statistics.

1.2 Organisation
Section 2 provides a gentle and more detailed introduction (by example) to the problem of CSS
minification via rule-merging. Preliminaries (notation, and basic terminologies) can be found in
Section 3. In Section 4 we formalise the rule-merging problem in terms of what we will call CSS-
graphs. In Section 5, we provide a formalisation of CSS3 selectors and an outline of an algorithm
for solving their intersection problem, from which we can extract the edge order of a CSS-graph that
is required when reducing the rule-merging problem to the edge-covering problem of CSS-graphs.
Since the algorithm solving the selector intersection problem is rather intricate, we dedicate one
full section (Section 6) for it. In Section 7 we show how Max-SAT solvers can be exploited to
solve the rule-merging problem of CSS-graphs. We describe our experimental results in Section 8.
Note that a subset of Max-SAT instances generated using our tool was used in MaxSAT Evaluation
2017 (Hague and Lin 2017). In Section 9 we give a detailed discussion of related work. Finally,
we conclude in Section 10. Additional details can be found in the appendix. The Python code
and benchmarks for our tool have been included in the supplementary material, with a brief user
guide. A full artefact, including virtual machine image will be included when appropriate. These
are presently available from the URLs above.

2 CSS RULE-MERGING: EXAMPLE AND OUTLINE
In this section, we provide a gentler and more detailed introduction to CSS minification via merging
rules, while elaborating on the difficulties of the problem. We also give a general overview of the
algorithm, which may serve as a guide to the article. We begin by giving a basic introduction to
HTML and CSS. Our formal models of HTML and CSS are given in Section 5.

2.1 HTML and CSS
In this section we give a simple example to illustrate HTML and CSS. Note, in this article our
analysis takes as input a CSS file only. We cover HTML here to aid the description of CSS.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:6 Matthew Hague, Anthony W. Lin, and Chih-Duo Hong

<html>
<head><title>Shopping List</title></head>
<body>

<div id="heading">

<h1>An Example HTML Document</h1>

</div>

<li id="apple" class="fruit">Apple
<li id="broccoli">Broccoli

</body>

</html>

Fig. 1. A simple HTML document.

html

head

title

body

div
id="heading"

img
class="banner"

src="header.jpg"
h1

ul

li
id="apple"

class="fruit"

li
id="broccoli"

Fig. 2. The HTML file in Figure 1 drawn as a tree.

An HTML document is given in Figure 1. The format is similar to (but not precisely) XML, and
is organised into a tree structure. The root node is the html element (or tag), and its two children
are the head and body nodes. These contain page header information (particularly the title), which
is not directly displayed, and the main page contents respectively.

The body node contains two children which represent the page content. The first child is a div
element, which is used to group together parts of the page for the convenience of the developer. In
this case, the developer has chosen to collect all parts of the page containing the displayed heading
of the page into one div. This div has an id which takes the value heading. Values specified in
this way are called attributes. ID attributes uniquely identify a given node in the HTML, that is, no
two nodes should have the same ID. The div has two children, which are an image (img) element
and a textual heading (h1). The source of the image is given by src, which is also an attribute.
The image also has a class attribute which takes the value banner. The class attribute is used
to distinguish nodes which have the same tag. For example, the developer may want an image with
the class banner to be displayed differently to an image with the class illustration.

The second child of the body node is an unordered list (ul). This lists contains two food items,
with appropriate ID and class attributes.

To emphasize the tree structure, we give in Figure 2 the same HTML document drawn as a tree.
We will give a refined version of this diagram in Section 5 when defining DOM trees formally.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CSS Minification via Constraint Solving 1:7

img.banner { width: 100% }
#heading h1 { font-size: 30pt; font-weight: bold }

Fig. 3. An example CSS file.

A CSS file consists of a sequence of rules, each of the form

selectors { declarations }

where selectors contains one or more (node-)selectors (separated by commas) and declarations
contains a sequence of (visual) property declarations (separated by semicolons). An example CSS
file containing two rules is given in Figure 3.

The semantics of a rule is simple: if a node can be matched by at least one of the selectors, then
label the node by all the visual properties in the rule. Both rules in Figure 3 have one selector. The
selector in the first rule img.banner matches all img elements which have the class banner.
The notation . is used to indicate a class. Thus, this rule will match the img node in our example
document and will specify that the image is to be wide.

The second selector demonstrates that selectors may reason about the structure of the tree. The
#heading means that the match should begin at the node with ID heading. Then, the space
means the match should move to any descendent of the #heading node, i.e., any node contained
within the divwith ID heading in our example page. Next, the h1 is used to choose h1 elements.
Thus, this selector matches any node with element h1 that occurs below a node with ID heading.
The text of any such match should be rendered in a 30pt bold font.

There are many other features of selectors. These are described in full in Section 5.

2.2 CSS Rule-Merging by Example
We will now discuss more advanced features of CSS files and give an example of rule-merging.
Figure 4 contains a simple CSS file (with four rules).

#apple { color:blue; font-size:small }
.fruit, #broccoli { color:red; font-size:large }
#orange { color:blue }
#tomato { color:red; font-size:large;

background-color:lightblue }

Fig. 4. A simple example of a CSS file.

The sequence of rules in a file is applied to a node v in a “cascading” fashion (hence the name
Cascading Style Sheets). That is, read the rules from top to bottom and check if v can be matched
by at least one selector in the rule. If so, assign the properties to v (perhaps overriding previously
assigned properties, e.g., color) provided that the selectors matchingv in the current rule have higher
“values” (a.k.a. specificities) than the selectors previously matching v. Intuitively, the specificity of
a selector (Çelik et al. 2011) can be calculated by taking a weighted sum of the number of classes,
IDs, tag names, etc. in the selector, where IDs have higher weights than classes, which in turn have
higher weights than tag names.

For example, let us apply this CSS file to a node matching .fruit and #apple. In this
case, the selectors in the first (#apple) and the second rules (.fruit) are applicable. How-
ever, since #apple has a higher specificity than .fruit, the node gets labels color:blue and
font-size:small.

Two syntactically different CSS files could be “semantically equivalent” in the sense that, on each
DOM tree T , both CSS files will precisely yield the same tree T ′ (which annotates T with visual
information). In this paper, we only look at semantically equivalent CSS files that are obtained

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:8 Matthew Hague, Anthony W. Lin, and Chih-Duo Hong

#apple { color:blue; font-size:small }
.fruit, #broccoli { color:red; font-size:large }
#orange { color:blue }
#tomato { color:red; font-size:large;

background-color:lightblue }
.fruit, #broccoli, #tomato { color:red; font-size:large }

(a) The CSS file in Figure 4 with a rule inserted at the end.

#apple { color:blue; font-size:small }
#orange { color:blue }
#tomato { background-color:lightblue }
.fruit, #broccoli, #tomato { color:red; font-size:large }

(b) The result of trimming the CSS file in Figure 5a.

Fig. 5. An example of insertion and trimming.

by merging similar rules. Given a CSS rule R, we say that it is subsumed by a CSS file F if each
possible selector/property combination in R occurs in some rule in F . Notice that a rule can be
subsumed in a CSS file F without occurring in F as one of the rules. For example, the rule R1

.fruit, #broccoli, #tomato { color:red; font-size:large }

is subsumed in our CSS file example (not so if background-color:lightblue were added
to R1). A (rule-)merging opportunity consists of a CSS rule subsumed in the CSS file and a position
in the file to insert the rule into. An example of a merging opportunity in our CSS file example is
the rule R1 and the end of the file as the insertion position. This results in a new (bigger) CSS file
show in Figure 5a.

We then “trim” this resulting CSS file by eliminating “redundant” subrules. For example, the
second rule is redundant since it is completely contained in the new rule R1. Also, notice that the
subrule:

#tomato { color:red; font-size:large }

of the fourth rule in the original file is also completely redundant since it is contained in R1. Remov-
ing these, we obtain the trimmed version of the CSS file, which is shown in Figure 5b. This new
CSS file contains fewer bytes.

We may apply another round of rule-merging by inserting the rule
#apple, #orange { color:blue }

at the end of the second rule (and trim). The resulting file is even smaller. Computing such merging
opportunities (i.e. which yields maximum space saving) is difficult.

Two remarks are in order. Not all merging opportunities yield a smaller CSS file. For example, if
#tomato is replaced by the fruit vegetable

#vigna_unguiculata_subsp_sesquipedalis

the first merging opportunity above would have resulted in a larger file, which we should not ap-
ply. The second remark is related to the issue of order dependency. Suppose we add the selector
.vegetable to the third rule in the original file, resulting in the following rule

.vegetable, #orange { color:blue }

Any node labeled by .fruit and .vegetable but no IDs will be assigned color:blue. How-
ever, using the first merging opportunity above yields a CSS file which assigns color:red to fruit

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CSS Minification via Constraint Solving 1:9

vegetables, i.e., not equivalent to the original file. To tackle the issue of order dependency, we need
to account for selectors specificity and whether two selectors with the same specificity can intersect
(i.e. can be matched by a node in some DOM tree). Although for our examples the problem of
selector intersection is quite obvious, this is not the case for CSS selectors in general. For example,
the following two selectors are from a real-world CSS example found on The Guardian website.

.commercial--masterclasses .lineitem:nth-child(4)

.commercial--soulmates:nth-child(n+3)

Interested readers unfamiliar with CSS may refer to Section 5.2 for a complete definition of selectors.
The key feature is the use of :nth-child. In the first selector it is used to only match nodes that
are the fourth child of some node. For a node to match the second selector, there must be some n ≥ 0
such that the node is the (n + 3)th child of some node. I.e. the third, fourth, fifth, etc. These two
selectors have a non-empty intersection, while changing n+3 to 2n+3 would yield the intersection
empty!

2.3 CSS Rule-Merging Outline
The component parts of our algorithm are given in the schematic diagram in Figure 6.

From an input CSS file, the first step is to construct a formal model of the CSS that we can
manipulate. This involves extracting the selector and property declaration pairs that appear in the
file. Then the edge ordering, which records the order in which selector/declaration pairs should
appear, needs to be built. To compute the edge ordering, it is important to be able to test whether
two selectors may match the same node in some document tree. Thus, computing the edge ordering
requires an algorithm for computing whether the intersection of two selectors is empty. This process
is described in detail in Section 5 and Section 6.

Once a model has been constructed, it is possible to systematically search for semantics-preserving
rule-merging opportunities that can be applied to the file to reduce its overall size. The search is
formulated as a MaxSAT problem and a MaxSAT solver is used to find the merging opportunity that
represents the largest size saving. This encoding is described in Section 7. If a merging opportunity
is found, it is applied and the search begins for another merging opportunity. If none is found, the
minimised CSS file is output.

3 PRELIMINARIES
3.1 Maths
As usual, Z denotes the set of all integers. We use N to denote the set {0, 1, . . . , } of all natural
numbers. Let N>0 = N \ {0} denote the set of all positive integers. For an integer x we define |x |
to be the absolute value of x . For two integers i, j, we write [i, j] to denote the set {i, . . . , j}. Similar
notations for open intervals will also be used for integers (e.g. (i, j) to mean {i + 1, . . . , j − 1}). For
a set S , we will write S∗ (resp. S+) to denote the set of sequences (resp. non-empty sequences) of
elements from S . When the meaning is clear, if S is a singleton {s}, we will denote {s}∗ (resp. {s}+)
by s∗ (resp. s+). Given a (finite) sequence σ = s1, . . . , sn , i ∈ [0,n], and a new element s, we write
σ [s → i] to denote the new sequence s1, . . . , si , s, si+1, . . . , sn , i.e., inserting the element s right after
the position i in σ .

3.2 Trees
We review a standard formal definition of (rooted) unranked ordered trees (Gécseg and Steinby
1997; Libkin 2006; Neven 2002) from the database research community, which use it to model
XML. We will use this in Section 5 to define document trees. “Unranked” means that there is no
restriction on the number of children of a node, while “ordered” means that the children of each

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:10 Matthew Hague, Anthony W. Lin, and Chih-Duo Hong

CSS File

Build CSS
Model

Find
Merging

Opp.

Construct
Edge Order

Selector
Intersection

Merging
Opp.

Exists?

MaxSAT

Apply
Merging

Opp.

Minified CSS File

uses uses

uses

yes

no

Fig. 6. A Schematic Diagram of Our Approach

node are linearly ordered from the left-most child to the right-most child. An unranked ordered tree
consists of a tree domain and a labelling, which we define below.

We identify a node by the unique path in the tree to the given node. A tree domain defines the set
of nodes in the tree and is a set of sequences of natural numbers D ⊆ (N>0)

∗. The empty sequence
is the root node. The sequence 1 would be the first child of the root node, while 2 would be the
second child. The sequence 21 would denote the first child of the second child of the root node, and
so on. The tree in Figure 2 has D = {ε, 1, 2, 11, 21, 22, 211, 212, 221, 222}.

We require that D is both prefix-closed and preceding-sibling closed. By prefix-closed we for-
mally mean ηι ∈ D implies η ∈ D; this says that the parent of each node is also a node in the tree.
By preceding-sibling closed we formally mean ηι ∈ D implies ηι′ ∈ D for all ι′ < ι; for example,
this means that if a node has a second child, it also has a first. Observe, we write η for a tree node
(element of D) and ι for an element of N>0.

Our trees will also be labelled by items such as element names and attribute values. In general, a
Σ-labelled tree is a pairT = (D, λ) where D is a tree domain, and λ : D → Σ is a labelling function
of the nodes of T with items from a set of labels Σ. A simple encoding of the tree in Figure 2 will

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CSS Minification via Constraint Solving 1:11

have the labelling

λ(ε) = html
λ(1) = head
λ(2) = body
λ(11) = title
λ(21) = div id="heading"
λ(22) = ul
λ(211) = img class="banner" src="header.jpg"
λ(212) = h1
λ(221) = li id="apple" class="fruit"
λ(222) = li id="broccoli" .

Note, in Section 5, we will use a more complex labelling of DOM trees to fully capture all required
features.

Next we recall terminologies for relationships between nodes in trees. To avoid notational clutter,
we deliberately choose notation that resembles the syntax of CSS, which we define in Section 5. In
the following, take η,η′ ∈ D. We write η ≫⃝η′ if η is a (strict) ancestor of η′, i.e., there is some
η′′ ∈ N+

>0 such that η′ = ηη′′. We write η >⃝η′ if η is the parent of η′, i.e., there is some ι ∈ N>0

such that η′ = ηι. We write η +⃝η′ if η is the direct preceding sibling of η′, i.e., there is some η′′

and ι ∈ N>0 such that η = η′′(ι − 1) and η′ = η′′ι. We write η ∼⃝η′ if η is a preceding sibling of η′,
i.e., there is some η′′ and ι, ι′ ∈ N>0 with ι < ι′ such that η = η′′ι and η′ = η′′ι′.

3.3 Max-SAT
In this paper, we will reduce the problem of identifying an optimal merging opportunity to partial
weighted Max-SAT (Argelich et al. 2016). Partial weighted Max-SAT formulas are boolean formu-
las in CNF with hard constraints (a.k.a. clauses that must be satisfied) and soft constraints (a.k.a.
clauses that may be violated with a specified cost or weight). A minimal-cost solution is the goal.
Note that our clauses will not be given in CNF, but standard satisfiability-preserving conversions to
CNF exist (e.g. see (Bradley and Manna 2007)) which straightforwardly extend to partial weighted
Max-SAT.

We will present Max-SAT problems in the following form (ΠH ,ΠS) where

• ΠH are the hard constraints – that is, a set of boolean formulas that must be satisfied – and
• ΠS are the soft constraints – that is a set of pairs (ϕ,ω) where ϕ is a boolean formula and
ω ∈ N is the weight of the constraint.

Intuitively, the weight of a soft constraint is the cost of not satisfying the constraint. The partial
weighted Max-SAT problem is to find an assignment to the boolean variables that satisfies all hard
constraints and minimises the sum of the weights of unsatisfied soft constraints.

3.4 Existential Presburger Arithmetic
In this paper, we present several encodings into existential Presburger arithmetic, also known as
the quantifier-free theory of integer linear arithmetic. Here, we use extended existential Presburger
formulas ∃x1, . . . , xk .ϕ where ϕ is a boolean combination of expressions

∑k
i=1 aixi ∼ b for con-

stants a1, . . . ,ak ,b ∈ Z and ∼∈ {≤, ≥, <, >,=} with constants represented in binary. A formula is
satisfiable if there is an assignment of a non-negative integer to each variable x1, . . . , xk such that ϕ
is satisfied. For example, a simple existential Presburger formula is shown below

∃x,y, z . 0 > 2y + z − x ∧ 0 > z − y

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:12 Matthew Hague, Anthony W. Lin, and Chih-Duo Hong

which is satisfied by any assignment to the variables x , y, and z such that x < 2y+z and y > z. The
assignment x = 2,y = 3, z = 0 is one such satisfying assignment. Note, when writing existential
Presburger formulas, we will allow formulas that do not strictly match the format specified above.
This is to aid readability and we will always be able to rewrite the formulas into the correct format.
The above example formula may be written

∃x,y, z . x < 2y + z ∧ y < z .

It is well-known that satisfiability of existential Presburger formulas is NP-complete even with
the above extensions (cf. (Scarpellini 1984)). Such problems can be solved efficiently by SMT
solvers such as Z3.

4 FORMAL DEFINITION OF CSS RULE-MERGING AND MINIFICATION
The semantics of a CSS file can be formally modelled as a CSS-graph. A CSS-graph is a 5-tuple
G = (S, P, E, ≺,wt), where (S, P, E) is a bipartite graph (i.e. the set V of vertices is partitioned
into two sets S and P with E ⊆ S × P), ≺ ⊆ E × E gives the order dependency on the edges, and
wt : S ∪ P → Z>0 is a weight function on the set of vertices. Vertices in S are called selectors,
whereas vertices in P are called properties. For example, the CSS graph corresponding to the CSS
file in Figure 4 with the selector .vegetable added to the third rule is the following bipartite
graph

#apple color:blue

.fruit font-size:small

#broccoli color:red

#orange font-size:large

.vegetable background-color:lightblue

#tomato

such that the weight of a node is 1+(length of the text), e.g., wt(#orange) = 1+7 = 8. The rea-
son for the extra +1 is to account for the selector/property separators (i.e. commas or semi-colons),
as well as the character ‘{’ (resp. ‘}’) at the end of the sequence of selectors (resp. properties).
That is, in a rule, selectors are followed by a comma if another selector follows, or ‘{’ if it is the
last selector, and properties are followed by a semi-color if another property follows, or ‘}’ if it
is the last property declaration. We refer to ≺ as the edge order and it intuitively states that one
edge should appear strictly before the other in any CSS file represented by the graph. In this case
we have (.fruit,color:red) ≺ (.vegetable,color:blue) because any node labeled by
.fruit and .vegetable but no IDs should be assigned the property color:blue. There are
no other orderings since each node can have at most one ID3 and .fruit and .vegetable are
the selectors of the lowest specificity in the file. More details on how to compute ≺ from a CSS file
are given in Section 5.4.

A biclique in G is a complete bipartite subgraph, i.e., a pair B = (X ,Y) of a nonempty set X ⊆ S
of selectors and a nonempty set Y ⊆ P of properties such that X ×Y ⊆ E (i.e. each pair of a selector
and a property in the rule is an edge). A (CSS) rule is a pair B = (B,◁) of a biclique and a total
order ◁ on the set of properties. The reason for the order on the properties, but not on the selectors,
is illustrated by the following example of a CSS rule:

3Strictly speaking, this is only true if we are only dealing with namespace html (which is the case almost always in web
programming and so is a reasonable assumption unless the user specifies otherwise). A node could have multiple IDs, each
with a different namespace. See Section 5.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CSS Minification via Constraint Solving 1:13

.a, .b { color:red; color:rgba(255,0,0,0.5) }

That is, nodes matching .a or .b are assigned a semi-transparent red with solid red being defined
as a fallback when the semi-transparent red is not supported by the document reader. Therefore,
swapping the order of the properties changes the semantics of the rule, but swapping the order of
the selectors does not. We will often denote a rule as (X ,Y) where Y = {pi }mi=1 if Y = {p1, . . . ,pm}
and p1 ◁ · · · ◁ pm .

A covering C of G is a sequence of rules that covers G (i.e. the union of all the edges in C equals
E). Given an edge e ∈ E, the index index(e) of e is defined to be the index of the last rule in the
sequence C that contains e. We say that C is valid if, for all two edges e = (s,p), e ′ = (s ′,p ′) in E
with e ≺ e ′, either of the following holds:

• index(e) < index(e ′)
• index(e) = index(e ′) and, if (X , {pi }mi=1) is the rule at position index(e) in C, it is the case

that p = pj and p ′ = pk with j ≤ k.
In the example of Figure 4 with the selector .vegetable in the third rule, we can verify that it
is indeed a valid covering of itself by observing the only ordering is (.fruit,color:red) ≺
(.vegetable,color:blue) and we have

index((.fruit,color:red)) = 2 and index((.vegetable,color:blue)) = 3 .

This last-occurrence semantics reflects the cascading aspect of CSS. To relate this to the world of
CSS, the original CSS file F may be represented by a CSS-graph G, but F also turns out to be a valid
covering of G. In fact, the set of valid coverings of G correspond to CSS files that are equivalent
(up to reordering of selectors and property declarations) to the original CSS file. That is, if two
files cover the same graph, then they will specify the same property declarations on any node of any
given DOM.

To define the optimisation problem, we need to define the weight of a rule and the weight of a
covering. To this end, we extend the function wt to rules and coverings by summing the weights of
the nodes. More precisely, given a rule B = (X ,Y), define

wt(B) =
∑

w ∈X∪Y

wt(w).

Similarly, given a covering C = {Bi }mi=1, the weight wt(C) of C is
∑m

i=1 wt(Bi). It is easy to verify
that the weight of a rule (resp. covering) corresponds to the number of non-whitespace characters
in a CSS rule (resp. file). The minification problem is, given a CSS-graph G, to compute a valid
covering with the minimum weight.

(Optimal) Rule-Merging Problem. Given a CSS-graph G and a covering C, we define the trim C↓
of C to be the covering C′ obtained by removing from each rule B = (X ,Y) (say at position i) in
C all nodes v ∈ X ∪ Y that are not incident to at least one edge e with index(e) = i (i.e. the last
occurrence of e in C). Such nodes v may be removed since they do not affect the validity of the
covering C.

We can now explain formally the file size reduction shown in Figure 5. First observe in Figure 5b
that the second rule

.fruit, #broccoli { color:red; font-size:large }

has been removed. Consider the node .fruit and its incident edges (.fruit,color:red) and
(.fruit,font-size:large). Both of these edges have index 5 (, 2) since they also appear in
the last rule of Figure 5a. Thus we can remove the .fruit node from this rule. A similar argument
can be made for all nodes in this rule, which means that we remove them, leaving an empty rule

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:14 Matthew Hague, Anthony W. Lin, and Chih-Duo Hong

(not shown). In the fourth rule, the node color:red is incident only to (#tomato,color:red)
which has index 5 (, 4). The situation is the same for the node font-size:large, thus both of
these nodes are removed from the rule.

The trim C↓ can be computed from C and G in polynomial time in a straightforward way. More
precisely, first build a hashmap for the index function. Second, go through all rules B in the covering
C, each node v in B, and each edge e incident with v checking if at least one such e satisfies
index(e) = i, where B is the ith rule in C. Note that C↓ is uniquely defined given C.

We define a (rule)-merging opportunity to be a pair (B, j) of rule B and a number j ∈ (0, |C|)
such that C[B → j] is a valid covering of G. The result of applying this merging opportunity
is the covering C[B → j]↓ obtained by trimming C[B → j]. The (rule)-merging problem can be
defined as follows: given a CSS-graph G and a valid covering C, find a merging opportunity that
results in a covering with the minimum weight. This rule-merging problem is NP-hard even in the
non-weighted version (Peeters 2003; Yannakakis 1978).

5 CSS SELECTOR FORMALISATION AND ITS INTERSECTION PROBLEM
In this section, we will show how to efficiently compute a CSS-graph G = (S, P, E, ≺,wt) from a
given CSS file with the help of a fast solver of quantifier-free theory of integer linear arithmetic,
e.g., Z3 (de Moura and Bjørner 2008). The key challenge is how to extract the order dependency ≺
from a CSS file, which requires an algorithm for the (selector-)intersection problem, i.e., to check
whether two given selectors can be matched by the same element in some document. To address
this, we provide a full formalisation of CSS3 selectors (Çelik et al. 2011) and a fast algorithm for the
intersection problem. Since our algorithm for the intersection problem is technically very involved,
we provide a short intuitive explanation behind the algorithm in this section and leave the details to
Section 6.

5.1 Definition of Document Trees
We define the semantics of CSS3 in terms of Document Object Models (DOMs), which we also
refer to as document trees. The reader may find it helpful to recall the definition of trees from
Section 3.2.

A document tree consists of a number of elements, which in turn may have sub-elements as chil-
dren. Each node has a type consisting of an element name (a.k.a. tag name) and a namespace. For
example, an element p in the default html namespace is a paragraph. Namespaces commonly fea-
ture in programming languages (e.g. C++) to allow the use of multiple libraries whilst minimising
the risk of overloading names. For example, the HTML designers introduced a div element to
represent a section of an HTML document. Independent designers of an XML representation of
mathematical formulas may represent division using elements also with the name div. Confusion
is avoided by the designers specifying a namespace in addition to the required element names. In
this case, the HTML designers would introduce the div element to the html namespace, while
the mathematical div may belong to a namespace math. Hence, there is no confusion between
html:div and math:div. As an aside, note that an HTML file may contain multiple names-
paces, e.g., see (Hickson et al. 2014).

Moreover, nodes may also be labelled by attributes, which take string values. For example, an
HTML img element has a src attribute specifying the source of the image. Finally, a node may be
labelled by a number of pseudo-classes. For example :enabled means that the node is enabled
and the user may interact with it. The set of pseudo-classes is fixed by the CSS specification.

We first the formal definition before returning to the example in Section 2.1.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CSS Minification via Constraint Solving 1:15

5.1.1 Formal Definition. In the formal definition below we permit a possibly infinite set of ele-
ment, namespace, and attribute names. CSS stylesheets are not limited to HTML documents (which
have a fixed set of element names, but not attribute names since you can create custom data-* at-
tributes), but they can also be applied to documents of other types (e.g. XML) that permit custom
element names, namespaces, and attribute names. Thus, the sets of possible names cannot be fixed
to finite sets from the point of view of CSS selectors, which may be applied to any document.

When it is known that the set of elements or attribute names is fixed (e.g. when only considering
HTML), it is possible to adapt our approach. In particular, the small model property in Proposi-
tion 6.4 may be avoided, slightly simplifying the technique.

We denote the set of pseudo-classes as

P =

{
:link,:visited,:hover,:active,:focus,:target,

:enabled,:disabled,:checked,:root,:empty

}
.

Then, given a possibly infinite set of namespaces NS, a possibly infinite set of element names ELE,
a possibly infinite set of attribute names A, and a finite alphabet4 Γ containing the special characters

and - (space and dash respectively), a document tree is a Σ-labelled tree (D, λ), where

Σ :=
(
NS × ELE × Ffin(NS ×A,Γ∗) × 2P

)
.

Here the notation Ffin(NS ×A,Γ∗) denotes the set of partial functions from (NS ×A) to Γ∗ whose
domain is finite. In other words, each node in a document tree is labeled by a namespace, an
element, a function associating a finite number of namespace-attribute pairs with attribute values
(strings), and zero or more of the pseudo-classes. For a function fA ∈ Ffin(NS ×A,Γ∗) we say
fA(s,a) = ⊥ when fA is undefined over s ∈ NS and a ∈ A, where ⊥ < Γ∗ is a special undefined
value. Furthermore, we assume special attribute names class,id ∈ A that will be used to attach
classes (see later) and IDs to nodes.

When λ(η) = (s, e, fA, P) we define the following projections of the labelling function

λS(η) = s,
λE(η) = e,
λA(η) = fA, and
λP(η) = P .

We will use the following standard XML notation: for an element name e, a namespace s, and
an attribute name a, let s:e (resp. s:a) denote the pair (s, e) (resp. (s,a)). The notation helps to
clarify the role of namespaces as a means of providing contextual or scoping information to an
element/attribute.

There are several consistency constraints on the node labellings.

• For each s ∈ NS, there are no two nodes in the tree with the same value of s:id.
• A node cannot be labelled by both :link and :visited.
• A node cannot be labelled by both :enabled and :disabled.
• Only one node in the tree may be labelled :target.
• A node contains the label :root iff it is the root node.
• A node labelled :empty must have no children.

From now on, we will tacitly assume that document trees satisfy these consistency constraints. We
write Trees(NS, ELE,A,Γ) for the set of such trees.

4See the notes at the end of the section.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:16 Matthew Hague, Anthony W. Lin, and Chih-Duo Hong

html:html,
:root

html:head

html:title

html:body

html:div,
html:id="heading"

html:img,
html:class="banner",
html:src="header.jpg",

:empty

html:h1

html:ul

html:li,
html:id="apple",

html:class="fruit"

html:li,
html:id="broccoli"

Fig. 7. A DOM tree representation of the HTML file.

5.1.2 Example. Consider the HTML file in Figure 1. This file can be represented precisely by the
tree in Figure 7. In this tree, each node is first labelled by its type, which consists of its namespace
and its element name. In all cases, the namespace is the html namespace, while the element names
are exactly as in the HTML file. In addition, we label each node with the attributes and pseudo-
classes with which they are labelled. The html:html node is labelled with :root since it is the
root element of the tree. The html:div node is labelled with the ID heading. The html:img
node is labelled with the attribute class with value banner and the attribute html:src with
value banner.jpg, as well as the pseudo-class :empty indicating that the node has no contents.
The remaining nodes however are not labelled :empty since even the leaf nodes contain some text
(which is not represented in our tree model as it is not matchable by a selector). Hence, a node with
no child may still be non-empty.

Formally, the DOM tree is (D, λ) where D = {ε, 1, 2, 11, 21, 22, 211, 212, 221, 222} and

λ(ε) = (html,html, ∅, {:root})
λ(1) = (html,head, ∅, ∅)
λ(2) = (html,body, ∅, ∅)
λ(11) = (html,title, ∅, ∅)
λ(21) = (html,div, (html,id) 7→ heading, ∅)
λ(22) = (html,ul, ∅, ∅)

λ(211) =

(
html,img,

(
(html,class) 7→ banner,
(html,src) 7→ header.jpg

)
, {:empty}

)
λ(212) = (html,h1, ∅, ∅)

λ(221) =

(
html,li,

(
(html,id) 7→ apple,
(html,class) 7→ fruit

)
, ∅

)
λ(222) = (html,li, (html,id) 7→ broccoli, ∅) .

5.2 Definition of CSS3 Selectors
In the following sections we define CSS selectors syntax and semantics. Informally, a CSS selector
consists of node selectors σ — which match individual nodes in the tree — combined using the
operators >>, >, +, and ˜. These operators express the descendant-of, child-of, neighbour-of, and

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CSS Minification via Constraint Solving 1:17

sibling-of relations respectively. Note that the blank space character is used instead of >> in CSS3,
though we opt for the latter in the formalisation for the sake of readability. So, for example, we
use .journal>>.science (i.e. choose all nodes with class .science that is a descendant of
nodes with class .journal) instead of the standard syntax .journal .science. In addition,
in order to distinguish syntax from meaning, we use slightly different notation to their counterpart
semantical operators ≫⃝, >⃝, +⃝, and ∼⃝.

We remark that a comma (,) is not an operator in the CSS selector syntax. Instead a selector
group is a comma-separated list of selectors that is matched if any of its selectors is matched. A
CSS rule thus consists of a selector group and a list of property declarations. For the purposes of rule-
merging it is desirable to treat selectors individually as it allows the most flexibility in reorganising
the CSS file. Hence we treat a selector group simply as a set of selectors that can be separated if
needed.

A node selector σ has the form τΘ where τ constrains the type of the node. That is, τ places re-
strictions on the element label of the node, e.g., p for paragraph elements and * (or an empty string)
for all elements. The rest of the selector is a set Θ of simple selectors (written as a concatenation of
strings representing these simple selectors) that assert atomic properties of the node. There are four
types of simple selectors.

Type 1: attribute selectors of the form [s|a op v] for some namespace s, attribute a, operator
op ∈

{
=,~=,|=,^=,$=,*=

}
, and some string v ∈ Γ∗. We may write [a op v] to mean that a node

can be matched by [s|a opv] for some s. The operators =,^=,$=, and *= take their meaning from
regular expressions. That is, equals, begins-with, ends-with, and contains respectively. The remain-
ing operators are more subtle. The ~= operator means the attribute is a string of space-separated
values, one of which is v. The |= operator is intended for use with language identification, e.g., as
in the attribute selector [lang |= "en-GB"] to mean “English” as spoken in Great Britain. Thus
|= asserts that either the attribute has value v or is a string of the form v-v ′ where - is the dash char-
acter, and v ′ is some string. Note that if the lang attribute value of a node is en-GB, the node also
matches the simple selector [lang |= "en"]. In addition, recall that class and id are two spe-
cial attribute names. For this reason, CSS introduces the shorthands .v and #v for, respectively, the
simple selectors [class ~= v] and [id = v], i.e., asserting that the node has a class or ID v. An
example of a valid CSS selector is the selector h1.fruit.vegetable, which chooses all nodes
with class fruit and vegetable, and element name h1 (which includes the following two ele-
ments: <h1 class="fruit vegetable"> and <h1 class="vegetable fruit">).

Type 2. attribute selectors of the form [s|a], asserting that the attribute is merely defined on the
node. As before, we may write [a] to mean that the node may be matched by [s|a] for some
namespace s. As an example, img[alt] chooses all img elements where the attribute alt is
defined.

Type 3. pseudo-class label of a node, e.g., the selector :enabled ensures the node is currently
enabled in the document. There are several further kinds of pseudo-classes that assert count-
ing constraints on the children of a selected node. Of particular interest are selectors such as
:nth-child(αn + β), which assert that the node has a particular position in the sibling or-
der. For example, :nth-child(2n + 1) means there is some n ≥ 0 such that the node is the
(2n + 1)st node in the sibling order.

Type 4. negations :not(θ) of a simple selector θ with the condition that negations cannot be
nested or apply to multiple atoms. For example, :not(.fruit):not(.vegetable) is a
valid selector, whereas :not(:not(.vegetable)) and :not(.fruit.vegetable) are
not a valid selectors.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:18 Matthew Hague, Anthony W. Lin, and Chih-Duo Hong

5.2.1 Syntax. Fix the sets NS, ELE, A, and Γ. We define SEL for the set of (CSS) selectors and
NSEL for the set of node selectors. In the following

�� will be used to separate syntax alternatives,
while | is an item of CSS syntax. The set SEL is the set of formulas ϕ defined as:

ϕ ::= σ
�� ϕ >>σ �� ϕ >σ �� ϕ +σ �� ϕ ˜σ

where σ ∈ NSEL is a node selector with syntax σ ::= τΘ with τ having the form

τ ::= *
�� (s|*) �� e

�� (s|e)
where s ∈ NS and e ∈ ELE and Θ is a (possibly empty) set of conditions θ with syntax

θ ::= θ¬
�� :not(σ¬)

where θ¬ and σ¬ are conditions that do not contain negations, i.e.:

σ¬ ::= *
�� (s|*) �� e

�� (s|e) �� θ¬
θ¬ ::= [s|a]

�� [s|a op v]
�� [a] �� [a op v]

��
:link

�� :visited �� :hover �� :active �� :focus ��
:enabled

�� :disabled �� :checked ��
:root

�� :empty �� :target ��
:nth-child(αn + β)

�� :nth-last-child(αn + β)
��

:nth-of-type(αn + β)
�� :nth-last-of-type(αn + β)

:only-child
�� :only-of-type

op ::= =
�� ~= �� |= �� ^= �� $= �� *=

where s ∈ NS, e ∈ ELE, a ∈ A, v ∈ Γ∗, and α, β ∈ Z. Whenever Θ is the empty set, we will denote
the node selector τΘ as τ instead of τ ∅.

5.2.2 Semantics. The semantics of a selector is defined with respect to a document tree and a
node in the tree. More precisely, the semantics of CSS3 selectors ϕ are defined inductively with
respect to a document tree T = (D, λ) and a node η ∈ D as follows. (Note: (1) p ranges over the
set P of pseudo-classes, (2) vv ′ is the concatenation of the strings v and v ′, and (3) v-v ′ is the
concatenation of v and v ′ with a “-” in between.)

T ,η |= ϕ >>σ def⇔ ∃η′ ≫⃝η . (T ,η′ |= ϕ) and (T ,η |= σ)

T ,η |= ϕ >σ def⇔ ∃η′ >⃝η . (T ,η′ |= ϕ) and (T ,η |= σ)

T ,η |= ϕ +σ def⇔ ∃η′ +⃝η . (T ,η′ |= ϕ) and (T ,η |= σ)

T ,η |= ϕ ˜σ
def⇔ ∃η′ ∼⃝η . (T ,η′ |= ϕ) and (T ,η |= σ)

T ,η |= τΘ def⇔ (T ,η |= τ) and ∀θ ∈ Θ . (T ,η |= θ)

T ,η |= (s|*)
def⇔ s = λS(η)

T ,η |= *
def⇔ ⊤

T ,η |= (s|e) def⇔ s = λS(η) ∧ e = λE(η)

T ,η |= e
def⇔ T ,η |= (s|e) for some s ∈ NS

T ,η |= p def⇔ p ∈ λP(η)

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CSS Minification via Constraint Solving 1:19

T ,η |= :not(θ¬)
def⇔ ¬ (T ,η |= θ¬)

T ,η |= [a] def⇔ T ,η |= [s|a] for some s ∈ NS

T ,η |= [a op v] def⇔ T ,η |= [s|a op v] for some s ∈ NS

T ,η |= [s|a] def⇔ λA(η)(s,a) , ⊥

T ,η |= [s|a = v] def⇔ λA(η)(s,a) = v

T ,η |= [s|a |= v] def⇔
(

(λA(η)(s,a) = v) or
∃v ′ . (λA(η)(s,a) = v-v ′)

)
T ,η |= [s|a ^= v] def⇔ ∃v ′ ∈ Γ∗ . λA(η)(s,a) = vv ′

T ,η |= [s|a $= v] def⇔ ∃v ′ ∈ Γ∗ . λA(η)(s,a) = v ′v

T ,η |= [s|a *= v]
def⇔ ∃v1,v2 ∈ Γ∗ . λA(η)(s,a) = v1vv2

with the missing attribute selector being (notingv v ′ is the concatenation ofv andv ′ with the space
character in between)

T ,η |= [a ~= v] def⇔ λA(η)(s,a) = v or ∃v ′ . (λA(η)(s,a) = v v ′) or
∃v ′ . (λA(η)(s,a) = v ′ v) or ∃v1,v2 . (λA(η)(s,a) = v1 v v2)

then, for the counting selectors

T ,η |= :nth-child(αn + β)
def⇔ there is some n ∈ N such that η is the αn + β th

child

T ,η |= :only-child def⇔ the parent of η has precisely one child

T ,η |= :nth-of-type(αn + β)
def⇔ there is some n ∈ N such that the parent of η has

precisely αn + β − 1 children with namespace λS(η)

and element name λE(η) for some n that are (strictly)
preceding siblings of η

T ,η |= :only-of-type def⇔ the parent of η has precisely one child with
namespace λS(η) and element name λE(η)

Finally, the semantics of the remaining two selectors, which are :nth-last-child(αn + β)
and :nth-last-of-type(αn + β), is exactly the same as :nth-child(αn + β) and
respectively :nth-of-type(αn + β), except with the sibling ordering reversed (i.e. the right-
most child of a parent is treated as the first).

REMARK 5.1. Readers familiar with HTML may have expected more constraints in the seman-
tics. For example, if a node matches :hover, then its parent should also match :hover. However,
this is part of the HTML5 specification, not of CSS3. In fact, the CSS3 selectors specification explic-
itly states that a node matching :hover does not imply its parent must also match :hover.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:20 Matthew Hague, Anthony W. Lin, and Chih-Duo Hong

5.2.3 Divergences from Full CSS. Note that we diverge from the full CSS specification in a num-
ber of places. However, we do not lose expressivity.

• We assume each element has a namespace. In particular, we do not allow elements without
a namespace. There is no loss of generality here since we can simply assume a “null”
namespace is used instead. Moreover, we do not support default name spaces and assume
namespaces are explicitly given.

• We did not include :lang(l). Instead, we will assume (for convenience) that all nodes
are labelled with a language attribute with some fixed namespace s. In this case, :lang(l)
is equivalent5 to [s|lang |= l].

• We did not include :indeterminate since it is not formally part of the CSS3 specifica-
tion.

• We omit the selectors :first-child and :last-child, as well as
:first-of-type and :last-of-type, since they are expressible using the other
operators.

• We omitted even and odd from the nth child operators since these are easily definable as
2n and 2n + 1.

• We do not explicitly handle document fragments. These may be handled in a number
of ways. For example, by adding a phantom root element (since the root of a document
fragment does not match :root) with a fresh ID ι and adjusting each node selector in the
CSS selector to assert :not(#ι). Similarly, lists of document fragments can be modelled
by adding several subtrees to the phantom root.

• A CSS selector can be suffixed with a pseudo-element of the form ::first-line,
::first-letter, ::before, and ::after. Pseudo-elements are easy to handle
and only provide a distraction to our presentation. For this reason, we relegate them into
the appendix.

• We define our DOM trees to use a finite alphabet Γ. Currently the CSS3 selectors spec-
ification uses Unicode as its alphabet for lexing. Although the CSS3 specification is not
explicit about the finiteness of characters appearing in potential DOMs, since Unicode is
finite (Unicode, Inc. 2016) (with a maximal possible codepoint) we feel it is reasonable to
assume DOMs are also defined over a finite alphabet.

5.3 Solving the Intersection Problem
We now address the problem of checking the intersection of two CSS selectors. Let us write

[[ϕ]] := {(T ,η) : T ,η |= ϕ}

to denote the set of pairs of tree and node satisfying the selector ϕ. The intersection problem of CSS
selectors is to decide if [[ϕ]] ∩ [[ϕ ′]] , ∅, for two given selectors ϕ and ϕ ′. A closely related decision
problem is the non-emptiness problem of CSS selectors, which is to decide if [[ϕ]] , ∅, for a given
selector ϕ. The two problems are not the same since CSS selectors are not closed under intersection
(i.e. the conjunction of two CSS selectors is in general not a valid CSS selector).

THEOREM 5.1 (NON-EMPTINESS). The non-emptiness problem for CSS selectors is efficiently
reducible to satisfiability over quantifier-free theory over integer linear arithmetic. Moreover, the
problem is NP-complete.

5 The CSS specification defines :lang(l) in this way. A restriction of the language values to standardised language codes
is only a recommendation.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CSS Minification via Constraint Solving 1:21

THEOREM 5.2 (INTERSECTION). The intersection problem for CSS selectors is efficiently re-
ducible to satisfiability over quantifier-free theory over integer linear arithmetic. Moreover, the
problem is NP-complete.

Recall from Section 3 that satisfiability over quantifier-free theory over integer linear arithmetic
is in NP and can be solved by a highly-optimised SMT solver (e.g. Z3 (de Moura and Bjørner
2008)). The NP-hardness in the above theorems suggests that our SMT-based approach is theoreti-
cally optimal. In addition, our experiments with real-world selectors (see Section 8) suggest that our
SMT-based approach can be optimised to be fast in practice (see Appendix D.1), with each problem
instance solved within moments.

Idea Behind our SMT-Based Approach. We now provide the idea behind the efficient reduction
to quantifier-free theory over integer linear arithmetic. Our reduction first goes via a new class of
tree automata (called CSS automata), which — like CSS selectors — are symbolic representations
of sets of pairs containing a document tree and a node in the tree. We will call such sets languages
recognised by the automata. Given a CSS selector ϕ, we can efficiently construct a CSS automaton
A that can symbolically represent [[ϕ]]. Unlike CSS selectors, however, we will see that languages
recognised by CSS automata enjoy closure under intersection, which will allow us to treat the inter-
section problem as the non-emptiness problem. More precisely, a CSS automaton navigates a tree
structure in a similar manner to a CSS selector: transitions may only move down the tree or to a
sibling, while checking a number of properties on the visited nodes. The difficulty of taking a direct
intersection of two selectors is that the two selectors may descend to different child nodes, and then
meet again after the application of a number of sibling combinators, i.e., their paths may diverge
and combine several times. CSS automata overcome this difficulty by always descending to the first
child, and then move from sibling to sibling. Thus, the intersection of CSS automata can be done
with a straightforward automata product construction, e.g., see (Vardi 1995).

Next, we show that the non-emptiness of CSS automata can be decided in NP by a polynomial-
time reduction to satisfiability of quantifier-free theory of integer linear arithmetic. In our exper-
iments, we used an optimised version of the reduction, which is detailed in Appendix D.1. For
non-emptiness, ideally, we would like to show that if a CSS automaton has a non-empty language,
then it accepts a small tree (i.e. with polynomially many nodes). This is unfortunately not the case,
as the reader can see in our NP-hardness proof idea below. Therefore, we use a different strategy.
First , we prove three “small model lemmas”. The first is quite straightforward and shows that, to
prove non-emptiness, it suffices to consider a witnessing automata run of length n for an automaton
with n transitions (each automata transition allows some nodes to be skipped). Second, we show
that it suffices to consider attribute selector values (i.e. strings) of length linear in the size of the
CSS automata. This is non-trivial and uses a construction inspired by (Muscholl and Walukiewicz
2005). Third, we show that it suffices to consider trees whose sets of namespaces and element
names are linear in the size of the CSS automaton. Our formula ϕ attempts to guess this automata
run, the attribute selector values, element names, and namespaces. The global ID constraint (i.e. all
the guessed IDs are distinct) can be easily asserted in the formula. So far, boolean variables are
sufficient because the small model lemmas allow us to do bit-blasting. Where, then, do the integer
variables come into play? For each position i in the guessed path, we introduce an integer variable
ni to denote that the node at position i in the path is the ni th child. This is necessary if we want
to assert counting constraints like :nth-child(αn + β), which would be encoded in integer
linear arithmetic as ∃n : ni = αn + β .

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:22 Matthew Hague, Anthony W. Lin, and Chih-Duo Hong

Proof Idea of NP-Hardness. We now provide an intuition on how to prove NP-hardness in the
above theorems. First, observe that the intersection is computationally at least as hard as the non-
emptiness problem since we can set the second selector to be *. To prove NP-hardness of the non-
emptiness, we give a polynomial-time reduction from the NP-complete problem of non-universality
of unions of arithmetic progressions (Stockmeyer and Meyer 1973, Proof of Theorem 6.1). Exam-
ples of arithmetic progressions are 2N+1 and 5N+2, which are shorthands for the sets {1, 3, 5, . . .}
and {2, 7, 12, . . .}, respectively. The aforementioned non-universality problem allows an arbitrary
number of arithmetic progressions as part of the input and we are interested in checking whether
the union equals the entire set N of natural numbers. As an example of the reduction, checking
N , 2N+ 1 ∪ 5N+ 2 is equivalent to the non-emptiness of

:not(root):not(:nth-child(2n+2)):not(:nth-child(5n+3))

which can be paraphrased as checking the existence of a tree with a node that is neither the root, nor
the 2n + 2nd child, nor the 5n + 3rd child. Observe that we add 1 to the offset of the arithmetic
progressions since the selector :nth-child starts counting (the number of children) from 1, not
from 0. A full NP-hardness proof is available in Appendix B.2.

5.4 Extracting the Edge Order ≺ from a CSS File
Recall that our original goal is to compute a CSS-graph G = (S, P, E, ≺,wt) from a given CSS file.
The sets P , S , and E, and the function wt can be computed easily as explained in Section 4. We
now show how to compute ≺ using the algorithm for checking intersection of two selectors. We
present an intuitive ordering, before explaining how this may be relaxed while still preserving the
semantics.

An initial definition of ≺ is simple to obtain: we want to order (s,p) ≺ (s ′,p ′) whenever (s ′,p ′)
appears later in the CSS file than (s,p), the selectors may overlap but are not distinguished by their
specificity, and p and p ′ assign conflicting values to a given property name. More formally, we
first compute the specificity of all the selectors in the CSS file. This can be easily computed in the
standard way (Çelik et al. 2011). Now, the relation ≺ can only relate two edges (s,p), (s ′,p ′) ∈ E
satisfying

(1) s and s ′ have the same specificity,
(2) we have p , p ′ but the property names for p and p ′ are the same (e.g. p = color:blue

and p ′ = color:red with property name color), and
(3) s intersects with s ′ (i.e. [[s]] ∩ [[s ′]] , ∅).

If both (1) and (2) are satisfied, Condition (3) can be checked by means of SMT-solver via the
reduction in Theorem 5.2. Supposing that Condition (3) holds, we simply compute the indices of
the edges in the file: m := index((s,p)) and m′ := index((s ′,p ′)). Recall index(e) was defined
formally in Section 4. We put (s,p) ≺ (s ′,p ′) iff m < m′. There are two minor technical details
with the keyword !important and shorthand property names; see Appendix B.3.

The ordering given above unfortunately turns out to be too conservative. In the following, we
give an example to demonstrate this, and propose a refinement to the ordering. Consider the CSS
file

.a { color:red; color:rgba(255,0,0,0.5) }

.b { color:red; color:rgba(255,0,0,0.5) }

In this file, both nodes matching .a and .b are assigned a semi-transparent red with solid red being
defined as a fallback when the semi-transparent red is not supported. If the edge order is calculated
as above, we obtain

(.a,color:rgba(255,0,0,0.5)) ≺ (.b,color:red) (1)

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CSS Minification via Constraint Solving 1:23

which prevents the obvious rule-merging

.a, .b { color:red; color:rgba(255,0,0,0.5) }

The key observation is that the fact that we also have

(.b,color:red) ≺ (.b,color:rgba(255,0,0,0.5)) (2)

renders any violations of (1) benign: such a violation would give precedence to right-hand decla-
ration color:rgba(255,0,0,0.5) over color:red for nodes matching both .a and .b.
However, because of (2) this should happen anyway and we can omit (1) from ≺.

Formally, the ordering we need is as follows. If Conditions (1-3) hold, we compute m :=
index((s,p)) andm′ := index((s ′,p ′)) and put (s,p) ≺ (s ′,p ′) iff

• m < m′, and
• (s ′,p) does not exist or index((s ′,p)) < m′.

That is, we omit (s,p) ≺ (s ′,p ′) if (s ′,p) appears later in the CSS file (that is, it is the case that
index((s ′,p ′)) < index((s ′,p))). Note, we are guaranteed in this latter case to include (s ′,p ′) ≺
(s ′,p) since (s ′,p ′) and (s ′,p) can easily be seen to satisfy the conditions for introducing (s ′,p ′) ≺
(s ′,p).

6 MORE DETAILS ON SOLVING SELECTOR INTERSECTION PROBLEM
In the previous section, we have given the intuition behind the efficient reduction from the CSS
selector intersection problem to quantifier-free theory over integer linear arithmetic, for which there
is a highly-optimised SMT-solver (de Moura and Bjørner 2008). In this section, we present this
reduction in full, which may be skipped on a first reading without affecting the flow of the paper.

This section is structured as follows. We begin by defining CSS automata. We then provide a
semantic-preserving transformation from CSS selectors to CSS automata. Next we show the closure
of CSS automata under intersection. The closure allows us to reduce the intersection problem of
CSS automata to the non-emptiness problem of CSS automata. Finally, we provide a reduction from
non-emptiness of CSS automata to satisfiability over quantifier-free integer linear arithmetic. We
will see that each such transformation/reduction runs in polynomial-time, resulting in the complexity
upper bound of NP, which is precise due to the NP-hardness of the problem from the previous
section.

6.1 CSS Automata
CSS automata are a kind of finite automata which navigate the tree structure of a document tree.
Transitions of the automata will contain one of four labels: ↓, →, →+, and ◦. Intuitively, these
transitions perform the following operations. ↓ moves to the first child of the current node. →
moves to the next sibling of the current node. →+ moves an arbitrary number of siblings to the
right. Finally, ◦ reads the node matched by the automaton. Since CSS does not have loops, we
require only self loops in our automata, which are used to skip over nodes (e.g. .v ˜.v ′ may pass
over many nodes between those matching .v and those matching .v ′). We do not allow → to label
a loop – this is for the purposes of the NP proof: it can be more usefully represented as →+.

An astute reader may complain that →+ does not need to appear on a loop since it can already
pass over an arbitrary number of nodes. However, the product construction used for intersection
becomes easier if →+ appears only on loops. There is no analogue of →+ for ↓ because we do not
need it: the use of →+ is motivated by selectors such as :nth-child(αn + β) which count
the number of siblings of a node. No CSS selector counts the number of descendants/ancestors.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:24 Matthew Hague, Anthony W. Lin, and Chih-Duo Hong

Formal Definition of CSS Automata. A CSS Automaton A is a tuple
(
Q,∆,qin,qf

)
where Q is a

finite set of states, ∆ ⊆ Q × {↓,→,→+, ◦} × NSEL ×Q is a transition relation, qin ∈ Q is the initial
state, and qf ∈ Q is the final state. Moreover,

(1) (only self-loops) there exists a partial order ≲ such that (q,d,σ ,q′) ∈ ∆ implies q′ ≲ q,
(2) (→+ loops and doesn’t check nodes) for all (q,→+,σ ,q

′) ∈ ∆ we have q = q′ and σ = *,
(3) (→ doesn’t label loops) for all (q,d,σ ,q) ∈ ∆ we have d ,→ and σ = *,
(4) (◦ checks last node only) for all (q,d,σ ,q′) ∈ ∆ we have q′ = qf iff d = ◦, and
(5) (qf is a sink) for all (q,d,σ ,q′) ∈ ∆ we have q , qf .

We now define the semantics of CSS automata, i.e., given an automaton A, which language
L(A) they recognise. Intuitively, the set L(A) contains the set of pairs of document tree and node,

which the automaton A accepts. We will now define this more formally. Write q
d−→
σ

q′ to denote

a transition (q,d,σ ,q′) ∈ ∆. A document tree T = (D, λ) and node η ∈ D is accepted by a CSS
automaton A if there exists a sequence

q0,η0,q1,η1, . . . ,qℓ,ηℓ,qℓ+1 ∈ (Q × D)∗ ×
{
qf

}
such that q0 = qin is the initial state, η0 = ε is the root node, qℓ+1 = qf is the final state, ηℓ = η is

the matched node, and for all i, there is some transition qi
d−→
σ

qi+1 with ηi satisfying σ and if i ≤ ℓ,

(1) if d =↓ then ηi+1 = ηi1 (i.e., the leftmost child of ηi),
(2) if d =→ then there is some η′ and ι such that ηi = η′ι and ηi+1 = η′(ι + 1), and
(3) if d =→+ then there is some η′, ι and ι′ such that ηi = η′ι and ηi+1 = η′ι′ and ι′ > ι.

Such a sequence is called an accepting run of length ℓ. The language L(A) recognised by A is the
set of pairs (T ,η) accepted by A.

6.2 Transforming CSS Selectors to CSS Automata
The following proposition shows that CSS automata are no less expressive than CSS selectors.

PROPOSITION 6.1. For each CSS selector ϕ, we may construct in polynomial-time a CSS au-
tomaton Aϕ such that L(Aϕ) = [[ϕ]].

We show this proposition by giving a translation from a given CSS selector to a CSS automaton.
Before the formal definition, we consider the a simple example. A more complex example is shown
after the translation.

6.2.1 Simple Example. Consider the selector

p+.a

which selects a node that has a class a and is directly a right neighbour of a node with element p.
Figure 8 gives a CSS automaton representing the selector. The automaton begins with a loop that
can navigate down any branch of the tree using the ↓ and →+ transitions from ◦1. Then, since it
always moves from the first child to the last, it will first see the node with the p. When reading this
node, it will move to the next child using → before matching the node with class a, leading to the
accepting state.

6.2.2 Formal Translation. Given a CSS selector ϕ, we define Aϕ as follows. We can write ϕ
uniquely in the form

σ1 o1 σ2 o2 · · · on−1 σn

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CSS Minification via Constraint Solving 1:25

◦1 ◦2 qf

→+, ↓

*

→
p

◦
.a

Fig. 8. CSS Automaton for p + .a.

◦i •i ◦i+1 ,

↓
σi↓

σi
→+

*

→
*

(a) oi = >

◦i •i ◦i+1 ,

↓
σi↓

σi

→, ↓

*

→+, ↓

*
(b) oi = >>

◦i ◦i+1 ,
→
σi

(c) oi = +

◦i •i ◦i+1

→
σi→

σi
→+

*

→
*

(d) oi = ̃
Fig. 9. Converting selectors to CSS automata.

where each σi is a node selector, and each oi ∈ {>>,>,+,˜}. We will have a state ◦i corresponding
to each σi ,oi . We define

Aϕ =
(
Q, ELE,∆, ◦1,qf

)
where Q = {◦i , •i | 1 ≤ i ≤ n} ⊎

{
qf

}
and we define the transition relation ∆ to contain the fol-

lowing transitions. The initial and final transitions are used to navigate from the root of the tree
to the node matched by σ1, and to read the final node matched by σn (and the selector as a whole)

respectively. That is, ◦1
↓,→+−−−−→
*

◦1 and ◦n
◦−−→
σn

qf . We have further transitions for 1 ≤ i < n that

are shown in Figure 9. The transitions connect ◦i to ◦i+1 depending on oi . Figure 9a shows the
child operator. The automaton moves to the first child of the current node and moves to the right
zero or more steps. Figure 9b shows the descendant operator. The automaton traverses the tree
downward and rightward any number of steps. The neighbour operator is handled in Figure 9c by
simply moving to the next sibling. Finally, the sibling operator is shown in Figure 9d.

We prove the correctness of this construction in Lemma C.1 (soundness) and Lemma C.2 (com-
pleteness) in Appendix C.1.

6.2.3 Complex Example. Figure 10 gives an example of a CSS automaton representing the more
complex selector

div>>p˜.b

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:26 Matthew Hague, Anthony W. Lin, and Chih-Duo Hong

◦1 •1 ◦2 •2 ◦3 qf

→+, ↓

*

↓

div
↓

div

→, ↓

*

→+, ↓

*

→
p

→
p

→+

*

→
*

◦

.b

Fig. 10. CSS Automaton for div >> p ̃ .b

which selects a node that has class b, is a right sibling of a node with element p and moreover is a
descendent of a div node. This automaton again begins at ◦1 and navigates until it finds the node
with the div element name. The automaton can read this node in two ways. The topmost transition
covers the case where the p node is directly below the div node. The lower transition allows the
automaton to match the p node and then use a loop to navigate to the descendent node that will
match p. Similarly, from ◦2 the automaton can read a p node and choose between immediately
matching the node with class b or navigating across several siblings (using the loop at state •2)
before matching .b and accepting.

6.3 Closure Under Intersection
The problems of non-emptiness and intersection of CSS automata can be defined in precisely the
same way we defined them for CSS selectors. One key property of CSS automata, which is not
enjoyed by CSS selectors, is the closure of their languages under intersection. This allows us to
treat the problem of intersection of CSS automata (i.e. the non-emptiness of the intersection of two
CSS automata languages) as the non-emptiness problem (i.e. whether a given CSS automaton has
an empty language).

PROPOSITION 6.2. Given two CSS automata A1 and A2, we may construct in polynomial-time
an automaton A1 ∩ A2 such that L(A1) ∩ L(A2) = L(A1 ∩ A2).

The construction of the CSS automaton A1 ∩A2 is by a variant of the standard product construc-
tion (Vardi 1995) for finite-state automata over finite words, which run the two given automata in
parallel synchronised by the input word. Our construction runs the two CSS automata A1 and A2

in parallel synchronised by the path that they traverse. We first proceed with the formal definition
and give an example afterwards.

6.3.1 Formal Definition of Intersection. We first define the intersection of two node selectors.
Recall node selectors are of the form τΘ where τ ∈

{
,(s|), e,(s|e)

�� s ∈ NS ∧ e ∈ ELE
}
. The

intersection of two node selectors τ1Θ1 and τ2Θ2 should enforce all properties defined in Θ1 and Θ2.
In addition, both selectors should be able to agree on the namespace and element name of the node,
hence this part of the selector needs to be combined more carefully. Thus, letting Θ = Θ1 ∪Θ2. we

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CSS Minification via Constraint Solving 1:27

define

τ1Θ1 ∩ τ2Θ2 =

τ2Θ τ1 = *
τ1Θ τ2 = *

τ2Θ τ1 = (s|*) ∧
(
τ2 = (s|*) ∨
τ2 = (s|e)

)
(s|e)Θ τ1 = (s|*) ∧ τ2 = e

τ1Θ τ1 = (s|e) ∧
©«
τ2 = (s|e) ∨
τ2 = e ∨

τ2 = (s|*)

ª®®¬
τ2Θ τ1 = e ∧ (τ2 = (s|e) ∨ τ2 = e)

(s|e)Θ τ1 = e ∧ τ2 = (s|*)

:not(*) otherwise.

We now define the automaton A1∩A2. The intersection automaton synchronises transitions that
move in the same direction (by ↓, →, →+) or both agree to match the current node at the same time
(with ◦). In addition, we observe that a →+ can be used by one automaton while the other uses →.
Given

A1 =
(
Q1, ELE,∆1,q

in
1 ,q

1
f

)
and A2 =

(
Q2, ELE,∆2,q

in
2 ,q

2
f

)
we define

A1 ∩ A2 =
(
Q1 ×Q2, ELE,∆,

(
qin
1 ,q

in
2

)
,
(
q1f ,q

2
f

))
where (letting d range over {→,→+, ↓, ◦}) we set ∆ ={

(q1,q2)
d−−−−−→

σ1∩σ2

(
q′1,q

′
2

) ���� q1 d−−→
σ1

q′1 ∧ q2
d−−→
σ2

q′2

}
∪{

(q1,q2)
→−−→
σ1

(
q′1,q2

) ���� q1 →−−→
σ1

q′1 ∧ q2
→+−−−→
*

q2

}
∪{

(q1,q2)
→−−→
σ2

(
q1,q

′
2

) ���� q1 →+−−−→
*

q1 ∧ q2
→−−→
σ2

q′2

}
.

We verify that this transition relation satisfies the appropriate conditions:

(1) (only self-loops) for a contradiction, a loop in ∆ that is not a self-loop can be projected to

a loop of A1 or A2 that is also not a self-loop, e.g. if there exists (q1,q2)
d−→
σ

(
q′1,q

′
2

) d ′
−−→
σ ′

(q1,q2) that is not a self-loop, then either q1 , q′1 or q2 , q′2, and thus we have a loop from
q1 to q′1 to q1 in A1 or similarly for A2,

(2) (→+ loops and doesn’t check nodes) →+ transitions are built from →+ transitions in A1

and A2, thus a violation in the intersection implies a violation in one of the underlying
automata,

(3) (→ doesn’t label loops) → transitions are built from at least one → transition in A1 or A2,
thus a violation in the intersection implies a violation in one of the underlying automata,

(4) (◦ checks last node only) similarly, a violation of this constraint in the intersection implies
a violation in one of the underlying automata,

(5) (qf is a sink) again, a violation of this constraint in the intersection implies a violation in
the underlying automata.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:28 Matthew Hague, Anthony W. Lin, and Chih-Duo Hong

(◦1, ◦1) (◦1, •1) (◦1, ◦2) (◦1, •2) (◦2, ◦3)
(
qf ,qf

)

(◦1, ◦3)

(◦2, ◦1) (◦2, •1) (◦2, ◦2) (◦2, •2) (◦2, •2)

→+, ↓

*

↓

div

↓

div

→, ↓

*

→+, ↓

*

→
p

→
p

→+

*

→
p

◦

.a.b

→p →p
→

p

→
p

→
p

→
p

Fig. 11. The intersection of the automaton in Figure 8 (in the first component) and the automaton in Figure 10
(in the second component).

6.3.2 Example of Intersection. Recall the automaton in Figure 8 (equivalent to p+.a) and the
automaton in Figure 10 (equivalent to div>>p˜.b). The intersection of the two automata is
given in Figure 11. Each state is a tuple (q1,q2) where the first component q1 represents the state
of the automaton equivalent to p+.a and the second component q2 the automaton equivalent to
div>>p˜.b.

In this example, accepting runs of the automaton will use only the top row of states. The lower
states are reached when the two automata move out of sync and can no longer reach agreement on
the final node matched. Usually this is by the first automaton matching a node labelled p, after
which it must immediately accept the neighbouring node. This leaves the second automaton unable
find a match. Hence, the first automaton needs to stay in state ◦1 until the second has reached a
near-final state. Note, the two automata need not match the same node with element name p.

6.4 Reducing Non-Emptiness of CSS Automata to SMT-Solving
We will now provide a polynomial-time reduction from the non-emptiness of a CSS automaton to
satisfiability of quantifier-free theory over integer linear arithmetic. That is, given a CSS automaton
A, our algorithm constructs a quantifier-free formula θA over integer linear arithmetic such that A
recognises a non-empty language iff θA is satisfiable. The encoding is quite involved and requires
three small model properties discussed earlier. Once we have these properties we can construct the
required formula of the quantifier-free theory over linear arithmetic. We begin by discussing each of
these properties in turn, and then provide the reduction. The reduction is presented in a number of
stages. We show how to handle attribute selectors separately before handling the encoding of CSS
automata. The encoding of CSS automata is further broken down: we first describe the variables

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CSS Minification via Constraint Solving 1:29

used in the encoding, then we describe how to handle node selectors, finally we put it all together
to encode runs of a CSS automaton.

For the remainder of the section, we fix a CSS automaton A =
(
Q,∆,qin,qf

)
and show how to

construct the formula θA in polynomial-time.

6.4.1 Bounded Run Length. The first property required is that the length of runs can be bounded.
That is, if the language of A is not empty, there is an accepting run over some tree whose length is
smaller than the derived bound. We will construct a formula that will capture all runs of length up
to this bound. Thanks to the bound we know that if an accepting run exists, the formula will encode
at least one, and hence be satisfiable.

PROPOSITION 6.3 (BOUNDED RUNS). Given a CSS Automaton A =
(
Q,∆,qin,qf

)
, if L(A) ,

∅, there exists (T ,η) ∈ L(A) with an accepting run of length |∆|.

This proposition is straightforward to obtain. We exploit that any loop in the automaton is a self
loop that only needs to be taken at most once. For loops labelled ↓, a CSS formula cannot track
the depth in the tree, so repeated uses of the loop will only introduce redundant nodes. For loops
labelled →+, selectors such as :nth-child(αn + β) may enforce the existence of a number
of intermediate nodes. But, since →+ can cross several nodes, such loops also only needs to be
taken once. Hence, each transition only needs to appear once in an accepting run. That is, if there
is an accepting run of a CSS automaton with n transitions, there is also an accepting run of length
at most n.

6.4.2 Bounding Namespaces and Elements. It will also be necessary for us to argue that the num-
ber of namespaces and elements can be bounded linearly in the size of the automaton. This is
because our formula will need keep track of the number of nodes of each type appearing in the tree.
This is required for encoding, e.g., the pseudo-classes of the form :nth-of-type(αn + β).
By bounding the number of types, our formula can use a bounded number of variables to store this
information.

We state the property below. The proof is straightforward and appears in Appendix C.3.1. Intu-
itively, since only a finite number of nodes can be directly inspected by a CSS automaton, all others
can be relabelled to a dummy type unless their type matches one of the inspected nodes.

PROPOSITION 6.4 (BOUNDED TYPES). Given a CSS Automaton A =
(
Q,∆,qin,qf

)
if there

exists (T ,η) ∈ L(A) with T = (D, λ), then there exists some (T ′,η) ∈ L(A) where T ′ = (D, λ′).
Moreover, let ⇃(ELE) be the set of element names and ⇃(NS) be the set of namespaces appearing in
the image of λ′. Both the size of ⇃(ELE) and the size of ⇃(NS) are bounded linearly in the size of A.

6.4.3 Bounding Attribute Values. We will need to encode the satisfiability of conjunctions of
attribute selectors. This is another potential source of unboundedness because the values are strings
of arbitrary length. We show that, in fact, if the language of the automaton is not empty, there there
is a solution whose attribute values are strings of a length less than a bound polynomial in the size
of the automaton.

The proof of the following lemma is highly non-trivial and uses techniques inspired by results
in Linear Temporal Logic and automata theory. To preserve the flow of the article, we present the
proof in Appendix C.3.2.

PROPOSITION 6.5 (BOUNDED ATTRIBUTES). Given a CSS Automaton A =
(
Q,∆,qin,qf

)
if

there exists (T ,η) ∈ L(A) with T = (D, λ), then there exists some bound N polynomial in the size
of A and some (T ′,η) ∈ L(A) where the length of all attribute values in T ′ is bound by N .

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:30 Matthew Hague, Anthony W. Lin, and Chih-Duo Hong

Given such a bound on the length of values, we can use quantifier-free Presburger formulas to
“guess” these witnessing strings by using a variable for each character position in the string. Then,
the letter in each position is encoded by a number. This process is discussed in the next section.

6.4.4 Encoding Attribute Selectors. Before discussing the full encoding, we first show how our
formula can encode attribute selectors. Once we have this encoding, we can invoke it as a sub-
routine of our main encoding whenever we have to handle attribute selectors. It is useful for read-
ability reasons to present this in its own section.

The first key observation is that we can assume each positive attribute selector that does not
specify a namespace applies to a unique, fresh, namespace. Thus, these selectors do not interact with
any other positive attribute selectors and we can handle them easily. Note, these fresh namespaces
do not appear in ⇃(NS).

We present our encoding which works by identifying combinations of attribute selectors that
must apply to the same attribute value. That is, we discover how many attribute values are needed,
and collect together all selectors that apply to each selector. To that end, let op range over the
set of operators

{
=,~=,|=,^=,$=,*=

}
and let τΘ be a node selector. For each s and a, let

Θs
a be the set of conditions in Θ of the form θ or :not(θ) where θ is of the form [s|a] or

[s|a op v]. Recall we are encoding runs of a CSS automaton of length at most n. For a given
position i in the run, we define AttsPres(τΘ, i) to be the conjunction of the following constraints,
where the encoding for AttsPress :a(Θ, i) is presented below. Since a constraint of the form
:not([a op v]) applies to all attributes a regardless of their namespace, we define for conve-
nience Neg(s,a) =

{
:not([s|a op v])

�� :not([a op v]) ∈ Θ
}
.

• For each s and a with Θs
a non-empty and containing at least one selector of the form [s|a]

or [s|a op v], we enforce

AttsPress :a(Θs
a ∪ Neg(s,a), i)

if :not([a]) < Θ and :not([s|a]) < Θ, else we assert false.
• For each [a] ∈ Θ, let s be fresh namespace. We assert

AttsPress :a
({
[s|a]

}
∪ Neg(s,a), i

)
and for each [a op v] ∈ Θ we assert

AttsPress :a
({
[s|a op v]

}
∪ Neg(s,a), i

)
whenever, in both cases, :not([a]) < Θ. If :not([a]) ∈ Θ in both cases we assert
false.

It remains to encode AttsPress :a(C, i) for some set of attribute selectors C all applying to s and
a.

We can obtain a polynomially-sized global bound (N − 1) on the length of any satisfying value
of an attribute s:a at some position i of the run from Proposition 6.5 (Bounded Attributes)6. Finally,
we increment the bound by one to allow space for a trailing null character.

Once we have a bound on the length of a satisfying value, we can introduce variables xs :ai ,1 , . . . , x
s :a
i ,N

for each character position of the satisfying value, and encode the constraints almost directly. That

6Of course, we could obtain individual bounds for each s and a if we wanted to streamline the encoding.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CSS Minification via Constraint Solving 1:31

is, letting θ range over positive attribute selectors, we define7

AttsPress :a(C, i) =
∧
θ ∈C

AttsPres(θ, ®x) ∧∧
:not(θ)∈C

¬AttsPres(θ, ®x) ∧ Nulls(®x) .

where ®x = xs :ai ,1 , . . . , x
s :a
i ,N will be existentially quantified later in the encoding and whose values

will range8 over Γ ⊎ {0} where 0 is a null character used to pad the suffix of each word. We define
AttsPres(θ , ®x) for several θ , the rest can be defined in the same way (see Appendix C.3.3). Letting
v = a1 . . . am ,

AttsPres([s|a], ®x) = ⊤
AttsPres([s|a = v], ®x) =

∧
1≤i≤m

xs :ai , j = aj ∧ xs :ai ,m+1 = 0

AttsPres([s|a ^= v], ®x) =
∧

1≤j≤m
xs :ai , j = aj

AttsPres([s|a *= v], ®x) =
∨

0≤j≤N−m−1

∧
1≤j′≤m

xs :ai , j+j′ = aj

Finally, we enforce correct use of the null character

Nulls(®x) =
∨

1≤j≤N

∧
j≤j′≤N

xs :ai , j′ = 0 .

6.4.5 Encoding Non-Emptiness. We are now ready to give the main encoding of the emptiness
of a CSS automaton using the quantifier-free theory over integer linear arithmetic. This encoding
makes use of a number of variables, which we explain intuitively below. After describing the
variables, we give the encoding in two parts: first we explain how a single node selector can be
translated into existential Presuburger arithmetic. Once we have this translation, we give the final
step of encoding a complete run of an automaton.

Variables Used in the Encoding. Our encoding makes use of the following variables for 0 ≤ i ≤ n,
representing the node at the ith step of the run. We use the overline notation to indicate variables.

• qi , taking any value in Q , indicating the state of the automaton when reading the ith node
in the run,

• si , taking any value in ⇃(NS) indicating the element tag (with namespace) of the ith node
read in the run,

• ei , taking any value in ⇃(ELE) indicating the element tag (with namespace) of the ith node
read in the run,

• pi , for each pseudo-class p ∈ P \ {:root} indicating that the ith node has the pseudo-class
p,

• ni , taking a natural number indicating that the ith node is the ni th child of its parent, and
• ns :ei , for all s ∈ ⇃(NS) and e ∈ ⇃(ELE), taking a natural number variable indicating that

there are ns :ei nodes of type s:e strictly preceding the current node in the sibling order, and
• N i , taking a natural number indicating that the current node is the N i th to last child of its

parent, and
• N

s :e
i , for all s ∈ ⇃(NS) and e ∈ ⇃(ELE), taking a natural number variable indicating that

there are N
s :e
i nodes of type s:e strictly following the current node in the sibling order, and

7 Note, we allow negation in this formula. This is for convenience only as the formulas we negate can easily be transformed
into existential Presburger.
8 Strictly speaking, Presburger variables range over natural numbers. It is straightforward to range over a finite number of
values. That is, we can assume, w.l.o.g. that Γ ⊎ 0 ⊆ N and the quantification is suitably restricted.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:32 Matthew Hague, Anthony W. Lin, and Chih-Duo Hong

• xs :ai , j as used in the previous section for encoding the character at the jth character position
of the attribute value for s:a at position i in the run9.

Note, we do not need a variable for :root since it necessarily holds uniquely at the 0th position of
the run.

Encoding Node Selectors. We define the encoding of node selectors below using the variables
defined in the previous section. Note, this translation is not correct in isolation: global constraints
such as “no ID appears twice in the tree” will be enforced later. The encoding works by translating
each part of the selector directly. For example, the constraint e simply checks that ei = e. Even in
the more complex cases of selectors such as :nth-child(αn + β) we are able to use a rather
direct translation of the semantics: ∃n.x = αn + β . For the case of :nth-of-type(αn + β)
we have to consider all possible namespaces s and element names e that the node could take, and
use the ns :ei variables to do the required counting.

In our presentation we allow ourselves to negate existentially quantified formulas of the form
∃n.x = αn + β where x is a variable, and α and β are constants. Although this is not strictly
allowed in existential Presburger arithmetic, it is not difficult to encode correctly. For completeness,
we provide the encoding of such negated formulas in Appendix C.3.4.

In the following, let NoAtts(Θ) be Θ less all selectors of the form [s|a], [s|a op v], [a], or
[a op v], or :not([s|a]), :not([s|a op v]), :not([a]), or :not([a op v]).

Definition 6.6 (Pres(σ , i)). Given a node selector τΘ, we define

Pres(τΘ, i) =
©«

Pres(τ , i)∧(∧
θ ∈NoAtts(Θ)

Pres(θ , i)
)
∧

AttsPres(τΘ, i)

ª®®®®¬
where we define Pres(θ , i) as follows:

Pres(*, i) = ⊤
Pres((s|*), i) = (si = s)

Pres(e, i) = (ei = e)
Pres((s|e), i) = (si = s ∧ ei = e)

Pres(:not(σ¬), i) = ¬Pres(σ¬, i)

Pres(:root, i) =

{
⊤ i = 0

⊥ otherwise
∀p ∈ P \ {:root} . Pres(p, i) = pi

and, finally, for the remaining selectors, we have

Pres(:nth-child(αn + β), 0) = ⊥
Pres(:nth-last-child(αn + β), 0) = ⊥

Pres(:nth-of-type(αn + β), 0) = ⊥
Pres(:nth-last-of-type(αn + β), 0) = ⊥

Pres(:only-child, 0) = ⊥
Pres(:only-of-type, 0) = ⊥

9 Recall s is not necessarily in ⇃(NS) as it may be some fresh value.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CSS Minification via Constraint Solving 1:33

and when i > 0

Pres(:nth-child(αn + β), i) = ∃n.ni = αn + β

Pres(:nth-last-child(αn + β), i) = ∃n.N i = αn + β

Pres(:nth-of-type(αn + β), i) =
∨

s ∈⇃(NS)
e ∈⇃(ELE)

(
si = s ∧ ei = e ∧

∃n.ns :ei + 1 = αn + β

)
Pres(:nth-last-of-type(αn + β), i) =

∨
s ∈⇃(NS)
e ∈⇃(ELE)

(
si = s ∧ ei = e ∧

∃n.N s :e
i + 1 = αn + β

)
Pres(:only-child, i) = ni = 1 ∧ N i = 1

Pres(:only-of-type, i) =
∨

s ∈⇃(NS)
e ∈⇃(ELE)

(
si = s ∧ ei = e ∧

ns :ei = 0 ∧ N
s :e
i = 0

)
We are now ready to move on to complete the encoding.

Encoding Runs of CSS Automata. Finally, now that we are able to encode attribute and node
selectors, we can make use of these to encode accepting runs of a CSS automaton. Since we know
that, if there is an accepting run, then there is a run of length at most n where n is the number of
transitions in ∆, we encode the possibility of an accepting run using the variables discussed above
for all 0 ≤ i ≤ n. The shape of the translation is given below and elaborated on afterwards.

Definition 6.7. θA Given a CSS automaton A we define

θA =
©«©«

q0 = qin

∧
qn = qf

ª®¬ ∧
∧

0≤i<n

©«
Tran(i)

∨
qi = qf

ª®¬ ∧ Consistentª®¬
where Tran(i) and Consistent are defined below.

Intuitively, the first two conjuncts asserts that a final state is reached from an initial state. Next,
we use Tran(i) to encode a single step of the transition relation, or allows the run to finish early.
Finally Consistent asserts consistency constraints.

We define as a disjunction over all possible (single-step) transitions Tran(i) =
∨
t ∈∆

Tran(i, t)

where Tran(i, t) is defined below by cases. There are four cases depending on whether the transition
is labelled ↓, →, →+, or ◦. In most cases, we simply assert that the state changes as required by the
transition, and that the variables ni and ns :ei are updated consistently with the number of nodes read
by the transition. Although the encodings look complex, they are essentially simple bookkeeping.

To ease presentation, we write si :ei = s:e as shorthand for (si = s ∧ ei = e) and si :ei , s:e as
shorthand for (si , s ∨ ei , e).

(1) When t = q
↓−→
σ

q′ we define Tran(i, t) to be

(qi = q) ∧
(
qi+1 = q′

)
∧ ¬:emptyi ∧ Pres(σ , i) ∧

(ni+1 = 1) ∧ ∧
s ∈⇃(NS)
e ∈⇃(ELE)

(
ns :ei+1 = 0

)
.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:34 Matthew Hague, Anthony W. Lin, and Chih-Duo Hong

(2) When t = q
→−−→
σ

q′ we define Tran(i, t) to be false when i = 0 (since the root has no
siblings) and otherwise

(qi = q) ∧
(
qi+1 = q′

)
∧ Pres(σ , i) ∧

(ni+1 = ni + 1) ∧
(
N i+1 = N i − 1

)
∧

∧
s ∈⇃(NS)
e ∈⇃(ELE)

©«

(
(si :ei = s:e) ⇒

(
ns :ei+1 = ns :ei + 1

))
∧(

(si :ei , s:e) ⇒
(
ns :ei+1 = ns :ei

))
∧(

(si+1:ei+1 = s:e) ⇒
(
N

s :e
i+1 = N

s :e
i − 1

))
∧(

(si+1:ei+1 , s:e) ⇒
(
N

s :e
i+1 = N

s :e
i

))
ª®®®®®¬
.

(3) When t = q
→+−−−→
*

q we define Tran(i, t) to be false when i = 0 and otherwise

(qi = q) ∧
(
qi+1 = q

)
∧

∃δ .
((
ni+1 = ni + δ

)
∧

(
N i+1 = N i − δ

))
∧

∧
s ∈⇃(NS)
e ∈⇃(ELE)

∃δ s :e .

©«

(
(si :ei = s:e) ⇒(

ns :ei+1 = ns :ei + δ s :e + 1
))

∧(
(si :ei , s:e) ⇒(

ns :ei+1 = ns :ei + δ s :e
))

∧(
(si+1:ei+1 = s:e) ⇒(

N
s :e
i+1 = N

s :e
i − δ s :e − 1

))
∧(

(si+1:ei+1 , s:e) ⇒(
N

s :e
i+1 = N

s :e
i − δ s :e

))

ª®®®®®®®®®®®®®®®¬

.

(4) When t = q
◦−→
σ

q′ we define Tran(i, t) to be

(qi = q) ∧
(
qi+1 = q′

)
∧ Pres(σ , i) .

To ensure that the run is over a consistent tree, we assert the consistency constraint

Consistent = Consistentn ∧ Consistenti ∧ Consistentp

where each conjunct is defined below.

• The clause Consistentn asserts that the values of ni , N i , ns :ei , and N
s :e
i are consistent. That

is ∧
1≤i≤n

(
ni = 1 +

∑
s :e ∈ELE

ns :ei

)
∧

(
N i = 1 +

∑
s :e ∈ELE

N
s :e
i

)
.

• The clause Consistenti asserts that ID values are unique. It is the conjunction of the fol-
lowing clauses. For each s for which we have created variables of the form xs :idi , j we assert∧

1≤i,i′≤n

∨
1≤j≤N

xs :idi , j , xs :idi′, j .

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CSS Minification via Constraint Solving 1:35

• Finally, Consistentp asserts the remaining consistency constraints on the pseudo-classes.
We define Consistentp =

∧
0≤i≤n

©«
¬

(
:linki ∧ :visitedi

)
∧∧

0≤j,i≤n

(
¬

(
:targeti ∧ :targetj

))
∧

¬
(
:enabledi ∧ :disabledi

)
ª®®®®¬
.

These conditions assert the mutual exclusivity of :link and :visited, that at most one
node in the document can be the target node, that nodes are not both enabled and disabled.

6.4.6 Correctness of the Encoding. We have now completed the definition of the reduction from
the emptiness problem of CSS automata to the satisfiability of existential Presburger arithmetic.
What remains is to show that this reduction is faithful: that is, the CSS automaton has an empty
language if and only if the formula is satisfiable. The proof is quite routine, and presented in
Lemma C.8 and Lemma C.9 in Appendix C.3.5.

LEMMA 6.8 (CORRECTNESS OF θA). For a CSS automaton A, we have

L(A) , ∅ ⇔ θA is satisfiable.

We are thus able to decide the emptiness problem, and therefore the emptiness of intersection
problem, for CSS automata by reducing the problem to satisfiability of existential Presburger arith-
metic and using a fast solver such as Z3 (de Moura and Bjørner 2008) to resolve the satisfiability.

7 RULE-MERGING TO MAX-SAT
In this section, we provide a reduction from the rule-merging problem to partial weighted MaxSAT.
The input will be a valid covering C = {Bi }mi=1 of a CSS graph G. We aim to find a rule B = (X ,Y)

and a position j that minimises the weight of C[B → j]↓.
There is a fairly straightforward encoding of the rule-merging problem into Max-SAT using for

each node w ∈ S ∪ P a boolean variable w which is true iff the node is included in the new rule.
Unfortunately, early experiments showed that such an encoding does not perform well in practice,
causing prohibitively long run times even on small examples. The failure of the naive encoding
may be due to the search space that includes a large number of possible pairs (X ,Y) that turn out to
be invalid rules (e.g. include edges not in the CSS-graph G). Hence, we will use a different Max-
SAT encoding that, by means of syntax, further restricts the search space of valid rule-merging
opportunities.

The crux of our new encoding is to explicitly say in the Max-SAT formula ϕ that the rule B in
a merging opportunity (B, j) is a “valid” sub-biclique of one of the maximal bicliques B = (X ,Y)
— maximal with respect to subset-of relations of X and Y components of bicliques — in the CSS-
graph G. By insisting B is contained within a maximal biclique of the CSS-graph, we automatically
ensure that B does not contain edges that are not in G.

The formula ϕ will try to guess a maximal biclique B and which nodes to omit from B. Since
the number of maximal bicliques in a bipartite graph is exponential (in the number of nodes) in the
worst case, one concern with this idea is that the constraint ϕ might become prohibitively large. As
we shall see, this turns out not to be the case in practice. Intuitively, based on our experience, the
number of rules in a real-world CSS file is at most a few thousand. Second, the number of maximal
bicliques in a CSS-graph that corresponds to a real-world CSS file also is typically of a similar size
to the number of rules, and, furthermore, can be enumerated using the algorithm from (Kayaaslan
2010) (which runs in time polynomial in the size of the input and the size of the output). To be more

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:36 Matthew Hague, Anthony W. Lin, and Chih-Duo Hong

.a { color:blue; color:green }

.b { color:green; color:blue }

Fig. 12. A CSS file with an unorderable sub-biclique.

precise, the benchmarks in our experiments had between 31 and 2907 rules, and the mean number
of rules was 730. The mean ratio of the number of maximal bicliques to the number of rules was
1.25, and the maximum was 2.05. As we shall see in Section 8, Z3 may solve the constraints via
this encoding quite efficiently.

In the rest of the section, we will describe our encoding in detail. For convenience, our encod-
ing also allows bounded integer variables. There are standard ways to encode these in binary as
booleans (e.g. see (Petke 2015)) by bit-blasting (using a logarithmic number of boolean variables).

7.1 Orderable Bicliques
Our description above of the crux of our encoding (by restricting to containment in a maximal
biclique) is a simplification. This is because not all sub-bicliques of a maximal biclique correspond
to a valid rule B in a merging opportunity (B, j) with respect to the covering C. (A biclique (X ′,Y ′)
is a sub-biclique of a biclique (X ,Y) if X ′ ⊆ X and Y ′ ⊆ Y .) To ensure that our constraint ϕ
chooses only valid rules, it needs to ensure that the sub-biclique that is chosen is “orderable”. More
precisely, a biclique B = (X ,Y) is orderable at position j if it can be turned into a rule B = (X ,Y)

(i.e. turning the set Y of declarations into a sequence Y by assigning an order) that can be inserted
at position j in C without violating the validity of the resulting covering with respect to the order ≺
(from the CSS-graph G). If there are m rules in C, there are m + 1 positions (call these positions
0, . . . ,m) where Y may be inserted into C. We show below that the position j is crucial to whether
B is orderable.

Unorderable bicliques rarely arise in practice (in our benchmarks, the mean percentage of maxi-
mal bicliques that were unorderable at some position was 0.39%), but they have to be accounted for
if our analysis is to find the optimal rule-merging opportunity. A biclique B = (X ,Y) is unorderable
when they have the same property name (or two related property names, e.g., shorthands) occuring
multiple times with different values in Y . One reason having a CSS rule with the same property
name occuring multiple times with different values is to provide “fallback options” especially be-
cause old browsers may not support certain values in some property names, e.g., the rule

.c { color:#ccc; color:rgba(0, 0, 0, 0.5); }

says that if rgba() is not supported (e.g. in IE8 or older browsers), then use #ccc. Using this
idea, we can construct the simple example of an unorderable biclique in the CSS file in Figure 12.
The ordering constraints we can derive from this file include

(.a,color:blue) ≺ (.a,color:green)

and

(.b,color:green) ≺ (.b,color:blue) .

The biclique B

({.a,.b}, {color:blue,color:green})
is easily seen to be orderable at position 0 and 1. This is because the final rule in Figure 12 will en-
sure the ordering (.b,color:green) ≺ (.b,color:blue) is satisfied, and since B will appear
before this final rule, only (.a,color:blue) ≺ (.a,color:green) needs to be maintained by
B (in fact, at position 0, neither of the orderings need to be respected by B). However, at position

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CSS Minification via Constraint Solving 1:37

2, which is at the end of the file in Figure 12, both orderings will have to be respected by B. Un-
fortunately, one of these orderings will be violated regardless of how one may assign an ordering to
blue and green. This contrived example was made only for illustration, however, our technique
should still be able to handle even contrived examples.

We mention that both checking orderability and ordering a given biclique can be done efficiently.

PROPOSITION 7.1. Given a biclique B, a covering C (with m rules) of a CSS-graph G, and a
number j ∈ {0, . . . ,m}, checking whether B is orderable at position j in C can be done in polynomial
time. Moreover, if B is orderable an ordering can be calculated in polynomial time.

The proof of the proposition is easy and is relegated into Appendix A.1.

Maximal Orderable Bicliques. Our Max-SAT encoding ϕ needs to ensure that we only pick a pair
(B, j) such that B is an orderable biclique at position j in the given covering C, i.e., B corresponds
to a rule that can be inserted at position j in C. Although the check of orderability can be declara-
tively expressed as a constraint in ϕ, we found that this results in Max-SAT formulas that are rather
difficult to solve by existing Max-SAT solvers. For this reason, we propose to express the check of
orderability in a different way. Intuitively, for each j ∈ {0, . . . ,m}, we enumerate all orderable bi-
cliques B = (X ,Y) that are also maximal, i.e., it is not a (strict) sub-biclique of a different orderable
biclique. Since “orderability is inherited by sub-bicliques” (as the following lemma, whose proof is
immediate from the definition, states), the constraint ϕ needs to simply choose a sub-biclique of a
maximal orderable biclique that appears in our enumeration.

LEMMA 7.2. Every sub-biclique B′ = (X ,Y) of an orderable biclique B = (X ,Y) is orderable.

The above enumeration of maximal orderable bicliques can be described as a pair ({Mi }µi=1, F)
where

• {Mi }µi=1 is an enumeration of all bicliques that are orderable and maximal at some position
j, and

• F forbids certain bicliques at each position. I.e. it is a function from [1,m] to the set of
bicliques in {Mi }µi=1 that are unorderable at position j.

Observe that the set of orderable bicliques at position j in C is a subset of the set of orderable
bicliques at position j + 1 in C. This may be formally expressed as: F (j) ⊆ F (j + 1) for all
j ∈ [1,m).

In the majority (54%) of examples that we have from real-world CSS, the function F maps all
values of [1,m] to ∅, i.e., all maximal bicliques are orderable at all positions. The mean percentage
of maximal bicliques that were unorderable at some position was 0.39%, with a maximum of 5.84%.

In our description of the Max-SAT encoding below, we assume that the pair ({Mi }µi=1, F) has
been computed for the input C.

7.2 The Max-SAT Encoding
We present the full reduction of the rule-merging problem to Max-SAT. In particular, the constraints
we produce are

(ΠH ,ΠS)

where ΠH and ΠS are, respectively, hard and soft constraints. First, we describe the variables used
in our encoding. Note, our encoding will rely on the assumption that covering C has already been
trimmed. Recall, the notion of trimming is defined in Section 4 and is the process of removing
redundant nodes from a covering. A node is redundant in a rule if all of its incident edges also
appear later in the covering.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:38 Matthew Hague, Anthony W. Lin, and Chih-Duo Hong

7.2.1 Representing the Rule-Merging Opportunity. We need to represent a merging opportunity
(B, j). We use a bounded integer variable j (with range 0 ≤ j ≤ m) to encode j.

For B we select a biclique in {Mi }µi=1 and allow some nodes to be removed (i.e. to produce
sub-bicliques of the Mi). We use a bounded integer variable iM (with range [1, µ]) to select Mi .
Next, we need to choose a sub-biclique of Mi , which can be achieved by choosing nodes Mi to
be removed. To minimise the number of variables used, we number the nodes contained in each
biclique in some (arbitrary) way, i.e., for each i ∈ [1, µ] and biclique Mi = (X ,Y), we define a
bijection ρi : X ∪ Y → [1, |X ∪ Y |]. Let χ be the maximum number of nodes in a biclique Mi in
the enumeration {Mi }µi=1, i.e., the maximal integer k such that ρi (w) = k for some w ∈ S ∪ P and
1 ≤ i ≤ µ.

We introduce boolean variables x1, . . . , x χ . Once the maximal orderable biclique Mi is picked,
for a node w with ρi (w) = k , the variable xk is used to indicate that w is to be excluded from
selected Mi (i.e. xk is true iff w is to be excluded from Mi). More precisely, for an edge e = (s,p)
in Mi , we define a predicate HasEdge(e) to be

HasEdge((s,p)) =
∨

1≤i≤µ
iM = i ∧ ¬xρi (s) ∧ ¬xρi (p) .

Note, when Mi = (X ,Y) and w < X ∪ Y we let xρi (w) denote the formula “true”.

7.2.2 Hard Constraints. We define

ΠH = {ϕvld,ϕord}
where ϕvld and ϕord are described below.

We need to ensure the rule-merging opportunity is valid, i.e., it has not been forbidden at the
chosen position and inserting it into the covering does not violate the edge order ≺. For the former,
we define F 1st, which is used to discover which of the Mi first become unorderable at position j.
That is Mi ∈ F 1st(j) if j is the smallest integer such that Mi ∈ F (j).

ϕvld =
∧

1≤j≤m

©«
(
j >= j

)
⇒

∧
Mi ∈F1st(j)

(
iM , i

)ª®¬ .
We also need to ensure the edge ordering is respected by the rule-merging opportunity, for which

we define ϕord. If e1 ≺ e2, and e1 = (s1,p1) is in the rule B in the guessed merging opportunity
(B, j), then we need to assert e1 ≺ e2 is respected. It is respected either if e2 = (s2,p2) appears after
the position where j is to be inserted in C, or e2 is also contained in the new rule B (in which case
the ordering can still be respected since B is orderable). That is,

ϕord =
©«

∧
(s1,p1)≺(s2,p2)

HasEdge((s1,p1)) ⇒
(
j < index((s2,p2)) ∨ HasEdge((s2,p2))

)ª®¬ .
This is because only the last occurrence of an edge in a covering matters (recall the definition of
index of an edge in Section 4). Also note that our use of bicliques ensures that we do not introduce
pairs (s,p) that are not edges in E.

7.2.3 Soft Constraints. The soft constraints will calculate the weight of C[B → j]↓. Since we
want to minimise this weight, the optimal solution to the Max-SAT problem will give an optimal
rule-merging opportunity. Our soft constraints are

ΠS = ΠB
S ∪ΠSels

S ∪ΠProps
S

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CSS Minification via Constraint Solving 1:39

where ΠB
S counts the weight of the B, and ΠSels

S and ΠProps
S counts the weight of the remainder (not

including B) of the stylesheet by counting the remaining selectors and properties respectively after
trimming. These are defined below.

To count the weight of B, we count the weight of the non-excluded nodes of Mi = (Xi ,Yi). We
have

ΠB
S =

{
(ϕiw ,wt(w))

�� 1 ≤ i ≤ µ ∧w ∈ Xi ∪ Yi
}

where
ϕiw =

((
iM = i

)
⇒ xρi (w)

)
.

Note that ϕiw is true iff, whenever Mi is picked, the node w is omitted from Mi in the guessed B.
Furthermore, the cost of not omitting w from Mi is wt(w).

Next, we count the remaining weight of C[B → j] (i.e. excluding the weight of B). Assume that
C has already been trimmed, i.e., C↓ = C. The intuition is that a node v can be removed from
Bi in C if all edges e incident to v appear in a later rule in C, i.e., index(e) > i. In particular, let
Bi = (Xi ,Y i) in {Bi }mi=1. To count the weight of the untrimmed selectors we use the clauses

ΠSels
S =

{
(ψ i

s ,wt(s))
�� 1 ≤ i ≤ m ∧ s ∈ Xi

}
where

ψ i
s =

©«
i ≤ j ∧

∧
index((s ,p))=i

p∈Y

HasEdge((s,p))
ª®®®®¬
.

The idea is that ψ i
s will be satisfied whenever s can be removed from Bi . We assume C has already

been trimmed, so s can only become removable because of the application of rule-merging. This ex-
plains the first conjunct which asserts that nodes can only be removed from rules appearing before j.
Next, s can be removed after rule-merging if none of its incident edges (s,p) are the final occurrence
of (s,p) in C[B → j]. The crucial edges in this check are those such that index((s,p)) = i, which
means Bi contains the final occurrence of (s,p) in C. For these edges, if HasEdge((s,p)) holds,
then the new rule contains (s,p) and Bi will no longer contain the final occurrence of (s,p) after
rule-merging.

Similarly, to count the weight of the properties that cannot be removed we have

ΠProps
S =

{
(ψ i

p,wt(p))
��� 1 ≤ i ≤ m ∧ p ∈ Y i

}
where

ψ i
p =

©«i ≤ j ∧
∧

index((s ,p))=i
s ∈X

HasEdge((s,p))
ª®®®¬ .

7.3 Generated Rule-Merging Opportunity
The merging opportunity (B, j) is built from an optimal satisfying assignment to (ΠH ,ΠS). First,
j is the value assigned to j. Then B = (X ,Y) where, letting iM be the value of iM , and letting
MiM = (X ′,Y ′),

• s ∈ X iff s ∈ X ′ and xρiM (s) is assigned the value false, and
• Y = {pi }mi=1, where {pi }mi=1 is obtained by assigning an ordering to Y ′ such that (B, j) is a

valid merging opportunity.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:40 Matthew Hague, Anthony W. Lin, and Chih-Duo Hong

That the ordering of Y ′ above exists is guaranteed by the fact that MiM is orderable at j, and Lemma
7.2. We can compute the ordering in polynomial time via Proposition 7.1. We argue the following
proposition in Appendix A.3.

PROPOSITION 7.3. The merging opportunity (B, j) that is generated from the maximal solution
to (ΠH ,ΠS) is the optimal merging opportunity of C.

8 EXPERIMENTAL RESULTS
We implemented a tool SATCSS (in Python 2.7) for CSS minification via rule-merging which can
be found in our supplementary material (Hague et al. 2018). The source code is also available at the
following URL.

https://github.com/matthewhague/sat-css-tool
It constructs the edge order following Section 5 and discovers a merging opportunity following
Section 7. We use Z3 (de Moura and Bjørner 2008) as the back end SMT and Max-SAT solver.
As an additional contribution, our tool can also generate instances in the extended DIMACS format
(Argelich et al. 2016) allowing us to use any Max-SAT solvers. This output may also provide a
source of industrially inspired examples for Max-SAT competition benchmarks.

304

0

50

100

150

200

250

Fig. 13. Box plot of
the file sizes in kilo-
bytes

Our benchmarks comprise 72 CSS files coming from three different
sources (see Appendix D.2 for a complete listing):

• We collected CSS files from each of the top 20 websites on a global
ranking list (Alexa Internet 2017).

• CSS files were taken from a further 12 websites selected from the top
20-65 websites from the listing above.

• Finally, CSS files were taken from 11 smaller websites such as DBLP.
These were examples used during the development of the tool.

This selection gives us a wide range of different types of websites, including
large scale industrial websites and those developed by smaller teams. Note,
several websites contained more than one CSS file and in this case we took
a selection of CSS files from the site. Hence, we collected more examples than the number of
websites used. Figure 13 gives the file-size distribution of the CSS files we collected.

In the following, we describe the optimisations implemented during the development of SATCSS.
We then describe the particulars of the experimental setup and provide the results in Figure 15.

8.1 Optimisations
We give an overview of the optimisations we used when implementing SATCSS. In section 8.4 we
provide a detailed evaluation of the proposed optimisations.

• We introduce variables xk only for nodes appearing in the edge order, rather than for all
nodes in a biclique. This is enough to be able to define sub-bicliques of any Mi that can
appear at any position in the covering, but means that the smallest rule-merging opportunity
cannot always be constructed. However, this reduces the search space and leads to an
improvement to run times. For example, given a biclique

.a { color: red; background: blue }

where the property color: red appears in some pair of the edge ordering, but the prop-
erty background: blue does not, we introduce a variable xk which is true whenever
the declaration color: red is excluded from the biclique, but do not introduce a simi-
lar variable for background: blue. Since background: blue does not appear

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://github.com/matthewhague/sat-css-tool

CSS Minification via Constraint Solving 1:41

in the edge order, its presence can never cause a violation of the edge ordering. This is not
the case for color: red, hence we still need the allow the possibility of removing it to
satisfy the edge order.

• For a rule-merging application to reduce the size of the file, it must remove at least two
nodes from the covering. Hence, for each Mi let jil be the index of the second rule in C
containing some edge in Mi (not necessarily the same edge), and jih be the index of the last
rule containing some edge in Mi Without loss of generality we assert

iM = i ⇒
(
j ≥ jil ∧ j ≤ jih

)
.

• We performed the following optimisation when calculating ({Mi }µi=1, F). The majority
(58.4%) of benchmarks all maximal bicliques are orderable at all positions, and the mean
percentage of maximal bicliques that were unorderable at some position was 0.39%, with
a maximum of 5.84%. However, there are one or two of the largest examples of our experi-
ments where this enumeration took a minute or so. Since the number of maximal bicliques
that are unorderable at some position is so small, we decided in our implementation to sim-
ply remove all such bicliques from the analysis. In this case {Mi }µi=1 is an enumeration of
all maximal bicliques that are orderable at all positions j, and F maps all values of [1,m]
to ∅. This means that we may not be able find the optimal rule-merging opportunity as
not all bicliques are available, but since the amount of time required to find a rule-merging
opportunity is reduced, we are able to find more merging opportunities to apply.

• Finally, we allowed a multi-threaded partitioned search. This works as follows. The search
space is divided across n threads, and each thread partitions its search space into m parti-
tions. During iteration j, thread k allows only those Mi where i = k ∗m + (j mod m).
If the fastest thread finds a merging opportunity in t seconds, we wait up to 0.1t seconds
for further instances. We take the best merging opportunity of those that have completed.
A thread reports “no merging opportunities found” only if none of its partitions contain a
merging opportunity.

For the experiments we implemented a simple heuristic to determine the number of
threads and partitions to use. We describe this heuristic here, but first note that better
results could likely be obtained with systematic parameter tuning rather than our ad-hoc
settings. The heuristic used was to count the number of nodes in the CSS file; that is, the
total number of selectors and property declarations (this total includes repetitions of the
same node – we do not identify repetitions of the same node). The tool creates enough
partitions to give up to 750 nodes per partition. If only two partitions are needed, only one
thread is used. Otherwise SATCSS first creates new threads – up to the total number of
CPUs on the machine. Once this limit is reached, each thread is partitioned further until the
following holds: number of threads ∗ partitions per threads ∗ 750 ≤ number of nodes.

For the edge ordering:

• We do not support attribute selectors in full, but perform simple satisfiability checks on the
most commonly occurring types of constraints. These cover all constraints in our bench-
marks. However, we do support shorthand properties.

• Instead of doing a full Existential Presburger encoding, we do a backwards emptiness check
of the CSS automata. This backwards search collects smaller Existential Presburger con-
straints describing the relationship between siblings in the tree, and checks they are satis-
fiable before moving to a parent node. Global constraints such as ID constraints are also
collected and checked at the root of the tree. This algorithm is described in Appendix D.1.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:42 Matthew Hague, Anthony W. Lin, and Chih-Duo Hong

8.2 Results
The experiments were run on a Dell Latitude e6320 laptop with 4Gb of RAM and four 2.7GHz
Intel i7-2620M cores. The Python interpreter used was PyPy 5.6 (Rigo and Contributors 2007) and
the backend version of Z3 was 4.5. Each experiment was run up to a timeout of 30 minutes. In
the case where CSS files used media queries (which our techniques do not yet support), we used
stripmq (Hickenlooper 2014) with default arguments to remove the media queries from CSS files.
Also, we removed whitespaces, comments, and invalid CSS from all the CSS files before they were
processed by the minifiers and our tool.

We used a timeout of 30 minutes because minification only needs to be applied once before
deployment of the website. We note that the tool finds many merging opportunities during this
period and a minified stylesheet can be produced after each application of rule-merging. This means
the user will be able to trade time against the amount of size reduction made. Moreover, applications
of rule-merging tend to show a “long-tail” where the first applications found provide larger savings
and the later applications show diminishing returns (see Figure 14). The returns are diminishing
because our MaxSAT encoding always searches for the rule merging opportunity with the largest
saving.

8.3 Main Results
Table 1 and Figure 15 summarise the results. We compared our tool with six popular minifiers in
current usage (Slant 2017). There are two groups of results: the first set show the results when either
our tool or one of the minifiers is used alone on each benchmark; the second show the results when
the CSS files are run first through a minifier and then through our tool. This second batch of results
shows a significant improvement over running single tools in isolation. Thus, our tool complements
and improves existing minification algorithms and our techniques may be incorporated into a suite
of minification techniques.

0 500 1000 1500

0
5

1
0

1
5

Time (s)

S
a
v
in

g
 %

Fig. 14. Savings against time for SatCSS
on each benchmark

Table 1 shows the savings, after whitespaces and com-
ments are removed, obtained by SATCSS and the six
minifiers when they are used alone and together. The ta-
ble presents the savings in seven percentile ranks that in-
clude the minimal (0th), the median (50th), and the maxi-
mal values (100th). The upper half of the table shows the
savings obtained in bytes, while the lower half shows the
savings as percentages of the original file sizes. The first
seven columns in the table show the savings when either
our tool or one of the minifiers is used alone; the rest of
the columns show the results when the CSS files are pro-
cessed first by a minifier and then by our tool. Figure 15
shows the same data in visual form. It can be seen that
SATCSS tends to achieve greater savings than each of
the six minifiers on our benchmarks. Furthermore, even
greater savings can be obtained when SATCSS is used in
conjunction with any of the six minification tools. More
precisely, when run individually, SATCSS achieves savings with a third quartile of 6.90% and a
median value of 3.79%, while the six minifiers achieve savings with third quantiles and medians up
to 5.45% and 3.29%, respectively. When we run SATCSS after running any one of these minifiers,
the third quartile of the savings can be increased to 8.26% and the median to 4.70%. The additional
gains obtained by SATCSS on top of the six minifiers (as a percentage of the original file size) have

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CSS Minification via Constraint Solving 1:43

Tool

Percentile
satcss csso cssnano cleancss minify yui cssmin

satcss +

csso

satcss +

cssnano

satcss +

cleancss

satcss +

minify

satcss +

yui
satcss +

cssmin

0th 0 -70 9 9 0 0 0 37 32 45 22 24 24
20th 320 258 100 199 5 13 3 467 444 562 362 366 369
40th 1011 877 462 738 28 35 24 1942 1353 1733 1241 1082 1158
50th 2013 1527 1042 1354 72 92 61 4025 3022 4253 2518 2290 2736
60th 3065 2955 1556 2081 153 157 117 5007 4370 4677 3264 3279 3304
80th 4820 5656 3822 5449 355 326 212 8268 7202 8595 5108 4765 5127
100th 81693 86367 76238 69573 3501 3464 3224 100734 97710 90710 78245 82101 77827

0th 0.00 -0.56 0.02 0.10 0.00 0.00 0.00 0.14 0.12 0.33 0.09 0.09 0.09
20th 1.79 1.45 0.75 1.21 0.02 0.04 0.01 2.96 2.65 3.60 2.00 2.04 2.04
40th 2.90 2.54 1.47 2.55 0.10 0.17 0.09 4.90 3.94 5.05 3.47 3.41 3.41
50th 3.79 3.29 1.84 3.03 0.15 0.21 0.18 5.78 4.90 6.10 4.03 4.10 4.15
60th 4.62 4.40 2.42 3.64 0.22 0.26 0.21 6.50 5.64 7.45 4.68 4.70 4.68
80th 8.12 6.13 5.18 6.04 0.56 0.64 0.49 10.11 10.98 10.42 8.21 8.09 8.39
100th 26.44 27.95 24.67 25.68 6.44 6.38 3.56 32.60 31.62 29.54 25.59 26.57 25.66

Table 1. Percentile ranks of the savings in bytes (above) and in percentages (below)

a third quartile of 5.03% and a median value of 2.80%. Moreover, the ratios of the percentage of
savings made by SATCSS to the percentage of savings made by the six minifiers have third quartiles
of at least 136% and medians of at least 48%. These figures clearly indicate a substantial proportion
of extra space savings made by SATCSS. We comment in the next section on how our work may be
integrated with existing tools.

In Figure 14 we plot for each benchmark, the savings made as time progresses. Each line repre-
sents one benchmark. Our algorithm repeatedly searches for and applies merging opportunities.
Once one opportunity has been found, the search begins again for another. Hence, the longer
SATCSS is run, the more opportunities can be found, and the more space saved. Since we search for
the optimal merging opportunities first, we can observe a long-tail, with the majority of the savings
being made early in the run. Hence, SatCSS could be stopped early while still obtaining a majority
of the benefits. We further note that in 43 cases, SATCSS terminated once no more merging oppor-
tunities could be found. In the remaining 29 cases, the timeout was reached. If the timeout were
extended, further savings may be found.

Finally, we remark on the validation of our tool. First, our model is built upon formal principles
using techniques that are proven to maintain the CSS semantics. Moreover, our tool verifies that the
output CSS is semantically equivalent to the input CSS. Thus we are confident that our techniques
are also correct in practice. A reliable method for truly comparing whether the rendering of web-
pages using the original CSS and the minified CSS is identical is a matter for future work, for which
the recent Visual Logic of Panchekha et al. (Panchekha et al. 2018) may prove useful. In lieu of a
systematic validation, for each of our experiment inputs, we have visually verified that the rendering
remains unchanged by the minification. Such a visual inspection can, of course, only be considered
a sanity-check.

8.4 Evaluations of Optimisations
For each of our optimisations, we ran SATCSS on the unminified 72 benchmarks with the optimisa-
tion disabled. The results are shown in Figure 17 and Figure 16. In Figure 16, the “satcss” column
shows the performance of SATCSS implemented as described above. As described above, of the
72 benchmarks, SATCSS completed within the timeout (no more merging-opportunities could be
found) in 43 cases, and was stopped early due to the timeout in the remaining 29. The comparison
with the effect of disabling optimisations is shown in Table 2.

Figure 17 shows the time taken by SATCSS to construct the edge order for each benchmark
using the optimised emptiness of intersection algorithm presented in Appendix D.1 and the non-
optimised encoding presented in Section 6. The timeout was kept at 30 minutes. The optimised

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:44 Matthew Hague, Anthony W. Lin, and Chih-Duo Hong

81693 86367
76238 69573

100734 97710 90710
78245 82101 77827

0

2000

4000

6000

8000

10000

12000

14000

16000

s
a

tc
s
s

c
s
s
o

c
s
s
n

a
n

o

c
le

a
n

c
s
s

m
in

if
y

y
u

i

c
s
s
m

in

s
a

tc
s
s
 +

 c
s
s
o

s
a

tc
s
s
 +

 c
s
s
n

a
n

o

s
a

tc
s
s
 +

 c
le

a
n

c
s
s

s
a

tc
s
s
 +

 m
in

if
y

s
a

tc
s
s
 +

 y
u

i

s
a

tc
s
s
 +

 c
s
s
m

in

B
y
te

s

3501 3464 3224

26.4
28

24.7 25.7

32.6 31.6
29.5

25.6 26.6 25.7

0

4

8

12

16

20

s
a

tc
s
s

c
s
s
o

c
s
s
n

a
n

o

c
le

a
n

c
s
s

m
in

if
y

y
u

i

c
s
s
m

in

s
a

tc
s
s
 +

 c
s
s
o

s
a

tc
s
s
 +

 c
s
s
n

a
n

o

s
a

tc
s
s
 +

 c
le

a
n

c
s
s

s
a

tc
s
s
 +

 m
in

if
y

s
a

tc
s
s
 +

 y
u

i

s
a

tc
s
s
 +

 c
s
s
m

in

P
e

rc
e

n
t

6.4 6.4

3.6

Fig. 15. Box plots of the savings in bytes (above) and in percentages (below)

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CSS Minification via Constraint Solving 1:45

81693
68733

119483

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

26000

s
a

tc
s
s

n
o

b
ic

liq
u

e
s

fu
lle

x
c

u
n

lim
b

ic
liq

u
e

s

n
o

th
re

a
d

n
o

o
rd

B
y
te

s

1098

21317

13509

26.4

22.2
25.5 25.6

38.7

0

4

8

12

16

20

s
a

tc
s
s

n
o

b
ic

liq
u

e
s

fu
lle

x
c

u
n

lim
b

ic
liq

u
e

s

n
o

th
re

a
d

n
o

o
rd

P
e

rc
e

n
t

14.7

Fig. 16. The savings in bytes (above) and in percentages (below) with certain optimisations disabled

algorithm completed the edge order construction on all benchmarks, while the timeout was reached
in 19 cases by the unoptimised algorithm. A clear advantage can be seen for the optimised approach.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:46 Matthew Hague, Anthony W. Lin, and Chih-Duo Hong

Next we compared the straightforward encoding of the rule-merging problem into Max-SAT
discussed at the start of Section 7 with the biclique encoding which was the main topic of Sec-
tion 7. SATCSS using the straightforward encoding appears as “nobicliques” in Figure 16. With
the straightforward encoding, the tool completed within the timeout in 45 cases, and reached the
timeout in the remaining 27. It can been seen that there is a clear benefit to the biclique encoding.

1775.1

0

100

200

300

400

500

600

700

800

900

1000

o
p
ti
m

is
e
d

u
n
o
p
ti
m

is
e
d

T
im

e
 (

s
)

216.4

Fig. 17. Box plots of the time taken
to construct the CSS edge order with
the optimised and unoptimised empti-
ness of intersection tests

We also consider the optimisation that introduces variables
xk only for nodes appearing in the edge order, rather than for
all nodes in a biclique. Disabling this optimisation appears
as “fullexc” in Figure 16. With this optimisation disabled, the
tool completed within the timeout in 36 cases, and reached the
timeout in the remaining 36. We can see a modest gain from
this simple optimisation.

We then study the effect of removing all unorderable bi-
cliques. The “unlimbicliques” column in Figure 16 shows the
effect of allowing ({Mi }µi=1, F) to be calculated in full. That
is, unorderable bicliques are split into orderable sub-bicliques.
With full biclique enumeration, the tool completed within the
timeout in 42 cases, and reached the timeout in the remain-
ing 30. This had only a small effect on performance, which
is expected. The purpose of this limiting biclique generation
in SATCSS is to prevent the rare examples of unorderable bi-
cliques from having a large effect on performance in some cases.

Optimisation Terminated

satcss 43

nobicliques 45

fullexc 36

unlimbicliques 42

nothread 40

noord 50

Table 2. The number
of examples termi-
nating with no more
discovered merging op-
portunities in standard
mode and with certain
optimisations disabled

The next optimisation in Figure 16, “nothread”, shows the performance
of SATCSS with multi-threading and partitioning disabled. That is, the
search space is not split up across several Max-SAT encodings. Without
multi-threading or partitioning, the tool completed within the timeout in
40 cases, and reached the timeout in the remaining 32. There is a notice-
able degradation in performance when this optimisation is disabled. The
final column in Figure 16 studies the following hypothetical scenario. The
reader may wonder whether CSS developers may be able to improve per-
formance by specifying invariants of the documents to which the CSS will
be applied. For example, the developer may specify that a node with class
a will never also have class b. In this case pairs such as (.a,.b) can
be removed from the edge-order. Thus, document-specific knowledge may
improve performance by reducing the number of ordering constraints that
need to be maintained. The column “noord” shows the performance of SATCSS when the edge-
ordering is empty, i.e., there is no edge ordering. Without the edge ordering, the tool completed
within the timeout in 50 cases, and reached the timeout in the remaining 22. This represents a best-
case scenario if document invariants were considered. Thus, if we were to extend SATCSS to also
take a set of invariants, we could see a large improvement in the savings found. However, we also
note that these savings do not dwarf the performance of SATCSS without invariants.

9 RELATEDWORK
CSS minification started to receive attention in the web programming community around the year
2000. To the best of our knowledge, the first major tools that could perform CSS minification
were Yahoo! YUI Compressor (Sha and Contributors 2014) and Microsoft Ajax Minifier, both of

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CSS Minification via Constraint Solving 1:47

which were developed around 2004–2006. This is followed by the development of many other CSS
minifiers including (in no particular order) cssmin (Bleuzen 2017), clean-css (Pawlowicz
2017), csso (Dvornov and Contributors 2017), cssnano (Briggs and Contributors 2015), and
minify (Clay and Contributors 2017). Such minifiers mostly apply syntactic transformations
including removing whitespace characters, comments, and replacing strings by their abbreviations
(e.g. #f60 by #ff6600). More and more advanced optimisations are also being developed. For
example, cssnano provides a limited support of our rule-merging transformations, wherein only
adjacent rules may be merged. The lack of techniques for handling the order dependencies of CSS
rules (Souders 2007) was most likely one main reason why a more general notion of rule-merging
transformations (e.g. that can merge rules that are far away in the file) is not supported by CSS
minifiers.

In our experiments, we ran SATCSS after running the existing minifiers described above. It is
likely that the order of execution is important: the rewrites applied by existing minifiers will put
the CSS into a more normalised format, which will improve the possibility of selectors sharing
the same declarations. Moreover, these minifiers implement ad-hoc techniques, such as the limited
rule-merging transformations of cssnano described above. After an application of our tool it is
possible that some of these ad-hoc techniques may become applicable, leading to further savings.
Thus, we posit that our techniques could be combined with the techniques of existing minifiers in a
combined minification loop, which is run until a fixed point or timeout is reached.

Although the importance of CSS minification is understood in industry, the problem received
little attention in academia until very recently. Below we will mention the small number of existing
work on formalisation of CSS selectors and CSS minification, and other relevant work.

The lack of theories for reasoning about CSS selectors was first mentioned in the paper (Genevès
et al. 2012), wherein the authors developed a tree logic for algorithmically reasoning about CSS
selectors, i.e., by developing algorithms for deciding satisfiability of formulas in the logic. This
formalisation does not capture the whole class of CSS3 selectors; as remarked in their follow-up pa-
per (Bosch et al. 2015), the logic captures 70% of the selectors in their benchmarks from real-world
CSS files. In particular, they do not fully support attribute selectors (e.g. [l*="bob"]). Our paper
provides a full formalisation of CSS3 selectors. In addition, their tree logic can express properties
that are not expressible in CSS. Upon a closer inspection, their logic is at least as expressive as
µ-calculus, which was a well-known logic in database theory for formalising query languages over
XML documents, e.g., see (Libkin 2006; Neven 2002) for two wonderful surveys. As such, the com-
plexity of satisfiability for their tree logic is EXPTIME-hard. Our formalisation captures no more
than the expressive power of CSS3 selectors, which helps us obtain the much lower complexity NP
and enables the use of highly-optimised SMT-solvers. There is a plethora of other work on logics
and automata on unranked trees (with and without data), e.g., see (Benedikt et al. 2005, 2003; David
et al. 2012; Figueira 2010; Geerts and Fan 2005; Genevès and Layaïda 2006; Genevès et al. 2015;
Gottlob and Koch 2002; Hidders 2003; Libkin and Sirangelo 2010; Marx 2005; Marx and de Ri-
jke 2005; Neven and Schwentick 2006; Seidl et al. 2004; ten Cate et al. 2010; ten Cate and Marx
2007, 2009) and the surveys (Bojańczyk 2010; Libkin 2006; Neven 2002). However, none of these
formalisms can capture certain aspects of CSS selectors (e.g. string constraints on attribute values),
even though they are much more powerful than CSS selectors in other aspects (e.g. navigational).

There are a handful of research results on CSS minification that appeared in recent years. Loosely
speaking, these optimisations can be categorised into two: (a) document-independent, and (b)
document-dependent. Document-independent optimisations are program transformations that are
performed completely independently of the web documents (XML, HTML, etc.). On the other
hand, document-dependent optimisations are performed with respect to a (possibly infinite) set of

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:48 Matthew Hague, Anthony W. Lin, and Chih-Duo Hong

documents. Existing CSS minifiers only perform document-independent optimisations since they
are meant to preserve the semantics of the CSS file regardless of the DOMs to which the CSS file is
applied. Our work in this paper falls within this category too. Such optimisations are often the most
sensible option in practice including (1) the case of generic stylesheets as part of web templates
(e.g. WordPress), and (2) the case when the DOMs are generated by a program. Case (2) requires
some explanation. A typical case of DOMs being generated by programs occurs in HTML5 web
pages. An HTML5 application comes with a finite set of HTML documents, JavaScript code, and
CSS files. The presence of JavaScript means that potentially infinitely many possible DOM-trees
could be generated and displayed by the browser. Therefore, a CSS minification should not affect
the rendering of any such tree by the browser. Although a document-dependent optimisation (that
take these infinitely many trees into account) seems appropriate, this is far from realistic given the
long-standing difficulty of performing sound static analysis for JavaScript especially in the presence
of DOM-trees (Andreasen and Møller 2014; Hague et al. 2015; Jensen et al. 2011, 2009; Schäfer
et al. 2013; Sridharan et al. 2012). This would make an interesting long-term research direction
with many more advances on static analysis for JavaScript. However, the problem is further com-
pounded by the multitude of frameworks deployed on the server-side for HTML creation (e.g. PHP,
Java Server Pages, etc.), for which individual tools will need to be developed. Until then, a practical
minifier for HTML5 applications will have to make do with document-independent optimisations
for CSS files.

The authors of (Mesbah and Mirshokraie 2012) developed a document-dependent dynamic anal-
ysis technique for detecting and removing unused CSS selectors in a CSS file that is part of an
HTML5 application. A similar tool, called UnCSS (Martino and Contributors 2013), was also later
developed. This is done by instrumenting the HTML5 application and removing CSS selectors that
have not been used by the end of the instrumentation. The drawback of this technique is that it can-
not test all possible behaviours of an HTML5 application and may may accidentally delete selectors
that can in reality be used by the application. It was noted in (Hague et al. 2015) that such tools
may accidentally delete selectors, wherein the HTML5 application has event listeners that require
user interactions. The same paper (Hague et al. 2015) develops a static analysis technique for over-
approximating the set of generated DOM-trees by using tree rewriting for abstracting the dynamics
of an HTML5 application. The technique, however, covers only a very small subset of JavaScript,
and is difficult to extend without first overcoming the hard problem of static analysis of JavaScript.

The authors of (Bosch et al. 2015) applied their earlier techniques (Genevès et al. 2012) to de-
velop a document-independent CSS minification technique that removes “redundant” property dec-
larations, and merges two rules with semantically equivalent selectors. The optimisations that they
considered are orthogonal to and can be used in conjunction with the optimisation that we consider
in this paper. More precisely, they developed an algorithm for checking selector subsumption (given
two selectors S1 and S2, whether the selector S1 is subsumed by the selector S2, written S1 ⊆ S2). A
redundant property declaration p in a rule R1 with a selector S1 can, then, be detected by finding a
rule R2 that also contains the declaration p and has a selector S2 with a higher specificity than S1 and
that S1 ⊆ S2. As another example, whenever we can show that the selectors S1 and S2 of two rules
R1 and R2 to be semantically equivalent (i.e. S1 ⊆ S2 and S2 ⊆ S1), we may merge R1 with R2 under
certain conditions. The authors of (Bosch et al. 2015) provided sufficient conditions for performing
this merge by relating the specificities of S1 and S2 with the specificities of other related selectors
in the file (but not accounting for the order of appearances of these rules in the file). In general, a
CSS rule might have multiple selectors (a.k.a. selector group), each with a different specificity, and
it is not clear from the presentation of the paper (Bosch et al. 2015) how their optimisations extend
to the general case.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CSS Minification via Constraint Solving 1:49

The authors of (Mazinanian et al. 2014) developed a document-dependent10 CSS minification
method with an advanced type of rule merging as one of their optimisations. This is an ambitious
work utilising a number of techniques from areas such as data mining and constraint satisfaction.
Although their work differs from ours because of its document-dependence, the use of rule-merging
is closely related to our own, hence we will describe in detail some key differences with our ap-
proach. The techniques presented in this paper can be viewed as a substantial generalisation of
their rule merging optimisation. Loosely speaking, in terms of our graph-theoretic framework, their
technique first enumerates all maximal bicliques with at least two selectors. This is done with the
help of an association rule mining algorithm (from data mining) with a set of property declarations
viewed as an itemset. Second, for each such maximal biclique B, a value n is computed that reflects
how much saving will be obtained if B could somehow be inserted into the file and every occurrence
of each property declaration in B is erased from the rest of the CSS file. Note that n is independent of
where B is inserted into the CSS file. Third, for each such maximal biclique B (ranked according to
their values in a non-increasing order), a solver for the (finite-domain) constraint satisfaction prob-
lem is invoked to check whether B can be placed in the file (with every occurrence of each property
declaration in B is erased from the rest of the CSS file) while preserving the order dependency. If
this check fails, the solver will also be invoked to check if one can insert sub-bicliques of B (with a
maximal set S of selectors with |S | ≥ 2) in the file. Possible positions in the file to place each selec-
tor of B are encoded as variables constrained by the edge order dependency that is relativised to the
provided HTML documents. To test whether two edges should be ordered in this relativised edge
order, the selectors are not subject to a full intersection test, but instead a relativised intersection test
that checks whether there is some node in the given finite set of html documents that is matched by
both selectors. Their techniques do not work when the HTML documents are not given, which we
handle in this paper. Another major difference to our paper is that their algorithm sequentially goes
through every maximal biclique B (ranked according to their values) and checks if it can be inserted
into the file, which is computationally too prohibitive especially when the (unrelativised) edge order
≺ is used. Our algorithm, instead, fully relegates the search of an appropriate B and the position in
the file to place it to a highly-optimised Max-SAT solver, which scales to real-world CSS files. In
addition, their type of rule merging is also more restricted than ours for two other reasons. First,
the new rule inserted into the file has to contain a maximal set of selectors. This prohibits many
rule-merging opportunities and in fact does not subsume the merging adjacent rule optimisation of
cssnano (Briggs and Contributors 2015) in general. For example, consider the CSS file

.class1 { color:blue }

.class2 { color:blue }

.class3 { color:red }

.class4 { color:blue }

Notice that we cannot group together the first, second, and fourth rules since this would change the
colour of a node associated with the classes class2 and class3, or with the classes .class3
and class4. On the other hand, the first two rules can be merged resulting in the new file

.class1, .class2 { color:blue }

.class3 { color:red }

.class4 { color:blue }

However, this is not permitted by their merging rule since .class1,.class2{color:blue}
does not contain a maximal set of selectors. Second, given a maximal biclique B, their merging

10More precisely, dependent on a given finite set of HTML documents

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:50 Matthew Hague, Anthony W. Lin, and Chih-Duo Hong

operation erases every occurrence of the declarations of B everywhere else in the file. This further
rules out certain rule-merging opportunities. For example, consider the CSS file

.class1 { color:blue; font-size: large }

.class2 { color:blue; font-size: large }

.class4 { font-size: large }

.class3 { color:red }

.class4 { color:blue }

and observe the following maximal biclique in the file.

.class1, .class2, .class4 { color:blue; font-size: large }

Unfortunately, this is not a valid opportunity using their merging rule since this CSS file is not
equivalent to

.class1, .class2, .class4 { color:blue; font-size: large }

.class3 { color:red }

nor to the following file.

.class3 { color:red }

.class1, .class2, .class4 { color:blue; font-size: large }

In this paper, we permit duplicate declarations, and would insert this maximal biclique just before
the fourth rule in the file (and perform trim) resulting in the following equivalent file.

.class1, .class2, .class4 { color:blue; font-size: large }

.class3 { color:red }

.class4 { color: blue }

Finally, each maximal biclique in the enumeration of (Mazinanian et al. 2014) does not allow two
property declarations with the same property name. As we explained in Section 7, CSS rules satis-
fying this property are rather common since they support fallback options. Handling such bicliques
(which we do in this paper) requires extra technicalities, e.g., the notion of orderable bicliques, and
adding an order to the declarations in a biclique.

We also mention that there have been works (Hottelier and Bodik 2015; Meyerovich and Bodík
2010; Panchekha and Torlak 2016) on solving web page layout using constraint solvers. These
works are orthogonal to this paper. For example, (Panchekha and Torlak 2016) provides a mecha-
nised formalisation of the semantics of CSS for web page layout (in quantifier-free linear arithmetic),
which allows them to use an SMT-solver to automatically reason about layout. Our work provides
a full formalisation of CSS selectors, which is not especially relevant for layout. Conversely, the
layout semantics of various property declarations is not relevant in our CSS minification problem.

Finally, we also mention the potential application of rule-merging to CSS refactoring. This was al-
ready argued in (Mazinanian et al. 2014), wherein the metric of minimal file size is equated with min-
imal redundancies. More research is required to discover other classes of CSS transformations and
metrics that are more meaningful in the context of improving the design of stylesheets. Constraint-
based refactoring has also been studied in the broader context of programming languages, e.g., see
(Steimann 2018; Tip et al. 2011). It would be interesting to study how refactoring for CSS can
be cast into the framework of constraint-based refactoring as previously studied (e.g. in (Steimann
2018)).

10 CONCLUSION AND FUTUREWORK
We have presented a new CSS minification technique via merging similar rules. Our techniques can
handle stylesheets composed of CSS rules which contain a set of CSS Level 3 selectors and list of

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CSS Minification via Constraint Solving 1:51

property declarations. This technique exploits the fact that new rules may be introduced that render
other parts of the document redundant. After removing the redundant parts, the overall file size may
be reduced. Such a solution has required the development of a complete formalisation of CSS selec-
tors and their intersection problem as well as a formalisation of the dependency ordering present in
a stylesheet. This intersection problem was solved by means of an efficient encoding to quantifier-
free integer linear arithmetic, for which there are highly-optimised SMT solvers. Moreover, we
have formalised our CSS rule-merging problem and presented a solution to this problem using an
efficient encoding into MaxSAT formulas. These techniques have been implemented in our tool
SATCSS which we have comprehensively compared with state-of-the-art minification tools. Our
results show clear benefits of our approach.

Both our formalisation and our tool strictly follow the W3C specifications. In practice, web
developers may not always follow these guidelines, and implement convenient abuses that do not
trouble existing web browsers. One particular example is the use of ID values that are not necessarily
unique. In this example case, it would be possible to treat ID values similarly to classes, and
relax our analysis appropriately. In general, one may wish to adapt our constraints to handle other
common abuses. However, this is beyond the scope of the current work.

CSS preprocessors such as Less (Sellier and Contributors 2009) and Sass (Catlin et al. 2006) —
which extend the CSS language with useful features such as variables and partial rules — are com-
monly used in web development. Since Less and Sass code is compiled into CSS before deployment,
our techniques are still applicable.

There are many technologies involved in website development and deployment. These technolo-
gies provide a variety of options for further research, some of which we briefly discuss here.

First, we may expand the scope of the CSS files we target. For example, we may expand our
definition of CSS selectors to include features proposed in the CSS Selectors Level 4 working
draft (Etemad and Jr. 2013) (i.e. still not stable). These features include extensions of the negation
operator to allow arbitrary selectors to be negated. It would be interesting to systematically inves-
tigate the impact of these features on the complexity of the intersection problem. We believe that
such a systematic study would be informative in determining the future standards of CSS Selectors.

Another related technology is that of media queries that allow portions of a CSS file to only be
applied if the host device has certain properties, such as a minimum screen size. This would involve
defining semantics of media queries (not part of selectors), and extending our rule-merging problem
to include media queries and rules grouped under media queries.

Second, we could also consider additional techniques for stylesheet optimisation. Currently we
take a greedy approach where we search for the “best” merging opportunity at each iteration. Tech-
niques such as simulated annealing allow a proportion of non-greedy steps to be applied (i.e. choose
a merging opportunity that does not provide the largest reduction in file size). This allows the op-
timisation process to explore a larger search space, potentially leading to improved final results.
Another approach might be to search for multiple simultaneous rule-merging opportunities.

Finally, our current optimisation metric is the raw file size. We could also attempt to provide
an encoding that seeks to find the best file size reduction after gzip compression. [Gzip is now
supported by many web hosts and most modern browsers (though not including old IE browsers).]
One simple technique that could help bring down the compressed file size is to sort the selectors
and declarations in each rule after the minification process is done (Joseph R. Lewis 2010).

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:52 Matthew Hague, Anthony W. Lin, and Chih-Duo Hong

ACKNOWLEDGMENTS
We are grateful for the support that we received from the Engineering and Physical Sciences Re-
search Council [EP/K009907/1], Google (Faculty Research Award), and European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant
agreement no 759969). We also thank Davood Mazinanian for answering questions about his work,
and anonymous reviewers for their helpful comments.

REFERENCES
Alexa Internet. 2017. Alexa Top 500 Global Sites. https://www.alexa.com/topsites. (2017). Referred in April 2017.
E. Andreasen and A. Møller. 2014. Determinacy in static analysis for jQuery. In OOPSLA. 17–31. DOI:https://doi.org/10.

1145/2660193.2660214
Josep Argelich, Chu Min Li, Felip Manyà, and Jordi Planes. 2016. Max-SAT’16 Competition. http://maxsat.ia.udl.cat/.

(2016). Referred in April 2017.
Tab Atkins Jr., Elika J. Etemad, and Florian Rivoal. 2017. CSS Snapshot 2017. https://www.w3.org/TR/css-2017. (2017).

Referred in August 2017.
Michael Benedikt, Wenfei Fan, and Floris Geerts. 2005. XPath satisfiability in the presence of DTDs. In Proceedings of

the Twenty-fourth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, June 13-15, 2005,
Baltimore, Maryland, USA. 25–36. DOI:https://doi.org/10.1145/1065167.1065172

Michael Benedikt, Wenfei Fan, and Gabriel M. Kuper. 2003. Structural Properties of XPath Fragments. In Database Theory
- ICDT 2003, 9th International Conference, Siena, Italy, January 8-10, 2003, Proceedings. 79–95. http://dx.doi.org/10.
1007/3-540-36285-1_6

Nikolaj Bjørner and Nina Narodytska. 2015. Maximum Satisfiability Using Cores and Correction Sets. In Proceedings of
the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July
25-31, 2015. 246–252. http://ijcai.org/Abstract/15/041

Johan Bleuzen. 2017. cssmin. https://www.npmjs.com/package/cssmin. (2017). Referred August 2017.
Mikołaj Bojańczyk. 2010. Automata for Data Words and Data Trees. In Proceedings of the 21st International Conference

on Rewriting Techniques and Applications, RTA 2010, July 11-13, 2010, Edinburgh, Scottland, UK. 1–4. DOI:https:
//doi.org/10.4230/LIPIcs.RTA.2010.1

Bert Bos. 2016. Cascading Style Sheets Level 2 Revision 2 (CSS 2.2) Specification. https://www.w3.org/TR/CSS22/. (2016).
Referred August 2017.

Martí Bosch, Pierre Genevès, and Nabil Layaïda. 2015. Reasoning with Style. In Proceedings of the Twenty-Fourth Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015. 2227–2233.
http://ijcai.org/Abstract/15/315

Aaron R. Bradley and Zohar Manna. 2007. The Calculus of Computation: Decision Procedures with Applications to Verifi-
cation. Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Ben Briggs and Contributors. 2015. cssnano. http://cssnano.co. (2015). Referred in August 2017.
Hampton Catlin, Natalie Weizenbaum, Chris Eppstein, and Contributors. 2006. Sass. http://sass-lang.com/. (2006). Referred

in August 2017.
T. Çelik, E. J. Etemad, D. Glazman, I. Hickson, P. Linss, and J. Williams. 2011. Selectors Level 3: W3C Recommendation

29 September 2011. http://www.w3.org/TR/2011/REC-css3-selectors-20110929/. (2011). Referred in August 2017.
Steve Clay and Contributors. 2017. minify. https://github.com/mrclay/minify. (2017). Referred in August 2017.
Claire David, Leonid Libkin, and Tony Tan. 2012. Efficient reasoning about data trees via integer linear programming. ACM

Trans. Database Syst. 37, 3 (2012), 19:1–19:28. DOI:https://doi.org/10.1145/2338626.2338632
L. Mendonça de Moura and N. Bjørner. 2008. Z3: An Efficient SMT Solver. In TACAS.
Roman Dvornov and Contributors. 2017. csso. https://github.com/css/csso. (2017). Referred in August 2017.
Elika J. Etemad and Tab Atkins Jr. 2013. Selectors Level 4: W3C Working Draft 2 May 2013. http://www.w3.org/TR/2013/

WD-selectors4-20130502/. (2013).
Diego Figueira. 2010. Reasoning on words and trees with data: On decidable automata on data words and data trees in

relation to satisfiability of LTL and XPath. Ph.D. Dissertation. Ecole Normale Superieure de Cachan.
Ferenc Gécseg and Magnus Steinby. 1997. Handbook of Formal Languages, Vol. 3. Springer-Verlag New York, Inc., New

York, NY, USA, Chapter Tree Languages, 1–68. http://dl.acm.org/citation.cfm?id=267871.267872
Floris Geerts and Wenfei Fan. 2005. Satisfiability of XPath Queries with Sibling Axes. In Database Programming Languages,

10th International Symposium, DBPL 2005, Trondheim, Norway, August 28-29, 2005, Revised Selected Papers. 122–137.
http://dx.doi.org/10.1007/11601524_8

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://www.alexa.com/topsites
https://doi.org/10.1145/2660193.2660214
https://doi.org/10.1145/2660193.2660214
http://maxsat.ia.udl.cat/
https://www.w3.org/TR/css-2017
https://doi.org/10.1145/1065167.1065172
http://dx.doi.org/10.1007/3-540-36285-1_6
http://dx.doi.org/10.1007/3-540-36285-1_6
http://ijcai.org/Abstract/15/041
https://www.npmjs.com/package/cssmin
https://doi.org/10.4230/LIPIcs.RTA.2010.1
https://doi.org/10.4230/LIPIcs.RTA.2010.1
https://www.w3.org/TR/CSS22/
http://ijcai.org/Abstract/15/315
http://cssnano.co
http://sass-lang.com/
http://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://github.com/mrclay/minify
https://doi.org/10.1145/2338626.2338632
https://github.com/css/csso
http://www.w3.org/TR/2013/WD-selectors4-20130502/
http://www.w3.org/TR/2013/WD-selectors4-20130502/
http://dl.acm.org/citation.cfm?id=267871.267872
http://dx.doi.org/10.1007/11601524_8

CSS Minification via Constraint Solving 1:53

Pierre Genevès and Nabil Layaïda. 2006. A system for the static analysis of XPath. ACM Trans. Inf. Syst. 24, 4 (2006),
475–502. DOI:https://doi.org/10.1145/1185882

Pierre Genevès, Nabil Layaïda, and Vincent Quint. 2012. On the analysis of cascading style sheets. In Proceedings of the
21st World Wide Web Conference 2012, WWW 2012, Lyon, France, April 16-20, 2012. 809–818. DOI:https://doi.org/10.
1145/2187836.2187946

Pierre Genevès, Nabil Layaïda, Alan Schmitt, and Nils Gesbert. 2015. Efficiently Deciding µ-Calculus with Converse over
Finite Trees. ACM Trans. Comput. Log. 16, 2 (2015), 16:1–16:41. DOI:https://doi.org/10.1145/2724712

Georg Gottlob and Christoph Koch. 2002. Monadic Queries over Tree-Structured Data. In 17th IEEE Symposium on Logic
in Computer Science (LICS 2002), 22-25 July 2002, Copenhagen, Denmark, Proceedings. 189–202. DOI:https://doi.
org/10.1109/LICS.2002.1029828

Matthew Hague and Anthony Widjaja Lin. 2017. MaxSAT Benchmarks: CSS Refactoring. In MaxSAT Evaluation 2017:
Solver and Benchmark Descriptions, volume B-2017-2 of Department of Computer Science Series of Publications B,
University of Helsinki.

Matthew Hague, Anthony Widjaja Lin, and Chih-Duo Hong. 2018. Data and Source Code for Sat CSS. https://figshare.
com/articles/Data_and_Source_Code_for_Sat_CSS/7277324. (2018). DOI:https://doi.org/10.17637/rh.7277324.v1

Matthew Hague, Anthony Widjaja Lin, and C.-H. Luke Ong. 2015. Detecting redundant CSS rules in HTML5 applications:
a tree rewriting approach. In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA, USA, October
25-30, 2015. 1–19. DOI:https://doi.org/10.1145/2814270.2814288

Jake Hickenlooper. 2014. stripmq. https://www.npmjs.com/package/stripmq. (2014). Referred in August 2017.
Ian Hickson, Robin Berjon, Steve Faulkner, Travis Leithead, Erika Doyle Navara, Edward O’Connor, and Silvia Pfeiffer.

2014. HTML5. https://www.w3.org/TR/html5/. (2014). Referred August 2017.
Jan Hidders. 2003. Satisfiability of XPath Expressions. In Database Programming Languages, 9th International Work-

shop, DBPL 2003, Potsdam, Germany, September 6-8, 2003, Revised Papers. 21–36. http://dx.doi.org/10.1007/
978-3-540-24607-7_3

Thibaud Hottelier and Rastislav Bodik. 2015. Synthesis of Layout Engines from Relational Constraints. In Proceedings of the
2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2015). ACM, New York, NY, USA, 74–88. DOI:https://doi.org/10.1145/2814270.2814291

S. H. Jensen, M. Madsen, and A. Møller. 2011. Modeling the HTML DOM and browser API in static analysis of JavaScript
web applications. In SIGSOFT/FSE. 59–69. DOI:https://doi.org/10.1145/2025113.2025125

S. H. Jensen, A. Møller, and P. Thiemann. 2009. Type Analysis for JavaScript. In SAS. 238–255. DOI:https://doi.org/10.
1007/978-3-642-03237-0_17

Meitar Moscovitz Joseph R. Lewis. 2010. AdvancED CSS. APress.
Enver Kayaaslan. 2010. On Enumerating All Maximal Bicliques of Bipartite Graphs. In 9th Cologne-Twente Workshop on

Graphs and Combinatorial Optimization, Cologne, Germany, May 25-27, 2010. Extended Abstracts. 105–108.
Leonid Libkin. 2006. Logics for Unranked Trees: An Overview. Logical Methods in Computer Science 2, 3 (2006). DOI:

https://doi.org/10.2168/LMCS-2(3:2)2006
Leonid Libkin and Cristina Sirangelo. 2010. Reasoning about XML with temporal logics and automata. J. Applied Logic 8,

2 (2010), 210–232. DOI:https://doi.org/10.1016/j.jal.2009.09.005
Glacomo Martino and Contributors. 2013. UnCSS. https://github.com/giakki/uncss. (2013). Referred April 2017.
Maarten Marx. 2005. Conditional XPath. ACM Trans. Database Syst. 30, 4 (2005), 929–959. DOI:https://doi.org/10.1145/

1114244.1114247
Maarten Marx and Maarten de Rijke. 2005. Semantic characterizations of navigational XPath. SIGMOD Record 34, 2

(2005), 41–46. DOI:https://doi.org/10.1145/1083784.1083792
Davood Mazinanian, Nikolaos Tsantalis, and Ali Mesbah. 2014. Discovering refactoring opportunities in cascading style

sheets. In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering,
(FSE-22), Hong Kong, China, November 16 - 22, 2014. 496–506. DOI:https://doi.org/10.1145/2635868.2635879

Ali Mesbah and Shabnam Mirshokraie. 2012. Automated analysis of CSS rules to support style maintenance. In 34th
International Conference on Software Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland. 408–418. DOI:
https://doi.org/10.1109/ICSE.2012.6227174

Leo A. Meyerovich and Rastislav Bodík. 2010. Fast and parallel webpage layout. In Proceedings of the 19th International
Conference on World Wide Web, WWW 2010, Raleigh, North Carolina, USA, April 26-30, 2010. 711–720. DOI:https:
//doi.org/10.1145/1772690.1772763

A. Muscholl and I. Walukiewicz. 2005. An NP-complete fragment of LTL. Int. J. Found. Comput. Sci. 16, 4 (2005), 743–753.
DOI:https://doi.org/10.1142/S0129054105003261

Nina Narodytska and Fahiem Bacchus. 2014. Maximum Satisfiability Using Core-Guided MaxSAT Resolution. In Proceed-
ings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, July 27 -31, 2014, Québec City, Québec, Canada.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://doi.org/10.1145/1185882
https://doi.org/10.1145/2187836.2187946
https://doi.org/10.1145/2187836.2187946
https://doi.org/10.1145/2724712
https://doi.org/10.1109/LICS.2002.1029828
https://doi.org/10.1109/LICS.2002.1029828
https://figshare.com/articles/Data_and_Source_Code_for_Sat_CSS/7277324
https://figshare.com/articles/Data_and_Source_Code_for_Sat_CSS/7277324
https://doi.org/10.17637/rh.7277324.v1
https://doi.org/10.1145/2814270.2814288
https://www.npmjs.com/package/stripmq
https://www.w3.org/TR/html5/
http://dx.doi.org/10.1007/978-3-540-24607-7_3
http://dx.doi.org/10.1007/978-3-540-24607-7_3
https://doi.org/10.1145/2814270.2814291
https://doi.org/10.1145/2025113.2025125
https://doi.org/10.1007/978-3-642-03237-0_17
https://doi.org/10.1007/978-3-642-03237-0_17
https://doi.org/10.2168/LMCS-2(3:2)2006
https://doi.org/10.1016/j.jal.2009.09.005
https://github.com/giakki/uncss
https://doi.org/10.1145/1114244.1114247
https://doi.org/10.1145/1114244.1114247
https://doi.org/10.1145/1083784.1083792
https://doi.org/10.1145/2635868.2635879
https://doi.org/10.1109/ICSE.2012.6227174
https://doi.org/10.1145/1772690.1772763
https://doi.org/10.1145/1772690.1772763
https://doi.org/10.1142/S0129054105003261

1:54 Matthew Hague, Anthony W. Lin, and Chih-Duo Hong

2717–2723. http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8513
Frank Neven. 2002. Automata Theory for XML Researchers. SIGMOD Rec. 31, 3 (Sept. 2002), 39–46. DOI:https:

//doi.org/10.1145/601858.601869
Frank Neven and Thomas Schwentick. 2006. On the complexity of XPath containment in the presence of disjunction, DTDs,

and variables. Logical Methods in Computer Science 2, 3 (2006). DOI:https://doi.org/10.2168/LMCS-2(3:1)2006
Pavel Panchekha, Adam T. Geller, Michael D. Ernst, Zachary Tatlock, and Shoaib Kamil. 2018. Verifying that web pages

have accessible layout. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018. 1–14. DOI:https://doi.org/10.1145/3192366.
3192407

Pavel Panchekha and Emina Torlak. 2016. Automated reasoning for web page layout. In Proceedings of the 2016 ACM
SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2016, part of SPLASH 2016, Amsterdam, The Netherlands, October 30 - November 4, 2016. 181–194. DOI:https:
//doi.org/10.1145/2983990.2984010

Jakub Pawlowicz. 2017. clean-css. https://github.com/jakubpawlowicz/clean-css. (2017). Referred in August 2017.
René Peeters. 2003. The maximum edge biclique problem is NP-complete. Discrete Applied Mathematics 131, 3 (2003),

651–654. DOI:https://doi.org/10.1016/S0166-218X(03)00333-0
Justyna Petke. 2015. Bridging Constraint Satisfaction and Boolean Satisfiability. Springer. DOI:https://doi.org/10.1007/

978-3-319-21810-6
Armin Rigo and Contributors. 2007. PyPy. http://pypy.org/. (2007). Referred in August 2017.
B. Scarpellini. 1984. Complexity of Subcases of Presburger Arithmetic. Trans. of AMS 284, 1 (1984), 203–218.
M. Schäfer, M. Sridharan, J. Dolby, and F. Tip. 2013. Dynamic determinacy analysis. In PLDI. 165–174. DOI:https:

//doi.org/10.1145/2462156.2462168
Helmut Seidl, Thomas Schwentick, Anca Muscholl, and Peter Habermehl. 2004. Counting in Trees for Free. In Automata,

Languages and Programming: 31st International Colloquium, ICALP 2004, Turku, Finland, July 12-16, 2004. Proceed-
ings. 1136–1149. http://dx.doi.org/10.1007/978-3-540-27836-8_94

Alexis Sellier and Contributors. 2009. Less. http://lesscss.org/. (2009). Referred in August 2017.
Thomas Sha and Contributors. 2014. YUI Compressor. http://yui.github.io/yuicompressor/. (2014). Referred August 2017.
Slant. 2017. Eight Best CSS Minifiers as of 2017. https://www.slant.co/topics/261/~best-css-minifiers. (2017). Referred

in April 2017.
Jennifer Slegg. 2017. Google Mobile First Index: Page Speed Included as a Ranking Factor. http://www.thesempost.com/

google-mobile-first-index-page-speed-ranking/. The SEM Post (23 March 2017).
Steve Souders. 2007. High Performance Web Sites: Essential Knowledge for Front-End Engineers. O’Reilly Media.
M. Sridharan, J. Dolby, S. Chandra, M. Schäfer, and F. Tip. 2012. Correlation Tracking for Points-To Analysis of JavaScript.

In ECOOP. 435–458. DOI:https://doi.org/10.1007/978-3-642-31057-7_20
Friedrich Steimann. 2018. Constraint-Based Refactoring. ACM Trans. Program. Lang. Syst. 40, 1 (2018), 2:1–2:40. DOI:

https://doi.org/10.1145/3156016
Larry J. Stockmeyer and Albert R. Meyer. 1973. Word Problems Requiring Exponential Time: Preliminary Report. In

Proceedings of the 5th Annual ACM Symposium on Theory of Computing, April 30 - May 2, 1973, Austin, Texas, USA.
1–9. DOI:https://doi.org/10.1145/800125.804029

Balder ten Cate, Tadeusz Litak, and Maarten Marx. 2010. Complete axiomatizations for XPath fragments. J. Applied Logic
8, 2 (2010), 153–172. DOI:https://doi.org/10.1016/j.jal.2009.09.002

Balder ten Cate and Maarten Marx. 2007. Navigational XPath: calculus and algebra. SIGMOD Record 36, 2 (2007), 19–26.
DOI:https://doi.org/10.1145/1328854.1328858

Balder ten Cate and Maarten Marx. 2009. Axiomatizing the Logical Core of XPath 2.0. Theory Comput. Syst. 44, 4 (2009),
561–589. DOI:https://doi.org/10.1007/s00224-008-9151-9

Frank Tip, Robert M. Fuhrer, Adam Kiezun, Michael D. Ernst, Ittai Balaban, and Bjorn De Sutter. 2011. Refactoring
using type constraints. ACM Trans. Program. Lang. Syst. 33, 3 (2011), 9:1–9:47. DOI:https://doi.org/10.1145/1961204.
1961205

Unicode, Inc. 2016. The Unicode Standard, Version 9.0. http://www.unicode.org/versions/Unicode9.0.0. (2016). Referred
in August 2017.

Moshe Y. Vardi. 1995. An Automata-Theoretic Approach to Linear Temporal Logic. In Logics for Concurrency - Structure
versus Automata (8th Banff Higher Order Workshop, August 27 - September 3, 1995, Proceedings). 238–266. DOI:
https://doi.org/10.1007/3-540-60915-6_6

Mihalis Yannakakis. 1978. Node- and Edge-Deletion NP-Complete Problems. In Proceedings of the 10th Annual ACM
Symposium on Theory of Computing, May 1-3, 1978, San Diego, California, USA. 253–264. DOI:https://doi.org/10.
1145/800133.804355

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8513
https://doi.org/10.1145/601858.601869
https://doi.org/10.1145/601858.601869
https://doi.org/10.2168/LMCS-2(3:1)2006
https://doi.org/10.1145/3192366.3192407
https://doi.org/10.1145/3192366.3192407
https://doi.org/10.1145/2983990.2984010
https://doi.org/10.1145/2983990.2984010
https://github.com/jakubpawlowicz/clean-css
https://doi.org/10.1016/S0166-218X(03)00333-0
https://doi.org/10.1007/978-3-319-21810-6
https://doi.org/10.1007/978-3-319-21810-6
http://pypy.org/
https://doi.org/10.1145/2462156.2462168
https://doi.org/10.1145/2462156.2462168
http://dx.doi.org/10.1007/978-3-540-27836-8_94
http://lesscss.org/
https://www.slant.co/topics/261/~best-css-minifiers
http://www.thesempost.com/google-mobile-first-index-page-speed-ranking/
http://www.thesempost.com/google-mobile-first-index-page-speed-ranking/
https://doi.org/10.1007/978-3-642-31057-7_20
https://doi.org/10.1145/3156016
https://doi.org/10.1145/800125.804029
https://doi.org/10.1016/j.jal.2009.09.002
https://doi.org/10.1145/1328854.1328858
https://doi.org/10.1007/s00224-008-9151-9
https://doi.org/10.1145/1961204.1961205
https://doi.org/10.1145/1961204.1961205
http://www.unicode.org/versions/Unicode9.0.0
https://doi.org/10.1007/3-540-60915-6_6
https://doi.org/10.1145/800133.804355
https://doi.org/10.1145/800133.804355

CSS Minification via Constraint Solving 1:55

Appendix
A ADDITIONAL MATERIAL FOR MAX-SAT ENCODING
Recall, given a valid covering C = {Bi }mi=1 of a CSS graph G, we aim to find a rule B = (X ,Y) and
a position j that minimises the weight of C[B → j]↓.

In this section we give material omitted from Section 7. We begin with a definition of orderability
that will be useful for the remainder of the section. Then we will discuss how to produce the pair
({Mi }µi=1, F). Finally we will show that our encoding is correct.

A.1 Orderable Bicliques
To insert a biclique B = (X ,Y) into the covering, we need to make sure the order of its edges
respects the edge order. We can only order the edges by ordering the properties in the biclique.
More precisely, if we insert the biclique at position j, we need all edges in B that do not appear later
in the file (i.e. in {Bi }mi=j+1) to respect the edge order. This is because it is only the last occurrence
of an edge that influences the semantics of the stylesheet. Thus, let

EBj =
{
e ∈ B

�� index(e) ≤ j
}
.

The edge ordering implies a required ordering of EBj , which implies an ordering on the properties in
Y . This ordering is defined as follows. For all p1,p2 ∈ Y we have

p1 ≪B
j p2 ⇔ ∃(s1,p1), (s2,p2) ∈ EBj . (s1,p1) ≺∗ (s2,p2) .

That is, we require p1 to appear before p2 if there are two edges (s1,p1) and (s2,p2) in B that must
be ordered according to the transitive closure of ≺. A biclique is orderable iff its properties can be
ordered in such a way to respect ≪B

j .

Definition A.1 (Orderable Bicliques). The biclique B is orderable at j if ≪B
j is acyclic. That

is, there does not exist a sequence (s1,p1), . . . , (sn,pn) such that (si ,pi) ≪M
j (si+1,pi+1) for all

1 ≤ i < n and (s1,p1) = (sn,pn).

This can be easily checked in polynomial time. Moreover, if a biclique is orderable at a given
position, a suitable ordering can be found by computing ≪B

j , also in polynomial time. Thus, this
proves Proposition 7.1.

A.2 Enumerating Maximal Rules
Fix a covering C = {Bi }mi=1 of a CSS graph G = (S, P, E, ≺,wt). We show how to efficiently create
the pair ({Mi }µi=1, F). In fact, we will create the pair ({Mi }µi=1, F 1st) where F 1st(j) is set of Mi for
which j is the smallest position such that Mi is unorderable at position j. Computing F from this is
straightforward (though unnecessary since our encoding uses F 1st directly).

Our algorithm begins with an enumeration of the maximal bicliques that are orderable at position
0, and iterates up to positionm, extending the enumeration at each step and recording in F 1st which
maximal bicliques become unorderable at each position. In fact, we will construct a pair (M, F 1st)
where M is a set of bicliques rather than a sequence. To construct a sequence we apply any ordering
to the elements of M.

A.2.1 Initialisation. At position 0, all maximal bicliques (X ,Y) with X × Y ⊆ E are orderable.
This is because all edges appearing in (X ,Y) also appear in {Bi }mi=1, hence, the semantics of C[B →
0] will be decided by edges already in C, and thus the ordering of the properties does not matter.
Hence, we begin with a set of all maximal bicliques M0. That is, all bicliques (X ,Y) such that

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:56 Matthew Hague, Anthony W. Lin, and Chih-Duo Hong

X×Y ⊆ E where there is no (X ′,Y ′) withX ′×Y ′ ⊆ E andX×Y ⊂ X ′×Y ′. Algorithms for generating
such an enumeration are known. For example, we use the algorithm from Kayaaslan (Kayaaslan
2010).

For an initial value F 1st
0 of F 1st, we can simply take the empty function ∅.

A.2.2 Iteration. Assume we have generated (Mj , F 1st
j). We show how to generate the extension

(Mj+1, F 1st
j+1).

The idea is to find all elements of Mj that are not orderable at position j + 1. Let χ be this set.
We first define

F 1st
j+1 = F 1st

j ∪
{
(j + 1, χ)

}
.

Then, for each biclique M ∈ χ , we search for smaller bicliques contained within M that are maximal
and orderable at position j + 1. This results in the extension {Mi }

µ j+1

i=1 giving us ({Mi }
µ j+1

i=1 , F 1st
j+1).

Thus, the problem reduces to finding bicliques contained within some M that are maximal and
orderable at position j + 1. We describe a simple algorithm for this in the next section.

A.2.3 Algorithm for (M, F 1st). We write Orderable(M, j) to assert that a biclique M is order-
able at position j. For now, assume we have the subroutine OrderableSub(M, j) which returns a
set M ′ of all orderable maximal bicliques at position j contained within M . We use the following
algorithm to generate (M, F 1st).
M := M0

F 1st := ∅
for j := 1 tom do

χ := ∅
for all M ∈ M do

if ¬Orderable(M, j) then
χ := χ ∪ {M}
M := M ∪ OrderableSub(M, j)

end if
end for
F 1st := F 1st ∪

{
(j + 1, χ)

}
end for
return (M, F 1st)

Note, we can improve the algorithm by restricting the nested for all loop over elements M ∈ M
to only those M that are not orderable at m. This is because an ordering at position m is also an
ordering at position j <= m. Hence, these bicliques will never be unorderable and do not need to
be checked repeatedly.

A.2.4 Generating Orderable Sub-Bicliques. We now give an algorithm for implementing the sub-
routine OrderableSub(M, j). Naively we can simply generate all sub-bicliques M ′ of M and check
Orderable(M ′, j). However, to avoid the potentially high cost of such an iteration, we first deter-
mine which selectors and properties contribute to ≪M

j . Removing nodes outside of these sets will
not affect the orderability, hence we do not need to try removing them. Then we first attempt only
removing one node from this set, computing all sub-bicliques that have one fewer element and are
orderable. Then, for all nodes for which this fails, we attempt to remove two nodes, and so on. Note,
if removing nodew renders M orderable, we do not need to test any bicliques obtained by removing
w and some other node w ′, since this will not result in a maximal biclique.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CSS Minification via Constraint Solving 1:57

Hence, we define the sets of candidate selectors and properties that may be removed to restore
orderability. These are all selectors and nodes that contribute to ≪M

j . That is

∆ =
{
s1, s2,p1,p2

�� ∃(s1,p1), (s2,p2) ∈ EMj . (s1,p1) ≺∗ (s2,p2)
}
.

We define OrderableSub(M, j) = OrderableSub(M, j,∆) where OrderableSub(M, j,∆) gener-
ates a set Ω of orderable sub-bicliques and is defined below. When M = (X ,Y) we will abuse
notation and write M \ {w} for (X \ {w} ,Y) when w is a selector, and (X ,Y \ {w}) when w is a
property. When defining the algorithm, we will collect all orderable bicliques in a set Ω. We will
further collect in ∆′ the set of all nodes which fail to create an orderable biclique when removed
by themselves. We define OrderableSub(M, j,∆) recursively, where the recursive call attempts the
removal of an increasing number of nodes. It is
Ω := ∅
∆′ := ∅
for all w ∈ ∆ do

M ′ := M \ {w}
if Orderable(M ′, j) then

Ω := Ω ∪ {M ′}
else

∆′ := ∆′ ∪ {w}
end if

end for
for all w ∈ ∆′ do

Ω := Ω ∪ OrderableSub(M \ {w} , j,∆′ \ {w})
end for
return Ω

A.3 Correctness of the Encoding
We argue Proposition 7.3 which claims that the encoding (ΠH ,ΠS) is correct. To prove this we need
to establish three facts.

(1) If (B, j) is a valid merging opportunity of C and B = (B,◁) , then (B, j) is a solution to the
hard constraints.

(2) If (B, j) is generated from a solution to the hard constraints, it is a valid merging opportunity.
(3) The weight of a solution generating (B, j) is the size of C[B → j]↓.

We argue these properties below.
(1) Take a valid merging opportunity (B, j) and let B = (B,◁). We construct a solution to

the hard constraints. First, we assign j = j. Next, since the merging opportunity is valid,
we know B contains only edges in E. That is, it is contained within a maximal biclique.
Furthermore, since C[B → j] is valid, we know that B is orderable at position j. Thus,
it is a sub biclique of some Mi in ({Mi }µi=1, F 1st), and, moreover, it is not the case that
Mi ∈ F 1st(j ′) for some j ′ ≤ j. Thus, we assign iM = i and we know that∧

1≤j≤m+1

©«
(
j >= j

)
⇒

∧
Mi ∈F1st(j)

(
iM , i

)ª®¬
is satisfied.

Additionally, for all w appearing in B but not in Mi , we set xρi (w) to false, otherwise we
set it to true. Thus HasEdge((s,p)) holds only if (s,p) is an edge in B.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:58 Matthew Hague, Anthony W. Lin, and Chih-Duo Hong

Next, we argue

©«
∧

(s1,p1)≺(s2,p2)

HasEdge((s1,p1)) ⇒(
j ≤ index((s2,p2)) ∨ HasEdge((s2,p2))

) ª®¬
is satisfied. This follows from C[B → j] being valid. To see this, take some (s1,p1) ≺
(s2,p2). If (s1,p1) does not appear in B, then there is nothing to prove. If it does, we know
(s2,p2) must appear later in the file. There are two cases. If j ≤ index((s2,p2)) then the
clause is satisfied. Otherwise we must have (s2,p2) in B or edge order would be violated.
Thus the clause also holds in this case.

(2) We need to prove that if the hard constraints are satisfied, then then generated merging
opportunity (B, j) is valid. Let B = (B,◁). For C[B → j] to be valid, we first have to show
that B introduces no new edges to the stylesheet. This is immediate since B is a sub biclique
of some Mi in ({Mi }µi=1, F 1st), which can only contain edges in E.

Next, we need to argue that we can create the ordering ◁ for the properties in B. First
note that Mi is orderable at position j. In particular, for any (s1,p1) ≺∗ (s2,p2) with (s1,p1)

and (s2,p2) appearing in Mi , we have p1 ≪Mi
j p2. Since all edges in B also appear in Mi ,

the existence of an ordering is immediate.
Finally, we need to argue that C[B → j] respects the edge order. Suppose (s1,p2) ≺

(s2,p2). To violate this ordering, we need to introduce a copy of (s1,p1) after the last copy
of (s2,p2). Thus, we must have (s1,p1) in B. However, from

©«
∧

(s1,p1)≺(s2,p2)

HasEdge((s1,p1)) ⇒(
j ≤ index((s2,p2)) ∨ HasEdge((s2,p2))

) ª®¬
we are left with two cases. In the first j ≤ index((s2,p2)) and the edge order is maintained.
In the second, we also have (s2,p2) in B. However, the edge order is maintained because B
is orderable. Thus we are done.

(3) Finally, we argue that the weight of a satisfying assignment accurately reflects the size of
C[B → j]↓. This is fairly straightforward. The size of C[B → j]↓. comprises two parts: the
size of B, and the size of C after the trim operation. It is immediate to see that the size of
B is equal to the size of all of its nodes. In particular, this is the size of all nodes of Mi that
appear in B. That is, have not been excluded. Thus the clause with weight wt(w)(

iM = i
)
⇒ xρi (w) .

for each w appearing in Mi accurately computes the size of B.
For the size of C after the trim operation, we first use the assumption that C has already

been trimmed before applying the merging opportunity. Thus, any further nodes removed
in C[B → j]↓ from a rule Bi′ must be removed because some edge e in B also appears in Bi′

and, moreover, it was the case i ′ = index(e) and i ′ ≤ j. In particular, we can only remove a
node w from Bi′ if all edges e incident to w with i ′ = index(e) have e appearing in B (else
there will still be some edge preventing w from being trimmed after applying the merging
opportunity). Thus, for each selector node s, we know it is not removed if the clause with
weigth wt(s)

i ≤ j ∧
∧

index((s ,p))=i
p∈Y

HasEdge((s,p))

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CSS Minification via Constraint Solving 1:59

is not satisfied. Similarly for property nodes p. Thus, these clauses accurately count the
size of the covering after trimming.

B ADDITIONAL MATERIAL FOR SECTION 5
B.1 Handling Pseudo-Elements
CSS selectors can also finish with a pseudo-element. For example ϕ ::before. These match
nodes that are not formally part of a document tree. In the case of ϕ ::before the selector matches
a phantom node appearing before the node matched by ϕ. These can be used to insert content into
the tree for stylistic purposes. For example

.a::before { content:">" }

places a “>” symbol before the rendering of any node with class a.
We divide CSS selectors into five different types depending on the pseudo-element appearing at

the end of the selector. We are interested here in the nodes matched by a selector. The pseudo-
elements ::first-line, ::first-letter, ::before, and ::after essentially match
nodes inserted into the DOM tree. The CCS3 specification outlines how these nodes should be cre-
ated. For our purposes we only need to know that the five syntactic cases in the above grammar can
never match the same inserted node, and the selectors ::first-letter and ::first-line
require that the node matched by ϕ is not empty.

Since we are interested here in the non-emptiness and non-emptiness-of-intersection problems,
we will omit pseudo-elements in the remainder of this article, under the assumptions that

• selectors of the form ϕ ::first-line or ϕ ::first-letter are replaced by a selec-
tor ϕ :not(:empty), and

• selectors of the form ϕ, ϕ ::before, or ϕ ::after are replaced by ϕ, and
• we never take the intersection of two selectors ϕ and ϕ ′ such that it’s not the case that either

– ϕ and ϕ ′ were derived from selectors containing no pseudo-elements, or
– ϕ and ϕ ′ were derived from selectors ending with the same pseudo-element.

In this way, we can test non-emptiness of a selector by testing its replacement. For non-emptiness-
of-intersection, we know if two selectors end with different pseudo-elements (or one does not con-
tain a pseudo-element, and one does), their intersection is necessarily empty. Thus, to check non-
emptiness-of-intersection, we immediately return “empty” for any two selectors ending with differ-
ent pseudo-elements. To check two selectors ending with the same pseudo-element, the problem
reduces to testing the intersection of their replacements.

B.2 NP-Hardness of Theorem 5.1
LEMMA B.1. Given a CSS selector ϕ, deciding ∃T ,η . T ,η |= ϕ is NP-hard.

PROOF. We give a polynomial-time reduction from the NP-complete problem of non-universality
of unions of arithmetic progressions (Stockmeyer and Meyer 1973, Proof of Theorem 6.1). To
define this, we first fix some notation. Given a pair (α, β) ∈ N × N, we define [[(α, β)]] to be the
set of natural numbers of the form αn + β for n ∈ N. That is, [[(α, β)]] represents an arithmetic
progression, where α represents the period and β represents the offset. Let E ⊆ N × N be a finite
subset of pairs (α, β). We define [[E]] =

∪
(α ,β)∈E [[(α, β)]]. The NP-complete problem is: given E

(where numbers may be represented in unary or in binary representation), is [[E]] , N? Observe that
this problem is equivalent to checking whether [[E + 1]] , N>0 where E + 1 is defined by adding 1
to the offset β of each arithmetic progression (α, β) in E. By complementation, this last problem is
equivalent to checking whether N>0 \ [[E +1]] , ∅. Since N>0 \ [[E +1]] =

∩
(α ,β)∈E [[α, β + 1]], the

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:60 Matthew Hague, Anthony W. Lin, and Chih-Duo Hong

problem can be seen to be equivalent to testing the non-emptiness of

*
{
:not(:nth-child(αn + (β + 1)))

�� (α, β) ∈ E
}
.

Thus, non-emptiness is NP-hard. □

B.3 Handling !important and Shorthand Property Names
Our approach handles the !important keyword and shorthand property names. In this section we
explain the steps we take to account for them.

B.3.1 The !important Keyword. First, the keyword !important in property declaration as is
used in the rule

div { color:red !important }

can be used to override the cascading behaviour of CSS, e.g., in our example, if a node is matched
by div, as well as a later rule R that assigns a different color, then assign red to color (unless R
also has the keyword !important next to its color property declaration). To handle this, we can
extend the notion of specificity of a selector to the notion of specificity of a pair (s,p) of selector
and property declaration, after which we may proceed as before (i.e. relating only two edges with
the same specificity). Recall from (Çelik et al. 2011) that the specificity of a selector is a 3-tuple
(a,b, c) ∈ N×N×N where a, b, and c can be obtained by calculating the sum of the number of IDs,
classes, tag names, etc. in the selector. Since the lexicographic order is used to rank the elements of
S := N × N × N, the specificity of a pair (s,p) can now be defined to be (i,a,b, c), where (a,b, c) is
the specificity of s, and i = 1 if !important can be found in p (otherwise, i = 0). In particular,
this also handles the case where multiple occurrences of !important is found in the CSS file.

B.3.2 Shorthand Property Names. Shorthand property names (Bos 2016) can be used to simul-
taneously set the values of related property names. For example, border: 5px solid red
is equivalent to

border-width: 5px; border-style: solid; border-color:red

In particular, this implies that (s,p) and (s,p ′) can be related in ≺ if p defines border, while the
other property p ′ defines border-width. One way to achieve this is to simply list all pairs of
comparable property names, which can be done since only around 100 property names are currently
officially related. [Incidentally, a close enough approximation is that one property name is a prefix
of the other property name (e.g., border is a prefix of border-style), but this is not complete
(e.g. font can be used to define line-height)]

C ADDITIONAL MATERIAL FOR SECTION 6
C.1 Correctness of Aϕ in Proposition 6.1
We show both soundness and completeness of Aϕ .

LEMMA C.1. For each CSS selector ϕ and tree T , we have

(T ,η) ∈ L
(
Aϕ

)
⇒ T ,η |= ϕ .

PROOF. Suppose (T ,η) ∈ L
(
Aϕ

)
. By construction of Aϕ we know that the accepting run must

pass through all states ◦1, . . . , ◦n where ϕ = σ1 o1 · · · on−1 σn . Notice, in order to exit each state ◦i
a transition labelled by σi must be taken. Let ηi be the node read by this transition, which necessarily
satisfies σi . Observe ηn = η. We proceed by induction. We have η1 satisfies σ1. Hence, assume ηi
satisfies σ1 o1 · · · oi−1 σi . We show ηi+1 satisfies σ1 o1 · · · oi σi+1.

We case split on oi .

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CSS Minification via Constraint Solving 1:61

• When oi = >> we need to show ηi+1 is a descendant of ηi . By construction of Aϕ the

run reaches ηi+1 in one of two ways. If it is via a single transition ◦i
↓−−→
σi

◦i+1 then ηi+1

is immediately a descendant of ηi . Otherwise the first transition is ◦i
↓−−→
σi

•i . The reached

node is necessarily a descendant of ηi . To reach ηi+1 a path is followed applying →+ and ↓
arbitrarily, which cannot reach a node that is not a descendant of ηi . Finally, the transition
to ηi+1 is via → or ↓ and hence ηi+1 must also be a descendant of ηi .

• When oi = > we need to show ηi+1 is a descendant of ηi . By construction of Aϕ the run

reaches ηi+1 in one of two ways. If it is via a single transition ◦i
↓−−→
σi

◦i+1 then ηi+1 is

immediately a child of ηi . Otherwise the first transition is ◦i
↓−−→
σi

•i . The reached node

is necessarily a child of ηi . To reach ηi+1 only transitions labelled →+ and → can be
followed. Hence, the node reached must also be a child of ηi .

• When oi = + we need to show ηi+1 is the next neighbour of ηi . Since the only path is a
single transition labelled → the result is immediate.

• When oi = ˜ we need to show ηi+1 is a sibling of ηi . By construction of Aϕ the run

reaches ηi+1 in one of two ways. If it is via a single transition ◦i
→−−→
σi

◦i+1 then ηi+1 is

immediately a sibling of ηi . Otherwise the first transition is ◦i
→−−→
σi

•i . The reached node

is necessarily a sibling of ηi . To reach ηi+1 only transitions labelled →+ and → can be
followed. Hence, the node reached must also be a sibling of ηi .

Thus, by induction, ηn = η satisfies σ1 o1 · · · on−1 σn = ϕ. □

LEMMA C.2. For each CSS selector ϕ and tree T , we have

T ,η |= ϕ ⇒ (T ,η) ∈ L
(
Aϕ

)
PROOF. Assume T ,η |= ϕ. Thus, since ϕ = σ1 o1 · · · on−1 σn , we have a sequence of nodes

η1, . . . ,ηn such that for each i we have T ,ηi |= σ1 o1 · · · oi−1 σi . Note ηn = η. We build a run of
Aϕ from σ1 to ◦i by induction. When i = 1 we have the run constructed by taking the loops on the
initial state ◦1 labelled ↓ and →+ to navigate to η1. Assume we have a run to ◦i . We build a run to
◦i+1 we consider oi .

• When oi = >> we know ηi+1 is a descendant of ηi . We consider the construction of Aϕ .

If ηi+1 is the first child of ηi , we construct the run to ◦i+1 via the transition ◦i
↓−−→
σi

◦i+1,

noting that we know ηi satisfies σi . Otherwise we take ◦i
↓−−→
σi

•i and arrive at either an

ancestor or sibling of ηi+1. In the case of a neighbour, we can take the transition labelled
→ to reach ηi+1. For an indirect sibling we can take the transition labelled →+ followed
by the transition labelled →. For an ancestor, we take the transition labelled ↓ and arrive
at another sibling or ancestor of ηi+1 that is closer. We continue in this way until we reach
ηi+1 as needed.

• When oi = > we know ηi+1 is a child of ηi . We consider the construction of Aϕ . If ηi+1 is

the first child of ηi , we construct the run to ◦i+1 via the transition ◦i
↓−−→
σi

◦i+1, noting that

we know ηi satisfies σi . Otherwise we take ◦i
↓−−→
σi

•i and arrive at a preceding sibling of

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:62 Matthew Hague, Anthony W. Lin, and Chih-Duo Hong

ηi+1. We can take the transition labelled →+ to reach the preceding neighbour of ηi+1 if
required, and then the transition labelled → to reach ηi+1 as required.

• When oi = + we know ηi+1 is the neighbour of ηi . We consider the construction of Aϕ

and take the only available transition ◦i
→−−→
σi

◦i+1, noting that we know ηi satisfies σi . Thus,

we reach ηi+1 as required.
• When oi = ˜ we know ηi+1 is a sibling of ηi . We consider the construction of Aϕ . If ηi+1

is the neighbour of ηi , we construct the run to ◦i+1 via the transition ◦i
↓−−→
σi

◦i+1, noting

that we know ηi satisfies σi . Otherwise we take ◦i
→−−→
σi

•i and arrive at a preceding sibling

of ηi+1. We can take the transition labelled →+ to reach the preceding neighbour of ηi+1

is required, and then the transition labelled → to reach ηi+1 as required.
Thus, by induction, we construct a run to ηn ending in state ◦n . We transform this to an accepting
run by taking the transition ◦n

◦−−→
σn

qf , using the fact that ηn satisfies σn . □

C.2 Proof of Proposition 6.2
We show that

(T ,η) ∈ L(A1) ∧ (T ,η) ∈ L(A2) ⇔ (T ,η) ∈ L(A1 ∩ A2) .

We begin by observing that that all runs of a CSS automaton showing acceptance of a node η in
T must follow a sequence of nodes η1, . . . ,ηn such that

• η1 is the root of T , and
• when ηj = η′ι then either ηj+1 = η′(ι + 1) or ηj+1 = ηj1 for all j, and
• ηn = η

that defines the path taken by the automaton. Each node is “read” by some transition on each run.
Note a transition labelled →+ may read sequence nodes that is a factor of the path above. However,
since these transitions are loops that do not check the nodes, without loss of generality we can
assume each →+ in fact reads only a single node. That is, →+ behaves like →. Recall, →+ was
only introduced to ensure the existence of “short” runs.

Because of the above, any two runs accepting η inT must follow the same sequence of nodes and
be of the same length.

We have (T ,η) ∈ L(A1) ∧ (T ,η) ∈ L(A2) iff there are accepting runs

qi1
d i1−−→
σ i1

· · ·
d in−−→
σ in

qin+1

of Ai over T reaching node η for both i ∈ {1, 2}. We argue these two runs exist iff we have a run(
q11,q

2
1

) d1−−→
σ1

· · · dn−−→
σn

(
q1n+1,q

2
n+1

)
of A1 ∩ A2 where each dj and σj depends on

(
d1
j ,d

2
j

)
.

• When (↓, ↓) we have dj =↓ and σj = σ1
j ∩ σ2

j .
• When (→,→) we have dj =→ and σj = σ1

j ∩ σ2
j .

• When (→,→+) we have dj =→ and σj = σ1
j .

• When (→+,→) we have dj =→ and σj = σ2
j .

• When (→+,→+) we have dj =→+ and σj = *.
• When (◦, ◦) we have dj = ◦ and σj = σ1

j ∩ σ2
j .

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CSS Minification via Constraint Solving 1:63

• The cases (↓,→+), (↓,→), (↓, ◦), (→, ↓), (→, ◦), (→+, ↓), (→+, ◦), (◦, ↓), (◦,→), and
(◦,→+) are not possible.

The existence of the transitions comes from the definition of A1 ∩ A2. We have to argue that ηj
satisfies both σ ij iff it also satisfies σj . By observing σ∩* = *∩σ = σ we always have σj = σ1

j ∩σ2
j .

Let σ ij = τiΘi and σj = τΘ. It is immediate that ηj satisfies Θ = Θ1 ∪Θ2 iff it satisfies both Θi .
To complete the proof we need to show ηj satisfies τ iff it satisfies both τi . Note, we must have

some s and e such that τ , τ1, τ2 ∈
{
,(s|),(s|e), e

}
else the type selectors cannot be satisfied

(either τ = :not(*) or τ1 and τ2 assert conflicting namespaces or elements).
If some τi = * the property follows by definition. Otherwise, if τ = τ2 then in all cases the

conjunction of τ1 and τ2 is equivalent to τ2 and we are done. The situation is similar when τ = τ1.
Otherwise τ = (s|e) and τ1 = (s|*) and τ2 = e or vice versa, and it is easy to see τ is equivalent
to the intersection of τ1 and τ2. Thus, we are done.

C.3 Proofs for Non-Emptiness of CSS Automata
C.3.1 Bounding Namespaces and Elements. We show Proposition 6.4 (Bounded Types). We need

to define the finite sets ⇃(ELE) and ⇃(s). To this end, we write

(1) ELEA to denote the set of namespaced elements s:e such that there is some transition q
d−→
σ

q′ ∈ ∆ with σ = (s|e)Θ for some s, e, and Θ,

(2) SA is the set of transitions q
d−→
σ

q′ ∈ ∆ with σ , * and |A|σ denotes the cardinality of SA .

Let
{
τ1, . . . , τ |A |σ

}
be a set of fresh namespaced elements and

⇃(ELEA) = ELEA ⊎
{
τ1, . . . , τ |A |σ

}
⊎ {⊥}

where there is a bijection θ : SA →
{
τ1, . . . , τ |A |σ

}
such that for each t ∈ SA we have θ(t) = τ and

(1) τ = s:e if σ can only match elements s:e,
(2) τ = s:e for some fresh element e if σ can only match elements of the form s:e ′ for all

elements e ′, and
(3) τ = s:e for some fresh namespace s if σ can only match elements of the form s ′:e for all

namespaces s ′, and
(4) τ = s:e for fresh s and fresh e if σ places no restrictions on the element type.

Thus, we can define bounded sets of namespaces and elements

⇃(ELE) = {e | ∃s . s:e ∈ ⇃(ELEA)}
⇃(NS) = {s | ∃e . s:e ∈ ⇃(ELEA)} .

It remains to show ⇃(ELEA) is sufficient. That is, if some tree T is accepted A, we can define
another tree T ′ that also is accepted by A but only uses types in ⇃(ELEA).

We take (T ,η) ∈ L(A) with T = (D, λ) and we define T ′ = (D, λ′) satisfying the proposition.
Let

q0,η0,q1,η1, . . . ,qℓ,ηℓ,qℓ+1

be the accepting run of A, by the sequence of transitions t0, . . . , tℓ . As noted above, we can assume
each transition in ∆ appears only once in this sequence. Let

{
σ1, . . . ,σ |A |σ

}
be the set of selectors

appearing in A. We perform the following modifications to λ to obtain λ′.
We obtain λ′ from λ by changing the element labelling. We first consider all 0 ≤ i ≤ ℓ such that

ηi is labelled by some element s:e ∈ ELEA . Let Nodess :e be the set of nodes labelled by s:e in λ. In
λ′ we label all nodes in Nodess :e by s:e. That is, we do not relabel nodes labelled by s:e. Let Nodes
be the union of all such Nodess :e .

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:64 Matthew Hague, Anthony W. Lin, and Chih-Duo Hong

Next we consider all 0 ≤ i ≤ ℓ such that ηi < Nodes (i.e. was not labelled in the previous case)

and ti = qi
d−→
σ

qi+1 with σ , *. Let s:e < ELEA be the element labelling of ηi in λ. Moreover, take

τ such that θ(ti) = τ . In λ′ we label all nodes in Nodess :e (i.e. labelled by s:e) in λ by τ . That is,
we globally replace s:e by τ . Let Nodes′ be Nodes union all such Nodese .

Finally, we label all nodes not in Nodes′ with the null element ⊥.
To see that

q0,η0,q1,η1, . . . ,qℓ,ηℓ,qℓ+1

via t0, . . . , tℓ is an accepting run of (D, λ′) we only need to show that for each ti = qi
d−→
σ

qi+1

that ηi satisfies σ . This can be shown by induction over σ . Most atomic cases are straightforward
(e.g. the truth of :hover is not affected by our transformations). The case of e, (s|*), or (s|e)
appearing positively follows since in these cases the labelling remained the same or changed to
some τ consistent with the selector. When such selectors appear negatively, the result follows since
we only changed elements and namespaces to fresh ones. The truth of attribute selectors remains
unchanged since we did not change the attribute labelling. The cases of :nth-child(αn + β)
and :nth-last-child(αn + β) follow since we did not change the number of nodes. For
the selectors :nth-of-type(αn + β) and :nth-last-of-type(αn + β) there are two
cases. If we did not change the element label s:e of ηi , then we also did not change the label of
its siblings. Moreover, we did not add any s:e labels elsewhere in the tree. Hence the truth of the
formulas remains the same. If we did change the label from s:e to τ for some τ then observe that we
also relabelled all other nodes in the tree labelled by s:e. In particular, all siblings of ηi . Moreover,
since θ is a bijection and each transition appears only once in the run, we did not label any node not
labelled s:e with τ . Hence the truth of the formulas also remains the same. Similar arguments hold
for :only-child and :only-of-type.

Thus, (D, λ′) is accepted, and only uses elements in ⇃(ELEA) as required.

C.3.2 Proof of Polynomial Bound onAttribute Value Lengths. We prove Proposition 6.5 (Bounded
Attributes). That is we argue the existence of a polynomial bound for the solutions to any finite set
C of constraints of the form [s|a op v] or :not([s|a op v]), for some fixed s and a. We say
that C is a set of constraints over s and a.

In fact, the situation is a little more complicated because it may be the case that a is id. In this
case we need to be able to enforce a global uniqueness constraint on the attribute values. Thus, for
constraints on an ID attribute, we need a bound that is large enough to allow to all constraints on
the same ID appearing throughout the automaton to be satisfied by unique values. Thus, for a given
automaton, we might ask for a bound N such that if there exists unique ID values for each transition,
then there exist values of length bounded by N .

However, the bound on the length must still work when we account for the fact that not all
transitions in the automaton will be used during a run. Consider the following illustrative example.

qin q qf

→

[s|id = v]
↓

[s|id = v]

◦
*

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CSS Minification via Constraint Solving 1:65

In this case we have two transitions with ID constraints, and hence two sets of constraints C1 =
C2 =

{
[s|id = v]

}
. Since these two sets of constraints cannot be satisfied simultaneously with

unique values, even the bound N = 0 will satisfy our naive formulation of the required property
(since the property had the existence of a solution as an antecedent). However, it is easy to see
that any run of the automaton does not use both sets of constraints, and that the bound N = |v |
should suffice. Hence, we formulate the property of our bound to hold for all sub-collections of the
collection of sets of constraints appearing in the automaton.

LEMMA C.3 (BOUNDED ATTRIBUTE VALUES). Given a collection of constraints C1, . . . ,Cn
over some s and a, there exists a bound N polynomial in the size of C1, . . . ,Cn such that for any
subsequenceCi1, . . . ,Cim if there is a sequence of words v1, . . . ,vm such that all vj are unique and
vj satisfies the constraints in Ci j , then there is a sequence of words such that the length of each vj
is bounded by N , all vj are unique, and vj satisfies the constraints in Ci j ,

The proof uses ideas from Muscholl and Walukiewicz’s NP fragment of LTL (Muscholl and
Walukiewicz 2005). We first, for each set of constraints C, construct a deterministic finite word au-
tomaton A that accepts only words satisfying all constraints inC. This automaton has a polynomial
number of states and can easily be seen to have a short solution by a standard pumping argument.
Given automata A1, . . . ,An with at most Ns states and Nc constraints in each set of constraints, we
can again use pumping to show there is a sequence of distinct words v1, . . . ,vn such that each vi is
accepted by Ai and the length of vi is at most n · Ns · Nc .

The Automata. We define a type of word automata based on a model by Muscholl and Walukiewicz
to show and NP upper bound for a variant of LTL. These automata read words and keep track of
which constraints inC have been satisfied or violated. They accept once all positive constraints have
been satisfied and no negative constraints have been observed.

In the following, let Prefs(C) be the set of words v ′ such that v ′ is a prefix of some v with
[s|a op v] ∈ C or :not([s|a op v]) ∈ C. Moreover, let ˆ and $ be characters not in Γ that
will mark the beginning and end of the word respectively. Additionally, let ε denote the empty word.
Finally, we write v ⪯ v ′ if v is a factor of v ′, i.e., v ′ = v1vv2 for some v1 and v2.

Definition C.4 (AC). Given a setC of constraints over s and a, we define AC = (Q,∆,C) where
• Q is the set of all words a1va2 such that

– v ∈ Prefs(C), and
– a1,a2 ∈ Γ ∪ {ε, ˆ, $}.

• ∆ ⊆ Q × (Γ ∪ {ˆ, $}) ×Q is the set of transitions v
a−→ v ′ where v ′ is the longest suffix of

va such that v ′ ∈ Q .

Observe that the size of the automaton AC is polynomial in the size of C.
A run of AC over a word with beginning and end marked a1 . . . an ∈ ˆΓ∗$ is

(v0, S0,V0)
a1−−→ (v1, S1,V1)

a2−−→ · · · an−−→ (vn, Sn,Vn)

wherev0 = ε and for all 1 ≤ i ≤ n we havevi−1
ai−→ vi and Si ,Vi ⊆ C track the satisfied and violated

constraints respectively. That is S0 = V0 = ∅, and for all 1 ≤ i ≤ n we have (noting ˆv ⪯ vi implies
ˆv is a prefix of vi , and similar for v$) Si =

Si−1 ∪
{
[s|a = v] ∈ C

�� ˆv$ = vi
}
∪{

[s|a ~= v] ∈ C
�� ∃a1 ∈ {ˆ, } ,a2 ∈ { , $} . a1va2 ⪯ vi

}
∪{

[s|a |= v] ∈ C
�� ∃a2 ∈ {$, -} . ˆva2 ⪯ vi

}
∪{

[s|a ^= v] ∈ C
�� ˆv ⪯ vi

}
∪

{
[s|a $= v] ∈ C

�� v$ ⪯ vi
}
∪{

[s|a *= v] ∈ C
�� v ⪯ vi

}
ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:66 Matthew Hague, Anthony W. Lin, and Chih-Duo Hong

and Vi =
Vi−1 ∪

{
:not([s|a = v]) ∈ C

�� ˆv$ = vi
}
∪{

:not([s|a ~= v]) ∈ C

���� ∃ a1 ∈ {ˆ, } ,
a2 ∈ { , $} . a1va2 ⪯ vi

}
∪{

:not([s|a |= v]) ∈ C
�� ∃a2 ∈ {$, -} . ˆva2 ⪯ vi

}
∪{

:not([s|a ^= v]) ∈ C
�� ˆv ⪯ vi

}
∪{

:not([s|a $= v]) ∈ C
�� v$ ⪯ vi

}
∪{

:not([s|a *= v]) ∈ C
�� v ⪯ vi

}
.

Such a run is accepting if Sn =
{
[s|a op v]

�� [s|a op v] ∈ C
}

and Vn = ∅. That is, all positive
constraints have been satisfied and no negative constraints have been violated.

Short Solutions. We show the existence of short solutions via the following lemma. The proof
of this lemma is a simple pumping argument which appears below. Intuitively, if a satisfying word
is shorter than Ns · Nc we do not change it. If it is longer than Ns · Nc any accepting run of the
automaton on this word must contain a repeated (v, S,V). We can thus pump down this word to
ensure that it is shorter than Ns · Nc . Then, to ensure it is unique, we pump it up to some unique
length of at most n · Ns · Nc .

LEMMA C.5 (SHORT ATTRIBUTE VALUES). Given a sequence of sets of constraint automata
AC1
, . . . ,ACn each with at most Ns states and at most Nc constraints in each Ci , if there is a

sequence of pairwise unique words v1, . . . ,vn such that for all 1 ≤ i ≤ n there is an accepting run
of ACi over vi , then there exists such a sequence where the length of each vi is at most n · Ns · Nc .

To obtain Lemma C.3 (Bounded Attribute Values) we observe that for any subsequenceCi1, . . . ,Cim
we have m · N ′

s · N ′
c ≤ n · Ns · Nc since m ≤ n and the max number of states N ′

s and constraints N ′
c

in the subsequence have N ′
s ≤ Ns and N ′

c ≤ Nc .
We give the proof of Lemma C.5. That is, given a sequence of sets of constraint automata

AC1
, . . . ,ACn each with at most Ns states and at most Nc constraints in each Ci , if there is a

sequence of pairwise unique words v1, . . . ,vn such that for all 1 ≤ i ≤ n there is an accepting run
of ACi over vi , then there exists such a sequence where the length of each vi is at most n · Ns · Nc .

To prove the lemma, take a sequence v1, . . . ,vn such that each vi is unique and accepted by ACi .
We proceed by induction, constructing v ′

1, . . . ,v
′
i such that each v ′

j is unique, accepted by ACj , and
of length ℓ such that either

• ℓ ≤ Ns · Nc and v ′
j = vj , or

• i · Ns · Nc ≤ ℓ ≤ (i + 1) · Ns · Nc .
When i = 0 the result is vacuous. For the induction there are two cases.

When the length ℓ of vi is such that ℓ ≤ Ns · Nc we set v ′
i = vi . We know v ′

i is unique amongst
v ′
1, . . . ,v

′
i since for all j < i either v ′

j is longer than v ′
i or is equal to vj and thus distinct from vi .

When ℓ > Ns ·Nc we use a pumping argument to pick some v ′
i of length ℓ′ such that i ·Ns ·Nc ≤

ℓ′ ≤ (i+1) ·Ns ·Nc . This ensures thatv ′
i is unique since it is the only word whose length lies within

the bound. We take the accepting run

(u0, S0,V0)
a1−−→ (u1, S1,V1)

a2−−→ · · · an−−→ (uℓ, Sn,Vℓ)

ofvi and observe that the values of S j andVj are increasing by definition. That is S j ⊆ S j+1 andVj ⊆
Vj+1. By a standard down pumping argument, we can construct a short accepting run containing
only distinct configurations of length bound by Ns ·Nc . We construct this run by removing all cycles
from the original run. This maintains the acceptance condition. Next we obtain an accepted word
of length i · Ns · Nc ≤ ℓ′ ≤ (i + 1) · Ns · Nc . Since ℓ > Ns · Nc we know there exists at least

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CSS Minification via Constraint Solving 1:67

one configuration (u, S,V) in the short run that appeared twice in the original run. Thus there is a
run of the automaton from (u, S,V) back to (u, S,V) which can be bounded by Ns · Nc by the same
downward pumping argument as before. Thus, we insert this run into the short run the required
number of times to obtain an accepted word v ′

i of the required length.
Thus, by induction, we are able to obtain the required short words v ′

1, . . . ,v
′
n as needed.

C.3.3 Missing Definitions for AttsPres(θ , ®x).

AttsPres([s|a ~= v], ®x) =

©«

∧
1≤j≤m

©«
xs :ai , j = aj ∧©«
xs :ai ,m+1 = 0

∨
xs :ai ,m+1 =

ª®¬
ª®®®¬

∨

∨
1≤j≤N−m−1

©«
xs :ai , j−1 = ∧∧

1≤j′≤m
xs :ai , j+j′ = aj ∧(

xs :ai , j+m+1 = 0 ∨ xs :ai , j+m+1 =
) ª®®®¬

ª®®®®®®®®®®®®®®¬
AttsPres([s|a |= v], ®x) =

∧
1≤j≤m

xs :ai , j = aj ∧
(
xs :ai ,m+1 = 0 ∨ xs :ai ,m+1 = -

)
AttsPres([s|a $= v], ®x) =

∨
0≤j≤N−m−1

(∧
1≤j′≤m

xs :ai , j+j′ = aj ∧

xs :ai , j+m+1 = 0

)
C.3.4 Negating Positional Formulas. We need to negate selectors like :nth-child(αn + β),

For completeness, we give the definition of the negation below.
We decompose β according to the period α . I.e. β = αβ1 + β2, where β1 and β2 are the unique

integers such that |β2 | < |α | and β1α < 0 implies β2 ≤ 0 and β1α > 0 implies β2 ≥ 0.

Definition C.6 (NoMatch(x,α, β)). Given constants α, β, β1, and β2 as above, we define the
formula NoMatch(x,α, β) to be

(0 ≥ α ∧ x < β) ∨ (0 ≤ α ∧ x > β) ∨©«
∃n . ∃β ′2.

©«

���β ′2��� < |α | ∧(
β1α < 0 ⇒ β

′
2 ≤ 0

)
∧(

β1α > 0 ⇒ β
′
2 ≥ 0

)
∧

β
′
2 , β2 ∧

x = αn + αβ1 + β
′
2

ª®®®®®®®®®¬

ª®®®®®®®®®¬
In the following, whenever we negate a formula of the form ¬ (∃n.x = αn + β) we will use

NoMatch(x,α, β). One can verify that the resulting formula is existential Presburger. We show that
our negation of periodic constraints is correct.

PROPOSITION C.7 (CORRECTNESS OF NoMatch(x,α, β)). Given constants α and β , we have

¬ (∃n.x = αn + β) ⇔ NoMatch(x,α, β) .

PROOF. We first consider α = 0. Since there is no β ′2 with
��β ′2�� < 0 we have to prove

¬ (x = β) ⇔ (x < β) ∨ (x > β)

which is immediate.
In all other cases, the conditions on β2 and β ′2 ensure that we always have 0 <

��β2 − β ′2
�� < |α |.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:68 Matthew Hague, Anthony W. Lin, and Chih-Duo Hong

If ∃n.x = αn + αβ1 + β2 then if α > 0 it is easy to verify that we don’t have x < β (since n = 0
gives x = β as the smallest value of x) and similarly when α < 0 we don’t have x < β . To disprove
the final disjunct of of NoMatch(x,α, β) we observe there can be no n′ s.t. x = αn′ + αβ1 + β ′2
since x = αn + αβ1 + β2 and 0 <

��β2 − β ′2
�� < |α |.

In the other direction, we have three cases depending on the satisfied disjunct of NoMatch(x,α, β).
Consider α > 0 and x < β . In this case there is no n such that x = αn + αβ1 + β2 = αn + β since
n = 0 gives the smallest value of x , which is β . The case is similar for the second disjunct with
α < 0.

The final disjunct gives some n′ such that x = αn′ + αβ1 + β ′2 with 0 <
��β2 − β ′2

�� < |α |. Hence,
there can be no n with x = αn + αβ1 + β2. □

C.3.5 Correctness of Presburger Encoding. We prove soundness and completeness of the Pres-
burger encoding of CSS automata non-emptiness in the two lemmas below.

LEMMA C.8. For a CSS automaton A, we have

L(A) , ∅ ⇒ θA is satisfiable.

PROOF. We take a run of A and construct a satisfying assignment to the variables in θA . That is
take a document tree T = (D, λ), node η ∈ D, and sequence

q0,η0,q1,η1, . . . ,qℓ,ηℓ,qℓ+1 ∈ (Q × D)∗ ×
{
qf

}
that is an accepting run. We know from Proposition 6.4 (Bounded Types) that T can only use
namespaces from ⇃(NS) and elements from ⇃(ELE). Let t0, . . . , tℓ be the sequence of transitions
used in the accepting run. We assume (w.l.o.g.) that no transition is used twice. We construct a
satisfying assignment to the variables as follows.

• qi = qi for all i ≤ ℓ + 1 and qi = qf for all i > ℓ + 1.
• si = λS(ηi) for all i ≤ ℓ + 1 (si can take any value for other values of i).
• ei = λE(ηi) for all i ≤ ℓ + 1 (ei can take any value for other values of i).
• pi = (p ∈ λP(ηi)), for each pseudo-class p ∈ P \ {:root} and i ≤ ℓ + 1 (these variables

can take any value for i > ℓ + 1).
• ni = ι, when ηi = η′ι for some η′ and ι and 1 ≤ i ≤ ℓ + 1, otherwise ni can take any value.
• ns :ei = j, where j is the number of nodes of type s:e preceding ηi in the sibling order. That

is ηi = η′ι for some η′ and ι and

j =

������
η′ι′

������ ι′ < ι ∧ η′ι′ ∈ D ∧
λS(η

′ι′) = λS(η) ∧
λE(η

′ι′) = λE(η)

������ .

When i = 0 or i > ℓ + 1 we can assign any value to ns :ei .
• N i = N − ι where i ≤ ℓ + 1 and η = η′ι for some η′ and ι and N is the smallest number

such that η′N < D. For i = 0 or i > ℓ + 1 the variable N i can take any value.
• N

s :e
i = j, where j is the number of nodes of type s:e suceeding ηi in the sibling order. That

is ηi = η′ι for some η′ and ι and

j =

������
η′ι′

������ ι′ > ι ∧ η′ι′ ∈ D ∧
λS(η

′ι′) = λS(η) ∧
λE(η

′ι′) = λE(η)

������ .

When i = 0 or i > ℓ + 1 we can assign any value to N
s :e
i .

• Assignments to xs :ai , j are discussed below.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CSS Minification via Constraint Solving 1:69

It remains to prove that the given assignment satisfies the formula.
Recall

θA =
©«

q0 = qin ∧ qn = qf ∧∧
0≤i<n

(
Tran(i) ∨ qi = qf

)
∧

Consistent

ª®®¬ .
The first two conjuncts follow immediately from our assignment to qi and that the chosen run
was accepting. Next we look at the third conjunct and simultaneously prove Consistentn . When
i ≥ ℓ+1 we assigned qf to qi and can choose any assignment that satisfies Consistentn . Otherwise
we show we satisfy Tran(i) by showing we satisfy Tran(i, ti). We also show Consistentn is
satsfied by induction, noting it is immediate for i = 0 and that for i = 1 we must have either the
first orlast case which do not depend on the induction hypothesis. Consider the form of ti .

(1) When ti = qi
↓−→
σ

qi+1 we immediately confirm the values of qi , qi+1, ni+1, ns :ei+1 satisfy

the constraint. Similarly for ¬:emptyi since we know :empty < λP(ηi). We defer the
argument for Pres(σ , i) until after the case split. That Consistentn is satisfied can also be
seen directly.

(2) When ti = qi
→−−→
σ

qi+1 we know ηi = η′ι and ηi+1 = η′(ι + 1) for some η′ and ι. We

can easily check the values of qi , qi+1, ni+1, N i , ns :ei+1, and N
s :e
i+1 satisfy the constraint. We

defer the argument for Pres(σ , i) until after the case split. To show Consistentn we observe
ni+1 is increased by 1 and only one ns :ei+1 is increased by 1, the others being increased by 0.
Similarly for N i and ns :ei+1. Hence the result follows from induction.

(3) When ti = qi
→+−−−→
*

qi+1 we know ηi = η′ι and ηi+1 = η′(ι′) for some η′, ι, and ι < ι′. We

can easily check the values of qi , qi+1, ni+1, N i , ns :ei+1, and N
s :e
i+1 satisfy the constraint. We

defer the argument for Pres(σ , i) until after the case split. To satisfy the constraints over
the position variables, we observe that values for δ and δ s :e can be chosen easily for the
specified assignment. Combined with induction this shows Consistentn as required.

(4) When ti = qi
◦−→
σ

qi+1

We can easily check the values of qi and qi+1. We defer the argument for Pres(σ , i)
until after the case split. By induction we immediately obtain Consistentn .

We show Pres(σ , i) is satisfied for each ηi and σ labelling ti . Take a node η and σ = τΘ from
this sequence. Note η satisfies σ since thw run is accepting. Recall

Pres(τΘ, i) =
©«

Pres(τ , i)∧(∧
θ ∈NoAtts(Θ)

Pres(θ , i)
)
∧

AttsPres(τΘ, i)

ª®®®®¬
.

From the type information of η we immediately satisfy Pres(τ , i).
For a positive θ ∈ Θ there are several cases. If θ = :root then we know we are in η0 and

the encoding is ⊤. If θ is some other pseudo class p then the encoding of θ is pi and we assigned
true to this variable. For :nth-child(αn + β) and :nth-last-child(αn + β) satis-
faction of the encoding follows immediately from η satisfying θ and our assignment to ni and N i .
We satisfy the encodings of :nth-of-type(αn + β), :nth-last-of-type(αn + β),
:only-child, and :only-of-type similarly. The latter follow since an only child is position

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:70 Matthew Hague, Anthony W. Lin, and Chih-Duo Hong

1 from the start and end, and an only of type node has 0 strict predecessors or successors of the same
type.

For a negative θ ∈ Θ there are several cases. If θ = :not(:root) then we know we are not in
η0 and the encoding is ⊤. If θ is the negation of some other pseudo class p then the encoding of θ
is ¬pi and we assigned false to this variable. For the selectors :not(:nth-child(αn + β))
and the opposite selector :not(:nth-last-child(αn + β)) satisfaction of the encoding
follows immediately from η satisfying θ , our assignment to ni and N i as well as Proposition C.7
(Correctness of NoMatch(x,α, β)). We satisfy encodings of :not(:nth-of-type(αn + β))
and of :not(:nth-last-of-type(αn + β)) in a likewise fashion. For the remaining cases
of :not(:only-child), and :not(:only-of-type) the property follows since, for the
former the node must either not be position 1 from the start or end, and for the latter a not only of
type node has more than 0 strict predecessors or successors of the same type.

Next, to satisfy AttsPres(τΘ, i) we have to satisfy a number of conjuncts. First, if we have a
word a1 . . . an we assign it to the variables xs :ai , j (where η is the ith in the run and j ranges over
all word positions within the cimputed bound) ny assigning xs :ai , j = aj when j ≤ n and xs :ai , j = 0
otherwise.

In all cases below, it is straightforward to observe that it a word (within the computed length
bound) satisfies [s|a op v] or :not([s|a op v]) then the encoding AttsPress :a([s|a op v], i)
or ¬AttsPress :a([s|a op v], i) is satisfied by our variable assignment. Similarly Nulls(®x) is
straightforwardly satisfied. Hence, if a word satisfies C then our assignment to the variables means
AttsPress :a(C, i) is also satisfied.

There are a number of cases of conjuncts for attribute selectors. The simplest is for sets Θs
a where

we see immediately that all constraints are satisfied for λA(η)(s,a) and hence we assign this value
to the appropriate variables and the conjuct is satisfied also. For each [a] and [a op v] ∈ Θ we
have in the document some namespace s such that λA(η)(s,a) satisfies the attribute selector and all
negative selectors applying to all namespaces. Let s ′ be the fresh name space assigned to the selector
during the encoding and C be the full set of constraints belonging to the conjunct (i.e. including
negative ones). We assign to the variable xs :ai , j the jth character of λA(η)(s,a) (where η is the ith in
the run) and satisfy the conjuct as above. Note here that a single value of s:a is assigned to several
s ′:a. This is benign with respect to the global uniqueness required by ID attributes because each
copy has a different namespace.

Finally, we have to satisfy the consistency constraints. We showed Consistentn above. The
remaining consistency constraints are easily seen to be satisfied: Consistenti because each ID is
unique causing at least one pair of characters to differ in every value; Consistentp since it encodes
basic consistency constraints on the appearence of pseudo elements in the tree.

Thus, we have satisfied the encoded formula, completing the first direction of the proof. □

LEMMA C.9. For a CSS automaton A, we have

θA is satisfiable. ⇒ L(A) , ∅

PROOF. Take a satisfying assignment ρ to the free variables of θA . We construct a tree and node
(T ,η) as well as a run of A accepting (T ,η).

We begin by taking the sequence of states q0, . . . ,qℓ+1 which is the prefix of the assignment to
q0, . . . ,qn where qℓ is the first occurrence of qf . We will construct a series of transitions t0, . . . , tℓ

with ti = qi
di−−→
σi

qi+1 for all 0 ≤ i ≤ ℓ. We will define each di and σi , as well as construct T and η

by induction. We construct the tree inductively, then show σi is satisfied for each i.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CSS Minification via Constraint Solving 1:71

At first let T0 contain only a root node. Thus η0 is necessarily this root. Throughout the proof we
label each ηi as follows.

• λS(ηi) = ρ(si) (i.e. we assign the value given to si in the satisfying assignment).
• λE(ηi) = ρ(ei).

• λP(ηi) =

({
p

�� p ∈ P \ {:root} ∧ ρ(pi) = ⊤
}
∪

{:root | i = 0}

)
.

• λA(ηi)(s,a) = ρ
(
xs :ai ,1 . . . x

s :a
i ,N

)
where ρ

(
xs :ai ,1 . . . x

s :a
i ,N

)
is the word obtained by stripping all

of the null characters from ρ
(
xs :ai ,1

)
. . . ρ

(
xs :ai ,N

)
.

We pick ti as the transition corresponding to a satisfied disjunct of Tran(i) (of which there is at

least one since qi , qf when i ≤ ℓ). Thus, take ti = qi
di−−→
σi

qi . We proceed by a case split on di .

Note only cases di =↓ and di = ◦ may apply when i = 0.

• When di =↓ we build Ti+1 as follows. First we add the leaf node ηi+1 = ηi1. Then, if
i > 0, we add siblings appearing after ηi with types required by the last of type information.
That is, we add ρ

(
N i

)
− 1 =

∑
s :e ∈ELE

ρ
(
N

s :e
i

)
siblings appearing after ηi . In particular, for

each s and e we add ρ
(
N

s :e
i

)
new nodes. Letting ηi = ηι each of these new nodes η′ will

have the form ηι′ with ι′ > ι. We set λS(η′) = s, λE(η′) = e, λP(η′) = ∅, λA(η′) = ∅.
• When di =→ we build Ti+1 by adding a single node to Ti . When ηi = ηι we add ηi+1 =
η (ι + 1) with the labelling as above.

• When di =→+ we build Ti+1 as follows. We add ρ
(
δ
)
= (ρ(ni+1) − ρ(ni)) new nodes

of the form ηι′ where ηi = ηι and ρ(ni) = ι < ι′ ≤ ρ(ni). Let ηi+1 be ηρ(ni) labelled as
above. For the remaining new nodes, for each s and e, we label ρ

(
δ s :e

)
of the new nodes η′

with λS(η′) = s, λE(η′) = e, λP(η′) = ∅, λA(η′) = ∅. Note Consistentn ensures we have
enough new nodes to partition like this.

• When di = ◦ and i = 0 we have completed building the tree. If i > 0, we add siblings
appearing after ηi with types required by the last of type information exactly as in the case
of d =↓ above.

The tree and node we require are the tree and node obtained after reaching some di = ◦, for which
we necessairily have i = ℓ since ◦ must be and can only be used to reach qf . In constructing this
tree we have almost demonstrated an accepting run of A. To complete the proof we need to argue
that all σi are satisfied by ηi and that the obtained is valid. Let τΘ = σi .

To check τ we observe that Pres(τ , i) constrains si and ei to values, which when assigned to ηi
as above mean ηi directly satisfies τ .

Now, take some θ ∈ Θ. In each case we argue that Pres(τ , i) ensures the needed properties. Note
this is straightforward for the attribute selectors due to the directness of the Presburger encoding.
Consider the remaining selectors.

First assume θ is positive. If it is :root then we must have i = 0 and ηi is the root node as
required. For other pseudo classes p we asserted pi hence we have p ∈ λP(ηi). The encoding of the
remaining positive constraints can only be satisfied when i > 0. That is, ηi is not the root node.

For :nth-child(αn + β) observe we constructed T such that ηi = ηρ(ni) for some η.
From the defined encoding of Pres(:nth-child(αn + β), i) we directly obtain that ηi satis-
fies :nth-child(αn + β). Similarly for :nth-last-child(αn + β) as we always pad
the end of the sibling order to ensure the correct number of succeeding siblings.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:72 Matthew Hague, Anthony W. Lin, and Chih-Duo Hong

For :nth-of-type(αn + β) and :nth-last-of-type(αn + β) selectors, by similar
arguments to the previous selectors, we have ensured that there are enough preceeding or succeeding
nodes (along with the directness of their Presburger encoding) to ensure these selectors are satisfied
by ηi in T .

For :only-child we know there are no other children since ρ(ni) = ρ
(
N i

)
= 1. Finally

for the selector :only-of-type we know there are no other children of the same type since
ρ(ns :ei) = ρ

(
N

s :e
i

)
= 0 where ηi has type s:e.

When θ is negative there are several cases. If it is :not(:root) then we must have i > 0 and
ηi is not the root node. For other pseudo classes p we asserted ¬pi hence we have p < λP(ηi). The
encoding of the remaining positive constraints are always satisfied on the root node. That is, i = 0.
When ηi is not the root node we have i > 0.

For :not(:nth-child(αn + β)) observe we constructed T such that ηi = ηρ(ni) for
some η. From the definition of Pres(:not(:nth-child(αn + β)), i) we obtain that ηi does
not satisfy the required selector :nth-child(αn + β) via Proposition C.7 (Correctness of
NoMatch(x,α, β)). Similarly for the last child selector

:not(:nth-last-child(αn + β)) .

For :not(:nth-of-type(αn + β)) and :not(:nth-last-of-type(αn + β)), by
similar arguments to the previous selectors, we have ensured that there are enough preceeding
or succeeding nodes (along with their Presburger encodings and Proposition C.7 (Correctness of
NoMatch(x,α, β))) to ensure these selectors are satisfied by ηi in T .

For :not(:only-child) we know there are some other children since ρ(ni) > 1 or ρ
(
N i

)
>

1. Finally for :not(:only-of-type) we know there are other children of the same type since
ρ(ns :ei) > 0 or ρ

(
N

s :e
i

)
> 0 where ηi has type s:e.

Thus we have an accepting run of A over some (T ,η). However, we finally have to argue that T
is a valid document tree. This is enforced by Consistenti and Consistentp .

First, Consistenti ensures all IDs satisfying the Presburger encoding are unique. Since we trans-
ferred these values directly to T our tree also has unique IDs.

Next, we have to ensure properties such as no node is both active and inactive. These are all
directly taken care of by Consistentp . Thus, we are done. □

D ADDITIONAL MATERIAL FOR THE EXPERIMENTS SECTION
D.1 Optimised CSS Automata Emptiness Check
The reduction presented in Section 5 proves membership in NP. However, the formula constructed is
quite large even for the intersection of two relatively small selectors. Moreover, selectors generally
do no assert complex properties, so for most transitions, the full power of existential Presburger arith-
metic is not needed. Hence, only a small part of each formula requires complex reasoning, while
the remainder of the problem is better and easily solved with direct knowledge of the automata.

In this section we present an alternative algorithm. In essence it is a backwards reachability
algorithm for deciding non-emptiness of a CSS automaton. Instead of constructing a single large
query that requires a non-trivial solve time, the backwards reachability algorithm only makes small
queries to the SAT solver to enforce constraints that are not simply enforced by a standard automaton
algorithm.

The idea is that the automaton collects constraints on the node positions required to satisfy the
nth-child (sibling) constraints as it performs its backwards search. It also tracks extra information

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CSS Minification via Constraint Solving 1:73

to ensure it does not get stuck in a loop, at most one node is labelled :target, and all ids are
unique. Each time the automaton takes a transition labelled ↓ it checks whether the current set of
sibling constraints is satisfiable. If so, the automaton can move up to the parent node and begin
with a fresh set of sibling constraints. If not, the automaton cannot execute the transition. Once the
initial state has been reached, it just remains to check whether the id constraints are satisfiable. If
they are, a witness to non-emptiness has been found.

The algorithm is a worklist algorithm, where the worklist consists of tuples of the form(
q,broot,bsib,btarg,Ts,Cid,Cpos, i

)
where

• q is the state reached so far,
• broot is a boolean indicating whether the current node has to be the root,
• bsib is a boolean indicating whether the current node has to have siblings,
• btarg is a boolean indicating whether a node marked :target has been seen on the run so

far,
• Ts is the set of transitions seen on the current state (recall all loops are self-loops, so cycle

detection can be implemented using Ts),
• Cid is the set of constraints on id attributes in the run so far,
• Cpos is the set of constraints on node positions on the current level of the tree (that is, for

the assertion of nth-child constraints),
• i is the index position in the run (akin to the use of indices in the Presburger encoding).

The initial worklist contains a single element(
qf ,⊥,⊥,⊥, ∅, ∅, ∅,n

)
where n is the number of transitions of the CSS automaton. Note, the final element of the tuple will
always range between 1 and n since we decrement this counter whenever we take a new transition,
and each transition may only be visited once.

In the following, we partition sets of node selector elements into sets containing pseudo-classes,
attribute selectors, and positional selectors. That is, given a node selector τΘ we write

• Atts(Θ) for the elements of Θ of the form θ or :not(θ) where θ is of the form [s|a] or
[s|a op v],

• Pos(Θ) for the elements of Θ of the form θ or :not(θ) where θ is of the form

:nth-child(αn + β),
:nth-last-child(αn + β),
:nth-of-type(αn + β),

:nth-last-of-type(αn + β)
,:only-child, or
:only-of-type,

• Pseudo(Θ) for the elements of Θ of the form θ or :not(θ) where θ is of the form

:link,:visited,:hover,:active,:focus,:target,
:enabled,:disabled,:checked,:root, or :empty .

If the worklist is empty, we terminate, and return that the automaton is empty.
If it is not empty, we take an arbitrary element(

q′,broot,bsib,btarg,Ts,Cid,Cpos, i
)

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:74 Matthew Hague, Anthony W. Lin, and Chih-Duo Hong

and for each transition

t = q
d−→
σ

q′

with σ = τΘ we add to the worklist(
q,b ′root,b

′
sib,b

′
targ,Ts′,C ′

id,C
′
pos, i

′
)

where i ′ = i−1 is a fresh index, and when certain conditions are satisfied. We detail these conditions
and the definition of the new tuple below. We begin with general conditions and definitions, then
describe those specific to the value of d .

In all cases, we can only add a new tuple if

(1) t < Ts,
(2) AttsPres(τΘ, i ′) is satisfiable,
(3) Pseudo(Θ) is satisfiable – that is, we do not have p ∈ Θ and :not(p) ∈ Θ for some

pseudo-class p, and, moreover, we do not have
• :link ∈ Θ and :visited ∈ Θ, or
• :enabled ∈ Θ and :disabled ∈ Θ, or
• :root ∈ Θ and bsib = ⊤.

In all cases, we define

• b ′root =

⊤ :root ∈ Θ

broot d = ◦
⊥ otherwise,

• b ′sib =

⊤ d ∈ {→,→+}
bsib d = ◦
⊥ otherwise,

• b ′targ = btarg ∨ (:target ∈ Θ),

• Ts′ =
{

Ts ∪ {t} q = q′

∅ otherwise,
• C ′

id = Cid ∪ C ′′
id where C ′′

id is the set of all clauses AttsPress :id(C, i ′) appearing in
AttsPres(τΘ, i ′) for some s and C.

Next, we give the conditions and definitions dependent on d . To do so we need to define the set
of positional constraints derived from Pos(Θ). We use a slightly different encoding to the previous
section. We use a variable ni encoding that the node is the ni th child of the parent, and ns :ai counting
the number of nodes of type s:a to the left of the current node (exclusive). To encode “last of” con-
straints, we use the variable N to encode the total number of siblings of the current node (inclusive),
and N s :a to encode the total number of siblings of the given type (inclusive).

That is, when b ′root = ⊤ let

• C ′′
pos = {⊥} if b ′sib = ⊤,

• C ′′
pos = {⊥} if there is some θ ∈ Pos(Θ) that is not of the form :not(θ ’) for some θ ′, and

• C ′′
pos = {⊤} otherwise,

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

CSS Minification via Constraint Solving 1:75

and when b ′root = ⊥ let C ′′
pos =

{∃n . ni′ = αn + β | :nth-child(αn + β) ∈ Θ} ∪{
∃n . N − ni′ − 1 = αn + β

��� :nth-last-child(αn + β) ∈ Θ
}
∪{

si′ :ei′ = s:e ⇒
∃n . ns :ei′ = αn + β

���� s ∈ ⇃(NS) ∧ e ∈ ⇃(ELE) ∧
:nth-of-type(αn + β) ∈ Θ

}
∪{

si′ :ei′ = s:e ⇒
∃n . N s :e − ns :ei′ − 1 = αn + β

���� s ∈ ⇃(NS) ∧ e ∈ ⇃(ELE) ∧
:nth-last-of-type(αn + β) ∈ Θ

}
∪

{NoMatch(ni′,α, β) | :not(:nth-child(αn + β)) ∈ Θ} ∪{
NoMatch

(
N − ni′ − 1,α, β

) ��� :not(:nth-last-child(αn + β)) ∈ Θ
}
∪{

si′ :ei′ = s:e ⇒
NoMatch(ns :ei′ ,α, β)

���� s ∈ ⇃(NS) ∧ e ∈ ⇃(ELE) ∧
:not(:nth-of-type(αn + β)) ∈ Θ

}
∪{

si′ :ei′ = s:e ⇒
NoMatch

(
N s :e − ns :ei′ − 1,α, β

) ����� s ∈ ⇃(NS) ∧ e ∈ ⇃(ELE) ∧
:not(:nth-last-of-type(αn + β)) ∈ Θ

}
∪

{
N > ni′

}
∪

ni′ =
∑

s ∈⇃(NS)
e ∈⇃(ELE)

ns :ei′

 ∪{
si′ :ei′ = s:e ⇒ N s :e > ns :ei′

��� s ∈ ⇃(NS) ∧ e ∈ ⇃(ELE)
}
∪{

si′ :ei′ , s:e ⇒ N s :e ≥ ns :ei′
��� s ∈ ⇃(NS) ∧ e ∈ ⇃(ELE)

}
.

Then we have the following.

• When d = ◦, we set

C ′
pos = Cpos ∪C ′′

pos ∪
{ni′ = ni } ∪ {si′ :ei′ = si :ei } ∪{
ns :ei′ = ns :ei

�� s ∈ ⇃(NS) ∧ e ∈ ⇃(ELE)
}
.

• When d =↓,
– we require Cpos is satisfiable, ¬broot, and :empty < Θ,
– we set C ′

pos = C ′′
pos.

• When d =→,
– we require ¬broot and :root < Θ,
– we set

C ′
pos = Cpos ∪C ′′

pos ∪ {ni = ni′ + 1} ∪{
si′ :ei′ = s:e ⇒ ns :ei = ns :ei′ + 1

�� s ∈ ⇃(NS) ∧ e ∈ ⇃(ELE)
}
∪{

si′ :ei′ , s:e ⇒ ns :ei = ns :ei′
�� s ∈ ⇃(NS) ∧ e ∈ ⇃(ELE)

}
.

• When d =→+

– we require ¬broot and :root < Θ,

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:76 Matthew Hague, Anthony W. Lin, and Chih-Duo Hong

– we set
C ′

pos = Cpos ∪C ′′
pos ∪

∃δ ,
(
δ s :e

)
s ∈⇃(NS)
e ∈⇃(ELE)

.

©«

ni = ni′ + δ ∧ δ ≥ 1 ∧∧
s ∈⇃(NS)
e ∈⇃(ELE)

(
ns :ei = ns :ei + δ s :e ∧

(si′ :ei′ = s:e) ⇒ δ s :e ≥ 1

)
∧

δ =
∑

s ∈⇃(NS)
e ∈⇃(ELE)

δ s :e

ª®®®®®®®®¬

.

Moreover, if we were able to add the tuple to the worklist, and we have
• q = qin,
• C ′

pos is satisfiable, and
• The ID constraints are satisfiable,

then the algorithm terminates, reporting that the automaton is non-empty. To check the ID con-
straints are satisfiable, we test satisfiability of the following formula. Let N be the bound on the
length of ID values, as derived in the previous section. We assert∧

θ ∈C ′
id

θ ∧
∧
s ∈NS

1≤i1,i2≤n

∨
1≤j≤N

xs :idi1, j , xs :idi2, j .

That is, we assert all ID conditions are satisfied, and all IDs are unique.

D.2 Sources of the CSS Files Used in our Experiments
We have collected 72 CSS files from 41 global websites for our experiments. These websites cover
the 20 most popular sites listed on Alexa (Alexa Internet 2017), which are Google, YouTube, Face-
book, Baidu, Wikipedia, Yahoo!, Reddit, Google India, Tencent QQ, Taobao, Amazon, Tmall, Twit-
ter, Google Japan, Sohu, Windows Live, VK, Instagram, Sina, and 360 Safeguard. Note that we
have excluded Google India and Google Japan from our collection as we found the two sites share
the same CSS files with Google. We have further collected CSS files from 12 well-known websites
ranked between 21 and 100 on the same list, including LinkedIn, Yahoo! Japan, Netflix, Imgur,
eBay, WordPress, MSN, Bing, Tumblr, Microsoft, IMDb, and GitHub. Our examples also contain
CSS files from several smaller websites, including Arch Linux, arXiv, CNN, DBLP, Google News,
Londonist, The Guardian, New York Times, NetworkX, OpenStreetMap, and W3Schools. These
examples were used in the testing and development of our tool.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Organisation

	2 CSS Rule-Merging: Example and Outline
	2.1 HTML and CSS
	2.2 CSS Rule-Merging by Example
	2.3 CSS Rule-Merging Outline

	3 Preliminaries
	3.1 Maths
	3.2 Trees
	3.3 Max-SAT
	3.4 Existential Presburger Arithmetic

	4 Formal definition of CSS rule-merging and minification
	5 CSS Selector Formalisation and its Intersection Problem
	5.1 Definition of Document Trees
	5.2 Definition of CSS3 Selectors
	5.3 Solving the Intersection Problem
	5.4 Extracting the Edge Order from a CSS File

	6 More Details on Solving Selector Intersection Problem
	6.1 CSS Automata
	6.2 Transforming CSS Selectors to CSS Automata
	6.3 Closure Under Intersection
	6.4 Reducing Non-Emptiness of CSS Automata to SMT-Solving

	7 Rule-Merging to Max-SAT
	7.1 Orderable Bicliques
	7.2 The Max-SAT Encoding
	7.3 Generated Rule-Merging Opportunity

	8 Experimental Results
	8.1 Optimisations
	8.2 Results
	8.3 Main Results
	8.4 Evaluations of Optimisations

	9 Related Work
	10 Conclusion and Future Work
	Acknowledgments
	References
	A Additional Material for Max-SAT Encoding
	A.1 Orderable Bicliques
	A.2 Enumerating Maximal Rules
	A.3 Correctness of the Encoding

	B Additional Material for Section 5
	B.1 Handling Pseudo-Elements
	B.2 NP-Hardness of Theorem 5.1
	B.3 Handling !important and Shorthand Property Names

	C Additional Material for Section 6
	C.1 Correctness of A in Proposition 6.1
	C.2 Proof of Proposition 6.2
	C.3 Proofs for Non-Emptiness of CSS Automata

	D Additional Material for the Experiments Section
	D.1 Optimised CSS Automata Emptiness Check
	D.2 Sources of the CSS Files Used in our Experiments

